CPGE- Filière MP Fiche de T.P N°6 D'électronique MODULATION et DEMODULATION

Partie I - Modulation d'amplitude

I.A But

Mettre en oeuvre le principe de modulation. Comparer les ondes porteuse, modulante et modulée. Etudier les conditions d'une bonne modulation

I.B Préalable

La transmission d'un signal (radio ou TV) à grande distance s'effectue grâce à une onde électromagnétique qui se propage à la vitesse de la lumière (soit, dans le vide ou dans l'air : $c = 3,0010^8 m.s^{-1}$). Le signal à transmettre est un signal de basse fréquence (BF) (produit par un microphone par exemple). Le signal qui se propage à grande distance est un signal sinusoïdal de haute fréquence (HF) (produit par un oscillateur électrique)

I.C Principe de la modulation d'amplitude

La modulation d'amplitude consiste à modifier l'amplitude d'un signal de fréquence élevée (la porteuse) par un signal de fréquence faible (la modulante). Le signal obtenu (la modulée) a donc une amplitude A(t) qui varie avec les caractéristiques du signal de fréquence faible.

Pour l'étude réalisée :

- Le signal à transmettre (BF) sera caractérisé par sa fréquence f_1 et son amplitude U_{m1} .
- La porteuse (HF) sera caractérisée par sa fréquence f_2 et son amplitude U_{m_2}
- La modulée sera caractérisée par sa fréquence f_3 et son amplitude A.

I.D Visualisation du signal modulant et de la porteuse

Charger le logiciel Latispro.

I.D.1) Signal à transmettre (BF)

- Connecter le GBF sur l'entrée EA0.
- Dans Entrées analogiques sélectionner (clic gauche) **EA0**. Renommer : U_1 (pointeur sur EA0>clic droit>Propriété de la courbe)
- Dans Acquisition sélectionner Temporelle puis Total : ${\bf 20}~{\bf ms}$ et Mode permanent
- Dans Déclenchement sélectionner Source : $U_1(EA0)$ et Montant et 0 V.
- Changer l'échelle de l'axe des ordonnées (double clic sur les ordonnées) et choisir 5 V.
- Mettre le GBF sous tension puis appuyer sur la touche F_{10} .
- Régler le GBF de façon à observer une tension sinusoïdale telle que : $U_{m1} = 1V$ et $f_1 = 200Hz$
- Appuyer sur Echap

I.D.2) Signal modulant

- Pour pouvoir réaliser la modulation, il faut également ajouter une composante continue, U_0 appelée tension de décalage, au signal à transmettre.
- Dans Déclenchement sélectionner Source : $U_1(EA0)$ et Montant et 3 V.
- Appuyer sur la touche F10 puis tirer sur le bouton **OFFSET** du GBF
- Tourner le bouton **OFFSET** (jusqu'à ce que le signal apparaisse ou se déplace) afin d'ajouter une tension $U_0 = 4V$ au signal à transmettre (le maximum doit donc "toucher" la valeur 5 V).
- Lorsque le réglage est effectué, appuyer sur **Echap**
- La tension obtenue est le signal modulant $:u'_1(t) = u_1(t) + U_0$

I.D.3) **Porteuse(HF)**:

- Sélectionner le paramétrage de l'émission Choisir l'onglet **Sortie1**, cocher sortie active.
- Choisir alors les réglages pour obtenir une tension sinusoïdale telle que : $U_{m2} = 5V$ et $f_2 = 2000Hz$.
- Relier la sortie ${\bf SA1}$ à l'entrée ${\bf EA1}.$ Revenir au paramétrage de l'acquisition.
- Sélectionner EA1. Renommer : U_2

I.E Modulation d'amplitude

I.E.1) Modulation

La modulation est réalisée avec un multiplieur.

- $-\,$ Réaliser le montage représenté sur la figure 1.
- Connecter la sortie sur l'entrée EA2.
- Renommer : U_3 .
- Ouvrir une nouvelle fenêtre (Menu Fenêtre>Nouvelle fenêtre). Dans la fenêtre n°2 faire "glisser" (à partir de l'onglet Liste des courbes U_1 et U_3 .
- Modifier les échelles (5 V) si nécessaire Appuyer sur F_{10} puis après quelques instants, sur **Echap**.

Figure 1:Multiplieur AD 633

FIGURE 1 – le signal modulé

A l'aide du menu Outils>Mesures automatiques déterminer la période et la fréquence de U_3 : T_3 et f_3 .

- -- A quoi correspondent ces période et fréquence ?
- On utilise pour la tension modulée le terme "d'enveloppe", à quoi cela peut-il correspondre ? A l'aide du menu Traitements>Calculs spécifiques>Analyse de Fourier, faire l'analyse de U_3 (glisser- déposer). Une nouvelle fenêtre (n°3) apparaît (changer l'échelle des abscisses : de 1500 Hz à 2500 Hz).
- Vérifier que la fenêtre 3 correspond à la figure 2.
- A quoi correspond la fréquence centrale?
- A quoi correspondent les fréquences latérales ?

I.E.2) Taux de modulation

- Revenir à le fenêtre n°2 puis à l'aide du réticule (clic droit>Réticule) :
- déterminer la valeur maximale (positive) de l'amplitude de la tension de sortie : A_{max} .
- déterminer la valeur minimale (positive) de l'amplitude de la tension de sortie : A_{min} .

Le taux de modulation est défini par :

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

On montre que le taux de modulation peut également s'écrire : $m = \frac{U_{m1}}{U_0}$

- Les mesures effectuées vérifient-elles ce résultat ? Ouvrir une nouvelle fenêtre (fenêtre n°4) et "placer" (glisser-féposer) U3 en ordonnées et U1 en abscisses. (échelle en ordonnées : ± 5 V; échelle en abscisses : min 2 V, max 10 V) Vérifier que la fenêtre 4 correspond à la figure 3.
- A quelles grandeurs correspondent les bases du trapèze ?(s'aider du réticule)
- -- A quelle grandeur correspond la hauteur du trapèze ?

I.E.3) Surmodulation

- Fermer les fenêtres n°1 et n°3 (conserver les n°2 et n°4). Dans le menu Fenêtres>Mosaïque choisir l'affichage permettant d'observer les deux fenêtres l'une au- dessous de l'autre.
- Appuyer sur F_{10} .
- Diminuer l'amplitude du signal modulant (en fait celle du signal à transmettre donc GBF : bouton LEVEL.
- Le signal modulé est-il modifié?
- Comment varient : la fréquence f_3 , l'amplitude maximale A_{max} , l'amplitude minimale A_{min} et le taux de modulation m?

Augmenter l'amplitude du signal modulant jusqu'à la valeur $U_{m1} = 3V$ (dans ce cas, $U_{m1} = U_0$ la tension de décalage, le signal U_1 doit "toucher", par ses valeurs inférieures, la valeur 0 V)

- Vérifier que les fenêtres 2 et 4 correspondent à la figure 4.
- Le signal modulé est-il modifié?
- Que valent : la fréquence f_3 , l'amplitude maximale A_{max} et l'amplitude minimale A_{min} ?
- Quelle est la forme du "trapèze "? Augmenter encore l'amplitude du signal modulant jusqu'à la valeur $U_{m1} = 4V$. Vérifier que les fenêtres 2 et 4 correspondent à la figure 5.
- Le signal modulé est-il modifié?
- Que valent : la fréquence f_3 et le taux de modulation m?
- La modulation convient-elle? Dans ce cas, on dit qu'il y a surmodulation.
- Quelle est la condition pour une bonne modulation

I.E.4) Choix de fréquence

- Redonner à U_{m1} la valeur ~2 V (bonne modulation) Régler SA1 pour que la fréquence de la porteuse $u_2(t)$ soit $f_2 = 400 Hz$.
- Observer.
- La qualité de la modulation est-elle bonne?
 - Régler de nouveau SA1 pour que la fréquence de la porteuse soit $f_2 \sim 2kHz$.
 - Régler le GBF pour que la fréquence du signal à transmettre soit $f_1 \sim 1kHz$.
- La qualité de la modulation est-elle bonne?
- A quelle condition sur les fréquences $(f_1 \text{ et } f_2)$ la modulation est-elle de bonne qualité? Partie II - Démodulation d'amplitude

II.A Montage

Au montage "modulation" précédent, ajouter les éléments correspondants au schéma n°2 (Démodulation) avec : $C_1 = 100nF$; $R_1 = 47k\Omega$; $C_2 = 100nF$ et $R_2 = 47k\Omega$.

II.B Etude du redresseur

- Déconnecter les fils sur B et sur C Le branchement sur **EA3** (nommer : U_{demod}) permet de mesurer la tension entre A et la masse.
- --Décocher la case Mode permanent.
- Appuyer sur la touche F_{10} .
- Ouvrir une nouvelle fenêtre (fenêtre 3) et y faire représenter $U_{d\acute{e}mod}$.

FIGURE 2 – Montage de démodulation par detecteur de crête

- Modifier l'échelle : -0,5 V/2V Dans le menu Fenêtres>Mosaïque choisir l'affichage permettant d'observer les fenêtres 1 et 2 au-dessus de la fenêtre n°3.
- Quelle est la différence entre U_{demod} et U_3 ?

II.C Etude du détecteur d'enveloppe

- Connecter le fil entre A et B (celui entre B et C reste déconnecté)
- Faire le branchement pour que U_{demod} mesure la tension entre B et M Appuyer sur la touche F_{10} .
- Vérifier que la fenêtre n°3 correspond à la figure 2.
- Déterminer (utilisation du réticule) la période T et la fréquence f de la tension observée
- Quelle fréquence a été éliminée?
- Quelle fréquence a été conservée ?
- Ce résultat était-il prévisible?
- Calculer la constante de temps τ
- Augmenter la capacité du condensateur $C_1 = 1\mu F$ Appuyer sur la touche F_{10} .
- Calculer la constante de temps τ'
- Comparer à T_1
- La démodulation est-elle de bonne qualité?
- Diminuer la capacité du condensateur : $C_1 = 50 nF$ Appuyer sur la touche F_{10} .
- Calculer la constante de temps τ'' ? Comparer à T_2
- La démodulation est-elle de bonne qualité ?
- A quelle condition la démodulation sera-t-elle de bonne qualité ?

II.D Elimination de la composante continue

- Reprendre $R_1 = 47k\Omega$ et $C_1 = 100nF$
- Connecter le fil entre B et C Faire le branchement pour que U_{demod} mesure la tension entre D et M.
- Appuyer sur la touche F_{10} .
- Changer l'échelle -1V/1V Vérifier que la fenêtre n°3 correspond à la figure 3
- Quel est le rôle du filtre passe-haut Régler U_2 (SA1) pour que la fréquence soit 10 kHz.
- Appuyer sur la touche F_{10} .

