TP N.05

Dipôle RL: Courant électrique dans une bobine

OBJECTIFS DU TP

- A l'aide d'un dispositif d'acquisition, déterminer l'inductance d'une bobine
- -Étudier le comportement d'un dipôle RL soumis à un échelon de tension .
- Établissement du courant dans un circuit ; mesure de la constante de temps du circuit.
- Détermination de l'inductance inconnue L' et de la résistance inconnue r' d'une bobine.

1 Réalisation du montage :

La bobine d'inductance L et le conducteur ohmique de résistance R ne sont pas polarisés, leur sens de **branchement est sans importance**. En revanche, la diode D doit être placée en sens inverse du courant imposé par le générateur (on parle de sens non passant).

Toute erreur dans le sens de branchement de la diode peut provoquer sa destruction, ainsi que celle du générateur puis de l'interface d'acquisition !.

Remarque :Le trait tracé sur la diode correspond au trait tracé sur le schéma.

- Lorsque l'interrupteur (K) est **fermé**, le générateur fait circuler le courant dans la bobine et le conducteur ohmique; le courant ne peut pas circuler dans la diode, **bloquée**.
- Lorsque l'interrupteur (K) est **ouvert**, l'énergie accumulée dans la bobine se dissipe dans la résistance sous forme d'effet Joule, le courant circulant bien dans le sens **passant** de la diode.
- Câblez avec méthode et soin le circuit demandé, en choisissant E = 6 V, $R = 47\Omega$ pour le conducteur ohmique et L = 1 H pour la bobine..
- Branchez l'interface de façon à pouvoir observer u_L sur la voie EA1 et $-u_R$ sur la voie EA2. Indiquer ces branchements sur le schéma.

Faites vérifier le montage par le prof

- 1. Comment va-t-on pouvoir déduire i(t) des mesures de $u_L(t)$ et $-u_R(t)$ qui vont être effectuées ?
- 2. Sommes nous en présence d'un problème de masse avec le matériel dont nous disposons ? Comment le vérifier à coup sûr ?
- 3. proposer une solution.

2 Configuration du logiciel :

- Sous Latis Pro, dans Entrées Analogiques, cliquer sur les boutons correspondants aux entrées EA1 et EA2, afin d'activer les mesures sur ces bornes.
- Dans Acquisition, onglet Temporelle, laisser **Points : 1000** pour le nombre de points de mesure, et entrer **Total : 5 secondes** pour la durée totale de l'acquisition. **Cocher Mode permanent** pour faciliter les premières vérifications des réglages.
- Lancer l'acquisition (F10). La touche **Echap** permet d'arrêter l'acquisition. Noter les valeurs des tensions mesurées par l'interface au bout d'un temps long, pour chaque position 1 ou 2 de l'interrupteur. La vérification de ces valeurs permet de s'assurer de l'absence de faux-contacts dans le circuit et du fonctionnement correct de l'interface d'acquisition.

• Décocher maintenant le mode permanent, et sous l'onglet Temporelle, changer **Total pour 1** secondes pour la durée totale de l'acquisition. Sous déclenchement, choisir EA1 comme Source, Montant pour le Sens, **1 volt pour le Seuil** et **un Pré-Trigger de 25** %. À partir d'une position où plus aucun courant ne circule dans la bobine, c'est-à-dire K ouvert depuis un temps suffisant, fermer K. Bien attendre plusieurs secondes entre chaque manipulation!

3 Exploitation :

• Une fois une capture satisfaisante obtenue, cliquer sur le menu **Traitements > Feuille de calcul.** Entrer les commandes suivantes :

$$L=1$$

R=47
 u_L =EA1
 u_R =-EA2
 $i=u_R/R$

La signification de ces calculs sera abondamment discutée dans la suite. Cliquer sur Calcul > Exécuter (F2) dans le menu. Vous pouvez fermer la feuille de calcul pour l'instant.

- Cliquer sur l'icône Liste des Courbes. Par un clic droit, retirer les courbes EA1 et EA2, les remplacer par les courbes u_L et i, par glissé-déposé. Conseil : glisser-déposer i sur la droite du graphique, pour créer un nouvel axe. Double-cliquer sur cet axe pour changer l'échelle.
- Reproduire les graphiques de $u_L(t)$ et i(t) sur votre compte-rendu. Évaluer sur le graphique la durée Δt nécessaire pour atteindre un état stationnaire (un état dans lequel les variations de toutes les grandeurs deviennent négligeables).
- Cliquer sur **Traitements** > **Modélisation**, glisser-déposer i comme courbe à modéliser, et choisir un modèle approprié. Cliquer éventuellement sur le graphique pour délimiter les deux extrémités de la zone devant être modélisée. Noter les valeurs de A et de τ obtenues, ainsi que le coefficient de corrélation.
- Recommencer les mesures en changeant la valeur de l'inductance de la bobine et/ou de la résistance du conducteur ohmique. Ne pas oublier de changer les valeurs sous **Traitements** > **Feuille de calcul**, et de recalculer (F2) à chaque changement. Recopier et compléter le tableau suivant :

L(H)	1	1	0.5	0.5
$R(\Omega)$	47	33	47	33
$\Delta t(s)$				
$\tau(s)$				
$\frac{L}{R}(s)$				

- Quelle est l'influence des valeurs de R et de L sur la durée Δt de retour à l'état stationnaire?
- Comparer les valeurs obtenues pour τ et $\frac{L}{R}$.Conclure.
- Retirer toutes les courbes du graphique, et les remplacer par i et u_L . Cliquer sur **Traitements** > **Dérivée**, calculer la dérivée de u_L , comparer qualitativement avec i.
- Faire de nouveaux enregistrements, pour étudier ce qui se passe lors de l'ouverture de l'interrupteur K; reproduire les graphiques $u_L(t)$ et i(t) obtenus sur votre compte-rendu; comparer les valeurs de τ obtenues avec les précédentes.
- Utiliser le mode différentiel de l'interface d'acquisition. Il est judicieux dans ce cas de modifier les branchements de l'interface, pour la brancher comme on branche des voltmètres.