TP N.02

Utilisation simplifiée de LatisPro et la centrale d'acquisition Sysam-SP5

OBJECTIFS DU TP

— se (re)familiariser avec les fonctions de logiciel d'acquisition et de traitement de signal Latis- ${\bf pro}$.

— en profiter pour effectuer quelques révisions d'électricité.

 $\begin{array}{lll} \mathbf{ATTENTION} : \mbox{Il est impératif de ne jamais dépasser la tension limite à l'entrée de la carte d'acquisition sous peine de destruction de cette carte. Valeurs autorisées : - 10 V < U < +10 V \\ \end{array}$

1 Connexion de la centrale d'acquisition. :

Le boîtier ${\bf SP5}$ possèdent :

- Chacun 8 entrées analogiques numérotées de 0 à 7 (EA0, EA1, EA2... EA7) qui permettent d'acquérir jusqu'à 8 tensions simultanément. Elles sont mesurées entre l'entrée correspondante et la masse du boîtier.
- 2 sorties analogiques permettant de créer 2 générateurs basse fréquence (GBF) capables de générer des signaux de diverses sortes.
- Et 1 port de 8 Entrées sorties logiques Pour cela la centrale doit être :
 - alimentée par son transformateur d'alimentation;
 - -Reliée à un PC par son connecteur USB.
- Connecteur l'alimentation au secteur.
- Connecter la prise USB 2.0 à l'ordinateur.
- Réaliser un circuit RC alimenté par le GBF.
- Appliquer les tensions à acquérir entre les entrées analogique EA0, EA1, etc.. et la Masse.
- Lancer le logiciel d'acquisition en cliquant sur l'icône Latis Pro présente sur le bureau (écran

Filtre analogique passe-bas du premier ordre

Remarque :Paramétrer les GBF

Les deux sorties analogiques SA1 et SA2 sont des générateurs indépendants possédant la même référence de masse. Il est possible de les utiliser en mode différentiel (dans ce cas, la tension de sortie sera prise entre SA1 et SA2)

Démarrer LatisPro

2 Comment effectuer l'acquisition d'une ou de plusieurs tensions?

2.1 Paramétrer l'acquisition :

Cliquer sur l'icône 🤜 : La boîte de paramétrage de l'acquisition apparaît.

2.2 Activation des entrées :

Les entrées analogiques disponibles sont symbolisées par des boutons portant leurs noms.

- Activer les entrées utilisées **en cliquant sur les boutons** correspondants (une entrée peut-être désactivée en cliquant à nouveau sur le bouton).
- •• Pour renommer l'entrée "EA0" en "Uc" : après avoir activer l'entrée EA0, effectuer un clic droit sur le bouton EA0 et choisir l'option "Propriétés de la courbe".
- Il est possible de **superposer plusieurs acquisitions** successives, tout en conservant les précédentes (en termes de tracés et de valeurs) en **validant l'option "Ajouter les courbes".**

2.3 Paramétrage :

Il existe plusieurs modes d'acquisition. Le seul utilisé cette séance est le mode d'acquisition "Tempo-relle".

- Cliquer sur l'onglet "Temporelle".
- •• Indiquer le nombre de points de mesure et la durée totale de l'acquisition en précisant l'unité $(min, s, ms, \mu s)$.
- Latis-Pro affiche alors la période d'échantillonnage "Te", c'est-à-dire la durée entre deux points de mesure : **Te = Durée totale/Nombre de points**

	Ø				
Ac	quisition				
Entrées Analogiques	*				
Mode	différentiel				
EA0	EA4				
EA1	EA5				
EA2	EA6				
EA3	EA7				
Ajouter les cour	bes				
Acquisition	*				
Temporelle Pas à	pas XY				
Points	200				
Те	Te 100 μs				
Total 20 ms					
Périodique					
Nb. périodes 3					
Mode permanent					
Déclenchement 🎗					
Source Aucur	Source Aucune				

2.4 Déclenchement :

Préciser le mode de déclenchement :

- "Aucune" : l'acquisition démarre dès l'appui sur la touche "F10".
- Déclenchement sur valeur analogique, exemple :

Déclenche	ernent	\$	
Source	UC (EA0)	~	Ici, après appui sur la touche "F10",
Sens	Montant	~	l'acquisition démarre dès que la tension
Seuil	0,005	V	EA0 passe par la valeur 0,005V dans le
Pré-Trig	25 % 🔽		sens des valeurs croissantes.

• Le **Pré-Trig** permet de visualiser le signal mesuré avant que la condition de déclenchement ne soit atteinte. Laisser à 0 ./. sauf indication contraire.

Exemple : Si la durée totale de l'acquisition est de 80s et que le Pré-Trig est réglé à 25./., le logiciel affichera les mesures effectuées pendant 80 * 0.25 = 20s avant la réalisation de la condition de déclenchement et les mesures effectuées pendant 60s après.

3 Déclencher l'acquisition :

- Appuyer sur la touche "F10" : l'acquisition débute dès que la condition de déclenchement est réalisée.
- Appuyer sur la touche "Echap" ou "Esc" pour interrompre l'acquisition. Remarque :

4 Comment tracer des courbes?

Cliquer sur l'icône 🔽 : La fenêtre de la liste de courbes apparaît.

4.1 Tracer une courbe et utiliser les outils graphiques associés :

Pour tracer une courbe, Latis-Pro utilise **la méthode très simple du "Glisser-Déplacer"** : Cliquer sur le nom d'une variable dans la liste des courbes, et tout en maintenant le bouton de la souris enfoncé, le déplacer avec la souris vers l'axe souhaité.

Exemple : pour tracer U_{pn} en fonction de I, faire un "Glisser-Déplacer" de la variable U_{pn} à gauche de l'axe des ordonnées et "Glisser-Déplacer" de la variable I en dessous de l'axe des abscisses.

Pour retirer une variable d'un graphique, faire un clic droit sur le nom de la variable puis choisir "Retirer".

4.2 Modifier les propriétés d'une courbe :

Un double-clic sur le nom d'une courbe dans la fenêtre de la liste des courbes permet de modifier différents paramètres de la courbe : nom, couleur, style, unité.

4.3 Régler les échelles sur les deux axes :

Plusieurs outils peuvent être utilisés :

- Clic droit sur la fenêtre de la courbe puis sélectionner "Calibrage".
- Double-cliquer sur les valeurs des graduations des deux axes pour modifier les valeurs min et max.
- Utiliser la roulette de la souris pour zoomer ou dézoomer.
- Les fenêtres graphiques de Latis-Pro, peuvent être dimensionnées, en tirant ou contractant leurs axes à l'aide de la souris :

• Toute la partie graphique de la fenêtre peut également être translatée à l'aide de la souris. Il suffit de cliquer dessus et de déplacer la souris en maintenant son bouton enfoncé.

TP-ÉLECTRONIQUE

4.4 visualiser deux courbes dans la même fenêtre :

- Ouvrir une **nouvelle fenêtre**.
- Cliquer sur l'icône **sinusoïde** pour faire apparaître la liste des courbes.
- glisser la première courbe à gauche de la fenêtre (Clic gauche et déplacer).
- glisser la deuxième courbe complètement à droite de la fenêtre.

4.5 Créer une nouvelle fenêtre :

Menu "Fenêtres" puis "Nouvelle fenêtre" ou "Ctrl" + "F".

5 Comment utiliser le tableur pour créer de nouvelles variables?

Il faut tout d'abord utiliser le tableur :

Le tableur permet de visualiser les valeurs numériques des courbes qui y ont été **glissées** et de leur appliquer divers traitements.

5.1 Créer une nouvelle variable dans le tableur et saisir les valeurs :

- Cliquer sur le menu "Variables" du tableur, puis choisir "Nouvelle".
- Dans la boîte de dialogue, entrer le nom et l'unité de la variable dans les cases "Nom de l'ordonnée" et "Unité de l'ordonnée". Cliquer sur "**OK**".
- Entrer les valeurs de la variable dans la colonne du tableur correspondante.

Remarque : Il est aussi possible de commencer par entrer les valeurs de la variable dans une colonne du tableur. Dans la fenêtre de la liste des courbes, la nouvelle variable apparaît sous le nom **"Var"**. Faire un double-clic sur "Var" pour modifier le nom et donner l'unité appropriée à la variable.

5.2 Supprimer une variable définitivement :

Sélectionner la variable dans la liste de courbe avec la souris puis appuyer sur la touche "Suppr" du clavier.

5.3 Afficher les valeurs d'une variable dans le tableur :

5

- Pour faire apparaître la variable "Temps" dans le tableur, faire un "Glisser-Déplacer" de "fct(Temps)" associé à une variable temporelle depuis la fenêtre de la liste des courbes vers une colonne du tableur.
- Pour supprimer une courbe d'une colonne du tableur, faire un clic droit sur la colonne du tableur correspondante puis sélectionner "Retirer Courbe" dans le menu qui apparaît : la courbe est retirée du tableur mais est toujours présente dans la fenêtre de la liste des courbes.

5.4 Créer une nouvelle variable par un calcul à partir de variables existantes :

Tableur					
Edition	Variables A	ide	3.48 Fx fx =EA0(4	70	 Cliquer sur l'entête de la colonne
	EAO	-			concernée.
	V	A			🗖 Ouvrir le
0	3,003	0,006	Propriétés de l		menu
1	2,864	0,006	Nom de l'ordonnée :	Unité de l'ordonnée :	Variables.
2	2,729	0,006	1	Ampere (A)	• Cliquer sur
3	2,585	0,006	Nom de l'abscisse :	Unité de l'abscisse :	nouvelle
4	2,441	0,005	temps	Seconde (s)	Indiquer
5	2,292	0,005	Affichage		dans la
6	2,153	0,005	Stude A Caulaur	Valider	nouvelle
7	2,009	0,004	Style Couleur	Annuler	nronriétés
8	1,86	0,004			de la
9	1,711	0,004			nouvelle

- Valider.
- Saisir directement la formule mathématique précédée du signe "=" (voir flèche).
- Valider.
- Remarque importante :
 - Si la formule fait appel à l'abscisse d'une courbe, celle-ci doit être appelée exclusivement par son nom véritable, c'est-à-dire celui indiqué entre parenthèses.
 - Pour afficher l'abscisse d'une courbe il faut effectuer un double clic sur l'entête de la colonne de la courbe concernée.

_						
-	<u>Fichier</u> <u>T</u> ra	itements <u>E</u> d	lition <u>O</u> utils E <u>x</u> écute	Fenêtres Aide		
۵	1 🔁 🖬	* 🙆	■ ^ 5 ♥	I		
»	Edition Var	iables Aide				
	۵	👗 📔	3.46 Fx	fx =5*(1-Exp	o(-(UAB.X)*1E4))	
		UAB 🚩	Temps (UAB.X)	uABth		L'abscisse de
		V	s	V		UAB est
	0	0,003	-0,004	-134,665E		(UAB.X)
	1	-0,007	-0,004	-99,762E1		

- Astuce : Pour éviter les erreurs de saisie dans la case fx, il est possible de faire des "Glisser-Déplacer" des variables depuis la fenêtre de la liste des courbes.
- Affichage : Les boutons "3.48" ou "Fx" permettent d'afficher dans le tableur :
 - soit les formules : **bouton "Fx"**
 - soit les valeurs numériques : **bouton "3.48"**

Les fonctions de base					
Nom de la fonction	Description	Exemple d'appel	Résultat		
SQRT	Racine Carré	SQRT(4)	2		
SQR	Carré	SQR(3)	9		
^	Puissance	3 ^A 2	3 ² =9		
MIN	Minimum de 2 valeurs	MIN(3,4)	3		
MAX	Maximum de 2 valeurs	MAX(3,4)	4		
ABS	Valeur Absolue	ABS(-12)	12		
	Les fonctions trigonométriques				
COS	Cosinus	En degré : Cos(90)	0		
005	Cosmus	En radian : Cos(pi/2)	0		
SIN	Sinus	En degré : Sin(90)	1		
SIN	Sillus	En radian : Sin(pi/2)			
TAN	Tancanta	En degré : Tan(45)	1		
IAN	Tangente	En radian : Tan(pi/4)			
Les fonctions exponentielles et logarithmiques					
EXP	Exponentielle	EXP(1)	1		
LN	Logarithme népérien	LN(1)	0		
LOG	Logarithme en basedécimal	LOG(10)	1		

5.5 Les fonctions mathématiques du tableur :

5.6 Créer une constante avec la feuille de calculs :

- Cliquer sur le menu "Traitements" puis sélectionner "Feuille de calculs" ou appuyer sur la touche "F3".
- Taper dans la zone de saisie le nom de la constante et sa valeur sans préciser d'unité. **Exemple :**
- Pour définir une constante "g" égale à l'intensité de la pesanteur, il faut saisir : g = 9.81 puis appuyer sur la touche "F2" (ou bien choisir le menu "Calcul" de la feuille de calcul et "Exécuter"). La constante g apparaît alors dans la colonne de droite de la feuille de calcul ainsi que dans le bas de la fenêtre de la liste de courbe (zone "Scalaires"). La constante g peut maintenant être utilisée dans les formules du tableur.

Remarque : La feuille de calcul peut aussi être utilisée **pour créer de nouvelles variables** sans utiliser le tableur ! Par exemple, les constantes m (masse) et g (intensité de la pesanteur) ayant été définies, il est alors possible de créer la variable Epp (énergie potentielle de pesanteur).

• Saisir la formule suivante à la suite dans la **feuille de calculs** : $E_{pp} = m * g * z$ puis appuyer sur la touche "F2" pour exécuter les calculs.

		÷_ □×		
Eichier Iratements Edition Qutils Exécuter Fan	ettres Ade	9 - 9,81 m = 0,25 [1]		
■ Epp	Appuyer sur la touche "F2" pour exécuter les calcu			
<u>Scalaires</u> g = 9,81 m = 0,25	↓			
AUCUNE CENTRALE	Feuille de Calculs			

"[n]" apparaît alors dans la colonne de droite de la feuille de calcul : une nouvelle variable E_{pp} a été créée où n (ici 11) est le nombre de valeurs calculées. Si " $E_{pp} =$?" apparaît dans la colonne de droite, la formule saisie ne permet pas à Latis-Pro d'effectuer les calculs : vérifier la syntaxe et les noms des variables utilisés dans la formule.

6 Imprimer le graphe :

7 Comment modéliser une courbe par une fonction?

Cliquer sur l'icône \bigtriangleup ou appuyer sur la touche "F4" ou dans le menu "Traitements" choisir "Modélisation".

Exemple : Modélisation de la courbe θ en fonction de $e: \theta = fct(e)$ Faire glisser la courbe $:\theta = fct(e)$ depuis la fenêtre de la liste des courbes vers la case "Courbe à modéliser".

Attention : Il faut toujours modéliser une courbe (de la forme y = fct(x)) et non une variable (y)!

Choisir le modèle : utiliser l'ascenseur pour voir l'ensemble des modèles disponibles. Cliquer sur **"Calculer le modèle"** puis sur **"**" pour avoir accès aux coefficients calculés ainsi d

Cliquer sur "**Calculer le modèle**" puis sur "∎" pour avoir accès aux coefficients calculés ainsi qu'aux valeurs de l'écart type et du coefficient de corrélation.

Modélisation		×
Courbe à modéliser	Coefficie	ent :
θ fct(e)	Nom Valeur	Actif
Courbe modèle	a 602,53E-9	v
Modèle de 0	b -1,007	
Modèles :		
Puissance		
Nouveau Modèle	Copier le résultat vers	s le presse-papier
Calculer le modèle		Estimer une valeur
0=a*e^b	/	
0-602,53E-9*e^-1,007		
Ecart Type = 19,702E-3	Erreur en X Erreur en Y	
Coefficient de Corrélation = 0.999	0 m 0 rad	

Remarques :

- il est possible de fixer la valeur d'un des coefficients en imposant la valeur et en décochant la case. Relancer la modélisation en cliquant sur "Calculer le modèle".

 - le résultat de la modélisation est donné dans cette case

 - qualité de la modélisation : plus le coefficient de corrélation est proche de 1 (et l'écart type proche de 0) plus la corrélation entre les données et le modèle est bonne.

8 Calculs spécifiques :

- Cliquer sur le menu "Traitements" puis "Calculs spécifiques"
- $\bullet \bullet\,$ choisir l'opération à effectuer .
- Faire un "Glisser-Déplacer" de la courbe à traiter depuis la fenêtre de la liste des courbes.
- Attention : Il faut toujours réaliser le traitement sur une courbe (de la forme y = fct(x)) et non sur une variable (y)!

9 Comment exploiter une vidéo?

Cliquer sur l'icône i : pour entrer dans le module de lecture des séquences avi. Les fichiers avi doivent être ouverts à partir de ce module !

- 1ère étape : Cliquer sur "Fichier" pour ouvrir le fichier vidéo au format avi.

2^{ème} étape :

Cliquer sur "Sélection de l'origine" pour choisir avec la souris l'origine du repère sur la vidéo.

3^{ème} étape :

Cliquer sur "Sélection de l'étalon". Cliquer sur le <u>bas</u> puis le <u>haut</u> de l'étalon de longueur sur la vidéo. <u>Indiquer sa longueur réelle en mètre</u>.

4^{me} étape :

Choisir le sens des axes.

5^{ème} étape :

Rembobiner le film et le positionner sur la première image de l'étude.

<u>Cliquer sur "Sélection manuelle des points"</u> puis pointer précisément l'objet étudié (ballon ici) en utilisant le zoom : le clic gauche de la souris réalise la saisie et la séquence avance <u>automatiquement</u> d'une image.

Lorsque tous les points sont saisis, cliquer sur "Terminer la sélection manuelle".

Une fois la saisie terminée, fermer la fenêtre vidéo et faire apparaître la liste des courbes en cliquant sur :

Les variables indiquant les coordonnées du ballon apparaissent dans la fenêtre de la liste des courbes sous le nom : "**Mouvement X**" et "**Mouvement Y**" : ces courbes peuvent être renommées par la méthode du double-clic.

Remarque : La méthode "Sélection automatique des points" ne fonctionne que si le fond de la vidéo est parfaitement uniforme ce qui est rarement le cas.