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Abstract

Gaussian multiplicative chaos theory studies properties of random measures formally defined by
exponentiating a real parameter γ times a logarithmically correlated Gaussian field. Introduced by
Kahane in the eighties, this theory has attracted a lot of attention in the past decade and has been
shown to be related to many areas in mathematics. This thesis starts by studying the imaginary
multiplicative chaos where the parameter γ is chosen to be a purely imaginary complex number.
Compared to the real case, the resulting object is rougher and is not a (complex) measure any more.
The goal of this first part is to prove a basic density result, showing that for any nonzero continuous
test function f , the complex-valued random variable obtained by integrating the imaginary chaos
against f has a smooth density w.r.t. Lebesgue measure on C. Somewhat surprisingly, basic density
results are not easy to prove for imaginary chaos and one of the main contributions of this part is
introducing Malliavin calculus to the study of (complex) multiplicative chaos.

The second part of this thesis is concerned with Brownian multiplicative chaos measure. This
measure has been introduced very recently and is an instance of multiplicative chaos associated to a
non-Gaussian field: it is formally defined by exponentiating γ times the square root of the local times
of planar Brownian motion. So far, only the subcritical measures where the parameter γ is less than 2
were studied. Chapter 3 considers the critical case where γ = 2, using three different approximation
procedures which all lead to the same universal measure. On the one hand, we exponentiate the square
root of the local times of small circles and show convergence in the Seneta–Heyde normalisation as well
as in the derivative martingale normalisation. On the other hand, we construct the critical measure as
a limit of subcritical measures. This is the first example of a non-Gaussian critical multiplicative chaos.

Finally, we construct a multiplicative chaos measure associated to a Brownian loop soup in a
bounded domain D of the plane with given intensity θ > 0, which is formally obtained by exponentiating
the square root of its occupation field. The measure is constructed via a regularisation procedure,
in which loops are killed at a fix rate, allowing us to make use of the Brownian multiplicative chaos
measures. At the critical intensity θ = 1/2, it is shown that this measure coincides with the hyperbolic
cosine of the Gaussian free field, which is closely related to Liouville measure. This allows us to draw
several conclusions which elucidate connections between Brownian multiplicative chaos, Gaussian free
field and Liouville measure. For instance, it is shown that Liouville-typical points are of infinite loop
multiplicity, with the relative contribution of each loop to the overall thickness of the point being
described by the Poisson–Dirichlet distribution with parameter θ = 1/2. Conversely, the Brownian
chaos associated to each loop describes its microscopic contribution to Liouville measure. Along the
way, our proof reveals a surprising exact integrability of the multiplicative chaos associated to a killed
Brownian loop soup. We also obtain some estimates on the loop soup which may be of independent
interest.

Zusammenfassung

Die Theorie des multiplikativen Gaußsches-Chaos untersucht die Eigenschaften von Zufallsmaßen,
die formal durch die Potenzierung eines reellen Parameters γ mal einem logarithmisch korrelierten
Gaußschen-Feld definiert sind. Diese von Kahane in den achtziger Jahren eingeführte Theorie hat in
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den letzten zehn Jahren viel Aufmerksamkeit auf sich gezogen und es hat sich gezeigt, dass sie mit
vielen Bereichen der Mathematik in Verbindung steht. In dieser Arbeit wird zunächst das imaginäre
multiplikative Chaos untersucht, wobei der Parameter γ als rein imaginäre komplexe Zahl gewählt
wird. Im Vergleich zum reellen Fall ist das resultierende Objekt gröber und ist kein (komplexes) Maß
mehr. Ziel dieses ersten Teils ist es, ein grundlegendes Dichteergebnis zu beweisen, das zeigt, dass für
jede stetige Testfunktion f ungleich Null die komplexwertige Zufallsvariable, die man durch Integration
des imaginären Chaos gegen f erhält, eine glatte Dichte bezüglich des Lebesgue-Maßes auf C hat.
Überraschenderweise sind die grundlegenden Dichteergebnisse für imaginäres Chaos nicht einfach zu
beweisen, und einer der Hauptbeiträge dieses Teils ist die Einführung des Malliavin-Calculus in die
Untersuchung des (komplexen) multiplikativen Chaos.

Der zweite Teil dieser Arbeit befasst sich mit dem Brownschen multiplikativen Chaosmaß. Dieses
Maß wurde erst kürzlich eingeführt und ist ein Beispiel für multiplikatives Chaos, das mit einem nicht-
Gaußschen Feld assoziiert ist: Es ist formal definiert durch Potenzierung von γ mal der Quadratwurzel
der lokalen Zeiten der zweidimensionalen Brownschen Bewegung. Bislang wurden nur die subkritischen
Maße untersucht, bei denen der Parameter γ kleiner als 2 ist. Kapitel 3 betrachtet den kritischen Fall,
in dem γ = 2 ist, unter Verwendung von drei verschiedenen Approximationsverfahren, die alle zum
gleichen universellen Maß führen. Einerseits exponentiieren wir die Quadratwurzel der lokalen Zeiten
kleiner Kreise und zeigen Konvergenz in der Seneta-Heyde-Normalisierung sowie in der abgeleiteten
Martingal-Normalisierung. Andererseits konstruieren wir das kritische Maß als einen Grenzwert von
subkritischen Maßen. Dies ist das erste Beispiel für ein nicht-Gaußsches kritisches multiplikatives
Chaos.

Schließlich konstruieren wir ein multiplikatives Chaosmaß, das mit einer Brownschen Schleifen-
suppe in einem begrenzten Bereich D der Ebene mit gegebener Intensität θ > 0 assoziiert ist und
formal durch Potenzierung der Quadratwurzel ihres Besetzungsfeldes erhalten wird. Das Maß wird
über ein Regularisierungsverfahren konstruiert, bei dem Schleifen mit einer festen Rate abgetötet
werden, was uns erlaubt, die Brownschen multiplikativen Chaosmaße zu nutzen. Für die kritischen
Intensität θ = 1/2 wird gezeigt, dass dieses Maß mit dem hyperbolischen Kosinus des Gaußschen
freien Feldes übereinstimmt, das eng mit dem Liouville-Maß verwandt ist. Daraus lassen sich mehrere
Schlussfolgerungen ziehen, die den Zusammenhang zwischen dem multiplikativen Brownschen Chaos,
dem freien Gaußschen Feld und dem Liouville-Maß verdeutlichen. So wird beispielsweise gezeigt, dass
Liouville-typische Punkte von unendlicher Schleifenvielfalt sind, wobei der relative Beitrag jeder Schleife
zur Gesamtdicke des Punktes durch die Poisson–Dirichlet-Verteilung mit dem Parameter θ = 1/2
beschrieben wird. Umgekehrt beschreibt das Brownsche Chaos, das jeder Schleife zugeordnet ist, ihren
mikroskopischen Beitrag zum Liouville-Maß. Nebenbei enthüllt unser Beweis eine überraschende exakte
Integrierbarkeit des multiplikativen Chaos, das einer getöteten Brownschen Schleifensuppe zugeordnet
ist. Wir erhalten auch einige Abschätzungen über die Schleifensuppe, die von unabhängigem Interesse
sein könnten.
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Chapter 1

Introduction

1.1 Multiplicative cascades

Random multiplicative cascades measures were introduced by Mandelbrot [Man72, Man74a, Man74b]
as a toy model for energy dissipation in a turbulent flow. They have been extensively studied and
can be seen as being discrete counterparts of Gaussian multiplicative chaos. The introduction of
[BKN+14] gives a good account of the references on this topic. The exact tree structure underlying
multiplicative cascades makes them easier to analyse and many properties are first discovered in the
context of multiplicative cascades and then proved to hold as well in the more delicate setting of
Gaussian multiplicative chaos. For this reason, we decided to present first the multiplicative cascades.
Since they are obtained by exponentiating a branching random walk, we start by introducing this
latter object.

Branching random walk For simplicity, we will only consider binary branching random walks. An
introduction to this topic can be found in the book [Shi15]. Let ξ be a real-valued random variable
such that

E
[
eξ
]

= 1
2 and E

[
ξeξ
]

= 0. (1.1)

Some further integrability conditions are also needed for the results that we mention below to hold.
We do not want to enter into these technical details and we will simply assume that

E
[
e(1+ε)|ξ|

]
<∞ for some ε > 0.

The binary branching random walk associated to ξ is the process which can be described as follows. A
particle starts at the origin. At time 1, it dies and gives birth to two independent children that are
located at a random position distributed according to the law of ξ. These two children then evolves
independently of each other in a similar manner as the initial particle: at time 2, the particles die
and each of them gives birth to two independent children whose displacements with respect to their
respective parent are independent copies of ξ. The process keeps evolving in this way and is depicted
in Figure 1.1.

More formally, let T =
⋃
n≥0{0, 1}n be the binary tree, with the convention that the root {0, 1}0 is

1



CHAPTER 1. INTRODUCTION

time

space

Figure 1.1: First three generations of a binary branching random walk.

reduced to the empty set ∅. Let n ≥ 1 and w = (w1, . . . , wn) ∈ {0, 1}n. n represents the generation of
w that we denote by |w| = n and for any k ≤ n, we denote by w|k the ancestor of w in generation k,
i.e. w|k = (w1, . . . , wk). Let (ξw, w ∈ T) be independent copies of ξ. For any w ∈ T, define

V (w) :=
∑
k≤|w|

ξw|k.

The collection of spatial positions (V (w), w ∈ T) defines our branching random walk. Note that these
spatial positions form along any branch of the tree a one-dimensional random walk with increments
being independent copies of ξ. We encode the spatial positions of the n-th generation in a random
field Γn = (Γn(x), x ∈ [0, 1]) as follows. For any x ∈ [0, 1], let x =

∑∞
k=1wk2−k be its decomposition in

base 2 and define
Γn(x) := V (w1, . . . , wn).

Subcritical multiplicative cascades The multiplicative cascade built from this branching random
walk is defined as follows. Let γ > 0 and define for any n ≥ 1, the random Borel measure

µnγ (dx) = eγΓn(x)

E [eγξ]n
1{x∈[0,1]}dx.

For any Borel set I ⊂ [0, 1], (µnγ (I), n ≥ 1), is a nonnegative martingale and therefore it almost surely
converges as n → ∞. Standard arguments then imply the almost sure convergence of the measure
µnγ for the topology of weak convergence. Determining whether the limiting measure is trivial (i.e.
almost surely equal to zero) or not is not a simple task. Kahane and Peyrière [KP76] showed that
the answer depends on γ: with our normalisation (1.1), their result states that the limiting measure
is nondegenerate if, and only if, γ ∈ (0, 1). The multiplicative chaos measure µγ , γ ∈ (0, 1), is then
defined to be the limiting measure.

Critical multiplicative cascades It is still possible to make sense of a multiplicative cascade
associated to γ = 1. As explained above, normalising the measure by its first moment leads to a
vanishing measure when γ = 1. Two different successful normalisations have been considered. The first
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1.1. MULTIPLICATIVE CASCADES

one blows up the subcritical normalisation by a deterministic factor, whereas the second one uses a
random factor: it is shown in [BK04] and [AS14] that

√
nµγ=1

n and − Γn(x)µγ=1
n (dx)

both converge towards some nondegenerate Borel measures. Moreover, the two limiting measures
coincide up to some deterministic multiple constant. The first normalisation is known as the Seneta-
Heyde normalisation, whereas the second one is called the derivative martingale. This latter name
stems from the fact that this second approximation is actually a martingale and that it is formally the
derivative of µγn with respect to γ:

dµγn(dx)
dγ

∣∣∣
γ=1

= eγΓn(x)

E [eγξ]n

Γn(x)− n
E
[
ξeγξ

]
E [eγξ]

 dx∣∣∣
γ=1

= Γn(x) e
Γn(x)

E [eξ]n
dx.

This last equality comes from the normalisation (1.1). Note that, although the derivative martingale is
a signed measure at the level of the approximation, the limiting measure is a positive measure.

[Mad16] also shows that the critical cascade measure can be obtained from the subcritical ones, i.e.

1
1− γµγ

converges as γ → 1− to a multiple of the critical cascade measure.

Maximum of branching random walk The large values of the branching random walk Γn are
well-described by the cascade measures. For instance, the celebrated result of Aïdékon [Aï13] states
that

sup
x∈[0,1]

Γn(x)− 3
2 logn→ G+ logµ1([0, 1]) in distribution (1.2)

where G is a Gumbel random variable independent of the critical cascade measure µ1.

Complex multiplicative cascades A natural extension to the theory of multiplicative cascades
consists in allowing the random variable ξ to take complex values. Such an extension has been
studied in [BJM10] (see also [DES93, Big92, HK15, HK18]). The limiting object exhibits very different
properties compared to the real case. We will discuss more thoroughly the complex case in the Gaussian
multiplicative chaos context in Section 1.2.2.

The next section will present the main character of this thesis: Gaussian multiplicative chaos.
This object will be the analogue of multiplicative cascades where the branching random walk will be
replaced by a Gaussian field with logarithmic correlations. Even though branching random walk is not
necessarily Gaussian (the variable ξ was not assumed to be Gaussian), it is log-correlated. Indeed,
a simple computation shows that if x =

∑∞
k=1wk2−k and y =

∑∞
k=1w

′
k2−k are two elements of [0, 1],

then
Cov(Γn(x),Γn(y)) = Var(ξ) min(k, n)
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where k is the maximum integer such that for all i = 1 . . . k, wi = w′i. In other words,

Cov(Γn(x),Γn(y)) = Var(ξ) min
(
n,
− log |x− y|

log 2

)
+O(1).

1.2 Gaussian multiplicative chaos

Since Gaussian multiplicative chaos is defined as the exponential of a (complex) parameter γ times
a logarithmically-correlated Gaussian field, we first need to recall what these fields are. This is the
purpose of the following section.

1.2.1 Logarithmically-correlated Gaussian fields

A log-correlated Gaussian field Γ on a given domain U ⊂ Rd is formally a Gaussian vector indexed by
points in U whose correlations blow up logarithmically on the diagonal

E [Γ(x)Γ(y)] ∼ − log |x− y| as |x− y| → 0.

Because of the blow-up on the diagonal, these fields cannot be well-defined pointwise and their
definitions require some care.

Let U be a bounded domain in Rd, d ≥ 1, and let C be a positive definite kernel of the form

C(x, y) = − log |x− y|+ g(x, y).

C will capture the correlations of our Gaussian field and we make the following integrability and
regularity assumptions on g: g is bounded from above and g belongs to the Sobolev space Hd+ε

loc (U ×
U) ∩ L2(U × U).

To define a Gaussian field Γ with covariance C, one can proceed as follows. By spectral theorem,
there exists a sequence of strictly positive eigenvalues λ1 ≥ λ2 ≥ · · · > 0 and corresponding orthogonal
eigenfunctions (fk)k≥1 spanning the subspace (KerC)⊥ in L2(Rd). The log-correlated field Γ can then
be defined via its Karhunen–Loève expansion

Γ =
∑
k≥1

AkC
1/2fk =

∑
k≥1

Ak
√
λkfk,

where (Ak)k≥1 is an i.i.d. sequence of standard normal random variables. It has been shown in [JSW20,
Proposition 2.3] that the above series converges in H−ε(Rd) for any fixed ε > 0. The log-correlated
field Γ is therefore well-defined as a random generalised function which belongs to H−ε(Rd) for all
ε > 0. In fact, it barely fails to being a true function since it can be shown that Γ belongs to the
Hölder space C−ε(Rd) with negative index −ε, for any ε > 0; see [JSW20, Lemma 2.5]. This definition
gives a natural notion of Gaussian field with covariance C since one can easily compute that, for all
test functions ϕ,ψ : U → R,

E
[(∫

U
Γ(x)ϕ(x)dx

)(∫
U

Γ(x)ψ(x)dx
)]

=
∫
U×U

ϕ(x)C(x, y)ψ(y)dxdy.
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Figure 1.2: Simulation of 2D Gaussian free field in a square made by R. Rhodes and V. Vargas.

Gaussian free field An important example of log-correlated Gaussian field is the so-called two-
dimensional Gaussian free field (GFF). It can be thought of as being the analogue of Brownian bridge
where the time interval has been replaced by a two-dimensional domain. It pops up in many different
contexts. For instance, it arises as a universal scaling limit of a wide range of models such as the
height function of dimer models [Ken01], the characteristic polynomial of large random matrices
[HKO01, RV07, FKS16] and the Ginzburg–Landau model [Mil11, NS97] (see the review [Pow20a] for
more references). The GFF corresponds to the log-correlated field whose covariance is given by the
Green function of the Laplacian that we define now.

Let U ⊂ R2 be a bounded simply connected domain and for any t > 0 and x, y ∈ D, let pUt (x, y) be
the transition probability of Brownian motion killed at the boundary of U . This transition probability
can be expressed as pUt (x, y) = pt(x, y)πUt (x, y) where pt(x, y) = 1/(2πt) exp

(
−|x− y|2/(2t)

)
is the

heat kernel and πUt (x, y) is the probability for a Brownian bridge from x to y of duration t to stay in
U . The Green function GU with zero-boundary condition is then defined as

GU (x, y) = π

∫ ∞
0

pUt (x, y)dt, x, y ∈ U.

It can be shown that the Green function is a positive definite kernel satisfying the assumptions of the
above paragraph. The GFF is then simply the log-correlated field associated to this specific kernel.
See Figure 1.2 for a simulation and see [Ber16, WP21, BP21] for more on the GFF.

1.2.2 Gaussian multiplicative chaos

Let U ⊂ Rd and let Γ be a log-correlated Gaussian field in U as in Section 1.2.1. The Gaussian
multiplicative chaos µγ associated to Γ and to a complex-valued parameter γ is formally defined as

µγ(x) = eγΓ(x)− γ
2
2 E[Γ(x)2].
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√
2d−

√
2d

√
d

−
√
d

Re(γ)

Im(γ)

Figure 1.3: Range of parameter γ for which an associated Gaussian multiplicative chaos is
defined.

Exponentiating a generalised function is not a priori a well-defined operation and making sense of such
an object requires some non trivial work. In fact, this will be possible only in the restricted range of γ
depicted in Figure 1.3. This eye-shaped domain is defined as the open convex hull of the union of the
interval (−

√
2d,
√

2d) and the disc centred at the origin with radius
√
d. The construction and the study

of GMC was first carried out in the real case γ ∈ (−
√

2d,
√

2d). It was initiated by Kahane [Kah85] and
then extensively studied in the last decade [RV10, DS11, RV11, Sha16, Ber17]. The outcome of these
works is that, when γ ∈ (−

√
2d,
√

2d), it is possible to make sense of µγ as a random Borel measure. The
complex case γ /∈ (−

√
2d,
√

2d) was then studied in [AJKS11, JSW19, JSW20, Lac20, AJ21, AJJ21];
see also [LRV15a] for a variant of this model. In that case, it is still possible to make sense of the
exponential of γ times a log-correlated field, but the resulting object is not a random (complex) measure
any more, but a rougher generalised function; see [JSV19].

Interesting phenomena happen when γ is on, or tends to, the boundary of the eye-shaped domain
represented in Figure 1.3. In this thesis we will only discuss the real cases γ = ±

√
2d. In this case and

as in multiplicative cascades, it is still possible to make sense of an associated exponential of γ times
the log-correlated field Γ as a non degenerate random Borel measure. This delicate situation has been
studied in [DRSV14b, DRSV14a, JS17, JSW19, Pow18, APS19, APS20]; see [Pow20b] for a review.

Liouville measure Simulations of the Gaussian multiplicative chaos associated to a 2D Gaussian
free field can be found in Figure 1.4 and 1.5. This special instance of Gaussian multiplicative chaos is
of prime importance and shows up in many different contexts; see the introduction of Section 1.3 for
more about this.

We now give a few details on the construction of µγ . The standard way to proceed goes via an
approximation procedure. Let Γε be a smooth approximation of the log-correlated field Γ, and define
an approximation version µεγ(x) = eγΓε(x)− γ

2
2 E[Γε(x)2] of µγ . To conclude, one needs to show that µεγ

converges in a suitable space and that the limiting object does not depend on the specific choice of
regularisation. As we are about to argue, this convergence is fairly direct in the so-called L2-phase
{|γ| <

√
d}. Let ϕ : U → R be a test function. In order to show that

∫
U ϕ(x)µεγ(x)dx converges as
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(a) γ = 0.2 (b) γ = 1

(c) γ = 1.8

Figure 1.4: Simulation of Liouville measure made by R. Rhodes and V. Vargas.

ε→ 0, we compute for ε, δ > 0,

E
[∣∣∣∣∫

U
ϕ(x)µεγ(x)dx−

∫
U
ϕ(x)µδγ(x)dx

∣∣∣∣2
]

=
∫
U×U

ϕ(x)ϕ(y)E
[(
µεγ(x)− µδγ(x)

) (
µεγ(y)− µδγ(y)

)]
dxdy. (1.3)

Developing the product, we are left with four similar terms. For instance,∫
U×U

ϕ(x)ϕ(y)E
[
µεγ(x)µεγ(y)

]
dxdy

=
∫
U×U

ϕ(x)ϕ(y)E
[
eγΓε(x)+γ̄Γε(y)− γ

2
2 E[Γε(x)2]− γ̄2

2 E[Γε(y)2]
]
dxdy

=
∫
U×U

ϕ(x)ϕ(y)e|γ|2E[Γε(x)Γε(y)]dxdy.

If Γε is a reasonable approximation of the field Γ, then E [Γε(x)Γε(y)]→ E [Γ(x)Γ(y)] pointwise and
also ∫

U×U
ϕ(x)ϕ(y)e|γ|2E[Γε(x)Γε(y)]dxdy →

∫
U×U

ϕ(x)ϕ(y)e|γ|2E[Γ(x)Γ(y)]dxdy.
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Figure 1.5: Simulation of the real part of the µγ = eγGFF for γ = i/
√

2 made by J. Junnila,
E. Saksman and C. Webb.

The same reasoning applies to the other three terms appearing in the development of (1.3). The
condition |γ| <

√
d ensures that we deal with finite integrals. Indeed, recalling that E [Γ(x)Γ(y)] ≤

− log |x− y|+O(1), we see that∫
U×U

e|γ|
2E[Γ(x)Γ(y)]dxdy ≤ O(1)

∫
U×U

|x− y|−|γ|2dxdy <∞

as soon as |γ| <
√
d. Overall, this shows that in this regime of the parameter γ,

(∫
U ϕ(x)µεγ(x)dx, ε > 0

)
is Cauchy in L2. Lifting the convergence of

(∫
U ϕ(x)µεγ(x)dx, ε > 0

)
for any test function ϕ to a

convergence of (µεγ , ε > 0) in a suitable Sobolev space is then routine. Showing that two different
approximations yield the same limiting measure can be done along similar lines. However, treating the
case |γ| ≥

√
d requires much more work.

1.2.3 Density of imaginary chaos: main result of Chapter 2

Although Gaussian multiplicative chaos has been thoroughly studied in the real case γ ∈ [−
√

2d,
√

2d],
the complex case remains much less understood. Chapter 2 will specifically be interested in the
multiplicative chaos integrated against a nonnegative test function f 6= 0, formally written as

µγ(f) :=
∫
f(x)eγΓ(x)− γ

2
2 E[Γ(x)2]dx.

When γ ∈ R, this random variable is very well-understood. For instance, it is known that [RV14]

E [µγ(f)p] <∞ ⇐⇒ p <
2d
γ2 ,

the behaviour of its right tail P (µγ(f) > t) as t → ∞ is described by a power law with exponent
2d/γ2 [Won20, Won19], and the law of µγ(f) possesses a density w.r.t. Lebesgue measure on R [RV10].
This random variable even has an explicit distribution in some specific cases [Rem20] (specifying the
log-correlated field Γ and the test function f). The complex case γ /∈ R is not as much understood.
Chapter 2 will be focused on the purely imaginary case γ = iβ ∈ iR. The imaginary axis is special
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since it is the only case for which µγ(f) has finite moments of all positive order [JSW20]. The article
[JSW20] initiated the study of the variable µiβ(f). In particular, they obtained estimates on the right
tail of µiβ(f) by controlling accurately the blow-up of E [µγ(f)p] as p→∞; see also the appendix of
[LSZ17a] where very precise estimates were obtained in the case of the 2D GFF.

The main result of Chapter 2 is that µiβ(f) has a smooth density w.r.t. Lebesgue measure on
C. The analogous result in the real case heavily relies on the positivity of the measure. A novel
approach is needed in the complex setting and one of the main contributions of Chapter 2 can be seen
as introducing Malliavin calculus to the study of multiplicative chaos.

We mention that in a companion paper we will show that this density is positive everywhere. As a
corollary, we will obtain that

E [|µiβ(f)|p] <∞ ⇐⇒ p > −2.

Chapter 2 therefore effectively controls the negative moments of |µiβ(f)| which are much harder to
control that the positive ones.

1.3 Applications

Gaussian multiplicative chaos shows up in a broad range of mathematical areas. For instance, the real
chaos is instrumental in the mathematical construction of Liouville Conformal Field Theory (see the
lecture notes [Var17]) and also describes the volume form of a surface chosen “uniformly at random”
(see e.g. the lecture notes [BP21]). The imaginary chaos is related to the sine-Gordon model [LRV19]
and encodes the scaling limit of the spin-field of the critical planar XOR-Ising model [JSW20]. A
connection to the Brownian loop soup has also been established in [CGPR21]. In this section, we want
to give some details concerning two other connections. We will in particular give some heuristics on
why such links might exist. We will start with random matrices and we will then move on to the
Riemann zeta function.

1.3.1 Random matrices

For a large class of random matrix models, powers of the characteristic polynomial are expected, and
shown in some cases, to converge as the size of the matrix goes to infinity to some specific Gaussian
multiplicative chaos. Results in this direction as well as references on this topic can be found in
[FK14, Web15, NSW18, LOS18, BWW18, CN19, Kiv21]. We will present the specific case of the
Complex Unitary Ensemble (CUE), but many other natural models have been studied, such as the
complex Ginibre ensemble or the GUE.

Let Mn be a n × n random unitary matrix distributed according to the Haar measure on the
unitary group U(n). Since Mn is unitary, its eigenvalues live on the unit circle. The lack of boundary
(compared to an interval for instance) and the rotational symmetry of the model makes it particularly
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nice to study. [Web15] and [NSW18] show that, for all γ ∈ (0,
√

2), the random measure

|det(Mn − eiθ)|
√

2γ

E
[
| det(Mn − eiθ)|

√
2γ
] dθ

2π

converges in distribution with respect to the topology of weak convergence to a Gaussian multiplicative
chaos measure eγΓ(θ)− γ

2
2 E[Γ(θ)2] dθ

2π where Γ is the log-correlated Gaussian field on [0, 2π] with covariance
kernel

E
[
Γ(θ)Γ(θ′)

]
= − log |eiθ − eiθ′ |.

Note that here the underlying dimension is 1, so γ ∈ (0,
√

2) covers the whole subcritical regime.
What we would like to explain now is why one might expect the above specific log-correlated

Gaussian field to show up. Define

Γn : θ ∈ [0, 2π] 7→
√

2 log |det(Mn − eiθ)| ∈ [−∞,∞).

We are going to sketch the proof of the convergence in distribution Γn → Γ (in suitable Sobolev spaces).
We start by writing Γn as a sum of traces of powers of Mn. Denoting λj , j = 1 . . . n, the eigenvalues of
Γn, we can write

Γn(θ) =
√

2
n∑
j=1

log |λj − eiθ| =
√

2
2

n∑
j=1

log((1− λje−iθ)(1− λjeiθ)).

Expanding the logarithm in a power series and then exchanging the two sums, we obtain that

Γn(θ) = −
√

2
2

n∑
j=1

∞∑
k=1

1
k

(
λkj e
−ikθ + λj

k
eikθ

)
= −
√

2
2

∞∑
k=1

1
k

(
e−ikθ Tr(Mk

n) + eikθTr(Mk
n)
)
.

The convergence of Γn to Γ then essentially boils down to the facts (i) and (ii) below. Let Zk, k ≥ 1,
be i.i.d. standard complex normal variables, i.e. Re(Zk) and Im(Zk) are independent centred normal
distributions with variance 1/2.

(i) For any K ≥ 1, ( 1√
k

Tr(Mk
n), k = 1 . . .K

)
→ (Zk, k = 1 . . .K)

in distribution.
(ii) As K →∞,

θ ∈ [0, 2π] 7→
√

2
2

K∑
k=1

1√
k

(
Zke

−ikθ + Zke
ikθ
)

converges in distribution in the Sobolev space H−ε to Γ, for any ε > 0.
The proof of (i) comes from the striking observation that the mixed moments of

(
1√
k

Tr(Mk
n), k = 1 . . .K

)
exactly coincide with those of k independent standard complex Gaussians as soon as the moment we
are looking at is not too big, depending on n. More precisely, for all K ≥ 1, a1, b1 . . . , aK , bK ≥ 0 such
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that
∑K
k=1 kak ≤ n and

∑K
k=1 kbk ≤ n, we have

E
[
K∏
k=1

(Tr(Mk
n))ak(Tr(Mk

n))bk
]

= E
[
K∏
k=1

(
√
kZk)ak(

√
kZk)bk

]
.

This result is due to [DS94] (see also [DE01]) and relies on computations specific to the unitary group.
The observation (ii) which shows that (i) implies the convergence of Γn to the log-correlated Gaussian
field Γ is due to [HKO01]. Underlying (ii) is the identity

∞∑
k=1

1
k

cos(k(θ − θ′)) = − log |eiθ − eiθ′ |.

This line of argument hints at the log-correlated structure present in the CUE. Obtaining the
convergence towards GMC measures is then far from simple, in particular because at the discrete level
the field Γn is not Gaussian. This is the content of [Web15] and [NSW18].

1.3.2 Riemann zeta function

In a different direction, it turns out that the statistics of the Riemann zeta function ζ on the critical
line are closely related to Gaussian multiplicative chaos. More precisely, let us recall that the Riemann
zeta function is defined for all s ∈ C with Re(s) > 1 by

ζ(s) =
∞∑
n=1

1
ns

=
∏

p prime

(
1− 1

ps

)−1
(1.4)

and can be continued to a meromorphic function to the whole complex plane. This is of course an
object of prime importance in number theory that is still actively studied. In particular, the following
problem has attracted a lot of attention:

Let τ be a uniform random variable on [1, 2]. What does

log ζ(1/2 + iT τ + ix) (1.5)

look like as x ∈ R ranges over some interval and as T →∞?
It is strongly believed that this function asymptotically behaves like a log-correlated Gaussian

field. We present here a rigorous result of Saksman and Webb [SW20] that supports this picture by
establishing a concrete link between the Riemann zeta function and Gaussian multiplicative chaos.

If (1.5) were indeed close to being a log-correlated Gaussian field, then its exponential would be
closely related to some Gaussian multiplicative chaos. Indeed, Saksman and Webb [SW20] proved that

ζ(1/2 + iT τ + ix), x ∈ R,

converges as T → ∞ in distribution in a suitable Sobolev space towards some random generalised
function. The limiting generalised function is explicitly expressed in terms of some complex Gaussian
multiplicative chaos (although, the specific complex chaos therein differs slightly from the one introduced
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in Section 1.2.2). More generally, one can take powers of the ζ function. The article [SW20] focuses on
the real part of the logarithm and formulates a very precise conjecture: for any γ ∈ (0,

√
2),

|ζ(1/2 + iT τ + ix)|
√

2γ

E
[
|ζ(1/2 + iT τ + ix)|

√
2γ
] , x ∈ [0, 1],

is expected to converge to some (real) Gaussian multiplicative chaos measure. Although this latter
result is only conjectured, they prove a result in this direction but with a slightly different flavour.
Instead of directly randomly shifting the zeta function on the critical line, they first truncate the Euler
product (1.4) and then let T →∞, i.e. they show that

∏
p prime
p≤N

(
1− 1

p1/2+iT τ+ix

)−1
, x ∈ R,

converges as T →∞ to some randomised truncated Euler product ζN,rand(1/2 + ix). Then they show
that for any γ ∈ (0,

√
2), the random measure

|ζN,rand(1/2 + ix)|
√

2γ

E
[
|ζN,rand(1/2 + ix)|

√
2γ
]1{x∈[0,1]}dx

converges to some Gaussian multiplicative chaos measure.
Many other results in the literature supports the idea that (1.5) behaves like a log-correlated field.

For instance, [FHK12] and [FK14] predicted that

max
x∈[−1,1]

log |ζ(1/2 + iT τ + ix)| −
(

log log T − 3
4 log log log T

)
(1.6)

converges as T →∞ towards some non degenerate random variable. The factor 3/4 in front of the triple
logarithm is specific to the log-correlated setting enhancing once more this connection (recall (1.2)).
The upper bound of this conjecture was recently verified in [ABR20], meaning that the positive part of
(1.6) is a tight sequence. More results and references on this topic can be found in the introduction of
[AOR19] and in the review [BK21].

We would like to give in the rest of this section some heuristics hinting at the structure of log-
correlated field present in the Riemann zeta function. Recall that from the Euler product (1.4), we
have for all s ∈ C with Re(s) > 1,

log |ζ(s)| = Re log |ζ(s)| = −
∑
p

Re log(1− p−s).

Replacing log(1 − p−s) by −p−s, we see that log |ζ(s)| can be approximated by
∑
p Re p−s. When

s = 1/2 + it belongs to the critical line, the sum needs to be truncated and it can be shown that
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log |ζ(1/2 + it)| is fairly well-approximated by

log |ζ(1/2 + it)| ≈
∑
p≤X

cos(t log p)
p1/2 .

Controlling the error in the above approximation can be technically challenging. It depends on the
choice of the cutoff X, but for the purpose of our discussion we will assume that we can take X very
close to T . Assuming these heuristics, a small computation (see below) shows that the variance of
log |ζ(1/2 + iT τ)| asymptotically behaves like 1/2 log log T which matches the rigorously proved central
limit theorem of Selberg [Sel92]

log |ζ(1/2 + iT τ)|√
1/2 log log T

→ N (0, 1) in distribution.

We now group the prime numbers as follows: for all 1 ≤ ` ≤ log log T , let

Y`(x) =
∑

e`−1<log p≤e`

cos((Tτ + x) log p)
p1/2 .

This grouping is motivated by the fact that for all `,

E
[
Y`(x)2

]
= 1

2
∑

e`−1<log p≤e`

1
p

+ o(1) = 1
2 + o(1)

where the last equality follows from the prime number theorem. Overall we have decomposed

log |ζ(1/2 + iT τ + ix)| ≈
log log T∑
`=1

Y`(x).

The claim now is that for all ` 6= `′, Y` and Y`′ are asymptotically (as T →∞) independent and for all
`, Y`(x) and Y`(y) are either

• strongly correlated if |x− y| � e−`

• or strongly decorrelated if |x− y| � e−`.

This correlation structure is very similar to the branching random walk picture, unveiling the log-
correlations present in the Riemann zeta function. More details can be found in [BK21].

1.4 Brownian multiplicative chaos

This thesis investigates some connections between Gaussian multiplicative chaos and planar Brownian
motion. This story can be seen as starting with isomorphism theorems which relate local times of random
walk/Brownian motion to half of the Gaussian free field squared. Since the GFF is log-correlated
in dimension 2, the square root of the local time L can be thought of as being a (non-Gaussian)
log-correlated field and it is therefore sensible to try to make sense of eγ

√
L. The resulting object has
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(a) γ = 0.3 (b) γ = 0.8

(c) γ = 1.3 (d) γ = 1.8

Figure 1.6: Simulation of µγ = eγ
√
L for γ = 0.3, 0.8, 1.3 and 1.8, for the same underlying

sample of Brownian path which is drawn in blue. The domain D is a square and the starting
point x0 is its middle

been studied in [BBK94, AHS20, Jeg20a] and is now referred to as Brownian multiplicative chaos. See
Figure 1.6 for a simulation. In the next section, we describe the construction of [Jeg20a].

1.4.1 Subcritical construction

Let U ⊂ R2 be a bounded simply connected domain in the plane and let x0 ∈ U be a starting point.
Let (Bt)0≤t≤τ be a Brownian motion which starts at x0 and which is killed at the first time τ it exits
U . Let L be the occupation field of B, i.e. for any Borel set A,

L(A) =
∫ τ

0
1{Bt∈A}dt.

Brownian multiplicative chaos measure is formally defined as eγ
√
L where γ ∈ (0, 2) is a parameter. As

in the case of log-correlated Gaussian fields, the occupation field L is not well defined pointwise and
one needs to work in order to define such an object. This has first been done in [BBK94] for a strict
subset of the L2-phase, i.e. for γ ∈ (0, 1). Recently, [AHS20] and simultaneously [Jeg20a] extended the
construction of this object to the whole subcritical regime γ ∈ (0, 2). We now present the approach of
[Jeg20a].

We will approximate the field L by looking at the local times of small circles: for every x ∈ U and
ε > 0, define

Lx,ε := lim
r→0+

1
2r

∫ τ

0
1{ε−r≤|Bt−x|≤ε+r}dt.

14 Contribution to multiplicative chaos theory
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These local times are well defined jointly in x and ε, so we can define for any Borel set A ⊂ U ,

µεγ(A) =
√
| log ε|εγ2/2

∫
A
eγ
√

1
ε
Lx,εdx.

Note that the normalisation is the same one as in the case of Gaussian fields, except for the multiplicative
factor

√
| log ε| in front. [Jeg20a] shows that, as soon as γ ∈ (0, 2), µεγ converges in probability as ε→ 0

for the topology of weak convergence. The limiting measure is nondegenerate and is interpreted as
eγ
√
L.

1.4.2 Thick points of random walk

Brownian multiplicative chaos measures have proven to be useful in the study of exceptional points of
planar random walk where the walk goes back unusually often. Such a study was initiated by Erdős
and Taylor in [ET60] who made the following conjecture. Let UN be some discrete approximation of a
bounded simply connected domain U by a portion of the square lattice 1

NZ2 with mesh size 1/N and
let (Xt)0≤t≤τN be a (continuous-time) simple random walk on 1

NZ2 stopped upon exiting for the first
time UN . Let `Nx be the local time at x ∈ UN defined by

`Nx :=
∫ τN

0
1{Xt=x}dt.

Then, Erdős and Taylor showed that

1
π
≤ lim inf

N→∞

supx∈UN `
N
x

(logN)2 ≤ lim sup
N→∞

supx∈UN `
N
x

(logN)2 ≤ 4
π

and conjectured that the upper bound is sharp. This conjecture was proven forty years later in the
landmark paper [DPRZ01]. They moreover showed that for all a ∈ (0, 2), the set of a-thick points

TN (a) :=
{
x ∈ UN : `Nx ≥

2
π
a(logN)2

}

contains asymptotically N2−a+o(1) points. These estimates on the “fractal dimension” of the set of
thick points have then been streamlined in [Ros05, BR07, Jeg20b].

[Jeg19] went a step further by establishing the scaling limit of the set of thick points. In particular,
it is shown that

logN
N2−a#TN (a)

converges in distribution to a nondegenerate random variable. The limiting variable is nothing else but
the total mass of the Brownian chaos measure in U with parameter γ =

√
2a.

1.4.3 Critical case: main result of Chapter 3

The purpose of Chapter 3 is to initiate the study of the critical case γ = 2. Using the notations of
Section 1.4.1, the first result in this direction is that the subcritical normalisation leads to a vanishing
measure at criticality, i.e. µεγ=2(U) converges in probability to zero. The subcritical normalisation
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is then boosted in two different ways using either the Seneta-Heyde normalisation or the derivative
martingale (using multiplicative cascades phrases):√

| log ε|µεγ=2 = | log ε|ε2e2
√

1
ε
Lx,εdx

and
−

dµεγ(dx)
dγ

∣∣∣
γ=2

=
√
| log ε|ε2

(
2| log ε| −

√
1
ε
Lx,ε

)
e2
√

1
ε
Lx,εdx

are both shown to converge in probability for the topology of weak converge. The two resulting limiting
measures are nondegenerate and agree up to a universal multiplicative constant. See Theorem 3.2.
In Theorem 3.4, we also show that the critical measure can be obtained as limit of the subcritical
measures.

In analogy with the Gaussian case and the branching random walk setting, it is natural to expect
that the critical chaos measure encodes the scaling limit of the most extreme thick points of random
walk. We state precisely such a conjecture in Section 3.1.2.

Brownian multiplicative chaos measures share striking similarities with Liouville measure, i.e. GMC
measure associated to the 2D Gaussian free field. For instance, in both settings, the measures are
conformally covariant and the explicit formulas of the first moment of the measure have very similar
flavours (both involving conformal radii). However, they are far from being equal since, in the Brownian
setting, the measure is supported by a Brownian trajectory. Chapter 4 will elucidate the connection
between these measures by showing that one can recover Liouville measure (actually the hyperbolic
cosine of the GFF) from Brownian multiplicative chaos measures. See Theorem 4.5.

1.5 Brownian loop soup: main results of Chapter 4

The last chapter of this thesis will see another character come into play: Brownian loop soup. Introduced
by Lawler and Werner [LW04], Brownian loop soup is an infinite collection of Brownian-like loops
distributed as a Poisson point process with intensity θµloop

U . Here θ > 0 is an intensity parameter and
µloop
U is a certain infinite measure on loops which remain in a given planar domain U . See Figure

1.7 for a simulation. Brownian loop soup is a fundamental object which is closely related to other
conformally invariant processes such as the GFF, Schramm–Loewner Evolutions (SLE) and Conformal
Loop Ensembles (CLE).

The behaviour of the Brownian loop soup depends very much on the value of the intensity parameter
θ. For instance, Sheffield and Werner [SW12] proved that if θ ≤ 1/2, there are infinitely many clusters
of overlapping loops. In that case, the outer boundaries of the outermost clusters form a family of
non-intersecting and non-nested loops which turns out to be distributed as a CLE. When θ > 1/2,
there is only one “giant” cluster of loops. From this perspective, θ = 1/2 plays the role of a critical
intensity. At this special intensity, Le Jan [LJ11] shows that the occupation field of the Brownian loop
soup has exactly the same distribution as half of the GFF squared.

Our goal in Chapter 4 is to sharpen our understanding of the relationship between the critical
Brownian loop soup and the Gaussian free field. Specifically, let us couple a Brownian loop soup at
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Figure 1.7: Simulation of Brownian loop soup made by S. Nacu and W. Werner. Only loops
larger than a given threshold are displayed.

critical intensity θ = 1/2 and a Gaussian free field in such a way that these two objects are related by
Le Jan’s identity. What does the Brownian loop soup look like in the vicinity of a point z sampled
according to Liouville measure, i.e. Gaussian multiplicative chaos associated to the GFF? It is known
that Liouville measure is supported on points where the GFF is atypically large (the so-called thick
points). Via Le Jan’s isomorphism, it is therefore natural to expect the occupation field of the Brownian
loop soup to be atypically large at that point as well. How do loops combine to create such a thick local
time? Does the thickness come from a single loop which visits z very often, or from an infinite number
of loops that touch z, with each loop having a typical occupation field? We will show that the answer
turns out to be an intermediate scenario. More precisely, we will show that Liouville-typical points are
of infinite loop multiplicity, with the relative contribution of each loop to the overall thickness of the
point being described by the Poisson–Dirichlet distribution θ = 1/2. See Theorem 4.8.

In fact, our results are not restricted to the critical intensity θ = 1/2 and hold without restrictions
on θ > 0. When θ 6= 1/2, the occupation field of the Brownian loop soup is not distributed as
half of the GFF squared and the corresponding multiplicative chaos does not agree with Liouville
measure anymore. Therefore, our first task in Chapter 4 will be to construct the multiplicative chaos
associated to the Brownian loop soup, i.e. we will make sense of a random measure formally defined
as the exponential of γ times the square root of the occupation field. We will achieve this in two
complementary ways.

From the continuum In Section 1.4, we recalled the definition of Brownian multiplicative chaos, a
multiplicative chaos naturally associated to a single Brownian trajectory. Extending the definition
to finitely many independent Brownian paths is routine (see [Jeg19]) and we can therefore try to
construct the multiplicative chaos of the Brownian loop soup directly from these multi-trajectory
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Brownian multiplicative chaos measures. To do so, we first thin the collection of loops we look at. Let
K be a large positive real number, kill each loop independently of each other at rate K and consider
the set LθU (K) of killed loops. As K → ∞, LθU (K) increases to the whole Brownian loop soup LθU .
Although LθU (K) still contains infinitely many loops, it is of “finite density”, so defining an associated
Brownian chaos is not complicated: one can for instance truncate LθU (K) by looking at the n largest
loops (according to the diameter say), consider the associated Brownian chaosMK,n

a and then check
that the increasing limit MK

a = limn→∞MK,n
a defines a random finite measure. At this stage, the

measureMK
a can be thought of as the exponential of γ =

√
2a times the square root of the occupation

field of LθU (K).
The multiplicative chaos of the Brownian loop soup is then built by renormalisingMK

a and letting
K →∞: Theorem 4.1 states that

1
(logK)θM

K
a −−−−→

K→∞
Ma in probability,

where the right hand side is defined by this convergence.
A characterisation of the joint law of (LθD,Ma) which does not refer to the specific thinning we

used is stated in Theorem 4.8.

From the discrete Random walk loop soups were introduced in [LTF07] and are discrete analogues
of Brownian loop soup. In Theorem 4.12, we show thatMa can also be constructed by considering the
uniform measure on thick points of the random walk loop soup and letting the mesh size tend to 0.
Although the discrete approach to defining the multiplicative chaosMa is easier to grasp, its proof is
much more technical.

More precisely, let UN be a discrete approximation of the domain U by a portion of the square
lattice 1

N with mesh size 1
N and let LθUN be a random walk loop soup in UN . For any vertex z ∈ UN

and any discrete path (℘(t))0≤t≤T (℘) parametrised by continuous time, we denote by `z(℘) the local
time of ℘ at z, i.e.

`z(℘) := N2
∫ T (℘)

0
1{℘(t)=z}dt.

With our normalisation,

E
[ ∑
℘∈LθDN

`z(℘)
]
∼ θ

2π logN as N →∞

and we define the set of a-thick points by

TN (a) :=
{
z ∈ DN :

∑
℘∈LθDN

`z(℘) ≥ 1
2π a(logN)2

}
.

We encode this set in the following point measure: for all Borel set A ⊂ C, define

MN
a (A) := (logN)1−θ

N2−a

∑
z∈TN (a)

1{z∈A}.
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Theorem 4.12 states that

(LθDN ,M
N
a ) −−−−→

N→∞
(LθD, cMa) in distribution,

for some explicit constant c. LθD has the law of a Brownian loop soup with intensity θ andMa is the
associated multiplicative chaos. This result is close in spirit from the result of [Jeg19] we mentioned in
Section 1.4.2 and, indeed, our proof crucially uses [Jeg19]. We nevertheless mention that a lot of work
is required in order to prove Theorem 4.12.
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Chapter 2

Density of imaginary multiplicative
chaos via Malliavin calculus

We consider the imaginary Gaussian multiplicative chaos, i.e. the complex Wick exponential
µβ :=: eiβΓ(x) : for a log-correlated Gaussian field Γ in d ≥ 1 dimensions. We prove a basic density
result, showing that for any nonzero continuous test function f , the complex-valued random variable
µβ(f) has a smooth density w.r.t. the Lebesgue measure on C. As a corollary, we deduce that
the negative moments of imaginary chaos on the unit circle do not correspond to the analytic
continuation of the Fyodorov-Bouchaud formula, even when well-defined.
Somewhat surprisingly, basic density results are not easy to prove for imaginary chaos and one of
the main contributions of the article is introducing Malliavin calculus to the study of (complex)
multiplicative chaos. To apply Malliavin calculus to imaginary chaos, we develop a new decomposition
theorem for non-degenerate log-correlated fields via a small detour to operator theory, and obtain
small ball probabilities for Sobolev norms of imaginary chaos.

2.1 Introduction

In this paper we study imaginary Gaussian multiplicative chaos, formally written as µβ :=: eiβΓ(x) :,
where Γ is a log-correlated Gaussian field on a bounded domain U ⊂ Rd and β a real parameter. The
study of imaginary chaos can be traced back to at least [DES93, Big92], in case of cascade fields to
[BJM10], and to [LRV15b, JSW20] in a wider setting of log-correlated fields.

Imaginary multiplicative chaos distributions : eiβΓ(x) : can be rigorously defined as distributions
in a Sobolev space of sufficiently negative index [JSW20]. In the case where Γ is the 2D continuum
Gaussian free field (GFF), they are related to the sine-Gordon model [LRV19, JSW20] and the scaling
limit of the spin-field of the critical XOR-Ising model is given by the real part of : ei2−1/2Γ(x) : [JSW20].
Imaginary chaos has also played a role in the study of level sets of the GFF [SSV20], giving a connection
to SLE-curves. In [CGPR21] it was shown using Wiener chaos methods that certain fields constructed
using the Brownian Loop Soup converge to imaginary chaos. Recently, reconstruction theorems have
been proved for both the continuum [AJ21] and the discrete version [GS20] of the imaginary chaos,
showing that, somewhat surprisingly, when d ≥ 2 it is possible to recover the underlying field from the
information contained in the imaginary chaos in the whole subcritical phase β ∈ (0,

√
d).

In a wider context, real multiplicative chaos : eγΓ(x) :, with γ ∈ R has been the subject of a lot of
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recent progress (see e.g. reviews [RV14, Pow20b]). Complex and in particular imaginary multiplicative
chaos appear then naturally, for example, as analytic extensions in γ. Complex variants of multiplicative
chaos also come up when studying the statistics of zeros of the Riemann zeta function on the critical
line [SW20].

The main result of this paper is the existence and smoothness of density for random variables of the
type µβ(f). The main contribution, however, is probably the technique used to prove the main result.
Indeed, whereas in the case of imaginary multiplicative cascades [BM09] and real multiplicative chaos
[RV10] rather direct Fourier methods give the existence of a density, this approach is problematic in the
case of imaginary chaos. The main obstacle is the presence of cancellations that are difficult to control
without an exact recursive independence structure or monotonicity. We circumvent these problems
by turning to Malliavin calculus. Interestingly, in order to apply methods of Malliavin calculus we
have to first obtain new decomposition theorems for log-correlated fields, and prove quite technical
concentration estimates for tails of imaginary chaos.

2.1.1 The main result: existence of density

Let us now denote by µβ the imaginary chaos with parameter β ∈ (0,
√
d) in d dimensions. In the

appendix of [LSZ17b] and in [JSW20] the tails of this random variable were studied and it was shown
that P[|µ(f)| > t] behaves roughly like exp(−t2d/β2) – this basically follows from the fact that using
Onsager inequalities, one can obtain a very good control on the moments of imaginary chaos.

In the present article we are interested in the local properties of the law of µ(f) and our main
result is that this random variable has a smooth density. The following slightly informal statement is
made precise in Theorem 2.9.

Theorem. Let Γ be a non-degenerate log-correlated field in an open domain U and let f be a nonzero
continuous function with compact support in U . Then the law of µβ(f) is absolutely continuous with
respect to the Lebesgue measure on C and the density is a Schwartz function.

Moreover, for any η > 0 the density is uniformly bounded from above for β ∈ (η,
√
d) and converges

to zero pointwise as β →
√
d.

Finally, the same holds in the case where µβ is the imaginary chaos corresponding to the field Γ̂
with covariance E[Γ̂(x)Γ̂(y)] = − log |x− y| on the unit circle, with f being any nonzero continuous
function defined on the circle.

Remark. The reason why the circle field is brought out separately is because it does not satisfy our
definition of non-degenerate log-correlated fields, see Section 2.2, and requires a bit of extra work.
With similar work other cases of degenerate log-correlated fields could be handled. However, a unified
approach to handle a more general class of log-correlated fields is still lacking.

The requirement of compact support for f can also be dropped in many situations. For example,
the theorem is also true in the case where Γ is the zero-boundary GFF on a bounded simply connected
domain in R2 and f ≡ 1.

This theorem has already proved to be useful in further study of imaginary chaos1, but we also
expect the result and the method to be useful more generally in the study of complex chaos [LRV15b]

1A work in preparation studies the monofractal structure of imaginary chaos.
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and in studying the integrability results related to multiplicative chaos [Rem20, KRV20] and the
Sine-Gordon model. In a follow-up work, we will prove by independent methods that this density is in
fact everywhere positive.

2.1.2 An application to the Fyodorov-Bouchaud formula

Let us mention here one direct application of our results, linking our studies to recent integrability results
on the Gaussian multiplicative chaos stemming from Liouville conformal field theory [KRV20, Rem20].
Namely, in [Rem20] the author proved that for real γ ∈ (0,

√
2) the total mass of : eγΓ̂(x) :, where

Γ̂ is the log-correlated Gaussian field on S1 with covariance C(x, y) = − log |x − y|, has an explicit
density w.r.t. the Lebesgue measure; this was conjectured in [FB08] and proved by different methods
in [CN19]. Moreover, in Theorem 1.1 of [Rem20] the author proves an explicit expression for the p−th
moment of Yγ :=

∫
S1 : eγΓ̂(x) : dx with −∞ < p < 4/γ2:

E
(
Y p
γ

)
= Γ(1− pγ2/2)

Γ(1− γ2/2)p , (2.1)

where with a slight abuse of notation Γ is here the usual Γ-function.2 Notice that for any p, the
expression is analytic in γ (outside of isolated singularities) and in particular analytic in a neighbourhood
around the imaginary axis. So naively one might think that at least as long as the moments are defined
for : eiβΓ̂(x) :, they would correspond to the expression given by (2.1) with γ = iβ. And indeed, it is
not hard to see that for p ∈ N this is the case. Our results however imply that this cannot be true in
general, even in the case where the p−th moment is well-defined for the imaginary chaos. In other
words, the analytic extension of the moment formulas is in general different from naively changing γ in
the Wick exponential.

Corollary 2.1. Let µ̂β be the imaginary chaos corresponding to the log-correlated field Γ̂ on the unit
circle. Then E

(
µ̂β(S1)−1) converges to zero as β → 1. In particular, E

(
µ̂β(S1)−1) does not agree with

the analytic continuation of Equation (2.1) for γ ∈ (−i, i).

Proof. From Theorem 2.9 it follows that

|E
(
µ̂β(S1)−1

)
| ≤ E

(
|µ̂β(S1)|−1

)
→ 0

as β → 1. On the other hand a direct check shows that in Equation (2.1), the expression remains
uniformly positive for p = −1, when we set γ = iβ and let β → 1.

2.1.3 Other results: a decomposition of log-correlated fields and Sobolev norms
of imaginary chaos

As mentioned, our main tool in the proof of Theorem 2.9 is Malliavin calculus which is an infinite-
dimensional differential calculus on the Wiener space introduced by Malliavin in the seventies [Mal78].
Whereas Malliavin calculus has been used to prove density results in various other settings [Nua06], we

2Notice that in that paper the author is using a different normalization of the field with local behaviour of −2 log |x−y|.
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believe that it is a novel tool in the context of multiplicative chaos and could have further interesting
applications. In order to apply Malliavin calculus, we need to derive some results that could be of
independent interest.

First, we derive a new decomposition theorem for non-degenerate log-correlated fields. This
statement is made precise in Theorem 2.16 and the proof has an operator-theoretic flavour.

Theorem. Let Γ be a non-degenerate log-correlated Gaussian field on an open domain U ⊆ Rd with
covariance kernel given by − log |x− y|+ g(x, y) and g subject to some regularity conditions. Then, for
every V b U , there exists α > 0 such that we may write (possibly in a larger probability space)

Γ|V = Y + Z,

where Y is an almost ?-scale invariant field and Z is a Hölder-regular field independent of Y , both
defined on the whole of Rd.

Second, we develop a way to study the small ball probabilities of ‖fµ‖H−d/2(Rd). The precise version
of the following statement is given by Proposition 2.33.

Proposition. Let f ∈ C∞c (U). Then for all β ∈ (0,
√
d) the probability P[‖fµ‖H−d/2(Rd) ≤ λ] decays

super-polynomially in λ.

This result is closely related to small ball probabilities of the Malliavin determinant of µβ(f). To
prove it we establish concentration results on the tail of imaginary chaos.

2.1.4 Structure of the article

We have set up the article to highlight how the general theory of Malliavin calculus is applied to prove
such a density result and what are the concrete estimates of imaginary chaos needed to apply it. After
collecting some preliminaries in Section 2.2, we use Section 2.3 to walk the reader through the relevant
notions and results of Malliavin calculus in the context of imaginary multiplicative chaos, thereby
building up the backbone of the proof of the main theorem. In that section we state carefully the main
result, and prove it up to technical estimates. The remaining proofs are then collected in Section 2.5
and in Section 2.6; the former contains some general lemmas of Malliavin calculus, and the latter deals
with concentration results for imaginary chaos, including the proof of the Proposition 2.33 above. In
Section 2.4 we prove the decomposition theorem stated above.

2.2 Basic notions and definitions

2.2.1 Log-correlated Gaussian fields and imaginary chaos

In this section we establish the formal setup for the log-correlated field Γ and of the imaginary chaos
associated to Γ, often denoted by : exp(iβΓ) : with β ∈ R.
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2.2.1.1 Log-correlated Gaussian fields

Let U ⊂ Rd be a bounded and simply connected domain and suppose we are given a kernel of the form

C(x, y) = log 1
|x− y|

+ g(x, y) (2.2)

where g is bounded from above and satisfies g(x, y) = g(y, x). Furthermore, we assume that g ∈
Hd+ε

loc (U × U) ∩ L2(U × U) for some ε > 0. We may also extend C(x, y) as 0 outside of U × U . Then
C defines a Hilbert–Schmidt operator on L2(Rd), and hence C is self-adjoint and compact.

Assuming C is positive definite, by spectral theorem there exists a sequence of strictly positive
eigenvalues λ1 ≥ λ2 ≥ · · · > 0 and corresponding orthogonal eigenfunctions (fk)k≥1 spanning the
subspace L := (KerC)⊥ in L2(Rd). We may now construct the log-correlated field Γ with covariance
kernel C(x, y) via its Karhunen–Loève expansion

Γ =
∑
k≥1

AkC
1/2fk =

∑
k≥1

Ak
√
λkfk, (2.3)

where (Ak)k≥1 is an i.i.d. sequence of standard normal random variables. It has been shown in [JSW20,
Proposition 2.3] that the above series converges in H−ε(Rd) for any fixed ε > 0.

From the KL-expansion one can see that heuristically Γ is a standard Gaussian on the space
HΓ := C1/2L. The space H := HΓ is called the Cameron–Martin space of Γ, and it becomes a Hilbert
space by endowing it with the inner product 〈f, g〉H = 〈C−1/2f, C−1/2g〉L2 , where C−1/2f, C−1/2g ∈ L.
This definition makes sense since C1/2 is an injection on L. We will define the KL-basis (ek)k≥1 for H
by setting ek :=

√
λkfk, and we will also write 〈Γ, h〉H :=

∑∞
k=1Ak〈h, ek〉H for h ∈ H. The left hand

side in the latter definition is purely formal since Γ /∈ H almost surely.
Let us finally define what we mean by a non-degenerate log-correlated field in all of this paper.

Definition 2.2 (Non-degenerate log-correlated field). Consider a kernel CΓ(x, y) = C(x, y) from
(2.2) and the associated log-correlated field Γ, given by (2.3). We call the kernel C and the field Γ
non-degenerate when C is an injective operator on L2(Rd), i.e. KerC = {0}.

Note that for covariance operators injectivity is equivalent to being strictly positive in the sense
that 〈CΓf, f〉 > 0 for all f ∈ L2(V ), f 6= 0.3

The standard log-correlated field on the circle.
The only degenerate field we will work with in this paper is the standard log-correlated field on the

circle. I.e. it is the field Γ on the unit circle which has the covariance CΓ(x, y) = log 1
|x−y| , where one

now thinks of x and y as being complex numbers of modulus 1. Equivalently, we may consider the
3On Rd one could also imagine a different definition of non-degenerate fields. Namely, a canonical way to define a

log-correlated field Γd on Rd for any d ≥ 1 is to take Hd/2(Rd) as the Cameron–Martin space of the field. It would then
be natural to call any log-correlated field on Rd non-degenerate if its Cameron–Martin spaces is equivalent to Hd/2(Rd).
We will basically see in Section 4 that very roughly our condition implies that the Cameron–Martin space of a suitable
extension of the non-degenerate field Γ to the whole plane coincides up to an equivalent norm with Hd/2(Rd).
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field on [0, 1] with the covariance

E[Γ(e2πit)Γ(e2πis)] = log 1
2| sin(π(t− s))| ,

in which case we may write

Γ(e2πit) =
√

2
∞∑
k=1

1√
k

(Ak cos(2πkt) +Bk sin(2πkt))

where Ak and Bk are i.i.d. standard normal random variables.
This circle field is degenerate because it is conditioned to satisfy

∫ 1
0 Γ(e2πiθ) dθ = 0 and the operator

C maps constant functions to zero. It is not hard to see that the restriction of the field Γ(e2πi·) to
I0 := [−1/4, 1/4] is again non-degenerate.

2.2.1.2 Imaginary chaos

Let us now fix β ∈ (0,
√
d). For any f ∈ L∞(U) we may define the imaginary chaos µ tested against f

via the regularization and renormalisation procedure

µ(f) := lim
ε→0

∫
U
f(x)eiβΓε(x)+β2

2 EΓε(x)2
dx,

where Γε is a convolution approximation of Γ against some smooth mollifier ϕε. An easy computation
shows that the convergence takes place in L2(Ω). Importantly, the limiting random variable does
not depend on the choice of mollifier. Again, one has to be careful however when defining µ(f) for
uncountably many f simultaneously. Indeed, µ turns out to have a.s. infinite total variation, but
it does define a random Hs(Rd)-valued distribution when s < −β2/2 [JSW20]. One may also (via
a change of the base measure in the proofs of [JSW20]) fix f ∈ L∞(Rd) and consider g 7→ µ(fg) as
an element of Hs(Rd). Although µ is not defined pointwise, we will below freely use the notation∫
U f(x)µ(x) dx to refer to µ(f).

2.2.2 Malliavin calculus: basic definitions

In this subsection we will collect some very basic notions of Malliavin calculus: the Malliavin derivative
and Malliavin smoothness. We will mainly follow [Nua06] in our definitions, making some straightfor-
ward adaptations for complex-valued random variables both here and in the following sections.

Let C∞p (Rn;R) be the class of real-valued smooth functions defined on Rn such that f and all its
partial derivatives grow at most polynomially.

Definition 2.3. We say that F is a smooth (real) random variable if it is of the form

F (Γ) = f(〈Γ, h1〉H , . . . , 〈Γ, hn〉H)

for some h1, . . . , hn ∈ H and f ∈ C∞p (Rn;R), n ≥ 1.
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For such a variable F we define its Malliavin derivative DF by

DF =
n∑
k=1

∂

∂k
f(〈Γ, h1〉H , . . . , 〈Γ, hn〉H)hk.

Thus we see that DF is an H-valued random variable and in fact, in the case of smooth variables,
DF corresponds to the usual derivative map: for any h ∈ H, we have that

〈DF (Γ), h〉H = lim
ε→0

F (Γ + εh)− F (Γ)
ε

.

One may also define DmF as a H⊗m-valued random variable by setting

DmF =
n∑

k1,...,km=1

∂m

∂k1 . . . ∂km
f(〈Γ, h1〉H , . . . , 〈Γ, hn〉H)hk1 ⊗ · · · ⊗ hkm .

In our case H is a space of functions defined on U and hence H⊗m can be seen as a space of functions
defined on Um. At times it will be convenient to write down the arguments of the function explicitly
using subscripts, e.g. for all t1, . . . , tm ∈ U we set

Dm
t1,...,tmF := DmF (t1, . . . , tm),

with

DmF (t1, . . . , tm) =
n∑

k1,...,km=1

∂m

∂k1 . . . ∂km
f(〈Γ, h1〉H , . . . , 〈Γ, hn〉H)hk1(t1) . . . hkm(tm).

We extend the above definition in a natural way to complex smooth random variables by setting

D(F + iG) = DF + iDG

when F and G are real smooth random variables. Thus in general D will map complex random
variables to the complexification of H, which we denote by HC. We will assume that the inner product
〈·, ·〉HC is conjugate linear in the second variable. From here onwards we will use F for complex-valued
Malliavin smooth random variables, unless otherwise stated.

To define D for a larger class of random variables one uses approximation by the smooth functions
above. More precisely, we define for any non-negative integer k and real p ≥ 1 the class of random
variables Dk,p as the completion of (complex) smooth random variables with respect to the norm

‖F‖pk,p := E|F |p +
k∑
j=1

E‖DjF‖p
H⊗jC

.

The spaces Dk,p are decreasing with p and k, and we denote their intersection by D∞.
Finally, viewing D as an unbounded operator on L2(Ω;C) with values in L2(Ω;HC), we may define
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its adjoint δ which is also called the divergence operator. More specifically we have

E[Fδu] = E〈DF, u〉HC

for any u such that |E〈DF, u〉HC |2 . EF 2 for all F ∈ D1,2.

2.3 Density of imaginary chaos via Malliavin calculus

Let f be a continuous function of compact support in U . Our goal is to apply Malliavin calculus to
show that the random variable M := µ(f) has a smooth density with respect to the Lebesgue measure
on C.

We start by walking through the basic results of Malliavin calculus that we want to apply and we
then reduce the proof of Theorem 2.9 to concrete estimates on imaginary chaos. Some useful lemmas
of Malliavin calculus are proven in Section 2.5 and the estimates on imaginary chaos are verified in
Section 2.6, with input from Section 2.4.

Formally one can write the Malliavin derivative DM of M = µ(f) as

DtM =
∫
f(x)Dt : eiβ

∑∞
n=1〈Γ,en〉Hen(x) : dx

=
∫
f(x)

∞∑
k=1

: eiβΓ(x) : iβek(t)ek(x) dx

= iβ

∫
f(x)µ(x)C(t, x) dx.

The content of the following proposition is to make the above computations rigorous by truncating
the series

∑∞
n=1〈Γ, en〉Hen(x) to be able to work with Malliavin smooth random variables, as in

Definition 2.3.

Proposition 2.4. Let f ∈ L∞(C). Then M ∈ D∞ and

DtM = iβ

∫
U
f(x)µ(x)C(t, x) dx

for all t ∈ U .

The reason we are interested in showing that M belongs to D∞ is the following classical result of
Malliavin calculus, stating sufficient conditions for the existence of a smooth density. For convenience
we state it here directly for complex valued random variables.

Proposition 2.5. Let F ∈ D∞ be a complex valued random variable and let

det γF := 1
4(‖DF‖4HC − |〈DF,DF 〉HC |

2) (2.4)

be the Malliavin determinant of F . If E| det(γF )|−p <∞ for all p ≥ 1, then F has a density ρ w.r.t.
the Lebesgue measure in C and ρ is a Schwartz function.

The proof follows rather directly from [Nua06, Proposition 2.1.5]:
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Proof. Following [Nua06], the Malliavin matrix of a random vector F = (F1, . . . , Fn) ∈ Rn is given by
γF := (〈DFj , DFk〉H)nj,k. We will use Proposition 2.1.5 from [Nua06], which states that if Fi ∈ D∞ and
E|det γF |−p < ∞ for all p ≥ 1, then F has a density w.r.t. the Lebesgue measure on Rn which is a
Schwartz function.

As ReF, ImF ∈ D∞ by assumption, it is enough to check that det γF is equal to the given formula
in the case F = (ReF, ImF ). This is easy to check by writing

det γF = 〈DF1, DF1〉H〈DF2, DF2〉H − 〈DF1, DF2, 〉2H

= 1
16‖DF +DF‖2HC‖DF −DF‖

2
HC −

1
16 |〈DF +DF,DF −DF 〉HC |

2

and expanding the squares on the right hand side. We leave the details to the reader.

Thus to show that F has a smooth and bounded density it will be enough to show that the negative
moments of ‖DF‖4HC

− |〈DF,DF 〉HC |2 are all finite. In fact this quantity is not straightforward to
control directly and to make calculations possible, we first apply the following projection bounds, whose
proofs we postpone to Section 2.5:

Lemma 2.6 (Projection bounds). Let h be any function in HC. Then

det γF
‖DF‖2HC

≥ 1
4

(|〈DF, h〉HC | − |〈DF, h〉HC |)2

‖h‖2HC

. (2.5)

and
det γF ≥

1
4

(|〈DF, h〉HC | − |〈DF, h〉HC |)4

‖h‖4HC

. (2.6)

To further show that the density is uniformly bounded in β outside any interval surrounding the
origin, we need to have some quantitative control on the densities. We will use the following simple
adaption of Lemma 7.3.2 in [NN18] to the complex case to do this:

Lemma 2.7. Let p > 2 and F be a complex Malliavin random variable in D2,∞. Then there is a
constant c = cp > 0 such that the density ρ of F satisfies for all x ∈ C

ρ(x) ≤ cp(E|δ(A)|p)m/p,

where the complex covering vector field A is defined by

A =
‖DF‖2HC

DF − 〈DF,DF 〉HCDF

‖DF‖4HC
− |〈DF,DF 〉HC |2

.

Bounding δ(A) is again technically not straightforward, but the following general bound could
possibly be of independent interest. It is again proved in Section 2.5.

Proposition 2.8. Let F be a complex Malliavin random variable in D2,∞. We have

|δ(A)| .
‖DF‖2HC

(|δ(DF )|+ ‖D2F‖HC⊗HC)
‖DF‖4HC

− |〈DF,DF 〉HC |2
.
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Using the above results on Malliavin calculus, we can now reduce Theorem 2.9 to concrete
propositions on imaginary chaos. Proving the estimates needed for these propositions is basically the
content of Section 2.6.

We start with a precise statement of the main theorem:

Theorem 2.9. Let U be an open bounded domain and Γ a non-degenerate log-correlated field in U as
in Definition 2.2 and f be a nonzero continuous function of compact support in U . We denote by µβ
the imaginary chaos associated to Γ. Then

• the law of µβ(f) is absolutely continuous with respect to the Lebesgue measure on C and the
density is a Schwartz function;

• for any η > 0 the density is uniformly bounded from above for β ∈ (η,
√
d) and converges to zero

pointwise as β →
√
d.

Finally, the same holds in the case where Γ is defined on the unit circle with covariance E[Γ̂(x)Γ̂(y)] =
− log |x− y| and f is any nonzero continuous function on the circle.

There are basically two technical chaos estimates needed to deduce the theorem. First, super-
polynomial bounds on small ball probabilities of the Mallian determinant are used both to prove that
the density exists and is a Schwartz function, and to show uniformity:

Proposition 2.10. Let Γ, f , M = µ(f) be as in the theorem above. Then we have the following
bounds for the Malliavin determinant det γM . For any ν > 0, there exist absolute constants C, c, a > 0
such that for all ε > 0 sufficiently small and for all β ∈ (ν,

√
d),

P
(
det γM ≥ (d− β2)−4ε

)
≥ 1− C exp

(
−aε−c/2

)
. (2.7)

and
P
(

det γM
‖DM‖2HC

≥ (d− β2)−2ε

)
≥ 1− C exp

(
−aε−c

)
. (2.8)

Here the bound on
‖DM‖2HC

det γM is necessary, when bounding the divergence of the covering field via
Proposition 2.8. Second, in order to apply Lemma 2.7 we also need upper bounds on |δ(DM)| and
‖D2M‖HC⊗HC :

Proposition 2.11. Let Γ, f , M = µ(f) be as in the theorem above. Then for all N ≥ 1, there exists
C = C(N) > 0 such that for all β ∈ (0,

√
d)

E
[
|δ(DM)|2N

]
≤ C(d− β2)−3N (2.9)

and
E
[
‖D2M‖2NHC⊗HC

]
≤ C(d− β2)−3N . (2.10)

We can now prove Theorem 2.9 modulo these propositions.
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Proof of Theorem 2.9. To apply Proposition 2.5 to prove that M = µ(f) has a density w.r.t. Lebesgue
measure, and that moreover this density is a Schwartz function, we need to verify two conditions:

• That M ∈ D∞ – this is the content of Proposition 2.4;

• And that E|det(γM )|−p < ∞ for all p ≥ 1 – this follows directly from the bound (2.7) in
Proposition 2.10.

Finally, it remains to argue that the density is uniformly bounded from above for β ∈ (η,
√
d) for

some fixed η > 0, and converges to zero pointwise on Rd as β →
√
d. This follows from Lemma 2.7,

once we show that E|δ(A)|4 is uniformly bounded in β ∈ (η,
√
d) and tends to zero as β →

√
d. By

Proposition 2.8

E|δ(A)|4 . E
∣∣∣‖DM‖2HC

(|δ(DM)|+ ‖D2M‖HC⊗HC)
‖DM‖4HC

− |〈DM,DM〉HC |2
∣∣∣4.

By using the inequality (x+ y)4 . x4 + y4 and then Cauchy–Schwarz we have that

E|δ(A)|4 .

√
E
∣∣∣‖DM‖2HC

det γM

∣∣∣8E|δ(DM)|8 +

√
E
∣∣∣‖DM‖2HC

det γM

∣∣∣8E|‖D2M‖HC⊗HC |8.

We thus conclude from (2.8) in Proposition 2.10 and Proposition 2.11.

The proofs of the above-mentioned chaos estimates appear in Section 2.6. More precisely,

• In Section 2.6.2 we prove that M is in D∞, i.e. Proposition 2.4. This boils down to bound-
ing moments of DM and is a rather standard calculation. Similar computations with small
improvements on existing estimates allow to prove Proposition 2.11 in Section 2.6.3.

• In Section 2.6.4, we prove Proposition 2.10, which requires a novel approach. It is also in this
subsection where we make use of the almost global decomposition theorem for non-degenerate
log-correlated fields, proved in Section 2.4.

The missing general results of Malliavin calculus are proved in Section 2.5.

2.4 Almost global decompositions of non-degenerate log-correlated
fields

It is often useful to try to decompose the log-correlated Gaussian field Γ on the open set U ⊂ Rd as a
sum of two independent fields Y and Z, where Y is in some sense canonical and easy to calculate with,
and Z is regular. In [JSW19] it was shown that such decompositions exist around every point x0 ∈ U
when g ∈ Hs

loc(U × U) for some s > d and Y is taken to be a so-called almost ?-scale invariant field.
Our goal in this section is to establish a more general variant of this decomposition theorem which

removes the need to restrict to small balls and works in any subdomain V b U (we write A b B to
indicate that A ⊂ B) by simply assuming that Γ is non-degenerate on V , meaning that CΓ defines an
injective integral operator on L2(V ), as explained in Section 2.2.
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In the context of the present article, the usefulness of this result is strongly interlinked with the
following standard comparison result for Cameron–Martin spaces. In the case of Reproducing Kernel
Hilbert spaces, this can be found for example in [Aro50].

Lemma 2.12. Let Y and Z be two independent distribution-valued Gaussian fields and denote Γ =
Y + Z. Let (HΓ, ‖ · ‖HΓ) and (HY , ‖ · ‖YHY ) be the Cameron–Martin spaces of Γ and Y respectively.
Then HY ⊂ HΓ and moreover for every h ∈ HY , we have that ‖h‖HY ≥ ‖h‖HΓ.

Basically, via this Lemma our decomposition allows to meaningfully transfer calculations on the
initial field Γ to easier ones on the almost ?-scale invariant fields Y , where Fourier methods become
available.

We will start by recalling the basic definitions related to ?-scale invariant and almost ?-scale
invariant log-correlated fields. We then state the theorem and discuss heuristics, and finally prove the
theorem in two last subsections. In this section all function spaces are the standard function spaces for
real-valued functions, i.e. we don’t need to consider their complexified counterparts.

2.4.1 Overview of ?-scale and almost ?-scale invariant log-correlated fields

To define ?-scale invariant and almost ?-scale invariant fields, we first need to pick a seed covariance k.
For simplicity we will in what follows make the following assumptions on k:

Assumption 2.13. The seed covariance k : Rd → R satisfies the following properties:

• k(x) ≥ 0 for all x ∈ Rd and k(0) = 1;

• k(x) = k((|x|, 0, . . . , 0)) =: k(|x|) is rotationally symmetric and supp k ⊂ B(0, 1),

• There exists s > d+1
2 such that 0 ≤ k̂(ξ) . (1 + |ξ|2)−s for all ξ ∈ Rd.

The fact that k is supported in B(0, 1) yields the useful property that distant regions of the
associated Gaussian field will be independent.

Definition 2.14. Let k : Rd → R be as above. The ?-scale invariant covariance kernel CX associated
to k is given by

CX(x, y) :=
∫ ∞

0
k(eu(x− y)) du.

Similarly, the related almost ?-scale invariant covariance kernel CY = CY (α) associated to k and a
parameter α > 0 is given by

CY (x, y) :=
∫ ∞

0
k(eu(x− y))(1− e−αu) du.

We often use approximations Yδ of Y , which can be defined via the stochastic integrals

Yδ(x) =
∫
Rd×[0,log 1

δ
]
edu/2k̃(eu(t− x))

√
1− e−αudW (t, u), (2.11)

where W is the standard white noise on Rd+1 and k̃(x) = F−1√Fk(x) with F denoting the Fourier
transform.
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We also define the tail field Ŷδ := Y − Yδ, which becomes independent on the length-scale δ. The
following lemma then gives basic estimates on the covariance of this tail field. See Appendix 2.A for
the proof.

Lemma 2.15. There exists a constant C > 0 such that

E[Ŷδ(x)Ŷδ(y)] ≤ δ

|x− y|

and
E[Ŷδ(x)Ŷδ(y)] ≥ δ

|x− y|
− C.

Moreover E[Ŷδ(x)Ŷδ(y)] = 0 whenever |x− y| ≥ δ.

2.4.2 Statement of the theorem and the high level argument

The main theorem of this section can be stated as follows.

Theorem 2.16. Let Γ be a non-degenerate log-correlated Gaussian field on an open domain U ⊆ Rd

as in Definition 2.2. Assume further that the covariance kernel given by (2.2) satisfies g ∈ Hs
loc(U ×U)

for some s > d.
Then for every seed kernel k satisfying Assumption 2.13 and every V b U , there exists α > 0 such

that we may write (possibly in a larger probability space)

Γ|V = Y + Z,

where Y is an almost ?-scale invariant field with seed covariance k and parameter α and Z is a
Hölder-regular field independent of Y , both defined on the whole of Rd. Moreover, there exists ε > 0
such that the operator CZ maps Hs(Rd)→ Hs+d+ε(Rd) for all s ∈ [−d, 0].

Notice that the 2D zero boundary Gaussian free field is a non-degenerate log-correlated field in the
open disk. However, there is no hope to decompose it using an almost ?-scale invariant field on the
whole of D, so in that sense the above theorem is as global as you could hope.

Remark 2.17. In [JSW19, Theorem B] it was shown that even for a degenerate log-correlated field
Γ, one can for any x ∈ U find a ball B(x, r(x)), restricted to which Γ is non-degenerate and can be
decomposed as an independent sum of an almost star-scale invariant field and a Hölder-regular field.
In this sense one can see Theorem 2.16 as a generalization in the special case of non-degenerate fields.

Before going to the proof of Theorem 2.16, let us try to illustrate the high level argument in terms
of the following toy problem on the unit circle T = {z ∈ C : |z| = 1}: Let Γ be a non-degenerate
log-correlated field on T with covariance of the form log 1

|x−y| + g(|x− y|), where now also the g term
only depends on the distance between the two points. This means that we can write the covariance
using the Fourier series

CΓ(x, y) = g0
2 + Re

∞∑
n=1

( 1
n

+ gn)xny−n,
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where
gn := 1

π

∫
T
g(|1− x|)x−n|dx|,

with |dx| denoting the arc-length measure. As Γ is assumed to be non-degenerate, we know that
1
n + gn > 0 for all n ≥ 1.

The almost ?-scale field would correspond to a field with covariance of the form

CY (x, y) = Re
∞∑
n=1

( 1
n
− 1
n1+α )xny−n,

and thus the difference between the tail and the two covariances would be

CΓ(x, y)− CY (x, y) = g0
2 + Re

∞∑
n=1

( 1
n1+α + gn)xny−n.

It is now easy to see that if gn = O(n−s) for some s > 1 + α, the coefficients in the above difference
are positive for all large enough n. By further reducing α, we can guarantee that 1

n1+α + gn > 0 for all
n ≥ 1, so that the difference CΓ − CY is again a positive definite kernel.

The main issue in implementing this strategy for general log-correlated covariances on domains
in Rd is the fact that in general we do not have a canonical basis such that CΓ and CX would be
simultaneously diagonalizable. To still be able to make useful calculations, we thus want to find some
universal, non-basis dependent setting, where both can be studied. This is comfortably offered for
example by the Fourier transform on spaces L2(Rd) and Hs(Rd). Thus as a first step we will find a
suitable extension of Γ to a log-correlated field on the whole of Rd with covariance of the form CX +R

where CX is the covariance of a ?-scale invariant field and R is the kernel of an integral operator which
maps L2(Rd) to Hs(Rd) for some s > d (in particular it is in this sense more regular than CX which
maps L2(Rd) to Hd(Rd)). The second step is then to actually make the calculations work, and to do
this in the general set-up we make use of some operator-theoretic methods.

2.4.3 Extension of log-correlated fields to the whole space

Let us begin by solving the aforementioned extension problem. In what follows we will denote by the
same symbols both the integral operators and their kernels, and CX (resp. CY (α)) will always refer to
the covariance operator of a ?-scale (resp. almost ?-scale) invariant field with a fixed seed covariance k
(resp. and parameter α).

First of all, we note the existence of the following partition of unity consisting of squares of smooth
functions.

Lemma 2.18. Let U ⊂ Rd be an open domain and V b U an open subdomain. Then there exists
an open set W with V b W b U and non-negative functions a, b ∈ C∞(Rd) such that a2 + b2 ≡ 1,
b(x) = 0 for all x ∈ V , b(x) > 0 for all x ∈ Rd \ V and a(x) = 0 for all x ∈ Rd \W .

Proof. Pick any W with V b W b U . It is well-known that one can pick a function u ∈ C∞(Rd)
which is 1 in V , 0 outside W and 0 ≤ u(x) < 1 for x ∈W \ V . The function u(x)2 + (1− u(x))2 ≥ 1

2 is
everywhere strictly positive and therefore the function v(x) :=

√
u(x)2 + (1− u(x))2 is smooth and
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strictly positive. Finally define a(x) := u(x)/v(x) and b(x) := (1− u(x))/v(x) to obtain the desired
functions.

Secondly we need the following estimates on the covariance operator CX .

Lemma 2.19. For any s ∈ R the operator CX is a bounded invertible operator Hs(Rd)→ Hs+d(Rd).
The same holds for CY (α) for any α > 0. In particular the Cameron–Martin space of Y (α) equals
Hd/2(Rd) with an equivalent norm.

Moreover the Fourier transform of the associated kernel

K(u) := CX(u, 0) =
∫ ∞

0
k(esu) ds

is smooth and satisfies
|∇ξK̂(ξ)| . (1 + |ξ|2)−

d+1
2 .

Proof. We have CXf = K ∗ f , so it is enough to study the Fourier transform of K. We compute

K̂(ξ) =
∫ ∞

0
e−duk̂(e−uξ)du =

∫ 1

0
vd−1k̂(vξ) dv = |ξ|−d

∫ |ξ|
0

vd−1k̂(v) dv.

Since k̂(0) > 0 and also k̂(ξ) = O(|ξ|−α) for some α > d+ 1, we see that the above quantity is bounded
from above and below by a constant multiple of (1 + |ξ|2)−d/2, which implies the claim that CX maps
Hs(Rd) to Hs+d(Rd) continuously and bijectively.

Similarly CY (α)f = Kα ∗ f with

K̂α(ξ) =
∫ 1

0
vd−1k̂(vξ)(1− vα) dv = |ξ|−d

∫ |ξ|
0

vd−1k̂(v)(1− |ξ|−αvα) dv

and one again sees that this is bounded from above and below by a constant multiple of (1 + |ξ|2)−d/2.
In particular HY (α) = C

1/2
Y (α)L

2(Rd) = Hd/2(Rd).
Next we note that since k is compactly supported, k̂ is smooth and also |∇k̂(ξ)| = O(|ξ|−α). Thus

∇K̂(ξ) =
∫ 1

0
vd∇k̂(vξ)dv = |ξ|−d−1

∫ |ξ|
0

vd∇k̂(v) dv,

from which the second claim follows.

As a corollary of the following lemma from [JSW19] we can rephrase (2.2) using a ?-scale invariant
covariance instead of pure logarithm.

Lemma 2.20 ([JSW19, Proposition 4.1 (vi)]). The covariance CX of a ?-scale invariant field X

satisfies CX(x, y) = log 1
|x−y| + g0(x, y), where g0(x, y) belongs to Hs′(Rd) for some s′ > d.

Let us next prove the extension itself. We emphasise that the kernel R in the proposition below is
not necessarily definite positive.

Proposition 2.21. Let CΓ be as in Theorem 2.16. Let V b U be an open subdomain. Let X be a
?-scale invariant log-correlated field with a seed covariance k satisfying Assumption 2.13.
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Then there exists a bounded integral operator R : L2(Rd) → L2(Rd) such that CX + R is strictly
positive and the corresponding kernels satisfy

CΓ(x, y) = CX(x, y) +R(x, y)

for all x, y ∈ V . The kernel R is Hölder-continuous with some exponent γ > 0 and moreover, there
exists δ > 0 such that R defines a bounded operator Hr(Rd)→ Hr+d+2δ(Rd) for all r ∈ [−d, 0].

Proof. Let V bW b U and a, b ∈ C∞(Rd) be as in Lemma 2.18 and consider the (distribution-valued)
Gaussian field Z = aΓ + bX defined on Rd. Here Γ and X are independent and have covariance
operators CΓ and CX respectively. By using Lemma 2.20 we can write CΓ(x, y) = CX(x, y) + g̃(x, y)
with g̃ ∈ Hs′

loc(Rd ×Rd) for some s′ > d. Thus we may write the kernel of the covariance operator of Z
as

CZ(x, y) = a(x)a(y)CΓ(x, y) + b(x)b(y)CX(x, y) = CX(x, y) +R(x, y),

where
R(x, y) := (a(x)a(y) + b(x)b(y)− 1)CX(x, y) + a(x)a(y)g̃(x, y). (2.12)

Note that G(x, y) := a(x)a(y)g̃(x, y) is an element of Hs′(Rd × Rd). For any f ∈ Hr(Rd) with
r ∈ [−s′, 0] we have that the corresponding operator G satisfies

‖Gf‖2
Hr+s′ (Rd) =

∫
(1 + |ξ|2)r+s′

∣∣∣ ∫ Ĝ(ξ, ζ)f̂(ζ) dζ
∣∣∣2 dξ

. ‖G‖2
Hs′ (Rd×Rd)‖f‖

2
Hr(Rd).

We conclude that G is a bounded operator Hr(Rd)→ Hr+s′(Rd).
Let us then consider the operator T with kernel

T (x, y) := (a(x)a(y) + b(x)b(y)− 1)CX(x, y)

corresponding to the first term in the definition of R. Again for f ∈ L2(Rd) we have

‖Tf‖2Hd+1(Rd) =
∫

(1 + |ξ|2)d+1
∣∣∣ ∫ T̂ (ξ, ζ)f̂(ζ) dζ

∣∣∣2 dξ.
Note that since a2 + b2 = 1 we have

T (x, y) = (a(x)(a(y)− a(x)) + b(x)(b(y)− b(x)))CX(x, y).

The maps f 7→ af and f 7→ bf = (b − 1)f + f are bounded operators Hα(Rd) → Hα(Rd) for any
α ∈ R since a and b − 1 are compactly supported and smooth. Thus it is enough to show that
A : f 7→

[
x 7→

∫
(a(y)− a(x))K(x− y)f(y) dy

]
and B : f 7→

[
x 7→

∫
(b(y)− b(x))K(x− y)f(y) dy

]
are

bounded operators Hr(Rd)→ Hr+d+1(Rd), where K(u) = CX(u, 0).
We will show the claim for A – the same proof works for B as well since we only use the fact that a

is smooth and has compact support and we can again reduce to this situation by replacing b with b− 1.
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A small computation shows that we can write

Âf(ξ) =
∫
â(ξ − ζ)(K̂(ξ)− K̂(ζ))f̂(ζ) dζ

We can bound∫
â(ξ − ζ)(K̂(ξ)− K̂(ζ))f̂(ζ) dζ .

∫
Rd\B(ξ,|ξ|/2)

|â(ξ − ζ)||f̂(ζ)| dζ

+
∫
B(ξ,|ξ|/2)

|â(ξ − ζ)||ξ − ζ| sup
z∈B(ξ,|ξ|/2)

|∇K̂(z)||f̂(ζ)| dζ

which by Lemma 2.19 is bounded by

. (1 + |ξ|2)−d−1‖f‖Hr(Rd) + (1 + |ξ|2)−
d+1

2

∫
Rd
|â(ξ − ζ)||ξ − ζ||f̂(ζ)| dζ.

Now, for the first term we have that∫
Rd

(1 + |ξ|2)r+d+1(1 + |ξ|2)−2d−2‖f‖2Hr(Rd) <∞.

For the second term we let p(ξ) := |ξ||â(ξ)| and note that since |f̂(ζ)||f̂(ζ ′)| ≤ (|f̂(ζ)|2 + |f̂(ζ ′)|2)/2 we
have ∫

Rd
(1 + |ξ|2)r+d+1(1 + |ξ|2)−d−1

(∫
Rd
p(ξ − ζ)|f̂(ζ)| dζ

)2
dξ

=
∫
Rd

∫
Rd

∫
Rd

(1 + |ξ|2)rp(ξ − ζ)p(ξ − ζ ′)|f̂(ζ)||f̂(ζ ′)| dζ dζ ′ dξ

≤
∫
Rd

∫
Rd

∫
Rd

(1 + |ξ|2)rp(ξ − ζ)p(ξ − ζ ′)|f̂(ζ)|2 dζ dζ ′ dξ.

Integrating over ζ ′ gives just ‖p‖L1(Rd) and then by using the inequality (1+ |ξ|2)r . (1+ |ζ− ξ|2)−r(1+
|ζ|2)r we may also integrate over ξ and ζ separately to see that the above is bounded by a constant
times

‖p‖L1(Rd)‖(1 + | · |)−rp(·)‖L1(Rd)‖f‖2Hr(Rd).

Thus putting things together we obtain that

‖Af‖2Hr+d+1(Rd) =
∫

(1 + |ξ|2)r+d+1|Âf(ξ)|2 . ‖f‖2Hr(Rd),

showing that R maps Hr(Rd)→ Hr+d+2δ for δ > 0 small enough.
Let us next show that R is Hölder-continuous. As g̃ belongs to Hs′

loc(Rd × Rd) for some s′ > d, it
follows from the Sobolev embedding Hd+δ(R2d) → Cδ(R2d) where Cδ(R2d) is the space of δ-Hölder
functions vanishing at infinity, that g̃ is γ-Hölder for some γ > 0. By (2.12) this implies that we only
need to show that (a(x)a(y) + b(x)b(y)− 1)CX(x, y) is Hölder-continuous. As this term is compactly
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supported, we can add a smooth cutoff function ρ such that

(a(x)a(y) + b(x)b(y)− 1)CX(x, y) = ρ(x)ρ(y)(a(x)(a(y)− a(x)) + b(x)(b(y)− b(x)))CX(x, y)

for all x, y ∈ Rd. Moreover, since CX(x, y) = log 1
|x−y| + g0(x, y) with g0 smooth, it is enough to show

that
(a(y)− a(x))ρ(x)ρ(y) log 1

|x− y|

is Hölder-continuous (the term with b(y) − b(x) can again be handled in a similar manner). Let us
write the above as ∫ 1

0
∇a(x+ u(y − x)) du · (y − x)ρ(x)ρ(y) log 1

|x− y|
.

As a is smooth, the map (x, y) 7→
∫ 1

0 ∇a(x + u(y − x)) du is in particular a Hölder continuous map
R2d → Rd. Thus it is enough to show that (x, y) 7→ (y − x) log 1

|x−y| is Hölder-continuous but this
follows easily by checking that each component function (yj − xj) log 1

|x−y| is Hölder continuous in each
coordinate. The Hölder constants are also easily seen to be bounded for x, y ∈ supp ρ.

Finally let us note that CZ is strictly positive since if f ∈ L2(Rd) is nonzero, then at least one of
f |V or f |supp b is nonzero. In the first case

∫
a(x)a(y)CΓ(x, y)f(x)f(y) > 0 by the assumption that CΓ

was assumed to be injective in V , while in the second case
∫
b(x)b(y)CX(x, y)f(x)f(y) > 0 since CX is

strictly positive on whole of Rd.

2.4.4 Deducing the decomposition theorem

Having obtained the desired extension, we are ready to prove the decomposition theorem. The second
part of the proof consists in showing that we may subtract CY (α) from CX +R for some small enough
α > 0 and still obtain a positive operator.

To do this, we need to use the following classical stability property of strictly positive operators of
the form 1 +K with K compact and self-adjoint that follows directly from the spectral theorem.

Lemma 2.22. Let H be a Hilbert space and T a self-adjoint compact operator on H and suppose
that 1 + T is strictly positive. Then there exists ε > 0 such that 1 +A+ T is strictly positive for any
self-adjoint A with ‖A‖H→H ≤ ε.

As a consequence of the above lemma and the smoothing properties of the map R obtained in
Lemma 2.21 we first create a necessary lee-room. Notice that CX +R = C

1/2
X (I + C

−1/2
X RC

−1/2
X )C1/2

X

and hence
〈(CX +R)f, f〉L2(Rd) = 〈(I + C

−1/2
X RC

−1/2
X )C1/2

X f, C
1/2
X f〉L2(Rd).

The following statement is thus effectively saying that in fact 〈(CX +R)f, f〉L2(Rd) > 0 not only for
f ∈ L2(Rd), but also for f ∈ H−d/2(Rd).

Lemma 2.23. There is some ε > 0 such that 1 +A+ C
−1/2
X RC

−1/2
X is a strictly positive operator on

L2(Rd) for any self-adjoint A with ‖A‖op ≤ ε.

Proof. As R maps to functions supported in some compact domain D, by Rellich-type lemmas for
fractional Sobolev spaces the operator R̃ = C

−1/2
X RC

−1/2
X is compact. As it is also self-adjoint on
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L2(Rd), there is an orthonormal basis of L2(Rd) consisting of eigenfunctions of R̃. To show that 1 + R̃

is strictly positive it is enough to show that R̃ has no eigenfunctions with eigenvalues ≤ −1. Assume
that f is an eigenfunction of R̃ with nonzero eigenvalue λ. Then by Lemma 2.21 we know that R̃ maps
Hs(Rd)→ Hs+2δ(Rd) for any s ∈ [0, d/2] and thus after applying R̃ to f roughly 1/δ times we see that
actually f ∈ Hd/2(Rd). Thus there exists some g ∈ L2(Rd) such that f = C

1/2
X g, and we have that

(1 + λ)‖f‖2L2(Rd) = 〈(1 + R̃)f, f〉L2(Rd) = 〈(1 + R̃)C1/2
X g, C

1/2
X g〉L2(Rd) = 〈(CX +R)g, g〉L2(Rd) > 0

by the assumption on CX +R, implying that λ > −1. Thus 1 + R̃ is strictly positive and the claim
follows from Lemma 2.22.

The final important technical ingredient is that for any α0 > 0,

(CX − CY (α))−1/2 − C−1/2
X : L2(Rd)→ H

−d−α0
2 (Rd)

converges pointwise to 0 when we let the parameter α of the almost ?-scale invariant field Y (α) to 0.

Lemma 2.24. For all α > 0 set Uα := CX −CY (α) and let U0 = CX . Then U1/2
α is a bounded bijection

Hs(Rd)→ Hs+ d+α
2 (Rd) for all s ∈ R, and for any α0 > 0, we have

sup
α0≥α>0

‖U−1/2
α ‖

L2(Rd)→H−
d+α0

2 (Rd)
<∞.

Moreover, for any fixed α0 > 0 and f ∈ L2(Rd) we have

lim
α→0
‖(U−1/2

α − C−1/2
Y (α) )f‖

H−
d+α0

2 (Rd)
= 0.

Before proving the lemma, let us see how it implies the theorem:

Proof of Theorem 2.16: We begin by writing

〈(CX − CY (α) +R)f, f〉L2(Rd) = 〈(1 + R̃α)U1/2
α f, U1/2

α f〉L2(Rd),

where Uα = CX − CY (α) and R̃α = U
−1/2
α RU

−1/2
α . It thus suffices to show that for some sufficiently

small α > 0 we have
〈(1 + R̃α)g, g〉L2(Rd) > 0

for all nonzero g ∈ L2(Rd). Indeed, this implies that CX −CY (α) +R is a positive integral operator on
L2(Rd), whose kernel by Lemma 2.21 and [JSW19, Proposition 4.1 (iii)] is Hölder-continuous, and thus
the corresponding Gaussian process has an almost surely Hölder-continuous version (see e.g. [AT07,
Theorem 1.3.5]). In addition by Lemma 2.21 and Lemma 2.24 we see that R and CX − CY α map
Hs(Rd)→ Hs+d+ε(Rd) for some ε > 0 and all s ∈ [−d, 0].

To show that 1+R̃α is positive on L2(Rd) on the other hand we may write 1+R̃α = 1+R̃+(R̃α−R̃),
where R̃ = C

−1/2
X RC

−1/2
X . By Lemma 2.23 it is enough to show that ‖R̃α − R̃‖L2(Rd)→L2(Rd) can be

made as small as we wish by choosing α small.
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As R̃α − R̃ is self-adjoint we have

‖R̃α − R̃‖L2(Rd)→L2(Rd) = sup
u∈L2(Rd),||u||2=1

|〈(R̃α − R̃)u, u〉|L2(Rd).

By linearity and self-adjointness of C−1/2
X , R and U−1/2

α , we can write 〈(R̃α − R̃)u, u〉L2(Rd) as

〈(U−1/2
α − C−1/2

X )RC−1/2
X u, u〉L2(Rd) + 〈(U−1/2

α − C−1/2
X )RU−1/2

α u, u〉L2(Rd).

Now choose α0 = δ in Lemma 2.24 and observe that then for all α < α0, the unit ball of L2(Rd) under
RU

−1/2
α and RC

−1/2
X is contained in a fixed compact set of H

d+δ
2 (Rd). As Lemma 2.24 establishes

uniform boundedness as well as pointwise convergence, we have that U−1/2
α → C

−1/2
X uniformly on this

set and thus conclude the theorem.

We finally prove the lemma:

Proof of Lemma 2.24. Note that Uα is a Fourier multiplier operator with the symbol

ûα(ξ) =
∫ 1

0
vd−1+αk̂(vξ) dv = |ξ|−d−α

∫ |ξ|
0

vd−1+αk̂(v) dv.

As by assumption k̂ is non-negative and decays faster than any polynomial, we have that

(1 + |ξ|2)−
d+α

2 . ûα(ξ) . (1 + |ξ|2)−
d+α

2

where the hidden constant does not depend on α. In particular for every α < α0, we have (1 +
|ξ|2)−

d+α0
2 . ûα(ξ).

Let us now fix α0 and consider for α < α0 the self-adjoint operator Tα = U
−1/2
α − C−1/2

Y which
maps L2(Rd) to H−

d+α
2 (Rd) ⊆ H−

d+α0
2 (Rd). For any fixed f ∈ L2(Rd) we have

‖Tαf‖
H−

d+α0
2 (Rd)

=
∫

(1 + |ξ|2)−
d+α0

2 |ûα(ξ)−1/2 − K̂(ξ)−1/2|2|f̂(ξ)|2 dξ.

For any fixed ξ the integrand tends to 0 as α→ 0. Thus, as ûα(ξ) & (1 + |ξ|2)−
d+α0

2 for all α < α0, we
can apply the dominated convergence theorem to deduce that Tαf → 0 in H−

d+α0
2 (Rd).

2.5 General bounds on detγM and δ(A)

In this section we prove two non-standard lemmas for Malliavin calculus, that we believe could be
of independent interest. Firstly, we prove a certain projection bound for the determinant of complex
Malliavin variables. Second, we obtain an estimate on the complex covering fields that is again a much
easier starting point for further calculations.
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2.5.1 Proof of the projection bound – Proposition 2.6

Proof of Proposition 2.6. Let us first expand

‖DF‖2HC

∥∥∥DF − 〈DF,DF 〉HC

‖DF‖2HC

DF
∥∥∥2

HC

= ‖DF‖2HC

(
‖DF‖2HC −

〈
DF,DF

〉
HC

‖DF‖2HC

〈
DF,DF

〉
HC

−

〈
DF,DF

〉
HC

‖DF‖2HC

〈
DF,DF

〉
HC

+
|
〈
DF,DF

〉
HC
|2

‖DF‖4HC

‖DF‖2HC

)
= ‖DF‖4HC − |

〈
DF,DF

〉
HC
|2.

By (2.4), we deduce that

det γF = 1
4‖DF‖

2
HC

∥∥∥DF − 〈DF,DF 〉HC

‖DF‖2HC

DF
∥∥∥2

HC
.

As we have the following projection inequality

‖DF‖HC ≥
∥∥∥DF − 〈DF,DF 〉HC

‖DF‖2HC

DF
∥∥∥
HC
,

the result follows, once we show that for any h ∈ HC,

∥∥∥DF − 〈DF,DF 〉HC

‖DF‖2HC

DF
∥∥∥
HC
≥
∣∣|〈DF, h〉HC | − |〈DF, h〉HC |

∣∣
‖h‖HC

. (2.13)

By Cauchy–Schwarz inequality and the triangle inequality we have

∥∥∥DF − 〈DF,DF 〉HC

‖DF‖2HC

DF
∥∥∥
HC
≥
|〈DF − 〈DF,DF 〉HC

‖DF‖2HC
DF, h〉HC |

‖h‖HC

≥
|〈DF, h〉HC | −

|〈DF,DF 〉HC |
‖DF‖2HC

|〈DF, h〉HC |

‖h‖HC

≥ |〈DF, h〉HC | − |〈DF, h〉HC |
‖h‖HC

.

By now repeating the bound with h in place of h we obtain (2.13) which finishes the proof.

2.5.2 Bounding δ(A) via derivatives in independent Gaussian directions – Propo-
sition 2.8

For a succinct write-up, it is helpful to use directional derivatives in independent random directions,
although the proposition could also be proved by first proving a version for smooth random variables
and then taking limits.
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Now, recall that for smooth random variables F , and h ∈ HC we could write

〈DF (Γ), h〉H = d

dt

∣∣∣
t=0

F (Γ + th). (2.14)

We consider directional derivatives in independent random directions, with the law of Γ. More
precisely, let X ∼ Γ be an independent Gaussian field defined on a new probability space (ΩX ,FX ,PX)
whose expectation we denote by EX . For a Malliavin variable F ∈ D2,∞, as DF ∈ HC and X is
independent of Γ, one can define

DXF := 〈X,DF (Γ)〉H . (2.15)

The usefulness of this definition comes from the following simple lemma, which would be true on any
manifold, when we would consider the directional derivatives DX in directions given by the standard
Gaussian on the tangent space with the norm given by the metric:

Lemma 2.25. Let X,Y ∼ Γ be independent and F,G ∈ D1,∞. We then have that EX [DXF · DXG] =
〈DF,DG〉HC.

We are now ready to prove Proposition 2.8.

Proof of Proposition 2.8. Write ∆ := 4 det γF = ‖DF‖4HC
− |〈DF,DF 〉HC |2. Then by the integration

by parts rule for the divergence operator δ (e.g. [Nua06, Proposition 1.3.3]), δ(A) equals

‖DF‖2HC
δ(DF )− 〈DF,DF 〉HCδ(DF )

∆ − 〈D
‖DF‖2HC

∆ , DF 〉HC + 〈D 〈DF,DF 〉HC

∆ , DF 〉HC .

The first term is . ∆−1‖DF‖2HC
|δ(DF )| in absolute value, so it is enough to consider the other two

terms. By the product rule for Malliavin derivatives, we may write

〈D 〈DF,DF 〉HC

∆ , DF 〉HC − 〈D
‖DF‖2HC

∆ , DF 〉HC

as

= ∆−1
(
〈D〈DF,DF 〉HC , DF 〉HC − 〈D‖DF‖

2
HC , DF 〉HC

)
−

−∆−2
(
〈DF,DF 〉HC〈D∆, DF 〉HC − ‖DF‖

2
HC〈D∆, DF 〉HC

)
To bound the first term, we first notice that by Cauchy–Schwarz

〈D〈DF,DF 〉HC , DF 〉HC ≤ ‖D〈DF,DF 〉HC‖‖DF‖HC .

For the first term, it is now helpful to use the averaging for a quick bound. We write

‖D〈DF,DF 〉HC‖HC = 2|EX,YDY F · DXDY F |.

By Cauchy–Schwarz this can be bounded by

2
√
EX,Y |DY F |2

√
EX,Y |DXDY F |2 = 2‖DF‖HC‖D

2F‖HC⊗HC .
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Similarly, one can bound

〈D‖DF‖2HC , DF 〉HC ≤ 2‖DF‖HC‖D
2F‖HC⊗HC ,

and thus

∆−1
(
〈D〈DF,DF 〉HC , DF 〉HC − 〈D‖DF‖

2
HC , DF 〉HC

)
≤ 4
‖DF‖2HC

‖D2F‖HC⊗HC

∆ .

It remains to handle

∆−2
(
〈DF,DF 〉HC〈D∆, DF 〉HC − ‖DF‖

2
HC〈D∆, DF 〉HC

)
,

which we can rewrite as

∆−2〈D∆, 〈DF,DF 〉HCDF − ‖DF‖
2
HCDF 〉HC .

Notice that
‖DF‖2HC∆ = ‖〈DF,DF 〉HCDF − ‖DF‖

2
HCDF‖

2
HC , (2.16)

and thus by Cauchy–Schwarz we can bound the expression just above by

∆−3/2‖D∆‖HC‖DF‖HC .

Thus the proposition follows from the following claim:

Claim 2.26. We have that ‖D∆‖HC . ∆1/2‖DF‖HC‖D2F‖HC⊗HC.

Proof of claim. Maybe the nicest way to prove this claim is to use derivatives in random directions as
above. First, observe that using averaging we can write a neat analogue of Equation (2.16) :

∆ = 1
2EZ,W |DZF · DWF −DZF · DWF |

2.

Thus we have

DX∆ = ReEZ,W (DZF · DWF −DZF · DWF )DX(DZF · DWF −DZF · DWF ).

By triangle inequality and Cauchy–Schwarz we obtain

|DX∆|2 . ∆EZ,W |DX(DZF · DWF )|2

and hence
‖D∆‖2HC = EX |DX∆|2 . ∆‖DF‖2HC‖D

2F‖2HC⊗HC ,

from which the claim follows.
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2.6 Estimates for Malliavin variables in the case of imaginary chaos

The aim of this section is to prove the probabilistic bounds needed to apply the tools of Malliavin
calculus to M = µ(f). We start by going through some old and new Onsager inequalities and
related integral bounds. In Section 2.6.2, we prove by a rather standard argument that M is in D∞,
i.e. Proposition 2.4. In Section 2.6.3 we derive bounds on |δ(DM)| and ‖D2M‖HC⊗HC and deduce
Proposition 2.11 by a quite similar argument.

Finally, in Section 2.6.4 we prove bounds on the Malliavin determinant of M and this is the main
technical input of the paper. Here things get quite interesting – we rely both on the decomposition
theorem, Theorem 2.16, and projection bounds for Mallivan determinants from Section 2.5, but also
need to find ways to get a good grip on the concentration of M = µ(f), and on Sobolev norms of the
imaginary chaos µ itself.

2.6.1 Onsager inequalities and related bounds

In this section, we collect a few Onsager inequalities and related bounds. To this end, we define for
any Gaussian field Γ and x = (x1, . . . , xN ),y = (y1, . . . , yM ) the quantity

E(Γ; x; y) = −
∑

1≤j<k≤N
EΓ(xj)Γ(xk)−

∑
1≤j<k≤M

EΓ(yj)Γ(yk) +
∑

1≤j≤N
1≤k≤M

EΓ(xj)Γ(yk).

Also, we let Γδ = Γ ∗ ϕδ be a mollification of Γ where ϕδ = δ−dϕ(·/δ) and ϕ is a smooth non-negative
function with compact support that satisfies

∫
Rd ϕ = 1.

The following is a restatement of a standard Onsager inequality from [JSW20].4

Lemma 2.27 (Proposition 3.6(ii) of [JSW20]). Let K be a compact subset of U or the circle K = S1.
There exists C = C(K) > 0 such that the following holds true: Let N ≥ 1, δ > 0 and for all i = 1 . . . N
let xi, yi ∈ K be such that D(xi, δ) and D(yi, δ) are included in K. For all i = 1 . . . N , denote zi := xi

and zN+i := yi and set dj := mink 6=j |zk − zj |. Then

E(Γδ; x; y) ≤ 1
2

2N∑
j=1

log 1
dj

+ CN2. (2.17)

Moreover, the same holds for the field Γ itself.

We will also need stronger Onsager inequalities for (almost) ?-scale invariant fields, whose rather
standard proof is pushed to the appendix 2.A.

Lemma 2.28. Let Yε and Ŷε be defined as in Section 2.4.1 and let x = (x1, . . . , xN ) and y =
(y1, . . . , yN ) be two N -tuples of points in U . For all j = 1, . . . , N , denote zj := xj and zN+j = yj and
set dj := mink 6=j |zk − zj |. Then

E(Yε; x; y) ≤ 1
2

2N∑
j=1

log 1
dj ∨ ε

4In fact, the cited result does not contain the case of the circle, however essentially the same proof works.

44 Contribution to multiplicative chaos theory



2.6. ESTIMATES FOR MALLIAVIN VARIABLES IN THE CASE OF IMAGINARY CHAOS

and

E(Ŷε(ε·); x; y) ≤ 1
2

2N∑
j=1

log 1
dj
. (2.18)

Moreover, if R is a Gaussian field such that M := supx∈U E[R(x)2] <∞, then

E(R; x; y) ≤ NM. (2.19)

Both of these Onsager inequalities are used in conjunction with the following bounds:

Lemma 2.29. For N ≥ 2, there exists C > 0 such that

• for all β ∈ (0,
√
d),

∫
B(0,1)N

N∏
i=1

(
min
j 6=i
|zi − zj |

)−β2/2
dz1 . . . dzN ≤ CN (d− β2)−bN/2cN

Nβ2
2d ; (2.20)

• for all β ∈ (0,
√
d),

∫
B(0,1)N

N∏
i=1

∣∣∣∣log min
j 6=i
|zi − zj |

∣∣∣∣1/2 (min
j 6=i
|zi − zj |

)−β2/2
dz1 . . . dzN ≤ CN (d− β2)−2bN/2cNN ;

(2.21)

• for all β ∈ (0,
√
d),

∫
B(0,1)N

N∏
i=1

∣∣∣∣log min
j 6=i
|zi − zj |

∣∣∣∣ (min
j 6=i
|zi − zj |

)−β2/2
dz1 . . . dzN ≤ CN (d− β2)−3bN/2cNN ; (2.22)

• for all β > 0,

∫
B(0,1)N

(
N∏
i=1

min
j 6=i

max(δ, |zi − zj |)
)−β2/2

dz1 . . . dzN ≤ CNNN (log 1
δ

)N/2δ−max(0,β2−d)N/2;

(2.23)

Proof. We only sketch the proof, as all the main ideas can be found in proof of [JSW20, Lemma 3.10].
Let us start with showing (2.20). By carefully following the proof of [JSW20, Lemma 3.10] which

shows that (2.20) is less than c2bN/2cN
Nβ2
2d , one can actually see that the constant c there can be taken

to be equal to c′(d− β2)−1/2 for some constant c′ > 0 independent of β (at one point in the proof there
is a term of order (d− β2)−k coming from Γ(1− d

β2 )k where k ≤ bN/2c).
We will next show (2.23). By mimicking the beginning of the proof of [JSW20, Lemma 3.10], we

can bound the left hand side of (2.23) by

CN
bN/2c∑
k=1

∑
F

∫
B(0,1)N

k∏
i=1

(δ ∨ |u2i−1|)−β
2

N∏
i=2k+1

(δ ∨ |ui|)−β
2/2du1 . . . duN

Antoine Jego 45



CHAPTER 2. DENSITY OF IMAGINARY MULTIPLICATIVE CHAOS VIA MALLIAVIN
CALCULUS

where C > 0 and the second sum runs over all nearest neighbour configurations F such that the
induced graph with vertices {1, . . . , N} and edges (i, F (i)) has k components. Of course, the domain
on which we integrate is actually much smaller than B(0, 1), but integrating over this larger domain
will be enough for our purposes. After integration, we obtain that the left hand side of (2.23) is at
most

CN
bN/2c∑
k=1

∑
F

Akβ2A
N−2k
β2/2 ≤ C

NNN
bN/2c∑
k=1

Akβ2A
N−2k
β2/2 ,

where
Aβ2 :=

∫ 1

0
rd−1(δ ∨ r)−β2

dr.

Now, by Jensen’s inequality A2
β2/2 ≤ d

−1Aβ2 , giving us the bound CNNNA
N/2
β2 . Noting that

Aβ2 . log 1
δ
δ−max(0,β2−d)

concludes the proof of (2.23).
We finally turn to the proof of (2.21) and (2.22). By again mimicking the beginning of the proof of

[JSW20, Lemma 3.10], we can bound the left hand side of (2.21) by

CN
bN/2c∑
k=1

Mk

∫
B(0,1)N

k∏
i=1
|u2i−1|−β

2 | log |u2i−1||
N∏

i=2k+1
|ui|−β

2/2| log |ui||1/2

≤ CN
bN/2c∑
k=1

Mk

(∫ 1

0
r−β

2+d−1| log r|dr
)k
≤ CN

bN/2c∑
k=1

Mk(d− β2)−2k ≤ CN (d− β2)−2bN/2cNN ,

where Mk is the number of nearest neighbour functions {1, . . . , N} → {1, . . . , N} with k components
and C is some large enough constant. This concludes the proof of (2.21); the proof of (2.22) is
similar.

2.6.2 M belongs to D∞ – proof of Proposition 2.4

The purpose of this section is to prove Proposition 2.4. Before doing so, we collect two auxiliary
lemmas from Malliavin calculus.

Lemma 2.30 ([Nua06, Lemma 1.2.3]). Let (Fn, n ≥ 1) be a sequence of (complex) random variables
in D1,2 that converges to F in L2(Ω) and such that supn E

[
‖DFn‖2HC

]
<∞. Then F belongs to D1,2

and the sequence of derivatives (DFn, n ≥ 1) converges to DF in the weak topology of L2(Ω;HC).

Second, we need a rather direct consequence of [Nua06, Lemma 1.5.3]:

Lemma 2.31. Let p > 1, k ≥ 1 and let (Fn, n ≥ 1) be a sequence of (complex) random variables
converging to F in Lp(Ω). Suppose that supn ‖Fn‖k,p < ∞. Then F belongs to Dk,p and ‖F‖k,p ≤
Ck,p lim supn ‖Fn‖k,p for some Ck,p > 0.

Proof of Lemma 2.31. See Appendix 2.A.
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We now have the ingredients needed to prove Proposition 2.4. The proof of this result is rather
standard, but needs a bit of care as the most convenient way of obtaining Malliavin smooth random
variables is truncating the Karhunen–Loève expansion of Γ. Doing so we face the issue that there is no
Onsager inequality available for this approximation of the field that we are aware of. We will bypass
this difficulty by considering a further convolution of this truncated version of Γ against a smooth
mollifier ϕ and then use the Onsager inequality (2.17) for convolution approximations.

Proof of Proposition 2.4. Here, we sketch the proof and give full details in the Appendix 2.B. We start
by showing that M belongs to D∞. Let n ≥ 1, δ > 0, j ≥ 0 and p ≥ 1. In the following, we will denote

Γδ = Γ ∗ ϕδ, Γn,δ =
n∑
k=1

Akek ∗ ϕδ, Mδ =
∫
C
f(x)eiβΓδ(x)+β2

2 E[Γδ(x)2]dx

and
Mn,δ =

∫
C
f(x)eiβΓn,δ(x)+β2

2 E[Γn,δ(x)2]dx.

Mn,δ is a smooth random variable (in the sense of Definition 2.3) and DjMn,δ is equal to

(iβ)j
∫
C
dxf(x)eiβΓn,δ(x)+β2

2 E[Γn,δ(x)2]
n∑

k1,...,kj=1
(ek1 ∗ ϕδ)(x) . . . (ekj ∗ ϕδ)(x)ek1 ⊗ · · · ⊗ ekj .

Combining Onsager inequalities, (2.20) and Lemma 2.31, one can show by taking the limit n → ∞
that for all k ≥ 1, Mδ ∈ Dk,2p and that

sup
δ>0
‖Mδ‖k,2p <∞.

Details of this are in the appendix. Now, because (Mδ, δ > 0) converges in L2p towards M , Lemma
2.31 then implies that for all k ≥ 1, M ∈ Dk,2p. This concludes the proof that M ∈ D∞.

The proof of the formula for DM now follows via a series of approximation arguments. From the
first part by taking n→∞, one can rather quickly deduce that

DMδ = iβ

∫
C
dxf(x)eiβΓδ(x)+β2

2 E[Γδ(x)2]
∞∑
k=1

(ek ∗ ϕδ)(x)ek.

Next, one argues that (DMδ, δ > 0) converges in L2(Ω;H) towards

iβ

∫
C
dxf(x)µ(x)C(x, ·)

and concludes that it necessarly corresponds to DM by Lemma 2.30. Here one again uses Onsager
inequalities and dominated convergence. The full details are found in the appendix.
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2.6.3 Bounds on |δ(DM)| and ‖D2M‖HC⊗HC – proof of Proposition 2.11

The goal of this section is to control the tails of |δ(DM)| and ‖D2M‖HC⊗HC . We first note that these
two random variables can be written explicitly in terms of imaginary chaos.

Lemma 2.32. Let f ∈ L∞(C). Then

δ(DM) = β

∫
C
f(x) d

dβ
µ(x)dx, (2.24)

‖D2M‖2HC⊗HC = β4 Re
∫
C×C

f(x)f(y)µ(x)µ(y)C(x, y)2dxdy, (2.25)

where the expression d
dβµ(x) is given sense by limδ→0

(
iΓδ(x) + βEΓ2

δ(x)
)

: exp(iβΓδ(x)) : with the
limit, say, in H−d(U) and in probability.

The proof of (2.25) is very similar to the proof of the formula of DM and we omit the details.
The origin of (2.24) can be explained by the following formal computation, that can be turned into
a rigorous proof in a very similar manner as what we did in the proof of Proposition 2.4 when we
obtained the explicit expression of DM – one needs to use smooth approximations both for the field Γ,
and smooth Malliavin variables.

’Formal’ proof of Lemma 2.32. By Proposition 2.4, and then by integration by parts for δ (Proposition
1.3.3 of [Nua06]), we have

δ(DM) = iβ

∫
C
f(x)δ(µ(x)C(x, ·))dx

= iβ

∫
C
f(x)

(
µ(x)δ(C(x, ·))− 〈Dµ(x), C(x, ·)〉HC

)
dx.

Noticing that δ(C(x, ·)) = Γ(x) (see (1.44) of [Nua06]) and that by Proposition 2.4 〈Dµ(x), C(x, ·)〉HC
=

iβµ(x)C(x, x), we obtain

δ(DM) = β

∫
C
f(x)µ(x)(iΓ(x) + βC(x, x))dx = β

∫
C
f(x) d

dβ
µ(x)dx.

This shows (2.24).

Proof of Proposition 2.11. We will only write the details for the variable δ(DM) since bounding the
moments of ‖D2M‖HC⊗HC is very similar to bounding the moments of imaginary chaos itself (with the
use of (2.22) instead of (2.20)).

Let N ≥ 1 and let K b U be the support of f . By Lemma 2.32 we have

E[|δ(DM)|2N ] ≤ ‖f‖2N∞ β2N
∫
K2N

∣∣∣E[ N∏
j=1

d

dβ
µ(xj)

d

dβ
µ(yj)

]∣∣∣ dx1 . . . dxNdy1 . . . dyN .

By a limiting argument, one can justify the formal identity:

E
[ N∏
j=1

d

dβ
µ(xj)

d

dβ
µ(yj)

]
=
[ N∏
`=1

d

dβ`

d

dγ`
E((βj)Nj=1, (γj)Nj=1)

]
β1=···=βN=γ1=...γN=β

.
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where
E((βj)Nj=1, (γj)Nj=1) := e

−
∑

j<k
βjβkC(xj ,xk)−

∑
j<k

γjγkC(yj ,yk)+
∑

j,k
βjγkC(xj ,yk)

.

Let (z1, . . . , z2N ) := (x1, . . . , xN , y1, . . . , yN ). By induction one sees that after differentiating w.r.t. the
first k of the variables β1, . . . , βN , γ1, . . . , γN and expanding one is left with a finite number of terms of
the form

±
N∏
j=1

β
nj
j γ

mj
j

∏̀
j=1

C(zaj , zbj )E((βj)Nj=1, (γj)Nj=1),

where 0 ≤ nj ,mj , ` ≤ k, 1 ≤ a1 < a2 < · · · < a` ≤ k and 1 ≤ b1, . . . , b` ≤ 2N with aj 6= bj for all j.
Hence we have

E[|δ(DM)|2N ] ≤ CN
2N∑
`=1

∑
1≤a1<···<a`≤2N

2N∑
b1,...,b`=1

∫
K2N

∏̀
j=1

1aj 6=bj |C(zaj , zbj )|eE(Γ;x;y) dxjdyj .

Note that |C(zaj , zbj | ≤ C log 4R
|zaj−zbj |

for large enough C > 0 and R so large that K ⊂ B(0, R). Thus
applying Lemma 2.27 to each summand, we can bound the whole sum by

CN

∫
K2N

2N∏
j=1

log 4R
mink 6=j |zj − zk|

(min
k 6=j
|zj − zk|)−β

2/2 dz1 . . . dz2N .

By scaling this is less than

CN

∫
B(0,1/4)2N

2N∏
j=1

log 1
mink 6=j |zj − zk|

(min
k 6=j
|zj − zk|)−β

2/2 dz1 . . . dz2N ,

which by Lemma 2.29 is less than CN (d− β2)3N .

2.6.4 Small ball probabilities for the Malliavin determinant of M – proof of Propo-
sition 2.10

This section contains the main probabilistic input to Theorem 2.9 – the proof of Proposition 2.10.
Roughly, the content of this proposition is to establish super-polynomial decay of P(det γM < ε) as
ε→ 0, where det γM := (‖DM‖4HC

− |〈DM,DM〉HC |2)/4 is the Malliavin determinant of M = µ(f).
We will start by presenting a toy model explaining the strategy; then we explain the proof setup

and prove the proposition modulo some technical chaos lemmas. The section finishes by proving the
technical estimates.

2.6.4.1 A toy model: small ball probabilities for ‖ : exp(iβGFF) : ‖H−1(R2)

To explain the strategy of our proof, we consider a toy problem asking about the small ball probabilities
for norms of imaginary chaos. For concreteness, let us do it here with the 2D Gaussian free field; see
Proposition 2.33 at the end of this section for a more general statement.

Consider the 2D zero boundary GFF on K = [0, 1]2 and the imaginary chaos µβ. We know
that as a generalized function µβ ∈ H−1(K) for all β ∈ (0,

√
2). Can we prove super-polynomial
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bounds for P
(
‖µ‖H−1(K) < ε

)
? Moreover, can we obtain bounds that are tight as β →

√
2?

Writing out the norm squared, we have that

‖µ‖2H−1(K) =
∫
K2
µ(x)G(x, y)µ(y) dx dy > 0,

where G is the Dirichlet Green’s function on K. Now, the expectation E‖µ‖2H−1(K) is easy to calculate
and it is bounded. As all moments exist, one could imagine proving bounds near zero by using
concentration results on µ. However, these concentration results do not see the special role of zero and
would not suffice for good enough bounds for asymptotics near 0.

The idea is then to use only the decorrelated high-frequency part of Γ to stay away from zero. To
make this more precise, denote by Γδ the part of the GFF containing only frequencies less than δ−1 and let
Γ̂δ denote the tail of the GFF. Consider now the projection bound ‖fδ‖H−1(K)‖µ‖H−1(K) ≥ 〈µ, fδ〉H−1(K).
Setting fδ(x) = ∆(: eiβΓδ(x) :), we get that

‖µ‖H−1(K) ≥
∫
K : e−iβΓ̂δ(x) : dx
‖fδ‖H−1(K)

.

A small calculation shows that ‖fδ‖H−1(K) = ‖ : eiβΓδ(y) : ‖H1(K). It is further believable that we should
have ‖ : eiβΓδ(y) : ‖H1(K) � δ−β

2/2‖Γδ‖H1(K), and that this expression admits Gaussian concentration.
As in the concrete case E‖Γδ‖H1(K) � δ−1, we can conclude that the denominator is of order δ−1−β2/2

with super-polynomial concentration on fluctuations.
In the numerator, the term of the form

∫
K : e−iβΓ̂δ(x) : dx remains. Such a tail chaos is very highly

concentrated around 1, with fluctuations of unit order having a super-polynomial cost in δ. Thus the
whole ratio will concentrate around

C

∫
K : e−iβΓ̂δ(x) : dx

δ−1−β2/2 ∼ Cδ1+β2/2,

with super-polynomial cost for fluctuations on the same scale. Thus setting ε = δ1+β2/2 we obtain
super-polynomial decay for P

(
‖µ‖H−1(K) < ε

)
.

Whereas this is good enough for any fixed β, observe that as β →
√

2, we have E‖µ‖2H−1(K) =
O((2− β2)−2), but E|〈µ, fδ〉H−1(K)|2 = E|

∫
: e−iβΓ̂δ(x) : |2 = O((2− β2)−1). As further ‖fδ‖H−1(K) �

δ−β
2/2‖Γδ‖H1(K) and ‖Γδ‖H1(K) does not depend on β, we see that we are losing in terms of β2 − 2.
Illustratively, we are losing in high frequencies because we are replacing∫

µ(x)G(x, y)µ(y) by
∫

: eiβΓ̂δ(x) :: e−iβΓ̂δ(y) : .

After taking expectation, in terms of near-diagonal contributions, as G(x, y) ∼ − log |x− y| near the
diagonal, this basically translates to replacing −

∫
|x|−β2/2 log |x| with

∫
|x|−β2/2 and results in the loss

of a factor of 2− β2 as β2 → 2. Thus we have to tweak our test function fδ further to at the same
time guarantee sufficient concentration and not to lose too much on tails.

We will see later on that this strategy gives us more generally the following result.
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Proposition 2.33. Let f ∈ C∞c (U). Then for each ν ∈ (0,
√
d), there exist constants c1, c2, c3 > 0

such that
P[‖fµ‖H−d/2(Rd) ≤ (d− β2)−2λ] ≤ c1e

−c2λ−c3

for all λ > 0 and all β ∈ (ν,
√
d).

The same strategy for the determinant requires some extra input, yet the key ideas are present
already in this toy model: the projection bound corresponds to the analogue of Malliavin determinants
given by Lemma 2.6, the concentration of the numerator to Lemma 2.34 and that of the denominator
to Lemma 2.35. The only new technical ingredient will enter as Lemma 2.36.

2.6.4.2 Proof setup and proof of Proposition 2.10 modulo technical lemmas

Let f be a bounded continuous function whose support is a compact subset of U and set M = µ(f).
Our goal in this section is to obtain lower bounds on P[det γM ≥ λ], where det γM is the Malliavin
determinant (2.4).

As in the toy problem, it is not so clear how to obtain sharp bounds directly and the idea is to use
the projection bound from Lemma 2.6, which says that

P[det γM ≥ λ] ≥ P
[(|〈DM,h〉HC | − |〈DM,h〉HC |)4

‖h‖4HC

≥ 4λ
]

(2.26)

for any h ∈ HC. A key step is the specific choice of h(x), which needs to at the same time give a
precise enough bound and allow for chaos computations. Moreover, we have to ensure that it also
belongs to the Cameron–Martin space. Here, one of the technical difficulties is that in general we do
not have a good understanding of the Cameron–Martin space of Γ. To deal with that, we will use the
decomposition theorem, Theorem 2.16 to be able to work with almost ?-scale invariant fields.

More precisely, let us fix an open set V with V a compact subset of U such that supp f ⊂ V .
Then by Theorem 2.16 one can write Γ|V = Y + Z =: X where Y is an almost ?-scale invariant field
with smooth and compactly supported seed covariance k and parameter α, and Z is an independent
Hölder-continuous field. Recall further the approximations Yε of Y of such a field from Section 2.4.1
and the notation for its tail field Ŷε := Y − Yε.

Now, notice that

det γM = β4

4
(∣∣∣ ∫ f(x)f(y)µ(x)µ(y)C(x, y) dx dy

∣∣∣2 − ∣∣∣ ∫ f(x)f(y)µ(x)µ(y)C(x, y) dx dy
∣∣∣2),

where the right hand side only depends on µ, and thus on Γ, restricted to V . Thus, to obtain bounds on
det γM , we can instead of working with the (complexified) Cameron–Martin space HC = HΓ,C, just as
well work with the Cameron–Martin space of Y + Z, which is defined on the whole plane. Apologising
for the abuse of notation, we still denote it by HC. This small trick allows us to use the independence
structure of the field Y , and also puts Fourier techniques in our hand.

Definition of h. Whereas the decomposition theorem and the change of Cameron–Martin space
make the computations potentially doable, they become practically doable only with a very careful
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choice of the test function h. Namely, we set

h(x) = hδ(x) = eiβYδ(x)−β
2
2 E[Yδ(x)2]

∫
f(y) : eiβZ(y) :: eiβŶδ(y) : Rδ(x, y) dy,

where Rδ(x, y) = gδ(x)gδ(y)E[Ŷδ(x)Ŷδ(y)] is defined using a smooth indicator gδ of δ-separated squares
and the parameter δ will be chosen in a suitable way according to λ.

More precisely, let Qδ be the collection of cubes of the form

[4k1δ, (4k1 + 1)δ]× · · · × [4kdδ, (4kd + 1)δ],

where k1, . . . , kd ∈ Z. Note in particular that the cubes are δ-separated and hence the restrictions of
Ŷδ to two distinct cubes in Qδ are independent. We then set

gδ = ϕδ ∗ 1⋃Qδ∩V , (2.27)

where ϕ is a smooth mollifier supported in the unit ball and ϕδ(x) = δ−dϕ(x/δ).
We note that h is indeed almost surely an element of HC, since the Malliavin derivative of

(iβ)−1 ∫ f(y) : eiβZ(y) : gδ(y) : eiβŶδ(y) : dy with respect to the field Ŷδ equals

x 7→
∫
f(y) : eiβZ(y) : gδ(y) : eiβŶδ(y) : E[Ŷδ(x)Ŷδ(y)] dy

and lies in HŶδ,C. In particular, since Y = Yδ + Ŷδ is an independent sum, it lies in HY,C as
well and, by Lemma 2.19, this as a set of functions coincides with H

d/2
C (Rd). Moreover, the map

x 7→ gδ(x)eiβYδ(x)−β
2
2 E[Yδ(x)2] is almost surely smooth so multiplying by it shows that

x 7→ gδ(x)eiβYδ(x)−β
2
2 E[Yδ(x)2]

∫
f(y) : eiβZ(y) : gδ(y) : eiβŶδ(y) : E[Ŷδ(x)Ŷδ(y)] dy ∈ Hd/2

C (Rd).

Finally, as Y + Z is an independent sum, Lemma 2.12 implies that Hd/2
C (Rd) ⊂ HC as desired.

Proof of Proposition 2.10 In order to derive bounds on P[det γM < λ] and P( det γM
‖DM‖2HC

< λ) for

λ > 0 small, we will look at the three terms |〈DM,hδ〉HC |, |〈DM,hδ〉HC | and ‖hδ‖HC appearing in
(2.26) separately and collect the results in the following lemmas.

Lemma 2.34. For every ν > 0, there exists a constant c2 > 0 such that for all c > 0 small enough

P[|〈DM,hδ〉HC | ≤ c(d− β
2)−2δd] ≤ exp

(
−c2δ

−d∧2
)

for all small enough δ > 0 and all β ∈ (ν,
√
d).

Lemma 2.35. For all η > 0 small enough, we can choose C > 0 such that

‖hδ‖2HC ≤ Cδ
β2−2d−2ηW 2|〈DM,hδ〉HC |,

where W is a Yδ-measurable positive random variable. Moreover, we can pick c1, c2 > 0 such that for
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all δ ∈ (0, 1) and t ≥ c1δ
−2−η we have

P(W > t) ≤ exp(−c2δ
ηt

2
d ).

Lemma 2.36. For every ν > 0, there exists a constant c1 > 0 such that the following holds. For every
c > 0, we can choose c2 > 0 such that

P[|〈DM,hδ〉HC | ≥ c(d− β
2)−2δd] ≤ exp(−c2δ

−c1)

for all small enough δ > 0 and all β ∈ (ν,
√
d).

We now explain how we deduce Proposition 2.10 from these lemmas, and then in the next subsections
turn to their proofs.

Proof of Proposition 2.10. By Lemma 2.6, we have that

P
(

det γM
‖DM‖2HC

≥ ε/4
)
≥ P

(
(|〈DM,hδ〉HC | − |〈DM,hδ〉HC |)2

‖hδ‖2HC

≥ ε
)

and
P (det γM ≥ ε/4) ≥ P

(
(|〈DM,hδ〉HC | − |〈DM,hδ〉HC |)2

‖hδ‖2HC

≥
√
ε

)
,

so it suffices to bound P
(

(|〈DM,hδ〉HC |−|〈DM,hδ〉HC |)
2

‖hδ‖2HC
≤ ε

)
from above. Here hδ is as above and we will

choose δ depending on ε.
Using Lemma 2.35, we first bound for some η > 0

(|〈DM,hδ〉HC | − |〈DM,hδ〉HC |)2

‖hδ‖2HC

≥ C−1δ−β
2+2d+2ηW−2(|〈DM,hδ〉HC | − 2|〈DM,hδ〉HC |).

Hence, taking c to be the constant from Lemma 2.34 we can bound

P
((|〈DM,hδ〉HC | − |〈DM,hδ〉HC |)2

‖hδ‖2HC

≤ (d− β2)−2δ3d+5
)

by

P
(
|〈DM,hδ〉HC | − 2|〈DM,hδ〉HC | ≤

c

2(d− β2)−2δd
)

+ P
(
Cδβ

2−2d−2ηW 2 >
c

2δ
−2d−5

)
.

The second term can be bounded using Lemma 2.35 loosely by exp(−c1δ
−c1) for some c1 > 0.

For the first term, Lemma 2.34 gives that

P(|〈DM,hδ〉HC | ≤ c(d− β
2)−2δd) ≤ exp(−c2δ

−d∧2)

and Lemma 2.36 gives constants c3 > 0

P(2|〈DM,hδ〉HC | ≥
c

2(d− β2)−2δd) ≤ exp(−δ−c3),
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and we thus obtain the proposition.
The case of the standard log-correlated field on circle needs extra attention, and is treated in

Section 2.6.4.6.

One can see that a simplified version of the above proof can also be used to prove Proposition 2.33.

Proof of Proposition 2.33. Recall that on the support of f , we can write Γ|V = Y + Z = X, where Y
is almost ?−scale invariant and Z is Holder regular, both defined on the whole space. Note that by
Lemma 2.19 and Theorem 2.16 the operators CY and CZ are bounded from H−d/2(Rd) to Hd/2(Rd)
and hence so is CX . Thus for any ϕ ∈ H−d/2(Rd) we have

〈CXϕ,ϕ〉L2(Rd) ≤ ‖CXϕ‖Hd/2(Rd)‖ϕ‖H−d/2(Rd) ≤ ‖CX‖H−d/2(Rd)→Hd/2(Rd)‖ϕ‖
2
H−d/2(Rd)

so that in particular

‖fµ‖2H−d/2(Rd) & 〈CX(fµ), fµ〉L2(Rd) = β−2‖DM‖2HC ≥ β
−2 |〈DM,hδ〉HC |2

‖hδ‖2HC

.

Using this inequality one can proceed as in the proof of Proposition 2.10 except one does not need to
take care of the term 〈DM,hδ〉.

The rest of this subsection is dedicated to the proofs of Lemmas 2.34, 2.35 and 2.36, and sketching
the extension to the case of the circle.

2.6.4.3 Proof of Lemma 2.34

Proof of Lemma 2.34. Let us fix some ν > 0 small. Note that 〈DM,hδ〉HC is equal to

iβ

∫
f(x) : eiβX(x) : hδ(x) dx = iβ

∫
f(x)f(y) : eiβ(Ŷδ(x)+Z(x)) :: e−iβ(Ŷδ(y)+Z(y)) : Rδ(x, y)

= iβ
∑
Q∈Qδ

∫
Q×Q

f(x)f(y) : eiβ(Ŷδ(x)+Z(x)) :: e−iβ(Ŷδ(y)+Z(y)) : Rδ(x, y) dx dy

since Rδ(x, y) = 0 if x and y are not in the same square in Qδ. Moreover the summands are mutually
independent, when we condition on the field Z, and by scaling each term agrees in law with

δ2dJQ := δ2d
∫
δ−1Q×δ−1Q

f(δx) : eiβZ(δx) :: e−iβZ(δy) : f(δy) : eiβŶδ(δx) :: eiβŶδ(δy) : Rδ(δx, δy) dx dy.

We can write

E[JQ|Z] =
∫
δ−1Q×δ−1Q

f(δx)f(δy) : eiβZ(δx) :: e−iβZ(δy) : eβ2E[Ŷδ(δx)Ŷδ(δy)]Rδ(δx, δy) dx dy.

Whenever Q is such that f(x) ≥ ‖f‖∞/2 for all x ∈ Q (or similarly if f(x) ≤ −‖f‖∞/2), and the event
EQ := {supx,y∈Q |Z(x)− Z(y)| ≤ π/(4β)} holds, a basic calculation that uses Lemma 2.15 shows that

• E[JQ|Z,EQ] ≥ C(d−β2)−2, for some constant C > 0 that is uniform over β ∈ (ν, d) and depends
only on ‖f‖∞
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• E[J2
Q|Z,EQ] ≤ c(d − β2)−4 for some constant c > 0 that is again uniform over β ∈ (ν, d) and

depends solely on ‖f‖∞.

In particular, by the Paley-Zygmund inequality for any such square Q it holds that P[JQ ≥ λ(d −
β2)−2|Z,EQ] ≥ p, where λ = C/2 and p > 0 is some constant. In the following, we denote by Q̃δ the
collection of those squares in which f is larger than ‖f‖∞/2 (again, we may consider −f instead of f
if needed).

Now, recall that Z is a Hölder continuous Gaussian field, and thus by local chaining inequalities
(e.g. Proposition 5.35 in [vH]), we have that for some universal constant C > 0

P
(

sup
|x−y|≤2δ

|Z(x)− Z(y)| > π/(4β)
)
≤ C exp(−Cδ−2).

Thus denoting E = {sup|x−y|≤2δ |Z(x)− Z(y)| ≤ π/(4β)} , we can bound

P[|〈DM,hδ〉HC | ≤ c(d− β
2)−2δd] ≤ P (Ec) + P

[
|〈DM,hδ〉HC | ≤ c(d− β

2)−2δd|E
]
.

As P(Ec) ≤ C exp(−Cδ−2) and E ⊆
⋂
QEQ, it remains to only take care of the second term working

under the assumption that the event EQ holds for all Q. For any t > 0 to be chosen later, we have

P
[
|〈DM,hδ〉H | ≤ (d− β2)−2t|E

]
≤ P

[
JQ ≥ (d− β2)−2λ for at most t/(βλδ2d) distinct Q ∈ Q̃δ|E

]
≤ P[Bin(|Q̃δ|, p) ≤ t/(βλδ2d)]

≤ e
−2|Q̃δ|

(
p−
⌈

t

βλδ2d

⌉
|Q̃δ|−1

)2

where Bin(n, p) denotes the Binomial distribution. In the second line we used the conditional inde-
pendence of JQ given Z and the conditional probability obtained above; on the last line we used the
Hoeffding’s inequality

P[Bin(n, p) ≤ m] ≤ e−2n(p−m
n

)2
.

Noting that c1δ
−d ≤ |Q̃δ| ≤ c2δ

−d for some c1, c2 > 0, we see that by choosing t = pβλδd/(2c2) we get

P
[
|〈DM,hδ〉H | ≤ (d− β2)−2t|E

]
≤ e−2c1 p3 δ

−d

for small enough δ > 0 and the lemma follows.

2.6.4.4 Proof of Lemma 2.35

Proof of Lemma 2.35. We start with some immediate bounds that allow the usage of inequalities on
Sobolev spaces Hs

C(Rd). First, by Lemma 2.19 we have

C−1‖ · ‖
H
d/2
C (Rd) ≤ ‖ · ‖HY,C ≤ C‖ · ‖Hd/2

C (Rd)
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for some C > 0. On the other hand, by Lemma 2.12, we have that

‖ · ‖HC ≤ ‖ · ‖HY,C ≤ ‖ · ‖HŶδ,C .

Now let ψ ∈ C∞c (Rd) be a non-negative function which equals 1 in the support of gδ (recall that gδ is
defined in (2.27)). Set

F (x) := eiβYδ(x)−β
2
2 E[Yδ(x)2]ψ(x)

and
G(x) :=

∫
f(y) : eiβZ(y) :: eiβŶδ(y) : gδ(y)E[Ŷδ(x)Ŷδ(y)] dx dy

so that gδ(x)F (x)G(x) = hδ(x). Using the above norm bounds in conjunction with the classical
inequality ‖FG‖Hd/2(Rd) . ‖F‖Hd/2+ε

C (Rd)‖G‖Hd/2
C (Rd) for any ε > 0 (see e.g. Theorem 5.1 in [BH15]),

we can bound ‖hδ‖HC by some constant times

‖gFG‖
H
d/2
C (Rd) . ‖gδ‖Hd/2+ε

C (Rd)‖F‖Hd/2+ε
C (Rd)‖G‖Hd/2

C (Rd) . ‖gδ‖Hd/2+ε
C (Rd)‖F‖Hd/2+ε

C (Rd)‖G‖HŶδ,C .

We can bound ‖gδ‖Hd/2+ε
C (Rd) . δ−d−ε by scaling and triangle inequality. Further, by definition we

have that ‖G‖2HŶδ,C
= |〈DM,hδ〉HC |. Thus it remains to deal with ‖F‖

H
d/2+ε
C (Rd). To do this, we will

use Gaussian concentration inequalities.
Namely, by Theorem 4.5.7 in [Bog98], if X is isonormal on a Hilbert space H ′, and any T : H ′ → R

is L−Lipschitz w.r.t ‖ · ‖H′ , then for all t > 0

P(T (X)− ET (X) > t) ≤ exp(− t2

2L2 ).

We will make use of this concentration in the case T = ‖ · ‖Hd/2+ε(Rd) to bound W := T (F ). We
first apply Theorem A in [AF92], which gives that for f ∈ Hd/2+ε(Rd) we have ‖ exp(if)ψ‖

H
d/2+ε
C

.

‖f‖Hd/2+ε(Rd) + ‖f‖d/2+ε
Hd/2+ε(Rd).

5 This together with the fact that E[Yδ(x)2] is constant in x gives us

that ‖F‖
H
d/2+ε
C (Rd) ≤ cδ

β2/2(‖Yδψ̃‖Hd/2+ε(Rd) + ‖Yδψ̃‖
d/2+ε
Hd/2+ε(Rd)) for some c > 0. Here ψ̃ ∈ C∞c (Rd) is

some function which is 1 in the support of ψ. Further, we have the following bounds:

Claim 2.37. It holds that
1. ‖ · ‖Hd/2+ε(Rd) is O(δ−2ε)−Lipschitz with respect to ‖ · ‖HYδ .
2. (E‖ψ̃Yδ‖Hd/2+ε(Rd)|)2 ≤ E‖ψ̃Yδ‖2Hd/2+ε(Rd) . δ−d−4ε.

Proof of Claim 2.37. Recall from the proof of Lemma 2.19 that the operator CYδ is a Fourier multiplier
operator with the symbol

K̂δ(ξ) :=
∫ 1

δ
vd−1(1− vα)k̂(vξ)dv

5In [AF92] the authors consider compositions with real-valued functions; in our case one can apply it directly to the
real and imaginary part. Note that by the theorem the first operator in the chain f 7→ eif − 1 7→ (eif − 1)ψ 7→ eifψ is
bounded and the other two are bounded since ψ is smooth.
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and k is by assumption smooth. Moreover,

‖f‖2HYδ =
∫
K̂δ(ξ)−1|f̂(ξ)|2 dξ

and
E[‖ψ̃Yδ‖2Hd/2+ε(Rd) =

∫
(1 + |ξ|2)d/2+ε

∫
| ˆ̃ψ(ζ)|2K̂δ(ξ − ζ) dζ dξ.

The two claims thus directly follow from bounding K̂δ respectively by

K̂δ(ξ) . δ−2ε(1 + |ξ|2)−d/2−ε, (2.28)

and K̂δ(ξ) . δ−d−4ε(1 + |ξ|2)−d−2ε, (2.29)

where the underlying constants do not depend on δ. These inequalities are clear when |ξ| ≤ 1, and
follow by integrating the bounds k̂(vξ) ≤ C|vξ|−d−2ε and k̂(vξ) ≤ C|vξ|−2d−4ε for |ξ| > 1.

We can finally apply the Gaussian concentration to deduce that for all ε ∈ (0, d/2), there are some
c, C ′ > 0, such that for all t > cδ−d−4ε

P(‖ψ̃Yδ‖Hd/2+ε(Rd) > t) ≤ exp
(
−C ′δεt2

)
,

and thus for some c′, C ′′ > 0 and for all t > c′δ−2−4ε

P(‖ψ̃Yδ‖Hd/2+ε(Rd) + ‖ψ̃Yδ‖
d/2+ε
Hd/2+ε(Rd) > t) ≤ exp

(
−C ′δεt

2
d

)
,

implying the lemma.

2.6.4.5 Proof of Lemma 2.36

Proof. We have〈
DM,hδ

〉
= iβ

∫
f(x)f(y)e−2β2E[Xδ(x)2] : ei2βXδ(x) :: eiβŶδ(x) :: eiβŶδ(y) : Rδ(x, y)dxdy,

which we can write as a sum

iβ
∑
Q∈Qδ

∫
Q×Q

f(x)f(y)e−2β2E[Xδ(x)2] : ei2βXδ(x) :: eiβŶδ(x) :: eiβŶδ(y) : Rδ(x, y)dxdy =: iβ
∑
Q∈Qδ

LQ.

We can then first bound
E|
〈
DM,hδ

〉
|2N ≤ β2NE|

∑
Q∈Qδ

LQ|2N .

If we expand the 2N -th moment of such a sum, we obtain terms of the form

β2NE
[
LQ1 . . . LQNLQ′1 . . . LQ′N

]
.
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Before taking expectation in each such term we separate the field Yδ = Y√δ + Ỹδ, with Ỹδ := Yδ − Y√δ
being independent of Y√δ. We can then write each term as

= β2N
∫ N∏

j=1
f(xj)f(yj)f(x′j)f(y′j)Rδ(xj , yj)Rδ(x′j , y′j)e4β2E(Y√

δ
;x;x′)eβ

2E(Ŷδ;x,y;x′,y′)

× e−2β2
∑N

j=1(E[Xδ(xj)2]+E[Xδ(x′j)
2])E

 N∏
j=1

: ei2β(Z(xj)+Ỹδ(xj)) :: e−i2β(Z(x′j)+Ỹδ(x
′
j)) :

 ,
where the integration is over xj , yj ∈ Qj and x′j , y′j ∈ Q′j . We bound the expectation by

E

∣∣∣∣∣∣
N∏
j=1

: ei2β(Z(xj)+Ỹδ(xj)) :: e−i2β(Z(x′j)+Ỹδ(x
′
j)) :

∣∣∣∣∣∣ ≤ CNδ−2Nβ2
,

since E[Ỹδ(x)2] = 1
2 log 1

δ +O(1). Now, there is some c > 0 such that E(Yδ1/2 ; x; x′) ≥ E(Y 1/2
δ ,q; q′)−

c
√
δN2, where q and q′ denote the vectors of midpoints for the ordered squares Qj and Q′j . This can

be seen by noting that since the seed covariance k is Lipschitz, we have

|E[Y√δ(x)Y√δ(x
′)]− E[Y√δ(q)Y√δ(q

′)]| .
∫ 1

2 log 1
δ

0
eu||x− x′| − |q − q′||(1− e−αu) du .

√
δ

when |x− q|, |x′ − q′| . δ. Thus we obtain the upper bound

‖f‖4N∞ β2Nδ2β2Nec
√
δN2

e4β2E(Y
δ1/2 ;q1;q2)E[JQ1 . . . JQNJQ′1 . . . JQ′N ],

where now
JQ =

∫
Q×Q

: eiβŶδ(x) :: eiβŶδ(y) : Rδ(x, y)dxdy.

By Hölder’s inequality we can bound

E[JQ1 . . . JQNJQ′1 . . . JQ′N ] ≤ E|JQ1 |2N .

By scaling the right hand side equals

δ4Nd
∫

[0,1]4Nd

N∏
j=1

Rδ(δxj , δyj)Rδ(δx′j , δy′j)eβ
2E(Y (δ);x,y;x′,y′)

≤ δ4Nd
∫

[0,1]4Nd

N∏
j=1

√
log C

|xj−π(xj)| log C
|yj−π(yj)| log C

|x′j−π(x′j)|
log C

|y′j−π(y′j)|
eβ

2E(Y (δ);x,y;x′,y′),

where we have used Lemma 2.15 and π(x) denotes the closest point to point x in the set

{x1, . . . , xN , y1, . . . , yN , x
′
1, . . . , x

′
N , y

′
1, . . . , y

′
N} \ {x}.
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By relabeling the points as z1, . . . , z4N and using Lemma 2.28 we then have the upper bound

δ4Nd
∫

[0,1]4Nd

4N∏
j=1

√
log C

|zj − zF (j)|
1

|zj − zF (j)|β
2/2 ,

which by Lemma 2.29 is bounded by

CN (d− β2)−4Nδ4NdN4N

for some constant C > 0. Hence we can bound E|
〈
DM,hδ

〉
|2N by

CN (d− β2)−4Nδ4NdN4Nβ2Nδ2β2Ne2c
√
δN2

δ−2Nd
∫
K2N

exp
(
4β2E(Yδ1/2 ; x; x′)

)
,

where for convenience we have turned q,q′ back to x,x′ by paying the same price. The latter integral
is the 2N -th moment of the 2β chaos of field Yδ1/2 , which by Lemma 2.28 and (2.23) is bounded by

CNN2N
(

log 1
δ

)N
δ−N max(2β2− d2 ,0), giving

E|
〈
DM,hδ

〉
|2N ≤ CNec

√
δN2(d− β2)−4N

(
log 1

δ

)N
δN(2d+min( d2 ,2β

2))N6N .

Note that for any fixed b, C, ν > 0 we have 2b−1C log 1
δ < δ−ν and δ small enough. One thus sees that

P[|〈DM,hδ〉H | ≥ b(d− β2)−2δd] ≤ 2−Nec
√
δN2

δ−νNδN min( d2 ,2β
2)N6N

yields the desired upper bound by choosing e.g. N = δ−β
2/(24d).

2.6.4.6 Special case: the standard log-correlated field on the circle

In this section we will briefly explain how to extend the proof of Proposition 2.10 to the case where we
are interested in the total mass of the imaginary chaos defined using the field Γ on the unit circle which
has the covariance log 1

|x−y| , where one now thinks of x and y as being complex numbers of modulus 1.
See Section 2.2 for the precise definitions.

Recall, that the extra complication in this case is that the field is degenerate in the sense that
it is conditioned to satisfy

∫ 1
0 Γ(e2πiθ) dθ = 0. In terms of the proof of Proposition 2.10 this creates

some annoyance, as the function hδ we used in the projection bounds does not anymore belong to the
Cameron–Martin space HC of Γ, and we will instead need to look at the function h̃δ = hδ −

∫
hδ(y) dy.

As the field Γ(e2πi·) is non-degenerate when restricted to I0 := [−1/4, 1/4] (see again Section 2.2), it
is also beneficial to introduce a smooth bump function ψ supported in I0 := [−1/4, 1/4] , and thus set

hδ(x) = ψ(x)eiβYδ(x)−β
2
2 E[Yδ(x)2]

∫
ψ(y) : eiβ(Ŷδ(y)+Z(y)) : Rδ(x, y) dy.

This will let us still use the decomposition X = Y + Z where Γ|I0 = X|I0 and streamline most of the
proof.

In the case of Lemmas 2.34 and 2.36, i.e. in terms 〈DM, h̃δ〉HC and 〈DM, h̃δ〉HC , this subtraction
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of the mean introduces the extra term iβM
∫
hδ(y) dy. In the case of Lemma 2.35, we have an extra

term of the form |
∫
hδ(y)|. The next lemma guarantees that both terms are negligible.

Lemma 2.38. For all c > 0 there is some c1 > 0 such that we have

P[|
∫
hδ(y) dy| > cδ(1− β2)−1/2] ≤ e−c1δ−1c

2
β2

and
P[|M

∫
hδ(y) dy| > cδ(1− β2)−1] ≤ e−c1δ−1/2c

1
β2

for all δ small enough.

Proof. We will bound the N–th moment of |M
∫
hδ(y)|, use the Chebyshev inequality and optimize

over N . Note that by the Cauchy–Schwarz inequality we have

E
[∣∣∣∣M ∫

hδ(y) dy
∣∣∣∣N
]
≤ E[|M |2N ]1/2E

[∣∣∣∣∫ hδ(y) dy
∣∣∣∣2N
]1/2

and by [JSW20, Theorem 1.3] we know that (recall that we are currently in a one-dimensional setting)

E[|M |2N ] ≤ CN (d− β2)−NNβ2N

for some C > 0. We mention that, in the article [JSW20], the dependence of the above constant in
terms of β was not stated but follows from their approach (see (2.20)). To bound E[|

∫ 1
0 hδ(y) dy|2N ],

we note that by Jensen’s inequality we have

E
[∣∣∣ ∫ 1

0
hδ(y) dy

∣∣∣2N] ≤ E
[( ∫ 1

0
|hδ(y)|2 dy

)N]
,

where the right hand side equals

E
[( ∫ 1

0
|ψ(x)|2e−β2E[Yδ(x)2]

∣∣∣ ∫ ψ(y) : eiβ(Ŷδ(y)+Z(y)) : Rδ(x, y) dy
∣∣∣2 dx)N].

We bound |ψ(x)|2e−β2E[Yδ(x)2] by Cδβ2 and since Rδ(x, y) = 0 whenever x, y do not belong to the same
square, we can bound the above expression by

CNδNβ
2
δ−N

∑
Q∈Qδ

E
[( ∫

Q3
ψ(y)ψ(z) : eiβ(Ŷδ(y)+Z(y)) : Rδ(x, y)Rδ(x, z) : e−iβ(Ŷδ(z)+Z(z)) : dz dx dy

)N]
.

By developing the expectation into a multiple integral, using an Onsager inequality associated to the
smooth field Z (see (2.19)) and then rewriting the multiple integrals as an expectation, we see that we
can get rid of the field Z in the above expectation by only paying a multiplicative price CN .

Thus it remains to bound

CNδNβ
2
δ−N

∑
Q∈Qδ

E
[( ∫

Q3
ψ(y)ψ(z) : eiβŶδ(y) : Rδ(x, y)Rδ(x, z) : e−iβŶδ(z) : dz dx dy

)N]
.
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By scaling we see that each term in the sum is equal in law to

δ3NJQ := δ3NE
[( ∫

δ−1Q×δ−1Q×δ−1Q
ψ(δy)ψ(δz) : eiβŶδ(δy) : Rδ(δx, δy)Rδ(δx, δz) : e−iβŶδ(δz) : dz dx dy

)N]
.

To bound this expectation, we expand the product and obtain a multiple integral over xi, yi, zi,
i = 1 . . . N . The expectation of the product of : eiβŶδ(δy) : and : e−iβŶδ(δz) : leads to E(Ŷδ(δ·); y; z) that
we bound using the Onsager inequality (2.18). Since for any fixed y and z,

ψ(δy)ψ(δz)
∫
δ−1Q

Rδ(δx, δy)Rδ(δx, δz) dx < C,

we can first integrate the variables xi and control the remaining integral over yi and zi, i = 1 . . . N
with (2.20). Overall, JQ is bounded by (d− β2)−NNβ2N .

Altogether we obtain that

E
[∣∣∣ ∫ 1

0
hδ(y) dy

∣∣∣2N] ≤ CN (d− β2)−Nδ(β2+2)NNβ2N

and hence
E
[∣∣∣M ∫

hδ(y) dy
∣∣∣N] ≤ CN (d− β2)−Nδ(β

2
2 +1)NNβ2N ,

which gives us the tail estimates

P
[∣∣∣ ∫ hδ(y) dy

∣∣∣ ≥ λ(d− β2)−1/2
]
≤ CNδ(β

2
2 +1)NN

β2
2 N

λN
.

and

P
[∣∣∣M ∫

hδ(y) dy
∣∣∣ ≥ λ(d− β2)−1

]
≤ CNδ(β

2
2 +1)NNβ2N

λN
.

Optimising over N now concludes.

Appendix 2.A Some standard proofs

Proof of Lemma 2.15. It is calculationally somewhat easier to work with the rescaled field Y (ε)(x) =
Ŷε(δx), which can be expressed using white noise as:

Y (δ)(x) :=
∫
Rd×[0,∞)

edu/2k̃(eu(t− x))
√

1− δαe−αudW (t, u).

The first inequality then follows directly:

E[Y (δ)(x)Y (δ)(y)] =
∫ ∞

0
k(eu(x− y))(1− δαe−αu) du ≤

∫ ∞
0

k(eu(x− y)) du ≤ log 1
|x− y|

by the fact that k is supported in B(0, 1) and k(t) ≤ 1 for all t.
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For the second inequality we compute∫ ∞
0

k(eu(x− y))(1− δαe−αu) du ≥
∫ ∞

0
k(eu(x− y))(1− e−αu) du

≥
∫ log 1

|x−y|

0
k(eu(x− y)) du−

∫ ∞
0

e−αu du

≥ log 1
|x− y|

+
∫ log 1

|x−y|

0
(k(eu(x− y))− 1) du− 1

α

Note that by Taylor’s theorem we have for all t ∈ R the inequality

k(t) ≥ 1 + k′(0)t− ct2

for some constant c > 0, and in fact since k is smooth and symmetric we have k′(0) = 0. Hence

∫ log 1
|x−y|

0
(k(eu(x− y))− 1) du ≥ −c

∫ log 1
|x−y|

0
e2u|x− y|2 = −c( 1

2|x− y|2 |x− y|
2 − |x− y|

2

2 ) ≥ − c2 ,

from which the claim follows.
Finally, the independence comes from the fact that k is supported in B(0, 1)

Proof of Lemma 2.28. Let us begin with the field Yε. Set qj = 1 for 1 ≤ j ≤ N and qj = −1 for
N + 1 ≤ j ≤ 2N and note that

E(Yε; x; y) = −1
2E

( 2N∑
j=1

qjYdj∧ε(zj)
)2
+ 1

2

2N∑
j=1

E[Ydj∧ε(zj)2] ≤ 1
2

2N∑
j=1

log 1
dj ∧ ε

since E[Yε(x)Yε(y)] = E[Ys(x)Yt(y)] for all s, t ≤ ε ∧ |x− y| and E[Yδ(x)2] ≤ log 1
δ for all δ ∈ (0, 1).

As the field Ŷε(εx) has the same distribution as the field Y (ε)(x) from the proof of Lemma 2.15, we
have

E(Ŷε(ε·); x; y) = −1
2E

( 2N∑
j=1

qj Ŷ
(ε)
dj

(zj)
)+ 1

2

2N∑
j=1

E[Ŷ (ε)
dj

(zj)2] ≤ 1
2

2N∑
j=1

log 1
dj
.

Finally, if R is a regular field then

E(R; x; y) = −1
2E

( 2N∑
j=1

qjR(zj)
)+ 1

2

2N∑
j=1

E[R(zj)2] ≤ N sup
1≤j≤2N

E[R(zj)2].

Proof of Lemma 2.31. We prove this lemma in the context of real-valued random variables. The
extension to complex-valued random variables follows immediately.

In page 58 of [Nua06], an operator L on the set of variables with finite second moment is introduced
and used to define the norm ‖|F |‖k,p := E

[
((I − L)k/2F )p

]1/p
. The norms ‖| · |‖k,p and ‖·‖k,p are

equivalent (see [Nua06] page 77). Hence supn E
[
((I − L)k/2Fn)p

]
<∞. By weak compactness of balls

in Lp(Ω), we can extract a subsequence (n(i), i ≥ 1) such that ((I −L)k/2Fn(i), i ≥ 1) converges weakly
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towards some element G. Since the Lp-norm is weakly lower-semicontinuous, we moreover have

E [Gp] ≤ lim inf
i

E
[
((I − L)k/2Fn(i))p

]
≤ lim sup

n
E
[
((I − L)k/2Fn)p

]
.

In the proof of [Nua06, Lemma 1.5.3], D. Nualart shows that F = (I − L)−k/2G. This implies that

‖F‖k,p ≤ Ck,p ‖|F |‖k,p = Ck,pE [Gp]1/p ≤ Ck,p lim sup
n
‖|Fn|‖k,p ≤ C

′
k,p lim sup

n
‖Fn‖k,p .

This concludes the proof.

Appendix 2.B Proof of Proposition 2.4

Proof of Proposition 2.4. We start by showing that M belongs to D∞. Let n ≥ 1, δ > 0, j ≥ 0 and
p ≥ 1. In the following, we will denote

Γδ = Γ ∗ ϕδ, Γn,δ =
n∑
k=1

Akek ∗ ϕδ, Mδ =
∫
C
f(x)eiβΓδ(x)+β2

2 E[Γδ(x)2]dx

and
Mn,δ =

∫
C
f(x)eiβΓn,δ(x)+β2

2 E[Γn,δ(x)2]dx.

Mn,δ is a smooth random variable and DjMn,δ is equal to

(iβ)j
∫
C
dxf(x)eiβΓn,δ(x)+β2

2 E[Γn,δ(x)2]
n∑

k1,...,kj=1
(ek1 ∗ ϕδ)(x) . . . (ekj ∗ ϕδ)(x)ek1 ⊗ · · · ⊗ ekj . (2.30)

Since (ek1 ⊗ · · · ⊗ ekj , k1, . . . , kj = 1 . . . n) is an orthonormal family of H⊗j , we deduce that

∥∥∥DjMn,δ

∥∥∥2

H⊗jC
= β2j

∫
C2
f(x)f(y)eiβΓn,δ(x)−iβΓn,δ(y)+β2

2 E[Γn,δ(x)2]+β2
2 E[Γn,δ(y)2]

×
(

n∑
k=1

(ek ∗ ϕδ)(x)(ek ∗ ϕδ)(y)
)j
dxdy.

Thanks to the convolution, all the integrated terms are uniformly bounded in n and x1 . . . xp, y1 . . . yp.
By dominated convergence theorem and then by using (2.17) which provides an Onsager inequality for
convolution approximations, we deduce that

lim sup
n→∞

E
[∥∥∥DjMn,δ

∥∥∥2p

H⊗jC

]
≤ β2jp

∫
C2p

dx1 . . . dxpdy1 . . . dyp

p∏
l=1

f(xl)f(yl) (C ∗ (ϕδ ⊗ ϕδ)(xl, yl))j eβ
2E(Γδ;x;y)

≤ Cj,p ‖f‖2p∞
∫
K2p

dz1 . . . dz2p

2p∏
l=1

(
min
l′ 6=l
|zl − zl′ |

)−β2/2 (
max
l′ 6=l

C ∗ (ϕδ ⊗ ϕδ)(zl, zl′)
)j/2
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where K is the support of f . Importantly, the above constant Cj,p does not depend on δ. Notice that

C ∗ (ϕδ ⊗ ϕδ)(x, y) ≤ C log c

|x− y| ∨ δ
.

Hence, if we let ε > 0 be such that β2/2 + ε < d/2, there exists C ′j,p > 0 independent of δ such that

lim sup
n→∞

E
[∥∥∥DjMn,δ

∥∥∥2p

H⊗jC

]
≤ C ′j,p

∫
K2p

dz1 . . . dz2p

2p∏
l=1

(
min
l′ 6=l
|zl − zl′ |

)−β2/2−ε
≤ C ′′j,p (2.31)

by (2.20). Since (Mn,δ, n ≥ 1) converges in L2p towards Mδ, Lemma 2.31 and (2.31) imply that for all
k ≥ 1, Mδ ∈ Dk,2p and that

sup
δ>0
‖Mδ‖k,2p <∞. (2.32)

Now, because (Mδ, δ > 0) converges in L2p towards M , Lemma 2.31 implies that for all k ≥ 1,
M ∈ Dk,2p. This concludes the proof that M ∈ D∞.

We now turn to the proof of the formula for DM . On the one hand, (2.30) gives

DMn,δ = iβ

∫
C
dxf(x)eiβΓn,δ(x)+β2

2 E[Γn,δ(x)2]
n∑
k=1

(ek ∗ ϕδ)(x)ek.

One can then show that (DMn,δ, n ≥ 1) converges in L2(Ω;H) towards

iβ

∫
C
dxf(x)eiβΓδ(x)+β2

2 E[Γδ(x)2]
∞∑
k=1

(ek ∗ ϕδ)(x)ek.

On the other hand, the first part of the proof showed that supn E
[
‖DMn,δ‖2HC

]
<∞ and Lemma 2.30

implies that (DMn,δ, n ≥ 1) converges to DMδ in the weak topology of L2(Ω;H). Hence

DMδ = iβ

∫
C
dxf(x)eiβΓδ(x)+β2

2 E[Γδ(x)2]
∞∑
k=1

(ek ∗ ϕδ)(x)ek.

Let us now show that (DMδ, δ > 0) converges in L2(Ω;H) towards

iβ

∫
C
dxf(x)µ(x)C(x, ·).

Firstly, since
C(x, ·) =

∑
k≥1

ek(x)ek(·)
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and the ek, k ≥ 1, form an orthonormal family of H, we have

E
[∥∥∥∥∫

C
dxf(x)µ(x)C(x, ·)−

∫
C
dxf(x)eiβΓδ(x)+β2

2 E[Γδ(x)2]C(x, ·)
∥∥∥∥2

HC

]
(2.33)

=
∑
k≥1

E
[(∫

C
f(x)µ(x)ek(x)dx−

∫
C
f(x)eiβΓδ(x)+β2

2 E[Γδ(x)2]ek(x)dx
)2
]
.

Each single term in the above sum goes to zero as δ → 0. Moreover, using Onsager inequality for
convolution approximations (2.17), one can obtain a domination in a similar manner as what we did in
the first part of the proof. By the dominated convergence theorem, it implies that (2.33) goes to zero
as δ → 0. Secondly,

E


∥∥∥∥∥∥
∫
C
dxf(x)eiβΓδ(x)+β2

2 E[Γδ(x)2] ∑
k≥1

(ek ∗ ϕδ)(x)ek −
∫
C
dxf(x)eiβΓδ(x)+β2

2 E[Γδ(x)2]C(x, ·)

∥∥∥∥∥∥
2

HC

 (2.34)

=
∑
k≥1

E
[(∫

C
f(x)eiβΓδ(x)+β2

2 E[Γδ(x)2]((ek ∗ ϕδ)(x)− ek(x))dx
)2
]

≤ C ‖f‖2∞
∫
K2
|x− y|−β

2

∣∣∣∣∣∣
∑
k≥1

((ek ∗ ϕδ)(x)− ek(x))((ek ∗ ϕδ)(y)− ek(y))

∣∣∣∣∣∣ dxdy
where K is as before the support of f . The above integrand is dominated by the integrable function
C |x− y|−β

2
log(c/|x − y|). Dominated convergence theorem thus implies that (2.34) goes to zero

as δ → 0. Putting things together, we have shown the aforementioned convergence: (DMδ, δ > 0)
converges in L2(Ω;H) towards

iβ

∫
C
dxf(x)µ(x)C(x, ·).

With (2.32), we notice that supδ E
[
‖DMδ‖2HC

]
< ∞ and Lemma 2.30 also shows that (DMδ, δ > 0)

converges to DM in the weak topology of L2(Ω;H). This yields

DM = iβ

∫
C
dxf(x)µ(x)C(x, ·).
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Critical Brownian multiplicative chaos

Brownian multiplicative chaos measures, introduced in [Jeg20a, AHS20, BBK94], are random Borel
measures that can be formally defined by exponentiating γ times the square root of the local
times of planar Brownian motion. So far, only the subcritical measures where the parameter
γ is less than 2 were studied. This article considers the critical case where γ = 2, using three
different approximation procedures which all lead to the same universal measure. On the one hand,
we exponentiate the square root of the local times of small circles and show convergence in the
Seneta–Heyde normalisation as well as in the derivative martingale normalisation. On the other
hand, we construct the critical measure as a limit of subcritical measures. This is the first example
of a non-Gaussian critical multiplicative chaos.
We are inspired by methods coming from critical Gaussian multiplicative chaos, but there are
essential differences, the main one being the lack of Gaussianity which prevents the use of Kahane’s
inequality and hence a priori controls. Instead, a continuity lemma is proved which makes it possible
to use tools from stochastic calculus as an effective substitute.

3.1 Introduction

Thick points of planar Brownian motion/random walk are points that have been visited unusually often
by the trajectory. The study of these points has a long history going back to the famous conjecture of
Erdős and Taylor [ET60] on the leading order of the number of times a planar simple random walk
visits the most visited site during the first n steps. Since then, the understanding of these thick points
has considerably improved. On the random walk side, [DPRZ01] settled Erdős–Taylor conjecture and
computed the number of thick points at the level of exponent, for random walk having symmetric
increments with finite moments of all order. [Ros05, BR07], and more recently [Jeg20b], streamlined
the proof and extended these results to a wide class of planar random walk. On the Brownian motion
side, [BBK94] constructed random measures supported on the set of thick points. Their results concern
only a partial range {a ∈ (0, 1/2)} of the thickness parameter a1. [AHS20] and [Jeg20a] extended
simultaneously the results of [BBK94] by building these random measures for the whole subcritical
range {a ∈ (0, 2)}. [Jeg19] gave an axiomatic characterisation of these measures and showed that
they describe the scaling limit of thick points of planar simple random walk for any fixed a < 2. All
these aforementioned works are subcritical results. The aim of this paper is to extend the theory

1a is related to the parameter γ in Gaussian multiplicative chaos theory by a = γ2/2, so a < 1/2 corresponds to γ < 1.
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to the critical point a = 2 by constructing a random measure supported by the thickest points of a
planar Brownian trajectory. This enables us to formulate a precise conjecture on the convergence in
distribution of the supremum of local times of planar random walk.

Our construction is inspired by Gaussian multiplicative chaos theory (GMC), i.e. the study of
random measures formally defined as the exponential of γ times a log-correlated Gaussian field, such
as the two-dimensional Gaussian free field (GFF), where γ ≥ 0 is a parameter. Since such a field is
not defined pointwise but is rather a random generalised function, making sense of such a measure
requires some nontrivial work. The theory was introduced by Kahane [Kah85] and has expanded
significantly in recent years. By now it is relatively well understood, at least in the subcritical
case where γ <

√
2d [RV10, DS11, RV11, Sha16, Ber17] and even in the critical case γ =

√
2d

[DRSV14b, DRSV14a, JS17, JSW19, Pow18, APS19, APS20]. In this article, the log-correlated field
we have in mind is the (square root of) the local time process of a planar Brownian motion, appropriately
stopped. The main interest of our construction from GMC point of view is that this field is non-Gaussian,
so that our results give the first example of a critical chaos for a truly non-Gaussian field.2

3.1.1 Main results

Let Px be the law under which (Bt)t≥0 is a planar Brownian motion starting from x ∈ R2. Let D ⊂ R2

be an open bounded simply connected domain, x0 ∈ D be a starting point and τ be the first exit time
of D:

τ := inf{t ≥ 0 : Bt /∈ D}.

For all x ∈ R2, t > 0, ε > 0, define the local time Lx,ε(t) of (|Bs − x| , s ≥ 0) at ε up to time t (here |·|
stands for the Euclidean norm):

Lx,ε(t) := lim
r→0+

1
2r

∫ t

0
1{ε−r≤|Bs−x|≤ε+r}ds. (3.1)

[Jeg20a, Proposition 1.1] shows that we can make sense of the local times Lx,ε(τ) simultaneously for
all x and ε with the convention that Lx,ε(τ) = 0 if the circle ∂D(x, ε) is not entirely included in D.
We can thus define for any thickness parameter γ ∈ (0, 2] and any Borel set A,

mγ
ε (A) :=

√
| log ε|εγ2/2

∫
A
eγ
√

1
ε
Lx,ε(τ)dx. (3.2)

We recall:

Theorem A (Theorem 1.1 of [Jeg20a]). Let γ ∈ (0, 2). The sequence of random measures mγ
ε converges

as ε→ 0 in probability for the topology of weak convergence on D towards a Borel measure mγ called
Brownian multiplicative chaos.

See [AHS20] for a different construction of the subcritical Brownian multiplicative chaos, as well as
[BBK94] for partial results. See also [Jeg19] for more properties on these measures.

2We point out the work of [SW20] on the Riemann zeta function where the limiting field is Gaussian, but not the
approximation. See also [FK14, Web15, NSW18, LOS18, BWW18, Jun18] for subcritical results.
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Our first result towards extending the theory to the critical point γ = 2 is the fact that the
subcritical normalisation yields a vanishing measure in the critical case:

Proposition 3.1. mγ=2
ε (D) converges in Px0-probability to zero.

To obtain a non-trivial object we thus need to renormalise the measure slightly differently. Firstly,
we consider the Seneta–Heyde normalisation: for all Borel set A, define

mε(A) :=
√
| log ε|mγ=2

ε (A) = | log ε|ε2
∫
A
e2
√

1
ε
Lx,ε(τ)dx. (3.3)

Secondly, we consider the derivative martingale normalisation which formally corresponds to (minus)
the derivative of mγ

ε with respect to γ evaluated at γ = 2: for all Borel set A, define

µε(A) := −dmγ
ε (A)
dγ

∣∣∣
γ=2

=
√
| log ε|ε2

∫
A

(
−
√

1
ε
Lx,ε(τ) + 2 log 1

ε

)
e2
√

1
ε
Lx,ε(τ)dx. (3.4)

Theorem 3.2. The sequences of random positive measures (mε)ε>0 and random signed measures
(µε)ε>0 converge in Px0-probability for the topology of weak convergence towards random Borel measures
m and µ. Moreover, the limiting measures satisfy:

1. m =
√

2
πµ Px0-a.s. In particular, µ is a random positive measure.

2. Nondegeneracy: µ(D) ∈ (0,∞) Px0-a.s.

3. First moment: Ex0 [µ(D)] =∞.

4. Nonatomicity: Px0-a.s. simultaneously for all x ∈ D, µ({x}) = 0.

Our next main result is the construction of critical Brownian multiplicative chaos as a limit of
subcritical measures. Before stating such a result, we need to ensure that we can make sense of the
subcritical measures simultaneously for all γ ∈ (0, 2).

Proposition 3.3. Let M be the set of finite Borel measures on R2. The process γ ∈ (0, 2) 7→ mγ ∈
M of subcritical Brownian multiplicative chaos measures possesses a modification such that for all
continuous nonnegative function f , γ ∈ (0, 2) 7→

∫
fdmγ ∈ R is lower semi-continuous.

Theorem 3.4. Let γ ∈ (0, 2) 7→ mγ be the process of subcritical Brownian multiplicative chaos measures
from Proposition 3.3. Then, (2−γ)−1mγ converges towards 2µ as γ → 2− in probability for the topology
of weak convergence of measures.

Remark 3.5. In Proposition 3.3, we do not obtain continuity of the process in γ. The main difficulty here
is that, in order to use Kolmogorov’s continuity theorem, one has to consider moments of order larger
than 1. When γ ≥

√
2, the second moment blows up and we have to deal with non-integer moments

which are difficult to estimate without the use of Kahane’s convexity inequalities but this tool is
restricted to the Gaussian setting. To bypass this difficulty, we apply Kolmogorov’s criterion to versions
of the measures that are restricted to specific ‘good’ events allowing us to make L2-computations.
The drawback is that it does not yield continuity of the process but only lower semi-continuity. See
Appendix 3.B.
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We mention that the construction of the critical measure as a limit of subcritical measures is only
partially known in the GMC realm. Such a result has first been proved to hold in the specific case of
the two-dimensional GFF [APS19] exploiting on the one hand the construction of Liouville measures
as multiplicative cascades [APS20] and on the other hand the strategy of Madaule [Mad16] who proves
a result analogous to Theorem 3.4 in the case of multiplicative cascades/branching random walk. It
has then been extended to a wide class of log-correlated Gaussian fields in dimension two by comparing
them to the GFF [JSW19]. In other dimensions, a natural reference log-correlated Gaussian field is
lacking and the result is so far unknown. We believe that the approach we use in this paper to prove
Theorem 3.4 can be adapted in order to show that critical GMC measures can be built from their
subcritical versions in any dimension.3

Theorem 3.4 can be seen as exchanging the limit in ε and the derivative with respect to γ.
Surprisingly, a factor of 2 pops up when one exchanges the two:

lim
γ→2−

lim
ε→0

(mγ
ε −m2

ε)
2− γ = lim

γ→2−
1

2− γm
γ = 2 lim

ε→0
µε = 2 lim

ε→0
lim
γ→2−

(mγ
ε −m2

ε)
2− γ .

This factor of 2 is present as well in the context of GMC [APS19, JSW19] and cascades [Mad16].
Theorem 3.4 is important because it hints at the universal nature of the measure µ, in the following

sense. First, recall that the article [Jeg19] gives an axiomatic characterisation of the subcritical
measures mγ implying their universality in the sense that different approximations yield the same
limiting measures. Thus, Theorem 3.4 can be seen as showing a form of universality for µ as well.
Furthermore, the subcritical measures mγ are known to be conformally covariant [Jeg20a, AHS20] and
Theorem 3.4 allows us to extend this conformal covariance to the critical measures.

Corollary 3.6. Let φ : D → D′ be a conformal map between two bounded simply connected domains.
Let x0 ∈ D and denote by µD and µD′ the critical Brownian multiplicative chaos measures built in
Theorem 3.2 for the domains (D,x0) and (D′, φ(x0)) respectively. Then we have

(µD ◦ φ−1)(dx) law=
∣∣∣(φ−1)′(x)

∣∣∣4 µD′(dx).

Proof. Let γ ∈ (0, 2) and denote by mγ,D and mγ,D′ the subcritical measures built in Theorem A for
the domains (D,x0) and (D′, φ(x0)) respectively. By [Jeg20a, Corollary 1.4 (iv)], it is known that

(mγ,D ◦ φ−1)(dx) law=
∣∣∣(φ−1)′(x)

∣∣∣2+γ2/2
mγ,D′(dx). (3.5)

By Theorem 3.4, we obtain the desired result by dividing both sides of the above equality by 2(2− γ)
and then by letting γ → 2.

Let us note that in [Jeg20a] the conformal covariance (3.5) of the subcritical measures is stated
between domains that are assumed to have a boundary composed of a finite number of analytic curves.
This extra assumption was made to match the framework of [AHS20] but we emphasise that it is
useless in our context. Proposition 6.2 of [Jeg20a] only requires the domain to be bounded and simply

3After the first version of the current paper was finished, the fact that the critical GMC measure can be obtained as a
limit of the subcritical measures has been established in any dimension in [Pow20b].
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connected. This proposition characterises the law of mγ,D together with the Brownian motion from
which it has been built. The conformal covariance then follows from this proposition as it is written in
Section 5 of [AHS20].

Note that we could not hope to apply directly the approach used in the subcritical case to prove
conformal covariance at criticality. Indeed, in the subcritical regime, this is based on a characterisation
of the law of the couple formed by the measure together with the Brownian motion from which it has
been built. This characterisation is in turn based on L1 computations that are infinite at criticality
(Theorem 3.2, point 3).

3.1.2 Conjecture on the supremum of local times of random walk

In recent years, much effort has been put in the study of the supremum of log-correlated fields, the
ultimate goal being the convergence in distribution of the supremum properly centred. In many
examples, the limiting law is a Gumbel distribution randomly shifted by the log of the total mass
of an associated critical chaos. This has been established for example in the following instances:
branching random walk [Aï13], local times of random walk on regular trees [Abe18], cover time of
binary trees [CLS18, DRZ19], discrete GFF [BDZ16], log-correlated Gaussian field [Mad15, DRZ17].
See [Arg17, Shi15] and [BL16, Section 2] for more references. By analogy with these results, it is
natural to make the following conjecture that we present in the more natural setting of random walk.

For x ∈ Z2 and N ≥ 1, let `Nx be the total number of times a planar simple random walk starting
from the origin has visited the vertex x before exiting the square [−N,N ]2. Define a random Borel
measure µN on R2 × R by setting for all Borel sets A ⊂ R2 and T ⊂ R,

µN (A× T ) :=
∑
x∈Z2

1{x/N∈A}1{√`Nx −2π−1/2 logN+π−1/2 log logN∈T
}.

Conjecture 3.7. There exist constants c1, c2 > 0 such that (µN , N ≥ 1) converges in distribution for
the topology of vague convergence on R2 × (R ∪ {+∞}) towards the Poisson point process

PPP(c1µ⊗ c2e
−c2tdt)

where µ is the critical Brownian multiplicative chaos in the domain [−1, 1]2 with the origin as a starting
point. In particular, for all t ∈ R,

P
(

sup
x∈Z2

√
`Nx ≤

2√
π

logN − 1√
π

log logN + t

)
−−−−→
N→∞

E
[
exp

(
−c1µ([−1, 1]2)e−c2t

)]
.

The leading order term 2π−1/2 logN has been conjectured by Erdős and Taylor [ET60] and proven
by [DPRZ01]. See also [Ros05, BR07, Jeg20b]. We expect −π−1/2 log logN to be the second order
term since, with this choice of constant, the expectation of µN (R2× (0,∞)) blows up like logN . Indeed,
in analogy with the case of the 2D discrete GFF (see [BL16]), this should be the correct way of scaling
the point measure to get a nondegenerate limit.

Let us compare this conjecture with the case of the 2D discrete GFF (φN (x))x∈Z2 , that is the
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centred Gaussian vector whose covariance is given by E[φN (x)φN (y)] = Ex
[
`Ny

]
. [BDZ16] (see [BL20]

for the link with Liouville measure) showed that for all t ∈ R,

P
(

sup
x∈Z2

1√
2
φN (x) ≤ 2√

π
logN − 3

4
√
π

log logN + t

)
−−−−→
N→∞

E
[
exp

(
−c1µ

L([−1, 1]2)e−c2t
)]

where c1, c2 > 0 are some constants and µL is the Liouville measure in [−1, 1]2. Despite strong links
between local times and half of the GFF squared (see lecture notes [Ros14] for an overview of the topic),
Conjecture 3.7 would show that the supremum of the former is slightly smaller than the supremum of
the latter, enhancing subtle differences between the two fields (see [Jeg19, Corollary 1.1] and [Jeg20a,
Corollary 1.1] for results in this direction).

Let us mention that [Jeg20b] shows results analogous to Conjecture 3.7 in dimensions larger or
equal to three and that [Jeg19] establishes the subcritical analogue of Conjecture 3.7 in dimension two.
A first step towards solving Conjecture 3.7 might be to give a characterisation of the law of critical
Brownian multiplicative chaos analogous to the subcritical characterisation of [Jeg19]. Since the first
moment blows up, fixing the normalisation of the measure is one of the main challenges in this regard.

3.1.3 Proof outline

We now explain the main ideas and difficulties of the proof of Theorems 3.2 and 3.4.
We start by recalling that, as noticed in [Jeg20a], if the domain D is a disc D = D(x, η) centred at

x, then the local times Lx,r(τ), r > 0, exhibit the following Markovian structure: for all η′ ∈ (0, η) and
all z ∈ D(0, η)\D(0, η′), under Pz and conditioned on Lx,η′(τ),(√

1
r
Lx,r(τ), r = η′e−s, s ≥ 0

)
law= (Xs, s ≥ 0) (3.6)

with (Xs, s ≥ 0) being a zero-dimensional Bessel process starting from
√
Lx,η′(τ)/η′. This is an easy

consequence of rotational invariance of Brownian motion and second Ray-Knight isomorphism for local
times of one-dimensional Brownian motion. In order to exploit this relation, we will very often stop
the Brownian trajectory at the first exit time τx,R of the disc D(x,R), R being the diameter of the
domain D.

What makes the critical case so special is that the approximating measures are not normalised by
the first moment any more (otherwise we would get a vanishing measure as shown in Proposition 3.1).
We thus need to introduce good events before being able to even make L1-computations. Defining the
right events and showing that they do not change the measures with high probability is one of the
crucial steps of this paper that we are about to explain. We first explain the most natural events to
consider and we then explain why we will actually consider different events.

Naive definition of good events In analogy with the case of log-correlated Gaussian fields, it is
natural to consider the following events to make the measures bounded in L1: let β > 0 be large and
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for all x ∈ D and ε > 0, define

Gε(x) :=
{
∀δ ∈ [ε, 1],

√
1
δ
Lx,δ(τx,R) ≤ 2 log 1

δ
+ β

}
.

Here, we stop the Brownian path at time τx,R to be able to use (3.6). One would expect that as
β →∞, Px0 (

⋂
x∈D

⋂
ε>0Gε(x))→ 1 since, by analogy with the Gaussian case (see [Pow18, Corollary

2.4] for instance), the following should hold true:

sup
x∈D

sup
ε>0

(√
1
ε
Lx,ε(τx,R)− 2 log 1

ε

)
<∞ Px0 − a.s. (3.7)

Because of the lack of self-similarity and Gaussianity of our model, showing (3.7) turns out to be
far from easy (see the introduction of Section 3.4 for more about this). We thus take a detour to
justify that the introduction of the events Gε(x) is harmless. We first control the supremum of the
more regular local times of small annuli allowing us to introduce good events associated to these
local times. Crucially, these good events will be enough to make the measures bounded in L1. Using
repulsion estimates associated to zero-dimensional Bessel process X, we will finally be able to transfer
the restrictions on the local times of annuli (requiring for all k ≥ 0, min[k,k+1]X ≤ 2k+ 2 log(k) + β/2)
over to restrictions on the local times of circles (requiring for all s ≥ 0, Xs ≤ 2s + β). This is the
content of Section 3.4.

Other repulsion estimates with a similar flavour will tell us that, once we restrict ourselves to the
events Gε(x), we will be able to restrict further the measures to the good events

G′ε(x) :=
{
∀δ ∈ [ε, 1],

√
1
δ
Lx,δ(τx,R) ≤ 2 log 1

δ
+ β −

√
| log δ|

M log(2 + | log δ|)2

}

for some large M > 0. This is the content of Lemma 3.15. This second layer of good event will make
the measures bounded in L2 (Proposition 3.16). We will conclude the proof by showing that the
measures restricted to the second layer of good events converge in L2 (Proposition 3.17).

Actual definition of good events We now explain why we actually define different good events.
This paper extensively uses the relation (3.6) between local times and zero-dimensional Bessel process.
When making L1-computations, we will bound from above the local times Lx,ε(τ) by Lx,ε(τx,R) and
we will use directly (3.6). Difficulties arise when we start to make L2-computations since we need to
consider local times at two different centres. We will resolve this issue with the following reasoning.
Consider a Brownian excursion from ∂D(x, 1) to ∂D(x, 2) and condition on the initial and final points
of the excursion (this will be important to keep track of the number of excursions). Because of this
conditioning, rotational symmetry is broken and the law of the local times (Lx,δ(τx,2), δ ≤ 1) is no
longer given by a zero-dimensional Bessel process. But if we condition further on the fact that the
excursion went deep inside D(x, 1), then it will have forgotten its starting position and the law of
(Lx,δ(τx,2), δ ≤ 1) will be very close to the one given in (3.6). This is the content of the continuity
lemma (Lemma 3.20) which is a much more precise version of [Jeg20a, Lemma 5.1] giving a quantitative
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estimate of the error in the aforementioned approximation. Importantly, this approximation cannot be
true if we look at the local times Lx,δ(τx,2) for all radii δ ≤ 1. Instead, we must restrict ourselves to
dyadic radii δ ∈ {e−n, n ≥ 0} so that the Brownian path has enough space to forget its initial position.
See Remark 3.21. This is one reason why we cannot define the good events Gε(x) and G′ε(x) using
this continuum of radii. Another reason is that it would prevent us from decoupling the two-point
estimates needed in the proof of Proposition 3.17 (see especially (3.64)).

Moreover, we will not define the good events using only local times at dyadic radii neither. Indeed,
doing so would then require us to estimate probabilities associated to zero-dimensional Bessel process
evaluated at discrete times. These probabilities are much harder to estimate than their continuous
time counterpart and our approach cannot afford to lose too much on these estimates (especially in the
identifications of the different limiting measures). We will resolve this using the following surprising
trick: we will consider a field (hx,δ, x ∈ D, δ ∈ (0, 1]) that interpolates the local times

√
1
δLx,δ(τx,R)

between dyadic radii by zero-dimensional Bessel bridges that have a very small range of dependence
(see Lemma 3.13). In this way, the one-point estimates will be the same as if we considered local times
at all radii but we will be able to decouple things to make the two-point computations. We believe this
new idea will be useful in subsequent studies.

Paper outline The rest of the paper is organised as follows. Section 3.2 proves Theorems 3.2
and 3.4 subject to the intermediate results Proposition 3.14, Lemma 3.15 and Propositions 3.16 and
3.17. Section 3.3 collects preliminary results that will be used throughout the paper. In particular, it
states and proves the continuity lemma and contains results on Bessel processes and barrier estimates
associated to 1D Brownian motion. Section 3.4 proves Proposition 3.14 and Lemma 3.15 showing that
we can safely add the two layers of good events. Section 3.5 is dedicated to the L2 estimates needed to
prove Proposition 3.16 and 3.17. Appendix 3.A justifies the existence of the field (hx,δ, x ∈ D, δ ∈ (0, 1])
interpolating local times with zero-dimensional Bessel bridges. Finally, Appendix 3.B sketches the
proof of Proposition 3.3.

We end this introduction with some notations that will be used throughout the paper. We will
denote:

Notation 3.8. For x > 0 and d ≥ 0, Pdx and Edx the law and the expectation under which (Xt)t≥0

is a d-dimensional Bessel process starting from x at time 0. Px and Ex will denote the law and the
expectation of 1D Brownian motion starting at x. Note that under Px, the process X takes negative
and positive values, whereas the process stays nonnegative under P1

x.

Notation 3.9. For x ∈ D, kx the smallest nonnegative integer such that e−kx ≤ |x− x0|;

Notation 3.10. R the diameter of the domain D and for x ∈ D and r > 0, τx,r the first hitting time
of ∂D(x, r);

Notation 3.11. For aε ∈ R, bε > 0, ε > 0, we will denote aε . bε (resp. aε = O(bε), resp. aε = o(bε))
if there exists some constant C > 0 such that for all ε > 0, aε ≤ Cbε (resp. |aε| ≤ Cbε, resp. aε/bε → 0
as ε→ 0). Sometimes we will emphasise the dependency on some parameter η by writing for instance
aε = oη(bε);
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Notation 3.12. For x ∈ R, (x)+ = max(x, 0).

In this paper, C, c, etc. will denote generic constants that may vary from line to line.

3.2 High level proof of Theorems 3.2 and 3.4

To ease notations, we will prove the convergences stated in Theorem 3.2 along the radii ε ∈ {e−k, k ≥ 0}.
The proof extends naturally to all radii ε ∈ (0, 1]. In particular, in what follows we will write supε>0,
lim supε>0, etc. but we actually mean supε∈{e−k,k≥0}, lim supε∈{e−k,k≥0}, etc.

We start off by defining the field (hx,δ, x ∈ D, δ ∈ (0, 1]) mentioned in Section 3.1.3. Recall Notation
3.10. We will also denote for any x = (x1, x2) ∈ R2, bxc = (bx1c , bx2c).

Lemma 3.13. By enlarging the probability space we are working on if necessary, we can construct a
random field (hx,δ, x ∈ D, δ ∈ (0, 1]) such that

• for all x ∈ D, and n ≥ 0, conditionally on {Lx,δ(τx,R), δ = e−n, e−n−1}, (hx,e−t , t ∈ [n, n + 1])
has the law of a zero-dimensional Bessel bridge from

√
enLx,e−n(τx,R) to

√
en+1Lx,e−n−1(τx,R)

that is independent of (Bt, t ≥ 0) and (hy,δ, y ∈ D, δ /∈ [e−n−1, e−n]);

• for all n0 ≥ 0 and x, y ∈ D, conditionally on {Lz,δ(τz,R), z = x, y, δ = e−n, n ≥ n0}, (hx,δ, δ ≤
e−n0) and (hy,δ, δ ≤ e−n0) are independent as soon as |x− y| ≥ 2e−n0;

• for all n ≥ 0 and z ∈ e−n−10Z2 ∩ D, (hx,δ, x ∈ D,
⌊
en+10x

⌋
= en+10z, e−n−1 ≤ δ ≤ e−n) is

continuous.

See Appendix 3.A for a proof of the existence of such a process. Note that by (3.6), for all n0 ≥ 0
and for all x ∈ D, conditionally on Lx,e−n0 (τx,R), (hx,e−s−n0 , s ≥ 0) has the law of a zero-dimensional
Bessel process starting from

√
en0Lx,e−n0 (τx,R).

We now introduce the good events that we will work with: let β,M > 0 be large and define for all
x ∈ D and ε ≤ |x− x0|, ε = e−k,

Gε(x) :=
{
∀s ∈ [kx, k], hx,e−s ≤ 2s+ β

}
and

G′ε(x) :=
{
∀s ∈ [kx, k], hx,e−s ≤ 2s+ β −

√
s

M log(2 + s)2

}
.

If |x− x0| < ε, the above good events do not impose anything by convention. Let us mention that if
ε = e−k−t0 for some k ≥ 0 and t0 ∈ (0, 1), one would need to consider the process

s 7→

 hx,e−s if s ∈ [kx, k],√
esLx,e−s(τx,R) if s ∈ [k, k + t0]

instead of s 7→ hx,e−s to define the good events when ε /∈ {e−k, k ≥ 0}. Again, in what follows we will
restrict ourselves to ε ∈ {e−k, k ≥ 0} to ease notations.
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We now consider modified versions of the measures mγ
ε , γ ∈ (0, 2), and mε defined respectively in

(3.2) and (3.3):

m̂γ
ε (dx) := 1Gε(x)m

γ
ε (dx), ˆ̂mγ

ε (dx) := 1G′ε(x)1{|x−x0|≥1/M}m̂
γ
ε (dx) (3.8)

and
m̂ε(dx) := 1Gε(x)mε(dx), ˆ̂mε(dx) := 1G′ε(x)1{|x−x0|≥1/M}m̂ε(dx). (3.9)

We also consider modified versions of the measure µε defined in (3.4): for all Borel set A, set

µ̂ε(A) :=
√
| log ε|ε2

∫
A

(
−
√

1
ε
Lx,ε(τx,R) + 2 log 1

ε
+ β

)
e2
√

1
ε
Lx,ε(τ)1Gε(x)dx (3.10)

and we decompose further
ˆ̂µε(dx) := 1G′ε(x)1{|x−x0|≥1/M}µ̂ε(dx).

We emphasise that in (3.10) the local times are stopped at time τ or τx,R depending on whether the
local time is in the exponential or not.

A first step towards the proof of Theorem 3.2 consists in showing that these changes of measures
are harmless:

Proposition 3.14. Let A be a Borel set. The following three limits hold in Px0-probability:

lim sup
β→∞

lim sup
ε→0

|m̂ε(A)−mε(A)| = 0, (3.11)

lim sup
β→∞

lim sup
ε→0

|µ̂ε(A)− µε(A)| = 0, (3.12)

lim sup
β→∞

lim sup
γ→2−

(2− γ)−1 lim sup
ε→0

|m̂γ
ε (A)−mγ

ε (A)| = 0. (3.13)

Once the good events Gε(x) are introduced, we can perform L1 computations. Next, we will show:

Lemma 3.15. Let A be a Borel set and fix β > 0. We have

lim sup
M→∞

lim sup
ε→0

Ex0 [m̂ε(A)− ˆ̂mε(A)] = 0, (3.14)

lim sup
M→∞

lim sup
ε→0

Ex0 [µ̂ε(A)− ˆ̂µε(A)] = 0, (3.15)

lim sup
M→∞

lim sup
γ→2

(2− γ)−1 lim sup
ε→0

Ex0 [m̂γ
ε (A)− ˆ̂mγ

ε (A)] = 0. (3.16)

The second layer of good events makes the sequences ( ˆ̂mε(D), ε > 0), (ˆ̂µε(D), ε > 0) and ((2 −
γ)−1 ˆ̂mγ

ε (D), γ ∈ [1, 2), ε < εγ) bounded in L2. Here

εγ := exp (− exp(2/(2− γ))) (3.17)

goes to zero very rapidly as γ → 2. We recall that a sequence (νn, n ≥ 1) of random Borel measures on
D is tight for the topology of weak convergence on D if, and only if, the sequence (νn(D), n ≥ 1) of
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real-valued random variables is tight (see [Bis20, Exercise 3.8] for instance).

Proposition 3.16. Fix β > 0 and M > 0. We have∫
D×D

sup
ε>0

Ex0 [ ˆ̂mε(dx) ˆ̂mε(dy)] <∞, (3.18)

∫
D×D

sup
ε>0

Ex0 [ ˆ̂µε(dx)ˆ̂µε(dy)] <∞, (3.19)

∫
D×D

sup
γ∈[1,2)

(2− γ)−2 sup
ε<εγ

Ex0 [ ˆ̂mγ
ε (dx) ˆ̂mγ

ε (dy)] <∞. (3.20)

In particular, supε>0 Ex0

[ ˆ̂µε(D)2] <∞ and (ˆ̂µε, ε > 0) is tight for the topology of weak convergence on
D. Moreover, any subsequential limit ˆ̂µ of (ˆ̂µε, ε > 0) satisfies: Px0-a.s. simultaneously for all x ∈ D,
ˆ̂µ({x}) = 0.

Finally, we will show:

Proposition 3.17. Fix β > 0 and M > 0 and let A be a Borel set. Let (γn, n ≥ 1) ∈ [1, 2)N be a
sequence converging to 2.

1. ( ˆ̂mε(A), ε > 0), (ˆ̂µε(A), ε > 0) and for all n ≥ 1, ( ˆ̂mγn
ε (A), ε < εγn) are Cauchy sequences in L2.

Let ˆ̂m(A), ˆ̂µ(A) and ˆ̂mγn(A), n ≥ 1, be the limiting random variables.

2. ˆ̂m(A) =
√

2/π ˆ̂µ(A) Px0-a.s.

3. (2− γn)−1 ˆ̂mγn(A) converges in L2 towards 2ˆ̂µ(A) as n→∞.

We now have all the ingredients to prove Theorems 3.2 and 3.4.

Proof of Theorems 3.2 and 3.4. Let A be a Borel set. Let β > 0. For all M > 0, we have

lim sup
ε,δ→0

Ex0 [|µ̂ε(A)− µ̂δ(A)|]

≤ 2 lim sup
ε→0

Ex0 [|µ̂ε(A)− ˆ̂µε(A)|] + lim sup
ε,δ→0

Ex0

[
| ˆ̂µε(A)− ˆ̂µδ(A)|2

]1/2
.

By Proposition 3.17, the second right hand side term vanishes whereas by Lemma 3.15 the first right
hand side term goes to zero as M →∞. The left hand side term being independent of M , it has to
vanish. In other words, (µ̂ε(A), ε > 0) converges in L1 towards some µ̂(A, β) (we keep track of the
dependence in β here). Let µ̂(A,∞) be the almost sure limit of the nondecreasing sequence µ̂(A, β) as
β →∞. We now have for any small ρ > 0 and large β > 0,

lim sup
ε→0

Px0 (|µε(A)− µ̂(A,∞)| > ρ) ≤ lim sup
ε→0

Px0 (|µε(A)− µ̂ε(A, β)| > ρ/3)

+ lim sup
ε→0

Px0 (|µ̂ε(A, β)− µ̂(A, β)| > ρ/3) + Px0 (|µ̂(A, β)− µ̂(A,∞)| > ρ/3) .

The second right hand side term vanishes since (µ̂ε(A, β), ε > 0) converges (in L1) towards µ̂(A, β).
The third term goes to zero as β → ∞ since (µ̂(A, β), β > 0) converges (almost surely) to µ̂(A,∞).
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The first term goes to zero as β →∞ by Proposition 3.14. We have thus obtained the convergence in
Px0-probability of (µε(A), ε > 0).

Let (γn, n ≥ 1) ∈ [1, 2)N be a sequence converging to 2. By mimicking the above lines, Proposition
3.14, Lemma 3.15 and Proposition 3.17 imply that

lim
ε→0

(
mε(A)−

√
2
π
µε(A)

)
= 0 and lim

n→∞
lim
ε→0

( 1
2− γn

mγn
ε (A)− 2µε(A)

)
= 0

in Px0-probability. By [Jeg20a], we already know that (mγn
ε (A), ε > 0) converges to mγn(A) in

probability. We have thus obtained the convergence in probability of (mε(A), ε > 0), (µε(A), ε > 0)
and ((2− γn)−1mγn(A), n ≥ 1) and the limits satisfy

lim
ε→0

mε(A) =
√

2
π

lim
ε→0

µε(A) and lim
n→∞

1
2− γn

mγn(A) = 2 lim
ε→0

µε(A).

Obtaining the convergence of the measures and the identification of the limiting measures as stated in
Theorems 3.2 and 3.4 is now routine.

The only points that remained to be checked are points 2-4 of Theorem 3.2. Point 4 follows from
the fact that any subsequential limit ˆ̂µ of (ˆ̂µε, ε > 0) are non-atomic (see Proposition 3.16) and that
µ(D)− ˆ̂µ(D) is as small as desired (in probability, by tuning the parameters β and M) by Proposition
3.14 and Lemma 3.15. We now turn to Point 3. Since (m̂ε(D), ε > 0) converges in L1 towards m̂(D),
Ex0 [m̂(D)] = limε→0 Ex0 [m̂ε(D)]. Now, by monotonicity, Ex0 [m(D)] ≥ limβ→∞ limε→0 Ex0 [m̂ε(D)]
which is infinite by (3.49).

Finally, let us prove Point 2 of Theorem 3.2. The fact that µ(D) is finite Px0-a.s. follows directly
from Proposition 3.14 and Lemma 3.28. We now want to show that it is positive Px0-a.s. By Point
3 of Theorem 3.2, we already know that it is positive with a positive probability. We are going to
bootstrap this to obtain a probability equal to 1. Let p ≥ 1 and consider the sequence of stopping
times defined by σ(2)

0 = 0 and for all i ≥ 1,

σ
(1)
i := inf{t > σ

(2)
i−1, |Bt − xi−1| = 2−p}, σ

(2)
i := inf{t > σ

(1)
i , |Bt − x0| = 2−p+1i}

and xi := B
σ

(2)
i

. For i ≥ 0, let µi be the critical Brownian multiplicative chaos in the domain

(D(xi, 2−p), xi) between the times σ(2)
i and σ(1)

i+1. Let I := bd(x0, ∂D)2p/10c. Since µ ≤
∑I
i=0 µi, we

have
Px0 (µ(D) = 0) ≤ Px0

(
∀i = 0 . . . I, µi(D(xi, 2−p)) = 0

)
.

By Markov property and translation invariance, the probability on the right hand side is equal to

Px0

(
µ0(D(x0, 2−p)) = 0

)I+1
.

By scaling of critical Brownian multiplicative chaos coming from Corollary 3.6, the probability
Px0 (µ0(D(x0, 2−p)) = 0) does not depend on p. Moreover, thanks to Theorem 3.2, Point 3, it is strictly
less than one. By letting p→∞, we thus deduce that Px0 (µ(D) = 0) = 0 concluding the proof.
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Proposition 3.1 now follows:

Proof of Proposition 3.1. Recall that mγ=2
ε (D) = mε(D)/

√
log ε|. By Theorem 3.2, (mε(D), ε > 0)

converges in Px0-probability towards a nondegenerate random variable. Hence (mγ=2
ε (D), ε > 0)

converges in Px0-probability to zero as desired.

The remaining of the paper is devoted to the proof of the above intermediate statements.

3.3 Preliminaries

3.3.1 Local times as exponential random variables

In this short section we recall some results of [Jeg20a] that allow us to approximate local times of
circles by exponential random variables. We start by recalling the behaviour of the Green function.

Lemma 3.18 ([Jeg20a], Lemma 2.1). For all x ∈ C, r > ε > 0 and y ∈ ∂D(x, ε), we have:

Ey
[
Lx,ε(τ∂D(x,r))

]
= 2ε log r

ε
. (3.21)

In the following lemma, we denote by CR(x,D) the conformal radius of D seen from x and by GD
the Green function of D with Dirichlet boundary conditions normalised so that GD(x, y) ∼ − log |x−y|
as x→ y. Recall also Notation 3.10.

Lemma 3.19. Let η > 0, x ∈ D and ε > 0 such that the disc D(x, ε) is included in D and is at
distance at least η from ∂D. Let y ∈ ∂D(x, ε). Then Lx,ε(τ) under Py stochastically dominates and is
stochastically dominated by exponential variables with mean

2ε log CR(x,D)
ε

+ oη(ε).

In particular,
Ey
[
e2
√

1
ε
Lx,ε(τ)

]
= (1 + oη(1))2

√
2πCR(x,D)2

√
| log ε|ε−2. (3.22)

Moreover, if x0 /∈ D(x, ε),

Px0 (τx,ε < τ) = (1 + oη(1))GD(x0, x)
| log ε| . (3.23)

Proof. (3.23) is part of [Jeg20a, Lemma 2.2]. The claim about the stochastic dominations is a
consequence of [Jeg20a, Section 2] as explained at the beginning of the proof of [Jeg20a, Proposition
3.1]. (3.22) is then an easy computation with exponential variables.

3.3.2 Continuity lemma

We now state a refinement of Lemma 5.1 of [Jeg20a]. We indeed need a quantitative estimate on the
error that we make when we forget about the exit point of the excursion.
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Lemma 3.20. Let k, k′, n ≥ 0 with k′ ≥ k + 1 and n ≥ k′ − k. Denote η = e−k, η′ = e−k
′ and for

all i = 1 . . . k′ − k, ri = ηe−i. Consider 0 < rn < · · · < rk′−k+1 < rk′−k = η′ and for i = 1 . . . n,
Ti ∈ B([0,∞)). For any y ∈ ∂D(0, η/e), we have

1− p(η′/η) ≤
Py
(
∀i = 1 . . . n, L0,ri(τ0,η) ∈ Ti|τ0,η′ < τ0,η, Bτ0,η

)
Py
(
∀i = 1 . . . n, L0,ri(τ0,η) ∈ Ti|τ0,η′ < τ0,η

) ≤ 1 + p(η′/η) (3.24)

with p(u) ≤ 1
c exp

(
−c| log u|1/2

)
for some universal constant c > 0.

Remark 3.21. It is crucial that we consider dyadic radii r ∈ {ηe−i, i = 1 . . . k′ − k} between η′ and η/e
since there is no hope to obtain such a result if we were looking at the local times L0,r(τ0,η) for all
r ≤ η/e. Indeed, if we condition the Brownian motion to spend very little time in the disc D(0, η/e)
before hitting ∂D(0, η) (which is a function of L0,r(τ0,η), r ≤ η/e), Bτ0,η will favour points on ∂D(0, η)
close to the starting position y, even if we condition further the trajectory to visit D(0, η′) before
exiting D(0, η).

Proof of Lemma 3.20. The proof is inspired from the one of [Jeg20a, Lemma 5.1]. In this proof, we will
write u = ±v when we mean −v ≤ u ≤ v. To ease notations, we will denote τη := τ0,η, τη′ := τ0,η′ and
for all i = 1 . . . n, Lri := L0,ri(τ0,η). Take C ∈ B (∂D(0, η)). We will denote Leb(C) for the Lebesgue
measure on ∂D(0, η) of C. It is enough to show that

Py
(
Bτη ∈ C, τη′ < τη,∀i = 1 . . . n, Lri ∈ Ti

)
(3.25)

=
(

1± 1
c

exp
(
−c
∣∣∣∣log η

′

η

∣∣∣∣1/3
))

Py
(
Bτη ∈ C, τη′ < τη

)
Py
(
τη′ < τη

) Py
(
τη′ < τη,∀i = 1 . . . n, Lri ∈ Ti

)
.

Moreover, establishing (3.25) can be reduced to show that

Py
(
Bτη ∈ C, τη′ < τη,∀i = 1 . . . n, Lri ∈ Ti

)
(3.26)

=
(

1± 1
c

exp
(
−c
∣∣∣∣log η

′

η

∣∣∣∣1/3
))

Leb(C)
2πη Py

(
τη′ < τη,∀i = 1 . . . n, Lri ∈ Ti

)
.

Indeed, applying (3.26) to Ti = [0,∞) for all i gives

Py
(
Bτη ∈ C, τη′ < τη

)
=
(

1± 1
c

exp
(
−c
∣∣∣∣log η

′

η

∣∣∣∣1/3
))

Py
(
τη′ < τη

) Leb(C)
2πη ,

which combined with (3.26) leads to (3.25) with slightly different constants. Finally, after reformulation
of (3.26), to finish the proof we only need to prove that

Py
(
Bτη ∈ C|τη′ < τη,∀i = 1 . . . n, Lri ∈ Ti

)
=
(

1± 1
c

exp
(
−c
∣∣∣∣log η

′

η

∣∣∣∣1/3
))

Leb(C)
2πη . (3.27)

The skew-product decomposition of Brownian motion (see [Kal02], Corollary 16.7 for instance)
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tells us that we can write

(Bt, t ≥ 0) (d)= (|Bt| eiθt , t ≥ 0) with (θt, t ≥ 0) = (wσt , t ≥ 0)

where (wt, t ≥ 0) is a one-dimensional Brownian motion independent of the radial part (|Bt| , t ≥ 0)
and (σt, t ≥ 0) is a time-change that is adapted to the filtration generated by (|Bt| , t ≥ 0):

σt =
∫ t

0

1
|Bs|2

ds.

In particular, under Py, we have the following equality in law

(
τη, |Bt| , t < τη, Bτη

) (d)=
(
τη, |Bt| , t < τη, ηe

iθ0+iςN
)

(3.28)

where θ0 is the argument of y, N is a standard normal random variable independent of the radial part
(|Bt| , t ≥ 0) and

ς =
√∫ τη

0

1
|Bs|2

ds.

We now investigate a bit the distribution of eiθ0+itN for some t > 0. More precisely, we want to give
a quantitative description of the fact that if t is large, the previous distribution should approximate
the uniform distribution on the unit circle. Using the probability density function of N and then using
Poisson summation formula, we find that the probability density function ft(θ) of eiθ0+itN at a given
angle θ is given by

ft(θ) = 1√
2πt

∑
n∈Z

e−(θ−θ0+2πn)2/(2t2) = 1
2π
∑
p∈Z

eip(θ−θ0)e−p
2t2/2

= 1
2π

1 + 2
∞∑
p=1

cos(p(θ − θ0))e−p2t2/2

 .
In particular, we can control the error in the approximation mentioned above by: for all θ ∈ [0, 2π],

∣∣∣∣ft(θ)− 1
2π

∣∣∣∣ ≤ 1
π

∞∑
p=1

e−p
2t2/2 ≤ C1 max

(
1, 1
t

)
e−t

2/2

for some universal constant C1 > 0.
We now come back to the objective (3.27). Using the identity (3.28) and because the local times

Antoine Jego 81



CHAPTER 3. CRITICAL BROWNIAN MULTIPLICATIVE CHAOS

Lri are measurable with respect to the radial part of Brownian motion, we have by triangle inequality∣∣∣∣Py (Bτη ∈ C|τη′ < τη,∀i = 1 . . . n, Lri ∈ Ti
)
− Leb(C)

2πη

∣∣∣∣
≤ Ey

[∫ 2π

0

∣∣∣∣fς(θ)− 1
2π

∣∣∣∣1{ηeiθ∈C}dθ
∣∣∣∣ τη′ < τη, ∀i = 1 . . . n, Lri ∈ Ti

]
≤ C1

Leb(C)
η

Ey
[

max
(

1, 1
ς

)
e−ς

2/2
∣∣∣∣ τη′ < τη, ∀i = 1 . . . n, Lri ∈ Ti

]
≤ C1

Leb(C)
η

Ey
[

max
(

1, 1
ς ′

)
e−(ς′)2/2

∣∣∣∣ τη′ < τη, ∀i = 1 . . . n, Lri ∈ Ti
]

where
ς ′ :=

√∫ τη

τrn

1
|Bs|2

ds.

To conclude the proof, we want to show that

Ey
[

max
(

1, 1
ς ′

)
e−(ς′)2/2

∣∣∣∣ τη′ < τη, ∀i = 1 . . . n, Lri ∈ Ti
]
≤ 1
c

exp
(
−c
∣∣∣∣log η

′

η

∣∣∣∣1/2
)
.

By conditioning on the trajectory up to τη′ , it is enough to show that for any T ′i ∈ B([0,∞)), i = 1 . . . n,
for any z ∈ ∂D(0, η′),

Ez
[

max
(

1, 1
ς ′

)
e−(ς′)2/2

∣∣∣∣ ∀i = 1 . . . n, Lri ∈ T ′i
]
≤ 1
c

exp
(
−c
∣∣∣∣log η

′

η

∣∣∣∣1/2
)
. (3.29)

In the following, we fix such T ′i and such a z.
Consider the sequence of stopping times defined by: σ(2)

0 := 0 and for all i = 1 . . . k′ + k,

σ
(1)
i := inf

{
t > σ

(2)
i−1 : |Bt| = η′ei−1/2

}
and σ

(2)
i := inf

{
t > σ

(1)
i : |Bt| ∈ {η′ei, η′ei−1}

}
.

We only keep track of the portions of trajectories during the intervals
[
σ

(1)
i , σ

(2)
i

]
by bounding from

below ς ′ by

(ς ′)2 ≥
k′−k∑
i=1

σ
(2)
i − σ

(1)
i

(η′ei)2 .

Notice that by Markov property, conditioning on {∀i = 1 . . . n, Lri ∈ T ′i} impacts the variables σ(2)
i −σ

(1)
i

only through
∣∣∣∣Bσ(2)

i

∣∣∣∣. Since
v 7→ max

(
1, 1
v1/2

)
e−v/2

is convex, we deduce by Jensen’s inequality that

Ez
[

max
(

1, 1
ς ′

)
e−(ς′)2/2

∣∣∣∣ ∀i = 1 . . . n, Lri ∈ T ′i
]

≤ 1
k′ − k

k′−k∑
i=1

Ez

max
(

1, 1
k′ − k

(η′ei)2

σ
(2)
i − σ

(1)
i

)1/2

exp
(
−k
′ − k
2

σ
(2)
i − σ

(1)
i

(η′ei)2

)∣∣∣∣∣∣
∣∣∣∣Bσ(2)

i

∣∣∣∣
 .
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By Markov property and Brownian scaling, we have obtained

Ez
[

max
(

1, 1
ς ′

)
e−(ς′)2/2

∣∣∣∣ ∀i = 1 . . . n, Lri ∈ T ′i
]

≤ max
r=1,e−1

Ee−1/2

[
max

(
1, 1

(k′ − k)σ∗

)1/2
exp

(
−(k′ − k)σ∗

2

)∣∣∣∣∣ |Bσ∗ | = r

]
.

where σ∗ := inf{t > 0 : |Bt| ∈ {1, e−1}}. Now, one can show (see [Doo55, Section 14] for instance) that
there exists a universal constant c > 0 such that for all s ≥ 1,

Ee−1/2
[
e−sσ∗

]
≤ e−c

√
s.

Since minr=1,e−1 Pe−1/2 (|Bσ∗ | = r|) ≥ c for some universal constant c > 0, we also have

max
r=1,e−1

Ee−1/2
[
e−sσ∗

∣∣ |Bσ∗ | = r
]
≤ Ce−c

√
s.

From this, we deduce that

max
r=1,e−1

Ee−1/2

[
max

(
1, 1

(k′ − k)σ∗

)∣∣∣∣ |Bσ∗ | = r

]
≤ C

and therefore, by Cauchy–Schwarz, we obtain that

max
r=1,e−1

Ee−1/2

[
max

(
1, 1

(k′ − k)σ∗

)1/2
exp

(
−(k′ − k)σ∗

2

)∣∣∣∣∣ |Bσ∗ | = r

]
≤ Ce−c

√
k′−k.

Recalling that k′ − k = log η′/η, this shows (3.29) which finishes the proof of Lemma 3.20.

3.3.3 Bessel process

The purpose of this section is to collect properties of Bessel processes that will be needed in this paper.
Recall Notation 3.8.

We start off by recalling the following result that can be found for instance in the lecture notes
[Law18], Proposition 2.2.

Lemma B. For each x, t > 0 and d ≥ 0, the measures Px and Pdx, considered as measures on
paths {Xs, s ≤ t}, restricted to the event {∀s ≤ t,Xs > 0} are mutually absolutely continuous with
Radon-Nikodym derivative

dPdx
dPx

=
(
Xt

x

)a
exp

(
−a(a− 1)

2

∫ t

0

ds

X2
s

)

where a = (d− 1)/2.

We now state a consequence of Lemma B and Girsanov’s theorem that will allow us to transfer
computations on zero-dimensional Bessel process over to 1D Brownian motion and 3D Bessel process.
Let us mention that since 0 is absorbing for the zero-dimensional Bessel process X, we will very often
write 1{Xt>0} instead of 1{∀s≤t,Xs>0} for this specific process.
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Lemma 3.22. Let γ ∈ (0, 2], t > 0, r > 0 and let f : C([0, t], [0,∞)) → [0,∞) be a nonnegative
measurable function. Then

√
te−

γ2
2 tE0

r

[
eγXt1{Xt>0}f(Xs, s ≤ t)

]
(3.30)

=
√
reγrEr

[(
t

Xt + γt

)1/2
exp

(
−3

8

∫ t

0

ds

(Xs + γs)2

)
1{∀s≤t,Xs+γs>0}f(Xs + γs, s ≤ t)

]
.

In particular,

√
te−

γ2
2 tE0

r

[
eγXt1{Xt>0}f(Xs, s ≤ t)

]
≤
√
reγrEr

[(
t

Xt + γt

)1/2

+
f(Xs + γs, s ≤ t)

]
. (3.31)

Moreover,

√
te−2tE0

r

[
e2Xt1{Xt>0}1{∀s≤t,Xs<2s+β}f (Xs, s ≤ t)

]
(3.32)

= 2−1/2√re2r(β − r)E3
β−r

[
1
Xt

(
1− Xt − β

2t

)−1/2
1{∀s≤t,2s−Xs+β>0}

× f(2s−Xs + β, s ≤ t) exp
(
−3

8

∫ t

0

ds

(2s−Xs + β)2

)]

and

√
te−2tE0

r

[
e2Xt1{Xt>0}1{∀s≤t,Xs<2s+β}f(Xs, s ≤ t)

]
(3.33)

≤
√
re2r(β − r)E3

β−r

[
1
Xt

(
t

2t+ β −Xt

)1/2

+
f(β + 2s−Xs, s ≤ t)

]
.

Finally,
lim
β→∞

lim
t→∞

te−2tE0
r

[
e2Xt1{∀s≤t,Xs<2s+β}

]
=∞. (3.34)

Proof of Lemma 3.22. By Lemma B, the left hand side of (3.30) is equal to

√
r
√
te−

γ2
2 tEr

[
X
−1/2
t exp

(
−3

8

∫ t

0

ds

X2
s

)
eγXt1{∀s≤t,Xs>0}f(Xs, s ≤ t)

]
.

Girsanov’s theorem concludes the proof of (3.30). (3.31) follows directly from (3.30). Now, by (3.30),
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the left hand side of (3.32) is equal to

√
re2rEr

[(
t

Xt + 2t

)1/2

+
exp

(
−3

8

∫ t

0

ds

(Xs + 2s)2

)
1{∀s≤t,Xs+2s>0}

× 1{∀s≤t,Xs<β}f(Xs + 2s, s ≤ t)
]

=
√
re2rEβ−r

[(
t

2t+ β −Xt

)1/2

+
exp

(
−3

8

∫ t

0

ds

(2s+ β −Xs)2

)
1{∀s≤t,2s+β−Xs>0}

× 1{∀s≤t,Xs>0}f(2s+ β −Xs, s ≤ t)
]
.

By Lemma B, this is in turn equal to the right hand side of (3.32). (3.33) is an easy consequence of
(3.32) and we now turn to the proof of (3.34). We use (3.32) and we add the stronger constraint that
{∀s ≤ t, 2s−Xs + β > r/2 + s} in order to have a lower bound. On this event, we can bound

exp
(
−3

8

∫ t

0

ds

(2s−Xs + β)2

)
≥ exp

(
−3

8

∫ ∞
0

ds

(r/2 + s)2

)
= cr.

Moreover, we simply bound (
1− Xt − β

2t

)−1/2
≥
(

1 + β

2t

)−1/2
,

which overall shows that

te−2tE0
r

[
e2Xt1{∀s≤t,Xs<2s+β}

]
≥ cr(β − r)

(
1 + β

2t

)−1/2√
tE3
β−r

[ 1
Xt

1{∀s≤t,2s−Xs+β>r/2+s}

]
.

Since Xt under P3
β−r(·|∀s ≤ t, 2s−Xs + β > r/2 + s) is stochastically dominated by Xt under P3

β−r,
we can further bound

E3
β−r

[ 1
Xt

1{∀s≤t,2s−Xs+β>r/2+s}

]
≥ E3

β−r

[ 1
Xt

]
P3
β−r (∀s ≤ t, 2s−Xs + β > r/2 + s) .

Lemma 3.23, Point 2, shows that E3
β−r

[√
t

Xt

]
→
√

2/π as t→∞. Therefore

lim inf
t→∞

te−2tE0
r

[
e2Xt1{∀s≤t,Xs<2s+β}

]
≥ cr(β − r)P3

β−r (∀s ≥ 0, 2s−Xs + β > r/2 + s) .

To see that the above probability remains bounded away from zero as β → ∞, we can for instance
notice that a three-dimensional Bessel process which starts at β − r is stochastically dominated by the
sum of three independent one-dimensional Bessel processes X(i), i = 1, 2, 3, starting at the origin, plus
β − r (this follows by bounding

√
a2 + b2 + c2 ≤ |a|+ |b|+ |c|). Therefore

P3
β−r (∀s ≥ 0, 2s−Xs + β > r/2 + s) ≥ P

(
∀s ≥ 0,

3∑
i=1

X(i)
s < r/2 + s

)
> 0.

This concludes the proof of (3.34).
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We now collect some properties of three-dimensional Bessel process.

Lemma 3.23. Let K > 0.

1. Uniformly over r ∈ [0,K],

P3
r

(
∀t ≥ 0, Xt ≥

√
t

M log(2 + t)2

)
→ 1

as M →∞.

2. E3
r

[
1
Xt

]
=
√

2
πt + o

(
1√
t

)
as t→∞, where the error is uniform over r ∈ [0,K].

3. For any q ∈ (0, 3), supt≥1 supr>0 E
3
r

[
tq/2

Xq
t

]
is finite.

4. For any q ∈ (0, 1), supt≥1 supK≥0 supr∈[0,K] E
3
r

[(
1− Xt−K

2t

)−q
+

]
is finite.

Proof of Lemma 3.23. Points 1-2 are part of [Pow18, Lemma 2.9]. To verify Point 3, notice that Xt

under P3
0 is stochastically dominated by Xt under P3

r for any r > 0. By scaling, we deduce that

sup
t≥1

sup
r>0

E3
r

[
tq/2

Xq
t

]
≤ sup

t≥1
E3

0

[
tq/2

Xq
t

]
= E3

0

[ 1
Xq

1

]
.

The density of X1 under P3
0 is explicit (see [Law18, Proposition 2.5] for instance) and is given by√

2
π
y2e−y

2/2dy.

We can therefore directly check that E3
0

[
X−q1

]
is finite as soon as q < 3. This concludes the proof of

Point 3. Point 4 follows from a similar direct computation.

We conclude this section on Bessel processes with estimates that will be used repeatedly in the
paper.

Lemma 3.24. There exists a universal constant C > 0 such that the following estimates hold true.
For all K ≥ 1, r ∈ [0,K] and t ≥ 1,

te−2tE0
r

[
e2Xt1{∀s≤t,Xs≤2s+K}1{Xt>0}

]
≤ C
√
r(K − r)e2r (3.35)

and √
te−2tE0

r

[
(−Xt + 2t+K)e2Xt1{∀s≤t,Xs≤2s+K}1{Xt>0}

]
≤ C
√
r(K − r)e2r. (3.36)

Moreover, for all K ≥ 1, r ∈ [0,K], γ ∈ (1, 2) and t ≥ exp(1/(2− γ)),

1
2− γ

√
te−γ

2t/2E0
r

[
eγXt1{∀s≤t,Xs≤2s+K}1{Xt>0}

]
≤ C
√
r(K − r)eγr. (3.37)
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Proof of Lemma 3.24. By (3.33), the left hand side of (3.36) is at most

2−1/2√r(K − r)e2rE3
K−r

[(
1− Xt −K

2t

)−1/2

+

]
.

The expectation with respect to the three-dimensional Bessel process is bounded uniformly in r ∈
[0,K],K > 0, t ≥ 1 by Lemma 3.23, point 4. This concludes the proof of (3.36). Now, by (3.33) and
then by Cauchy–Schwarz inequality, the left hand side of (3.35) is at most

2−1/2√r(K − r)e2rE3
K−r

[√
t

Xt

(
1− Xt −K

2t

)−1/2

+

]

≤ 2−1/2√r(K − r)e2rE3
K−r

[
t

X2
t

]1/2
E3
K−r

[(
1− Xt −K

2t

)−1

+

]1/2

.

Lemma 3.23, points 3 and 4, then concludes the proof of (3.35). We now turn to the proof of (3.37).
By (3.31), the left hand side of (3.37) is at most

1
2− γ

√
reγrEr

[(
t

Xt + γt

)1/2

+
1{∀s≤t,Xs≤(2−γ)s+K}

]

≤ 1
2− γ

√
reγrEr

[(
t

Xt + γt

)1/2

+
1{Xt≤−γt/2}

]

+
√

2
γ

1
2− γ

√
reγrPr (∀s ≤ t,Xs ≤ (2− γ)s+K) .

By Hölder’s inequality and an analogue of Lemma 3.23, Point 4, for Brownian motion rather than 3D
Bessel process, we see that the last expectation above is at most

E0

[(
1 + Xt + r

γt

)−2/3

+

]3/4

P0 (Xt ≤ −r − γt/2)1/4 . e−γ
2t/32 ≤ 2− γ

by recalling that t ≥ exp(1/(2− γ)). On the other hand (see [Res92, Proposition 6.8.1] for instance),

P0 (∀s ≥ 0, Xs < (2− γ)s+K − r) = 1− e−2(K−r)(2−γ) ≤ 2(K − r)(2− γ).

Since
P0 (∃s ≥ t,Xs ≥ (2− γ)s+K − r) . e−

(2−γ)2
16 t ≤ 2− γ,

it implies that
P0 (∀s ≤ t,Xs < (2− γ)s+K − r) . (K − r)(2− γ).

Putting things together yields (3.37). This concludes the proof.

3.3.4 Barrier estimates for 1D Brownian motion

The purpose of this section is to prove the following lemma.
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Lemma 3.25. There exists C > 0 such that the following claims hold true. For all K,H ≥ 1 and all
integer n ≥ 1,

P0

(
∀k = 0 . . . n− 1, min

[k,k+1]
X ≤ 2 log(1 + k) +K

)
≤ CK2
√
n

(3.38)

and

P0

(
∀k = 0 . . . n− 1, min

[k,k+1]
X ≤ 2 log(k + 1) +K,∃s ∈ [0, n], Xs > K +H

)
≤ CK2e−H/64

√
n

. (3.39)

Moreover, for all K,H ≥ 1, γ ∈ [1, 2) and all integer n ≥ (2− γ)−4,

P0

(
∀k = 0 . . . n− 1, min

[k,k+1]
X ≤ (2− γ)k + 2 log(1 + k) +K

)
≤ CK2(2− γ) (3.40)

and

P0
(
∀k = 0 . . . n− 1, min

[k,k+1]
X ≤ (2− γ)k + 2 log(1 + k) +K, (3.41)

∃s ≤ n,Xs ≥ (2− γ)s+K +H
)
≤ CK2e−H/64(2− γ).

We start off with the following intermediate result.

Lemma 3.26. Let c > 0. There exists C > 0 such that the following estimates hold. For all n ≥ 1
and K ≥ 1,

P0 (∀s ≤ n,Xs ≤ c log(1 + s) +K) ≤ CK2/
√
n. (3.42)

Moreover, for all γ ∈ [1, 2), for all n ≥ (2− γ)−4 and K ≥ 1,

P0 (∀s ≤ n,Xs ≤ (2− γ)s+ c log(1 + s) +K) ≤ CK2(2− γ). (3.43)

Proof. We start by proving (3.42). If K > n1/4, then the result is clear by bounding the probability
by one. In the rest of the proof we thus assume that K ≤ n1/4. Let us denote Kn = c log(1 + n) +K.
By the reflection principle,

P0
(
∀s ≤ n,Xs ≤ Kn, Xn ≥ −n1/4

)
=
∫ Kn

−n1/4

1√
2πn

(
e−

x2
2n − e−

(2Kn−x)2
2n

)
dx

For all x ∈ [−n1/4,Kn], we can bound

e−
x2
2n − e−

(2Kn−x)2
2n = e−

x2
2n

(
1− e−2 (K2

n−Knx)
n

)
. e−

x2
2n
K2
n −Knx

n
. e−

x2
2n
Knn

1/4

n
,

implying that

P0
(
∀s ≤ n,Xs ≤ Kn, Xn ≥ −n1/4

)
.
Knn

1/4

n

∫ Kn

−n1/4

1√
2πn

e−
x2
2n dx .

Kn

n
.
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Another similar consequence of the reflection principle is that

P0 (∀s ≤ n,Xs ≤ Kn) & Kn/
√
n.

Therefore

P0
(
Xn ≥ −n1/4|∀s ≤ n,Xs ≤ c log(1 + s) +K

)
≤ P0

(
Xn ≥ −n1/4|∀s ≤ n,Xs ≤ c log(1 + n) +K

)
. 1/

√
n

and

P0 (∀s ≤ n,Xs ≤ c log(1 + s) +K)

. n−1/2P0 (∀s ≤ n,Xs ≤ c log(1 + s) +K) + P0
(
∀s ≤ n,Xs ≤ c log(1 + s) +K,Xn ≤ −n1/4

)
. n−1/2P0 (∀s ≤ n,Xs ≤ c log(1 + s) +K) + P0

(
Xn ≤ −n1/4,∃s ∈ [n, n+ n1/4], Xs > K

)
+ P0

(
∀s ≤ n+ n1/4, Xs ≤ c′(s ∧ (n+ n1/4 − s))1/20 +K

)
.

By equation (25) of [BDZ16], the last right hand side term is at most CK2/
√
n. The second right

hand side term being at most

P0

(
max

[0,n1/4]
X ≥ K + n1/4

)
. e−cn

1/4
,

we deduce that

P0 (∀s ≤ n,Xs ≤ c log(1 + s) +K)

. n−1/2P0 (∀s ≤ n,Xs ≤ c log(1 + s) +K) +K2/
√
n

which concludes the proof of (3.42).
We now turn to the proof of (3.43). Since n ≥ (2− γ)−4,

P0 (∃s ≥ n,Xs > (2− γ)s) ≤ P0
(
∃s ≥ n,Xs > s3/4

)
≤
∑
k≥n

P0

(
max

[k,k+1]
X > k3/4

)

≤
∑
k≥n

e−c
√
k . e−c

√
n . 2− γ.

Hence

P0 (∀s ≤ n,Xs ≤ (2− γ)s+ c log(1 + s) +K)

. 2− γ + P0
(
∀s ≤ 2n,Xs ≤ (2− γ)s+ C(s ∧ (2n− s))1/20 +K

)
= 2− γ + e−(2−γ)2nE0

[
e−(2−γ)X2n1{∀s≤2n,Xs≤C(s∧(2n−s))1/20+K}

]
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by Girsanov’s theorem. Now, by equation (25) of [BDZ16], we conclude that

P0 (∀s ≤ n,Xs ≤ (2− γ)s+ 3 log(1 + s) +K)

. 2− γ +Ke−(2−γ)2n
∫ K

−∞
(K − x)n−3/2e−x

2/(4n)e−(2−γ)xdx

= 2− γ +K

∫ K+2(2−γ)n

−∞
(K + 2(2− γ)n− y)n−3/2e−y

2/(4n)dy

. K2(2− γ).

This finishes the proof of (3.43).

Proof of Lemma 3.25. We start by proving (3.38). By Lemma 3.26, there exists some universal constant
C1 > 0 such that for all t ≥ 1,

P0 (∀s ∈ [1, t], Xs ≤ 3 log(1 + s) + 2K) ≤ C1K
2/
√
t+ 1. (3.44)

We thus aim to take care of the minima in (3.38). Let n ≥ 1 and define

pn := sup
0≤t0<1

P0

(
∀k ≤ n− 1, min

[k+t0,k+1+t0]
X ≤ 2 log(k + 1) +K

)
.

Let 0 ≤ t0 < 1. Set τ := inf{s > t0 : Xs ≥ 3 log(1 + s) + 2K}. We are going to decompose the
above probability according to the value of τ . Let k ≥ 1. Notice that on the event {k + t0 ≤ τ <

k + 1 + t0,min[k−1+t0,k+t0]X ≤ 2 log k +K}, we have maxu,v∈[k−1+t0,τ ] |Xu −Xv| ≥ log(k + 1) +K. If
k = 0, on the event {t0 ≤ τ < 1 + t0}, we simply have maxu∈[0,τ ] |Xu −X0| ≥ K when X starts at 0.
Hence

P0

(
∀k ≤ n− 1, min

[k+t0,k+1+t0]
X ≤ 2 log(k + 1) +K

)

≤ P0(τ ≥ n+ t0) +
n−1∑
k=0

P0
(
k + t0 ≤ τ < k + 1 + t0, max

u,v∈[k−1+t0,τ ]
|Xu −Xv| ≥ log(k + 1) +K,

∀j = k + 1 . . . n, min
[j+t0,j+1+t0]

X ≤ 2 log(j + 1) +K
)
.

By applying Markov’s property to the stopping time τ , and by writing X̃ a Brownian motion independent
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of τ , we see that the last probability written above is equal to

E0

[
1{k+t0≤τ<k+1+t0,maxu,v∈[k−1+t0,τ ] |Xu−Xv |≥log(k+1)+K}

× P0

(
∀j = k + 1 . . . n, min

[j−τ+t0,j+1−τ+t0]
X̃ ≤ 2 log(j + 1)− 3 log(1 + τ)−K

∣∣∣τ)]

≤ P0

(
k + t0 ≤ τ < k + 1 + t0, max

u,v∈[k−1+t0,τ ]
|Xu −Xv| ≥ log(k + 1) +K

)

× sup
0≤t′0<1

P0

(
∀j = 0 . . . n− k − 1, min

[j+t′0,j+1+t′0]
X ≤ 2 log(1 + j) +K

)

≤ P0

(
max

u,v∈[0,2]
|Xu −Xv| ≥ log(k + 1) +K

)
pn−k−1

≤ P0

(
2 max

[0,2]
|X| ≥ log(k + 1) +K

)
pn−k−1 ≤ e−(log(k+1)+K)2/16pn−k−1.

Moreover, by (3.44),

sup
0≤t0<1

P0(τ ≥ n+ t0) ≤ P0 (∀s ∈ [1, n], Xs ≤ 3 log(1 + s) + 2K) ≤ C1K
2/
√
n+ 1.

We have thus proven that

pn ≤
C1K

2
√
n+ 1

+
n−1∑
k=0

e−(log(k+1)+K)2/16pn−k−1. (3.45)

This recursive relation allows us to conclude the proof of (3.38). We detail the arguments. Define

C2 := sup
n≥1

√
n+ 1

n−1∑
k=0

e−(log(k+1))2/16 1√
n− k

<∞

and assume that K is large enough so that we can define

CK = C1/(1− e−K
2/16C2).

We clearly have p0 ≤ 1 ≤ CKK
2/
√

1 + 0. Let n ≥ 1 and assume now that for all k ≤ n − 1,
pk ≤ CKK2/

√
k + 1. By (3.45), we have

pn ≤
C1K

2
√
n+ 1

+
n−1∑
k=0

e−(log(k+1)+K)2/16 CKK
2

√
n− k

≤ K2
√
n+ 1

(
C1 + e−K

2/16C2CK
)

= CKK
2

√
n+ 1

.

This concludes the proof by induction of the fact that pn ≤ CKK
2/
√
n+ 1 for all n ≥ 1. Since CK

does not grow with K, this concludes the proof of (3.38).
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We now turn to the proof of (3.39). We are first going to show that

P0
(
∀k = 0 . . . n− 1, min

[k,k+1]
X ≤ 2 log(1 + k) +K, (3.46)

∃s ≤ n,Xs ≥ 3 log(1 + s) +H +K
)
≤ Ce−H2/16K2/

√
n.

By considering the stopping time

inf {s > 0, Xs ≥ 3 log(1 + s) +H +K} ,

and by following almost the same arguments as above, one can show that the probability in (3.46) is
at most

n−1∑
k=0

e−(log(k+1)+H)2/16 sup
0≤t0<1

P0

(
∀j ≤ n− 1− k, min

[k+t0,k+1+t0]
X ≤ 2 log(k + 1) +K

)

≤
n−1∑
k=0

e−(log(k+1)+H)2/16pn−k .
n−1∑
k=0

e−(log(k+1)+H)2/16 K2
√
n− k

. e−H
2/16K

2
√
n

thanks to the estimates on pn. This shows (3.46). Now, it implies that

P0

(
∀k = 0 . . . n− 1, min

[k,k+1]
X ≤ 2 log(k + 1) +K,∃s ∈ [0, n], Xs > K +H

)
≤ Ce−H2/64K2/

√
n+ P0 (∀s ∈ [0, n], Xs ≤ 3 log(s+ 1) +K +H/2, ∃s ∈ [0, n], Xs > K +H) .

If H is larger than 6 log(n+ 1), then the probability on the right hand side vanishes and we directly
obtain (3.39). Let us now assume that H ≤ 6 log(n+ 1) and denote k0 :=

⌊
e
H
6 − 1

⌋
≤ n and consider

the stopping time τ = inf{s > 0 : Xs > K + H}. By Markov property, the last probability written
above is at most equal to

n−1∑
k=k0

P0 (k ≤ τ < k + 1, ∀s ∈ (τ, n), Xs ≤ (c+ 1) log(s+ 1) +K +H/2)

≤
n−1∑
k=k0

P0 (k ≤ τ < k + 1)

× PK+H (∀s ∈ [0, n− k − 1], Xs ≤ 3 log(s+ 1) + 2 log(k + 1) +K +H/2)

.
n−1∑
k=k0

P0 (k ≤ τ < k + 1) log(k + 1)2/
√
n− k

by Lemma 3.26. Now, using the explicit density of τ (which is a consequence of the reflection principle),
we see that

P0 (k ≤ τ < k + 1) =
∫ k+1

k

K +H√
2πt3

exp
(
−(K +H)2

2t

)
.

K +H

(k + 1)3/2 .
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Hence,

P0

(
∀k = 0 . . . n− 1, min

[k,k+1]
X ≤ 2 log(k + 1) +K,∃s ∈ [0, n], Xs > K +H

)

. e−H
2/64K2 1√

n
+ (K +H)

n−1∑
k=k0

log(k + 1)2√
k3(n− k)

.

The behaviour of the above sum is given by

n−1∑
k=k0

log(k + 1)2√
k3(n− k)

.
1√
n

bn/2c∑
k=k0

log(k)2

k3/2 + log(n)2

n3/2

n−1∑
k=bn/2c+1

1√
n− k

.
1√
n

(
log(k0)2
√
k0

+ log(n)2
√
n

)
.

By recalling that k0 =
⌊
e
H
6 − 1

⌋
≤ n, we have therefore obtained that

P0

(
∀k = 0 . . . n− 1, min

[k,k+1]
X ≤ 2 log(k + 1) +K,∃s ∈ [0, n], Xs > K +H

)

. e−H
2/64K2 1√

n
+ (K +H)H2e−H/12 1√

n
.

This concludes the proof of (3.39).
We now turn to the proof of (3.40). This time we define for n ≥ 1,

qn := sup
0≤t0<1

P0

(
∀k ≤ n− 1, min

[k+t0,k+1+t0]
X ≤ (2− γ)k + 2 log(1 + k) +K

)
.

By considering for 0 ≤ t0 < 1, the stopping time

inf {s > t0 : Xs > (2− γ)s+ 3 log(1 + s) + 2K} ,

we can show using a reasoning very similar to the one above that

qn ≤ P0 (∀s ∈ [1, n], Xs ≤ (2− γ)s+ 3 log(1 + s) + 2K) +
n−1∑
k=0

e−(log(1+k)+K)2/16qn−k−1.

Take n ≥ (2− γ)−4. By (3.43), the first right hand side term above is at most CK2(2− γ). Moreover,
for all k ∈ [n/2, n],

qk − qn ≤ P0 (∃s ≥ n/2, Xs > (2− γ)s) ≤ P0
(
∃s ≥ n/2, Xs > 2−1/4s3/4

)
. e−

√
n/4 . 2− γ.

Therefore,

qn . K2(2− γ) +
bn/2c∑
k=0

e−(log(k+1)+K)2/16qn +
n−1∑

k=bn/2c+1
e−(log(k+1)+K)2/16

. K2(2− γ) + e−K
2/16qn
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which shows that qn . K2(2− γ) as soon as K is large enough. This finishes the proof of (3.40). (3.41)
follows from (3.40) in a similar manner that (3.39) follows from (3.38). This concludes the proof.

3.4 Adding good events: proof of Proposition 3.14
and Lemma 3.15

The purpose of this section is to prove Proposition 3.14 and Lemma 3.15. We start by discussing
Proposition 3.14. As mentioned in Section 3.1.3, it is natural to expect the introduction of the good
events Gε(x) to be harmless. Indeed, in analogy with the case of log-correlated Gaussian fields (see
[Pow18, Corollary 2.4] for instance), the following should hold true:

sup
x∈D

sup
ε>0

(√
1
ε
Lx,ε(τx,R)− 2 log 1

ε

)
<∞ Px0 − a.s. (3.47)

which would imply (forgetting about the Bessel bridges) that Px0 (
⋂
x∈D

⋂
ε>0Gε(x))→ 1 as β →∞.

We have not been able to prove such a statement because of the following two main reasons.
1) For a fixed radius ε, we would like to be able to compare

sup
x∈D

√
1
ε
Lx,ε(τx,R) and sup

x∈εZ2∩D

√
1
ε
Lx,ε(τx,R), (3.48)

the latter supremum being a supremum over a finite number of elements. To do so, we would need
to be able to precisely control the way the local times vary with respect to the centre of the circle.
Obtaining estimates precise enough turns out to be difficult to achieve (the estimates of Section C of
[Jeg20a] leading to the continuity of the local time process (x, ε) 7→ Lx,ε(τ) are too rough). We resolve
this problem by first considering local time of annuli rather than circles. Indeed, comparing local times
of annuli is much easier since if an annulus is included in another one, then the local time of the former
is not larger than the local time of the latter.

2) Assuming that we are able to make the comparison (3.48), the next step would be to be able to
bound from above

Px0

(
sup

x∈εZ2∩D

√
1
ε
Lx,ε(τx,R) ≥ 2 log 1

ε

)
.

If the bound is good enough, Borel-Cantelli lemma would allow us to conclude the proof of (3.47), at
least along dyadic radii ε. Estimating accurately this probability is again challenging (a union bound
is not good enough for instance). In the case of log-correlated Gaussian fields, the estimation of such
probabilities is heavily based on the Gaussianity of the process. For instance, in [DRSV14a], Kahane’s
convexity inequalities allow the authors to import computations from cascades (Theorem 1.6 of [HS09]).
We resolve this problem by asking the local times to stay under 2 log 1

ε + 2 log log 1
ε instead of 2 log 1

ε .
Indeed, here we can do very naive computations using for instance union bounds. Importantly, this
restriction is enough to turn the variables that we consider bounded in L1. We can then make L1

computations and use repulsion estimates to get rid of the extra 2 log log 1
ε term.
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3.4.1 Supremum of local times of annuli

Lemma 3.27. For x ∈ D and ε > 0, let

`x,ε(τx,R) :=
∫ τx,R

0
1{ε≤|Bt−x|≤eε}dt =

∫ eε

ε
Lx,r(τx,R)dr

be the amount of time the Brownian trajectory has spent in the annulus D(x, eε)\D(x, ε) before hitting
∂D(x,R). Then,

sup
ε∈{e−n,n≥1}

sup
x∈D

|x−x0|≥eε

√
2

(e2 − 1)ε2 `x,ε(τx,R)− 2 log 1
ε
− 2 log log 1

ε
<∞ Px0 − a.s.

Proof of Lemma 3.27. For x ∈ D and ε > 0, define

`x,ε :=
∫ τx,eR

0
1{

ε− ε
| log ε|≤|Bt−x|≤eε+

ε
| log ε|

}dt
and notice that if |x− y| ≤ ε/| log ε|, then `x,ε(τx,R) ≤ `y,ε Px0-a.s. Hence

sup
ε∈{e−n,n≥1}

sup
x∈D

|x−x0|≥eε

√
2

(e2 − 1)ε2 `x,ε(τx,R)− 2 log 1
ε
− 2 log log 1

ε

≤ sup
ε∈{e−n,n≥1}

sup
x∈ ε
| log ε|Z

2∩D
|x−x0|≥eε+ε/| log ε|

√
2

(e2 − 1)ε2 `x,ε − 2 log 1
ε
− 2 log log 1

ε

Px0-a.s. By Borel-Cantelli lemma, to conclude the proof it is now enough to show that

∑
ε∈{e−n,n≥1}

Px0

 sup
x∈ ε
| log ε|Z

2∩D
|x−x0|≥eε+ε/| log ε|

√
2

(e2 − 1)ε2 `x,ε − 2 log 1
ε
− 2 log log 1

ε
≥ 0

 <∞.

After a union bound, we want to estimate

Px0

(√
2

(e2 − 1)ε2 `x,ε − 2 log 1
ε
− 2 log log 1

ε
≥ 0

)

for a given ε ∈ {e−n, n ≥ 1} and x ∈ ε
| log ε|Z

2 ∩ D such that |x − x0| ≥ eε + ε/| log ε|. Let z ∈
∂D(x, eε+ ε/| log ε|). By (3.6), starting from z and conditioned on

` := 1
eε+ ε/| log ε|Lx,eε+ε/| log ε|(τx,eR),

`x,ε =
∫ eε+ε/| log ε|

ε−ε/| log ε|
Lx,r(τx,eR)dr (d)=

(
eε+ ε

| log ε|

)2 ∫ log eε+ε/| log ε|
ε−ε/| log ε|

0
e−2sX2

sds
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where Xs is a zero-dimensional Bessel process starting at
√
`. By bounding

log eε+ ε/| log ε|
ε− ε/| log ε| ≤ 1 + 3

| log ε| ,
(
eε+ ε

| log ε|

)2
≤ e2ε2

(
1 + 1
| log ε|

)

(if ε is small enough) and

2
1− e−2

(
1 + 1
| log ε|

)∫ 1+3/| log ε|

0
e−2sX2

sds ≤
(

1 + 2
| log ε|

)
max

s≤1+3/| log ε|
X2
s

we deduce that

Pz

(√
2

(e2 − 1)ε2 `x,ε − 2 log 1
ε
− 2 log log 1

ε
≥ 0

)

≤ Ez

[
P0√

`

((
1 + 2
| log ε|

)
max

s≤1+3/| log ε|
X2
s ≥

(
2 log 1

ε
+ 2 log log 1

ε

)2
)]

.

Since (Xs, s ≥ 0) under P0√
`
is stochastically dominated by (Xs, s ≥ 0) under P√` (zero-dimensional

Bessel process has a negative drift), we obtain that

P0√
`

((
1 + 2
| log ε|

)
max

s≤1+3/| log ε|
X2
s ≥

(
2 log 1

ε
+ 2 log log 1

ε

)2
)

≤ P0√
`

(
max

s≤1+3/| log ε|
Xs ≥ 2 log 1

ε
+ 2 log log 1

ε
− 3

)

≤ P0

(
max

s≤1+3/| log ε|
Xs ≥ 2 log 1

ε
+ 2 log log 1

ε
− 3−

√
`

)
≤ 1{

√
`≥2 log 1

ε
+2 log log 1

ε
−3}

+ 2× 1{
√
`<2 log 1

ε
+2 log log 1

ε
−3} exp

(
− 1

2(1 + 3/| log ε|)

(
2 log 1

ε
+ 2 log log 1

ε
− 3−

√
`

)2
)
.

We used reflection principle in the last inequality. Recalling that under Pz ` is an exponential variable
with mean equal to 2| log ε|+O(1) (see (3.21)), we see that

Pz
(√

` ≥ 2 log 1
ε

+ 2 log log 1
ε
− 3

)
. ε2| log ε|−4.

Moreover, by denoting A := 2| log ε|+2 log | log ε|−3√
Ez [`]

and λ = Ez [`]
2(1+3/| log ε|) , we have

Ez

[
1{
√
`<2 log 1

ε
+2 log log 1

ε
−3} exp

(
− 1

2(1 + 3/| log ε|)

(
2 log 1

ε
+ 2 log log 1

ε
− 3−

√
`

)2
)]

≤
∫ A2

0
e−λ(A−

√
t)2
e−tdt = 2e−λA2/(λ+1)

∫ A/
√
λ+1

−∞
e−u

2 max
(

0, u√
λ+ 1

+ λ

λ+ 1A
)
du

. Ae−λA
2/(λ+1) .

√
| log ε|ε2| log ε|−4.
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Wrapping things up, we have proven that

Px0

(√
2

(e2 − 1)ε2 `x,ε − 2 log 1
ε
− 2 log log 1

ε
≥ 0

)
. | log ε|−7/2ε2

and summing over x ∈ ε
| log ε|Z

2 ∩D, |x− x0| ≥ eε+ ε/| log ε|,

Px0

 sup
x∈ ε
| log ε|Z

2∩D
|x−x0|≥eε+ε/| log ε|

√
2

(e2 − 1)ε2 `x,ε − 2 log 1
ε
− 2 log log 1

ε
≥ 0

 . | log ε|−3/2.

This is summable over ε ∈ {e−n, n ≥ 1} as required. It concludes the proof.

3.4.2 First layer of good events: proof of Proposition 3.14

We now have all the ingredients to prove Proposition 3.14. During the course of the proof, we will
obtain intermediate results that we gather in the following lemma. Recall the definition (3.17) of εγ .

Lemma 3.28. Firstly,
lim
β→∞

lim
ε→0

Ex0 [m̂ε(D)] =∞. (3.49)

Secondly, we have for β > 0 fixed,

sup
ε>0

Ex0 [m̂ε(D)] ≤
∫
D

sup
ε>0

Ex0 [m̂ε(dx)] <∞, (3.50)

sup
ε>0

Ex0 [µ̂ε(D)] ≤
∫
D

sup
ε>0

Ex0 [µ̂ε(dx)] <∞ (3.51)

and
sup
γ∈[1,2)

(2− γ)−1 sup
ε<εγ

Ex0 [m̂γ
ε (D)] ≤

∫
D

sup
γ∈[1,2)

(2− γ)−1 sup
ε<εγ

Ex0 [m̂γ
ε (dx)] <∞. (3.52)

Proof of Proposition 3.14 and Lemma 3.28. Let β′ > 0 be large. In light of Lemma 3.27 we introduce
for all ε = e−k > 0 and x ∈ D at distance at least eε from x0, the good event

Hε(x) :=
{
∀n = kx + 1 . . . k,

√
2

(e2 − 1)e
2n`x,e−n(τx,R)− 2n− 2 logn ≤ β′

}

and set
H :=

⋂
x∈D

⋂
ε>0

Hε(x).

Lemma 3.27 asserts that Px0 (H)→ 1 as β′ →∞.

Seneta–Heyde norming. We are first going to show that for a fixed β′ > 0,∫
A

sup
ε>0
| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τ)1Hε(x)

]
dx <∞. (3.53)
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First of all, if |x− x0| < 1/| log ε|, then we simply bound

| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τ)1Hε(x)

]
≤ | log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τx,R)

]
. | log ε|3/2

by (3.22). Take now x ∈ D at distance at least 1/| log ε| from x0. We again bound Lx,ε(τ) by Lx,ε(τx,R)
to be able to use the link (3.6) between local times and zero-dimensional Bessel process:

| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τ)1Hε(x)

]
≤ | log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τx,R)1Hε(x)

]
.

Denote by rx :=
√
ekxLx,e−kx (τx,R). (3.6) tells us that, conditionally on rx, the process

Xs :=
√
ekx+sLx,e−kx−s(τx,R), s ≥ 0,

is a zero-dimensional Bessel process starting at rx. The event Hε(x) requires

min
u∈[s−1,s]

Xu ≤
( 2
e2 − 1

∫ s

s−1
e2s−2uX2

udu

)1/2

=
( 2
e2 − 1e

2(kx+s)
∫ s

s−1
e−kx−uLx,e−kx−u(τx,R)du

)1/2

=
(

2
e2 − 1e

2(kx+s)
∫ e−kx−s+1

e−kx−s
Lx,δ(τx,R)dδ

)1/2

≤ 2s+ 2kx + 2 log(s+ kx) + β′ ≤ 2s+ 2 log s+ β′ + 4kx

for all s = 1 . . . k − kx. Hence

| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τx,R)1Hε(x)

]

≤ | log ε|ε2Ex0

[
E0
rx

[
e2Xk−kx1{∀s=1...k−kx,minu∈[s−1,s] Xu≤2s+2 log s+β′+4kx}

]]
.

Now, with (3.30), we have

| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τx,R)1Hε(x)

]
≤ | log ε|ε2 + k√

k − kx
e−2kx

× Ex0

[
e2rx√rxErx

[(
k − kx

Xk−kx + 2(k − kx)

)1/2

+
1{∀s=1...k−kx,minu∈[s−1,s] Xu≤2 log s+β′+4kx+2}

]]
.
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We now bound

Erx

[(
k − kx

Xk−kx + 2(k − kx)

)1/2

+
1{∀s=1...k−kx,minu∈[s−1,s] Xu≤2 log s+β′+4kx+2}

]

≤ Prx

(
∀s = 1 . . . k − kx, min

u∈[s−1,s]
Xu ≤ 2 log s+ β′ + 4kx + 2

)

+ Erx

[(
k − kx

Xk−kx + 2(k − kx)

)1/2

+
1{Xk−kx≤−(k−kx)}

]
.

By (3.38), the first right hand side term is at most C(kx)2k−1/2. The second right hand side term
decays much faster and we have obtained

| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τx,R)1Hε(x)

]
. | log ε|ε2 + (kx)2e−2kxEx0

[
e2rx√rx

]
. (kx)3

where we have used (3.22) in the last inequality (or more precisely, the stochastic domination stated in
Lemma 3.19 in order to also handle √rx). To wrap things up, we have proven that

| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τx,R)1Hε(x)

]
.

{
| log ε|3/2 if |x− x0| ≤ 1/| log ε|

| log |x− x0||3 if |x− x0| ≥ 1/| log ε|

which concludes the proof of (3.53). Very few arguments need to be changed in order to show (3.50).
The only difference is that, compared to the event Hε(x), the event Gε(x) ensures (in particular) the
Bessel process X to stay below s 7→ 2s+β+ 2kx at every integer s. This is more restrictive than asking
min[s,s+1]X to be not larger than 2s + 2 log s + β + 4kx, we can thus conclude using the reasoning
above.

We now turn to the proof of (3.11). Fix β′ > 0. We are going to show that

sup
ε>0
| log ε|ε2

∫
A
Ex0

[
e2
√

1
ε
Lx,ε(τ)1Hε(x)1Gε(x)c

]
dx (3.54)

goes to zero as β →∞. Let η0 > 0 be small. By (3.53),

sup
ε>0
| log ε|ε2

∫
A

1{|x−x0|≤η0}Ex0

[
e2
√

1
ε
Lx,ε(τ)1Hε(x)

]
dx = oη0→0(1).

Fix now η0 > 0. In what follows the constants underlying the bounds may depend on η0. Recall the
definition of hx,δ constructed in Lemma 3.13. By a reasoning very similar to what we did above and
using (3.39), one can show that

sup
ε=e−k
k≥1

| log ε|ε2
∫
A

1{|x−x0|>η0}Ex0

[
e2
√

1
ε
Lx,ε(τx,R)1Hε(x)1{∃s∈{kx,...,k},hx,e−s≥2s+β/2}

]
dx
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goes to zero as β →∞. We are thus left to control

| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τx,R)1{∀s∈{kx,...,k},hx,e−s<2s+β/2}1Gε(x)c

]

for some x ∈ D at distance at least η0 from x0. Denote rx =
√
e−kxLx,e−kx (τx,R). By (3.6) and then

by (3.31), this is equal to

| log ε|ε2Ex0

[
E0
rx

[
e2Xt1{∀s=0...k−kx,Xs<2s+β/2+2kx}1{∃s≤k−kx,Xs≥2s+β+2kx}

]]
.
√
kEx0

[
√
rxe

2rxErx

[(
k − kx

Xk−kx + 2(k − kx)

)1/2

+

× 1{∀s=0...k−kx,Xs<β/2+2kx}1{∃s≤k−kx,Xs≥β+2kx}

]]

.
√
kEx0

[√
rxe

2rxPr (∀s = 0 . . . k − kx, Xs < β/2 + 2kx,∃s ≤ k − kx, Xs ≥ β + 2kx)
]

. β2e−β/256

by (3.39). This concludes the proof of (3.54). We now have for any small ρ > 0,

lim sup
ε→0

Px0 (|mε(A)− m̂ε(A)| ≥ ρ)

≤ Px0 (Hc) + 1
ρ

lim sup
ε→0

| log ε|ε2
∫
A
Ex0

[
e2
√

1
ε
Lx,ε(τ)1Hε(x)1Gε(x)c

]
dx.

By letting β →∞ and then β′ →∞, we see that

lim sup
β→∞

lim sup
ε→0

Px0 (|mε(A)− m̂ε(A)| ≥ ρ) = 0

as desired in (3.11).
To show (3.49), take r > 0 small enough so that {x ∈ D : D(x, r) ⊂ D} has positive Lebesgue

measure and notice that

Ex0 [m̂ε(D)] ≥ | log ε|ε2
∫
D

1{D(x,r)⊂D}Ex0

e2
√

1
ε
Lx,ε(τx,r)1{

∀s∈[kx,k],hr
x,e−s

≤2s+β
} dx

where hr is defined in a similar manner as h expect that we consider local times up to time τx,r rather
than τx,R. Using (3.6), we see that (3.49) is a direct consequence of (3.34) and Fatou’s lemma.

Subcritical measures We have finished the part of the proof concerning the Seneta–Heyde normal-
isation and we now turn to the justification of (3.13) and (3.52). This is very similar to what we have
just done. The only difference is that after using the link (3.6) between local times and zero-dimensional
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Bessel process and the relation (3.30) to transfer computations to 1D Brownian motion, we have

1
2− γ

√
| log ε|εγ2/2Ex0

[
e2
√

1
ε
Lx,ε(τx,R)1Hε(x)

]

≤ 1
2− γ

√
| log ε|εγ2/2 + 1

2− γ e
−γ2kx/2Ex0

[
√
rxe

γrx

× Erx

[(
k − kx

Xk−kx + γ(k − kx)

)1/2
1{∀s=1...k−kx,minu∈[s−1,s] Xu≤(2−γ)s+2 log s+β′+4kx+2}

] ]
.

We conclude as before by using (3.40) and (3.41) (note here that k − kx ≥ (2− γ)−4 since εγ has been
chosen small enough) instead of (3.38) and (3.39).

Derivative martingale We finish with the justification of (3.12) and (3.51). Recall that in the
modified measure µ̂ε, the Brownian motion is stopped either at time τ or at time τx,R depending on
whether the local time Lx,ε is in the exponential or not. Part of (3.12) consists in saying that, in the
limit, this modification does not change the measure with high probability. We thus start by proving
that

lim sup
ε→0

∫
D

√
| log ε|ε2Ex0

[(√
1
ε
Lx,ε(τx,R)−

√
1
ε
Lx,ε(τ)

)
e2
√

1
ε
Lx,ε(τ)

]
dx = 0. (3.55)

Let x ∈ D. By applying Markov property to the first exit time τ of D, the integrand in (3.55) is at
most equal to

√
| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τ) sup

z∈∂D
Ez

[√
1
ε
Lx,ε(τx,R) + 1

ε
Lx,ε(τ)−

√
1
ε
Lx,ε(τ)

∣∣∣∣∣Lx,ε(τ)
]]
.

We decompose this expectation in two parts, the first one integrating on the event that
√

1
εLx,ε(τ) <

| log ε|/2 and the second one integrating on the complement event. The first part decays quickly
to zero and we explain how to deal with the second part. Recall that starting from any point of
∂D(x, ε), Lx,ε(τx,R) is a random variable with mean 2ε log(R/ε) (see Lemma 3.18). By Cauchy–Schwarz
inequality and then by bounding

√
a+ b −

√
a ≤ Cb/

√
a for a > 2b > 1, and using (3.23), we thus

obtain that on the event that
√

1
εLx,ε(τ) ≥ | log ε|/2,

sup
z∈∂D

Ez

[√
1
ε
Lx,ε(τx,R) + 1

ε
Lx,ε(τ)−

√
1
ε
Lx,ε(τ)

∣∣∣∣∣Lx,ε(τ)
]

≤ sup
z∈∂D

Pz (τx,ε < τx,R)
(√

Ez
[ 1
ε
Lx,ε(τx,R)

∣∣∣∣ τx,ε < τ

]
+ 1
ε
Lx,ε(τ)−

√
1
ε
Lx,ε(τ)

)

.
| log d(x, ∂D)|
| log ε|

√1
ε
Lx,ε(τ) + 2 log R

ε
−
√

1
ε
Lx,ε(τ)


. | log d(x, ∂D)|

(1
ε
Lx,ε(τ)

)−1/2
.
| log d(x, ∂D)|
| log ε| .
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The integrand in (3.55) is therefore at most

o(1) +O(1) | log d(x, ∂D)|√
| log ε|

ε2Ex0

[
e2
√

1
ε
Lx,ε(τ)

]
≤ o(1) +O(1) | log d(x, ∂D)|| log |x− x0||

| log ε|

by (3.22) and (3.23). This concludes the proof of (3.55).
Now, let β > 0. For any small ρ > 0 and large β′ > 0, we have

lim sup
ε→0

Px0 (|µε(A)− µ̂ε(A)| > ρ) ≤ Px0 (Hc)

+ 3
ρ

lim sup
ε→0

∫
D

√
| log ε|ε2Ex0

[(√
1
ε
Lx,ε(τx,R)−

√
1
ε
Lx,ε(τ)

)
e2
√

1
ε
Lx,ε(τ)

]
dx

+ 3
ρ

lim sup
ε→0

∫
D

(
3 log log 1

ε
+ β

)√
| log ε|ε2Ex0

[
e2
√

1
ε
Lx,ε(τ)1Hε(x)

]
dx

+ 3
ρ

lim sup
ε→0

∫
D

√
| log ε|ε2Ex0

[∣∣∣∣∣−
√

1
ε
Lx,ε(τx,R) + 2 log 1

ε

∣∣∣∣∣ e2
√

1
ε
Lx,ε(τ)1Hε(x)1Gε(x)c

]
dx.

(3.55) and (3.53) tell us that the second and respectively third right hand side terms vanish. When
β′ > 0 and ρ > 0 are fixed, one can show using a method very similar to what we did with the
Seneta–Heyde normalisation that the last right hand side term goes to zero as β →∞. Hence

lim sup
β→∞

lim sup
ε→0

Px0 (|µε(A)− µ̂ε(A)| > ρ) ≤ Px0 (Hc) .

The left hand side term is independent of β′ whereas the right hand side term goes to zero as β′ → 0.
Therefore, for any small ρ > 0,

lim sup
β→∞

lim sup
ε→0

Px0 (|µε(A)− µ̂ε(A)| > ρ) = 0

as desired in (3.12). The proof of (3.51) is very similar to that of (3.50). We omit the details and it
concludes the proof.

3.4.3 Second layer of good events: proof of Lemma 3.15

Proof of Lemma 3.15. We start by proving (3.15). Let η0 > 0. By Lemma 3.28, it is enough to show
that∫

D

√
| log ε|ε2Ex0

[(
−
√

1
ε
Lx,ε(τx,R) + 2 log 1

ε
+ β

)
e2
√

1
ε
Lx,ε(τ)1Gε(x)1G′ε(x)c

]
1{|x−x0|>η0}dx (3.56)

goes to zero as ε→ 0 and then M →∞. The constants underlying the following estimates may depend
on η0. We start off by bounding Lx,ε(τ) by Lx,ε(τx,R) in the exponential above. By letting t = k − kx,
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βx = β + 2kx and r =
√
ekxLx,e−kx (τx,R) and by using (3.6), we are left to estimate

√
te−2tEx0

E0
r

(−Xt + 2t+ βx)e2Xt1{
∀s≤t,Xs<2s+βx,∃s≤t,Xs≥2s+βx−

√
s

M log(2+s)2

} .
By (3.33) and then by Cauchy–Schwarz inequality, this is at most

Ex0

√r(βx − r)e2rE3
βx−r

( t

2t+ βx −Xt

)1/2

+
1{
∃s≤t,Xs≤

√
s

M log(2+s)2

}
. Ex0

√r(βx − r)e2rE3
βx−r

[(
t

2t+ βx −Xt

)
+

]1/2

P3
βx−r

(
∃s ≥ 0, Xs ≤

√
s

M log(2 + s)2

)1/2


which goes to zero as M →∞ uniformly in t by Lemma 3.23, Points 1 and 4. We have thus proven
that the contribution of points at distance at least η0 from x0 to the integral (3.56) goes to zero as
ε→ 0 and then M → 0. This concludes the proof of (3.15).

The proof of (3.14) is very similar: the presence of an extra
√
| log ε| in the normalisation as well as

the absence of the derivative term (−Xt+2t+β) makes an extra multiplicative term
√
t/Xt popping up

in the expectation with respect to the 3D Bessel process. We conclude as before using Cauchy–Schwarz
inequality and Lemma 3.23, Point 3.

We finish with the proof of (3.16). With the same notations as above, it is again enough to estimate

(2− γ)−1√te−
γ2
2 tEx0

E0
r

eγXt1{
∀s≤t,Xs<2s+βx,∃s≤t,Xs≥2s+βx−

√
s

M log(2+s)2

} .
By (3.31), this is at most

(2− γ)−1Ex0

√reγrEr
( t

Xt + γt

)1/2

+
1{
∀s≤t,Xs<(2−γ)s+βx,∃s≤t,Xs≥(2−γ)s+βx−

√
s

M log(2+s)2

}
. ot→∞(1) + (2− γ)−1Ex0

[√
reγ
√
r

Pr

(
∀s ≤ t,Xs < (2− γ)s+ βx,∃s ≤ t,Xs ≥ (2− γ)s+ βx −

√
s

M log(2 + s)2

)]
(3.57)

where we obtained the above estimate by decomposing the expectation according to whetherXt ≤ −γt/2
or not. By Girsanov’s theorem and then by Lemma B, the above probability with respect to the
one-dimensional Brownian motion is equal to

e−(2−γ)2t/2E0

e−(2−γ)Xt1{
∀s≤t,Xs<βx−r,∃s≤t,Xs≥βx−r−

√
s

M log(2+s)2

}
= e−(2−γ)2t/2E3

βx−r

βx − r
Xt

e−(2−γ)(βx−r−Xt)1{
∃s≤t,Xs≤

√
s

M log(2+s)2

} .
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By decomposing the above expectation according to whether Xt ≥ (2− γ)t/4 or not, we see that it is
at most, up to a multiplicative constant,

e−(2−γ)2t/4 + e−(2−γ)2t/2E3
βx−r

 βx − r
(2− γ)te

(2−γ)Xt1{
∃s≤t,Xs≤

√
s

M log(2+s)2

} .
Now, by Lemma 3.23 point 1 and because Xt under P3

βx−r

(
·
∣∣∣∃s ≤ t,Xs ≤

√
s

M log(2+s)2

)
is stochastically

dominated by Xt under P3
βx−r, we see that the probability in (3.57) is at most, up to a multiplicative

constant,

e−(2−γ)2t/4 + oM→∞(1)e−(2−γ)2t/2E3
βx−r

[
βx − r

(2− γ)te
(2−γ)Xt

]
.

By a similar procedure as above we can reintroduce βx−r
Xt

in the expectation above in place of βx−r
(2−γ)t

and reverse the computations using Lemma B and then Girsanov’s theorem to obtain that

e−(2−γ)2t/2E3
βx−r

[
βx − r

(2− γ)te
(2−γ)Xt

]
. e−(2−γ)2t/4 + Pr (∀s ≤ t,Xs < (2− γ)s+ βx) . 2− γ

by (3.40). Wrapping things up, we have obtained that the probability in (3.57) is at most

oM→∞(1)(2− γ)

as desired. This concludes the proof.

3.5 L2-estimates

3.5.1 Uniform integrability: proof of Proposition 3.16

This section is devoted to the proof of Proposition 3.16. We first state the following result for ease of
reference.

Lemma 3.29. Let I be a finite set of indices, (ri, i ∈ I) ∈ [0,∞)I and let (X(i), i ∈ I) ∼ ⊗i∈IP0
ri

be independent zero-dimensional Bessel processes starting at ri. Define the process (Xs, s ≥ 0) as
follows: for all n ≥ 0, let Xn =

√∑
i∈I(X

(i)
n )2 and conditionally on (X(i)

n , n ≥ 1, i ∈ I), let (Xs, s ∈
(n, n+ 1)), n ≥ 0, be independent zero-dimensional Bessel bridges between Xn and Xn+1. Then X ∼ P0

r

with r =
√∑

i∈I r
2
i .

Proof. This is a direct consequence of the fact that the sum of independent zero-dimensional squared
Bessel processes is again distributed as a zero-dimensional squared Bessel process.

Proof of Proposition 3.16. The constants underlying this proof may depend on β and M . We start by
proving (3.19). We will then see that very few arguments need to be modified to obtain (3.18) and
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(3.20). Let ε′ be the only real number in {e−n, n ≥ 1} be such that

1 ≤ ε′

e4Mε exp ((log | log ε|)6) < e. (3.58)

We are first going to control the contribution of points x, y ∈ D at distance at least 1/M from x0 such
that |x− y| ≤ ε′. Let x and y be such points. On G′ε(y),√

1
ε
Ly,ε(τ) ≤ 2 log 1

ε
−

√
| log ε|

M log(2 + | log ε|)2 + β.

We thus have

(ε′)2Ex0 [ ˆ̂µε(x)ˆ̂µε(y)] . (ε′)2| log ε|3 exp
(
− 2

√
| log ε|

M log(2 + | log ε|)2

)
Ex0

[
e2
√

1
ε
Lx,ε(τ)

]

.
(
ε′

ε

)2
| log ε|7/2 exp

(
− 2

√
| log ε|

M log(2 + | log ε|)2

)

using (3.22) in the last inequality. This shows that∫
D×D

sup
ε>0

Ex0 [ ˆ̂µε(dx)ˆ̂µε(dy)] 1{|x−y|≤ε′} <∞.

We now focus on the remaining contribution. Let x, y ∈ D at distance at least 1/M from x0 be
such that |x− y| ≥ ε′. Without loss of generality, assume that the diameter of D is at most 1 so that
we can define α = e−kα , η = e−kη ∈ {e−n, n ≥ 1 + blogMc} to be the only real numbers satisfying

1
e2M

≤ α

|x− y|
<

1
eM

and 1
e4M

≤ η

|x− y| exp (−(log | log |x− y||)6) <
1

e3M
. (3.59)

Notice that D(x, α) ∩D(y, α) = ∅ (as soon as M is at least 2/e), that η ≥ ε because |x− y| ≥ ε′, that
kη ≥ 1 + logM ≥ kx and that η < α/e. Define

Gη,ε(x) :=
{
∀s ∈ [kη, k], hx,e−s ≤ 2s+ β

}
.

Importantly, the event Gη,ε(x) is contained in Gε(x) and only cares about what happens inside the
disc D(x, α/e). We similarly define Gη,ε(y). We can bound Ex0 [ ˆ̂µε(x)ˆ̂µε(y)] by

| log ε|ε4Ex0

[(
−
√

1
ε
Lx,ε(τx,R) + 2 log 1

ε
+ β

)(
−
√

1
ε
Ly,ε(τy,R) + 2 log 1

ε
+ β

)

e2
√

1
ε
Lx,ε(τx,R)e2

√
1
ε
Ly,ε(τy,R)1Gη,ε(x)1Gη,ε(y)1{√ 1

η
Ly,η(τy,R)≤2 log 1

η
+β−

√
| log η|

M log(2+| log η|)2

}]. (3.60)

In broad terms, our strategy now is to condition on Lx,η(τx,R) and Ly,η(τy,R) and integrate everything
else. Let Nx be the number of excursions from ∂D(x, α/e) to ∂D(x, α) before hitting ∂D(x,R).
For i = 1 . . . Nx and δ ≤ α/e, let Lix,δ be the local time of ∂D(x, δ) accumulated during the i-th
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excursion. We also write rix,η :=
√

1
ηL

i
x,η and rx,η :=

√
1
ηLx,η(τx,R). Let Ix be the subset of {1, . . . , Nx}

corresponding to the above excursions that hit ∂D(x, η). Define similar notations with x replaced
by y et let Fx,y be the sigma algebra generated by Nx, Ny, Ix, Iy and the successive initial and final
positions of the above-mentioned excursions (around both x and y).

Conditionally on the initial and final positions of the above excursions,(
Lix,δ, i = 1 . . . Nx, δ ≤ α/e

)
and

(
Liy,δ, i = 1 . . . Ny, δ ≤ α/e

)
are independent. Moreover, for all i = 1 . . . Nx, conditioned on {i ∈ Ix},

(
Lix,e−n , n ≥ kα + 1

)
is close

to be independent of the initial and final positions of the given excursion: this is the content of the
continuity Lemma 3.20. The Bessel bridges that we use to interpolate the local times between dyadic
radii smaller than α around x and y do not create any further dependence since D(x, α)∩D(y, α) = ∅.
Hence, recalling (3.6) and Lemma 3.29, we see that by paying a multiplicative price

(
1 + p

( η
α

))|Ix|+|Iy |
and conditionally on Fx,y, we can approximate the joint law of (hx,ηe−s , s ≥ 0) and (hy,ηe−s , s ≥ 0) by
P0
rx,η ⊗ P

0
ry,η . Letting t = log η

ε = k − kη and β′ := β + 2kη, we deduce that

| log ε|ε4Ex0

[(
−
√

1
ε
Lx,ε(τx,R) + 2 log 1

ε
+ β

)(
−
√

1
ε
Ly,ε(τy,R) + 2 log 1

ε
+ β

)

e2
√

1
ε
Lx,ε(τx,R)e2

√
1
ε
Ly,ε(τy,R)1Gη,ε(x)1Gη,ε(y)1{√ 1

η
Ly,η(τy,R)≤2 log 1

η
+β−

√
| log η|

M log(2+| log η|)2

}∣∣∣∣∣Fx,y
]

≤
(

1 + p

(
η

α

))|Ix|+|Iy |
| log ε|ε4Ex0

[
1{√

1
η
Ly,η(τy,R)≤2 log 1

η
+β−

√
| log η|

M log(2+| log η|)2

}
× E0

rx,η

[ (
−Xt + 2t+ β′

)
e2Xt1{∀s≤t,Xs≤2s+β′}

]

× E0
ry,η

[ (
−Xt + 2t+ β′

)
e2Xt1{∀s≤t,Xs≤2s+β′}

]∣∣∣∣∣Fx,y
]
.

Now, by (3.36), √
| log ε|ε2E0

rx,η

[(
−Xt + 2t+ β′

)
e2Xt1{∀s≤t,Xs≤2s+β′}

]
(3.61)

.

√
| log ε|ε2
√
te−2t | log η|3/2e2rx,η . | log η|3/2η2e

2
√

1
η
Lx,η(τx,R)

.

We have a similar estimate for the expectation around the point y and we further bound√
| log ε|ε2E0

ry,η

[(
−Xt + 2t+ β′

)
e2Xt1{∀s≤t,Xs<2s+β′}

]
× 1{√

1
η
Ly,η(τx,R)≤2 log 1

η
+β−

√
| log η|

M log(2+| log η|)2

}
. | log η|3/2η−2 exp

(
− 2

√
| log η|

M log(2 + | log η|)2

)
.
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To wrap things up, we have proven that

Ex0 [ ˆ̂µε(x)ˆ̂µε(y)| |Ix|+ |Iy|] (3.62)

.
(

1 + p

(
η

α

))|Ix|+|Iy |
| log η|3 exp

(
− 2

√
| log η|

M log(2 + | log η|)2

)
Ex0

e2
√

1
η
Lx,η(τx,R)

∣∣∣∣∣∣ |Ix|+ |Iy|
 .

By the continuity Lemma 3.20 and recalling (3.59), there exists c∗ > 0 such that

log
(

1 + p

(
η

α

))
. exp

(
−c∗

(
log α

η

)1/3
)

. exp
(
−c∗ (log | log |x− y||)2

)
.

If we take N to be equal to exp
(
c∗ (log | log |x− y||)2 /2

)
, we thus have

(
1 + p

(
η

α

))N
. 1

and (3.62) together with (3.22) yield

Ex0

[
ˆ̂µε(x)ˆ̂µε(y)1{|Ix|+|Iy |≤N}

]
. | log η|3 exp

(
− 2

√
| log η|

M log(2 + | log η|)2

)
Ex0

e2
√

1
η
Lx,η(τx,R)


. | log η|7/2η−2 exp

(
− 2

√
| log η|

M log(2 + | log η|)2

)

. | log |x− y||7/2|x− y|−2 exp
(
2(log | log |x− y||)6

)
exp

(
− 2

√
| log |x− y||

M log(2 + | log |x− y||)2

)

. |x− y|−2 exp
(
−

√
| log |x− y||

M log(2 + | log |x− y||)2

)
.

We now explain how to bound Ex0

[
ˆ̂µε(x)ˆ̂µε(y)1{|Ix|+|Iy |>N}

]
. |Ix| is smaller than the number of

excursions from ∂D(x, α/e) to ∂D(x, η) before hitting ∂D(x,R) and the probability for a Brownian
trajectory starting at ∂D(x, α/e) to hit ∂D(x, η) before hitting ∂D(x,R) is given by

log(α/eR)
log(η/R) .

By strong Markov property, we then obtain that for all M > 0,

Px0 (|Ix| > M) ≤
( log(α/eR)

log(η/R)

)M
≤ exp

(
−c(log | log |x− y||)6

| log |x− y|| M

)
.

Antoine Jego 107



CHAPTER 3. CRITICAL BROWNIAN MULTIPLICATIVE CHAOS

Using (3.62), Cauchy–Schwarz and (3.22), we deduce that

Ex0

[
ˆ̂µε(x)ˆ̂µε(y)1{|Ix|+|Iy |>N}

]
≤

∑
p≥blog2Nc

Ex0

[
ˆ̂µε(x)ˆ̂µε(y)1{2p≤|Ix|+|Iy |<2p+1}

]

. | log η|3 exp
(
− 2

√
| log η|

M log(2 + | log η|)2

)
Ex0

e4
√

1
η
Lx,η(τx,R)

1/2

×
∑

p≥blog2 Nc

(
1 + p

(
η

α

))2p+1 (
Px0

(
|Ix| ≥ 2p−1

)
+ Px0

(
|Iy| ≥ 2p−1

))1/2

. |x− y|−4 exp
(
−c(log | log |x− y||)6

| log |x− y|| N

)
(3.63)

≤ |x− y|−4 exp
(
−c exp

(
c∗
4 (log | log |x− y||)2

))
. 1.

This concludes the proof of (3.19).
Let ˆ̂µ be any subsequential limit of (ˆ̂µε, ε > 0). The claim about the non-atomicity of ˆ̂µ follows

from the following energy estimate which is a consequence of what we did before:

Ex0

[∫
D×D

exp
(
| log |x− y||1/3

)
ˆ̂µ(dx)ˆ̂µ(dy)

]
≤ lim sup

ε→0
Ex0

[∫
D×D

exp
(
| log |x− y||1/3

)
ˆ̂µε(dx)ˆ̂µε(dy)

]
<∞.

For the proof of (3.18), resp. (3.20), we proceed in the exact same way as before. The only
difference is that, instead of (3.61), we need to bound from above

| log ε|ε2E0
rx,η

[
e2Xt1{∀s≤t,−Xs+2s+β′>0}

]
,

resp.
1

2− γ

√
| log ε|εγ2/2E0

rx,η

[
eγXt1{∀s≤t,−Xs+2s+β′>0}

]
.

This is done in (3.35), resp. (3.37), and we conclude the proof of (3.18), resp. (3.20), along the same
lines as above.

3.5.2 Cauchy sequence in L2: proof of Proposition 3.17

This section is devoted to the proof of Proposition 3.17.

Proof of Proposition 3.17. Let A be a Borel set of R2. Let η = e−kη ∈ {e−n, n ≥ 1} be small and
consider

(A×A)η :=
{
(x, y) ∈ A×A : ∀n ≥ 1, D(x, η) ∩ ∂D(y, e−n) = D(y, η) ∩ ∂D(x, e−n) = ∅

}
. (3.64)
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If (x, y) ∈ (A×A)η, the two sequences of circles (∂D(x, e−n), n ≥ 1) and (∂D(y, e−n), n ≥ 1) will not
interact between each other inside D(x, η) and D(y, η). We can write

lim sup
ε,ε′→0

Ex0

[
(ˆ̂µε(A)− ˆ̂µε′(A))2

]
≤ 2 lim sup

ε→0

∫
(A×A)\(A×A)η

Ex0 [ ˆ̂µε(dx)ˆ̂µε(dy)]

+ 2 lim sup
ε,ε′→0

∫
(A×A)η

Ex0 [ ˆ̂µε(x) (ˆ̂µε(y)− ˆ̂µε′(y))] dxdy.

Thanks to (3.19) and because the Lebesgue measure of (A×A)\(A×A)η goes to zero as η → 0, we
know that the first right hand side term goes to zero as η → 0. We are going to show that for a
fixed η the second right hand side term vanishes. (3.19) provides the upper bound required to apply
dominating convergence theorem and we are left to show the pointwise convergence

lim sup
ε,ε′→0

Ex0 [ ˆ̂µε(x) (ˆ̂µε(y)− ˆ̂µε′(y))] = 0 (3.65)

for a fixed (x, y) ∈ (A × A)η. Let η′ = e−kη′ ∈ {e−n, n ≥ 0} be much smaller than η. Let Ny (resp.
N ′y) be the number of excursions from ∂D(y, η/e) to ∂D(y, η) before hitting ∂D (resp. before hitting
∂D(y,R)). For i = 1 . . . N ′y and δ ≤ η/e, we will denote Liy,δ the local time of ∂D(y, δ) accumulated
during the i-th such excursion. Denote by I (resp. I ′) the subset of {1, . . . , Ny} (resp. {1, . . . , N ′y})
corresponding to the excursions that visited ∂D(y, η′). First of all, one can show that there exists
N ≥ 1 depending on η such that

lim sup
ε,ε′→0

Ex0

[
ˆ̂µε(x)ˆ̂µε′(y)1{N ′y>N}

]
≤ η.

This is a direct consequence of the bound (3.63). Let Fx,y be the sigma-algebra generated by
(Lx,e−n(τ), Lx,e−n(τx,R), n ≥ 0), (Ly,e−n(τ), Ly,e−n(τy,R), n = 0 . . . kη − 1), Ny, N

′
y, I, I

′, (Liy,e−n , i /∈
I ′, n = kη . . . kη′) as well as the starting and exiting point of the excursions from ∂D(y, η/e) to ∂D(y, η)
before hitting ∂D(y,R). Denote (e/η)(ry,η/e)2 (resp. (e/η)(r′y,η/e)

2) the local time Ly,η/e(τ) (resp.
Ly,η/e(τy,R)− Ly,η/e(τ)), t = log(η/(eε)), β′ = β − 2 log(η/e), t0 = log(e/η), t1 = log(eη′/η). With a
reasoning similar as what we did in the proof of Proposition 3.16, Lemma 3.20, (3.6) and Lemma 3.29
imply that Ex0

[
ˆ̂µε(x)ˆ̂µε(y)1{N ′y≤N}

]
is equal to

(1± p(η′/η))NEx0

[√
| log ε|ε2

(
−
√

1
ε
Lx,ε(τx,R) + 2| log ε|+ β

)
e2
√

1
ε
Lx,ε(τ)1Gε(x)∩G′ε(x)

× 1Gη/e(y)∩G′
η/e

(y)1{N ′y≤N}E
0
ry,α/e

⊗ E0
r′
y,α/e

[√
| log ε|ε2

(
−
√
X2
t + (X ′t)2 + 2t+ β′

)
e2Xt

× ft(Xs, X
′
s, s ≤ t)

∣∣∣∣∣Fx,y
]]
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where

ft(Xs, X
′
s, s ≤ t) := 1{

∀s≤t1−t0,
√
X2
s+(X′s)2+

∑
i/∈I′

e
η
esLi

y,ηe−s−1≤2s+β′−
√
s+t0

M log(2+t0+s)2

}
× 1{

∀s∈[t1−t0,t],
√
X2
s+(X′s)2≤2s+β′−

√
s+t0

M log(2+t0+s)2

}.
Now, by (3.32), we have

E0
ry,α/e

⊗ E0
r′
y,α/e

[√
| log ε|ε2

(
−
√
X2
t + (X ′t)2 + 2t+ β′

)
e2Xtft(Xs, X

′
s, s ≤ t)1{Xt>0}

∣∣∣∣∣Fx,y
]

=
√
ry,α/e√

2
e2ry,α/e

√
| log ε|√

| log(eε/η)|

(
η

e

)2
(β′ − ry,η/e)E3

β′−ry,α/e ⊗ E
0
r′
y,α/e

[(
1− Xt − β′

2t

)−1/2

× −
√

(2t−Xt + β′)2 + (X ′t)2 + 2t+ β′

Xt
exp

(
−3

8

∫ t

0

ds

(2s−Xs + β′)2

)

× ft(2s−Xs + β′, X ′s, s ≤ t)
∣∣∣∣∣Fx,y

]

which converges as ε→ 0 (and hence t→∞) towards

√
ry,α/e√

2
e2ry,α/e

(
η

e

)2
(β′ − ry,η/e)E3

β′−ry,α/e ⊗ E
0
r′
y,α/e

[
exp

(
−3

8

∫ ∞
0

ds

(2s−Xs + β′)2

)

× f∞(2s−Xs + β′, X ′s, s ≥ 0)
∣∣∣∣∣Fx,y

]
.

This shows that

lim sup
ε,ε′→0

(1 + p(η′/η))−NEx0

[
ˆ̂µε(x)ˆ̂µε(y)1{N ′y≤N}

]
− (1− p(η′/η))−NEx0

[
ˆ̂µε(x)ˆ̂µε′(y)1{N ′y≤N}

]
is at most zero. The only quantity depending on η′ in the above expression is p(η′/η) which goes to
zero as η′ → 0. By letting η′ → 0, we thus obtain

lim sup
ε,ε′→0

Ex0

[
ˆ̂µε(x)ˆ̂µε(y)1{N ′y≤N}

]
− Ex0

[
ˆ̂µε(x)ˆ̂µε′(y)1{N ′y≤N}

]
≤ 0.

This concludes the proof of the fact that (ˆ̂µε(A), ε > 0) is Cauchy in L2.

We move on to the proof of the convergence of ( ˆ̂mε(A), ε > 0) together with the identification of
the limit with

√
2/π ˆ̂µ(A). Since we already know that (ˆ̂µε(A), ε > 0) converges in L2 towards ˆ̂µ(A), it

is enough to show that
lim sup
ε→0

Ex0

[
| ˆ̂mε(A)−

√
2/π ˆ̂µε(A)|2

]
= 0.
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In particular, we don’t need to consider “mixed moments” with ε′ 6= ε. As before, we bound

lim sup
ε→0

Ex0

[
| ˆ̂mε(A)−

√
2/π ˆ̂µε(A)|2

]
≤ lim sup

ε→0

∫
(A×A)\(A×A)η

Ex0 [ ˆ̂mε(dx) ˆ̂mε(dy)] + 2
π
Ex0 [ ˆ̂µε(dx)ˆ̂µε(dy)]

+ lim sup
ε→0

∫
(A×A)η

Ex0

[
ˆ̂mε(dx)

(
ˆ̂mε(dy)−

√
2
π

ˆ̂µε(dy)
)]

+
√

2
π

lim sup
ε→0

∫
(A×A)η

Ex0

[
ˆ̂µε(dx)

(√
2
π

ˆ̂µε(dy)− ˆ̂mε(dy)
)]

.

As before, we only need to care about the two last right hand side terms and thanks to (3.18) and
(3.19), we only need to show the two following pointwise convergences:

lim
ε→0

Ex0

[
ˆ̂mε(dx)

(
ˆ̂mε(dy)−

√
2
π

ˆ̂µε(dy)
)]

= lim
ε→0

Ex0

[
ˆ̂µε(dx)

(√
2
π

ˆ̂µε(dy)− ˆ̂mε(dy)
)]

= 0 (3.66)

where (x, y) ∈ (A×A)η is fixed. In both cases, we employ the same technique as before by decomposing
the Brownian trajectory according to what happens close to the point y and (3.66) follows from the
fact that

E0
ry,α/e

⊗ E0
r′
y,α/e

[
| log ε|ε2e2Xtft(Xs, X

′
s, s ≤ t)

∣∣∣∣∣Fx,y
]

converges to the same limit as

√
2
π
E0
ry,α/e

⊗ E0
r′
y,α/e

[√
| log ε|ε2

(
−
√
X2
t + (X ′t)2 + 2t+ β′

)
e2Xtft(Xs, X

′
s, s ≤ t)

∣∣∣∣∣Fx,y
]
.

Let us justify this last claim. After using (3.32), we see that we only need to show that

lim
t→∞

E3
β′−ry,α/e ⊗ E

0
r′
y,α/e

[√
t

Xt

(
1− Xt − β′

2t

)−1/2

+
(3.67)

× exp
(
−3

8

∫ t

0

ds

(2s−Xs + β′)2

)
ft(2s−Xs + β′, X ′s, s ≤ t)

∣∣∣∣∣Fx,y
]

=
√

2
π

lim
t→∞

E3
β′−ry,α/e ⊗ E

0
r′
y,α/e

[
−
√

(2t−Xt + β′)2 + (X ′t)2 + 2t+ β′

Xt

(
1− Xt − β′

2t

)−1/2

+

× exp
(
−3

8

∫ t

0

ds

(2s−Xs + β′)2

)
ft(2s−Xs + β′, X ′s, s ≤ t)

∣∣∣∣∣Fx,y
]
.

Take t2 > t1 − t0 large. We can bound

∣∣ft2(2s−Xs + β′, X ′s, s ≤ t2)− ft(2s−Xs + β′, X ′s, s ≤ t)
∣∣

≤ 1{
∃s≥t2,Xs<

√
s+t0

M log(2+t0+s)2
or Xs≥2s+β′

} + 1{∃s≥t2,X′s>0}.
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The difference between the expectation on the left hand side of (3.67) and

E3
β′−ry,α/e ⊗ E

0
r′
y,α/e

[√
t

Xt

(
1− Xt − β′

2t

)−1/2

+

× exp
(
−3

8

∫ t

0

ds

(2s−Xs + β′)2

)
ft2(2s−Xs + β′, X ′s, s ≤ t2)

∣∣∣∣∣Fx,y
]

is thus at most

E3
β′−ry,α/e ⊗ E

0
r′
y,α/e

[√
t

Xt

(
1− Xt − β′

2t

)−1/2

+

×
{

1{
∃s≥t2,Xs<

√
s+t0

M log(2+t0+s)2
or Xs≥2s+β′

} + 1{∃s≥t2,X′s>0}

}]
.

Let q1 ∈ (1, 3), q2 ∈ (1, 2) and q3 > 1 be such that 1/q1 + 1/q2 + 1/q3 = 1. By Hölder’s inequality, we
can bound the above expression by

E3
β′−ry,α/e

[
tq1/2

Xq1
t

]1/q1
E3
β′−ry,α/e

[(
1− Xt − β′

2t

)−q2/2
+

]1/q2 {
P0
r′
y,α/e

(
∃s ≥ t2, X ′s > 0

)

+ P3
β′−ry,α/e

(
∃s ≥ t2, Xs <

√
s+ t0

M log(2 + t0 + s)2 or Xs ≥ 2s+ β′
)}1/q3

.

The first two expectations are bounded by a universal constant by Lemma 3.23 Points 3 and 4. The
last term containing the two probabilities goes to zero as t2 →∞. Similarly, we can replace∫ t

0

ds

(2s−Xs + β′)2 by
∫ t2

0

ds

(2s−Xs + β′)2

and (
1− Xt − β′

2t

)−1/2

+
by 1.

We have shown that the left hand side term of (3.67) is equal to ot2→∞(1) plus

E3
β′−ry,α/e ⊗ E

0
r′
y,α/e

[√
t

Xt
exp

(
−3

8

∫ t2

0

ds

(2s−Xs + β′)2

)
ft2(2s−Xs + β′, X ′s, s ≤ t2)

∣∣∣∣∣Fx,y
]
.

By conditioning up to t2 and then by using Lemma 3.23 point 2, we see that the above expectation
converges as t→∞ to

√
2
π
E3
β′−ry,α/e ⊗ E

0
r′
y,α/e

[
exp

(
−3

8

∫ t2

0

ds

(2s−Xs + β′)2

)
ft2(2s−Xs + β′, X ′s, s ≤ t2)

∣∣∣∣∣Fx,y
]
.

With a similar reasoning as above, one can show that the expectation on the right hand side of (3.67)
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converges as t→∞ to ot2→∞(1) plus

E3
β′−ry,α/e ⊗ E

0
r′
y,α/e

[
exp

(
−3

8

∫ t2

0

ds

(2s−Xs + β′)2

)
ft2(2s−Xs + β′, X ′s, s ≤ t2)

∣∣∣∣∣Fx,y
]
.

We have thus shown the left and right hand sides of (3.67) differ by at most some ot2→∞(1). Since
they do not depend on t2, we obtain the claim (3.67) by letting t2 →∞. This concludes the fact that
( ˆ̂mε(A), ε > 0) converges in L2 towards

√
2
π

ˆ̂µ(A).

The fact that for all γ ∈ (1, 2), ( ˆ̂mγ
ε (A), ε < εγ) is a Cauchy sequence in L2 follows along lines that

are very similar to the proof of the fact that (ˆ̂µε(A), ε > 0) is a Cauchy sequence in L2. For this reason
we omit the details and we now turn to the proof of the convergence of ((2− γ)−1 ˆ̂mγ(A), γ ∈ (1, 2))
towards 2ˆ̂µ(A). Here, we do not restrict ourselves to the sequence (γn, n ≥ 1) as stated in Proposition
3.17 to ease notations. We hope the reader will forgive us for this lack of rigour. By Fatou’s lemma,

lim sup
γ→2

Ex0

[∣∣∣∣2ˆ̂µ(A)− 1
2− γ

ˆ̂mγ(A)
∣∣∣∣2
]
≤ lim sup

γ→2
lim sup
ε→0

Ex0

[∣∣∣∣2ˆ̂µε(A)− 1
2− γ

ˆ̂mγ
ε (A)

∣∣∣∣2
]

and we aim to show that the above right hand side term vanishes. As before and thanks to (3.19) and
(3.20), we only need to show the following two pointwise convergences

lim sup
γ→2

lim sup
ε→0

1
2− γEx0

[
ˆ̂mγ
ε (dx)

( 1
2− γ

ˆ̂mγ
ε (dy)− 2ˆ̂µε(dy)

)]
= 0

and

lim sup
γ→2

lim sup
ε→0

Ex0

[
ˆ̂µε(dx)

( 1
2− γ

ˆ̂mγ
ε (dy)− 2ˆ̂µε(dy)

)]
= 0

where (x, y) ∈ (A×A)η is fixed. In both cases, this follows from the fact that

1
2− γE

0
ry,α/e

⊗ E0
r′
y,α/e

[√
| log ε|εγ2/2eγXtft(Xs, X

′
s, s ≤ t)

∣∣∣∣∣Fx,y
]

(3.68)

converges as ε→ 0 and then γ → 2 to the same limit as

2E0
ry,α/e

⊗ E0
r′
y,α/e

[√
| log ε|ε2

(
−
√
X2
t + (X ′t)2 + 2t+ β′

)
e2Xtft(Xs, X

′
s, s ≤ t)

∣∣∣∣∣Fx,y
]
. (3.69)

Let us justify this claim. By (3.30), (3.68) is equal to

1
2− γ

√
ry,α/ee

γry,α/e

√
| log ε|√

| log(eε/η)|

(
η

e

)γ2/2
Ery,α/e ⊗ E

0
r′
y,α/e

[(
t

Xt + γt

)1/2

× exp
(
−3

8

∫ t

0

ds

(Xs + γs)2

)
ft(Xs + γs,X ′s, s ≤ t)

∣∣∣∣∣Fx,y
]
.
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As before, let t2 > t1 − t0 be large. One can show in a similar manner as what we did above that

1
2− γEry,α/e ⊗ E

0
r′
y,α/e

[(
t

Xt + γt

)1/2
exp

(
−3

8

∫ t

0

ds

(Xs + γs)2

)
ft(Xs + γs,X ′s, s ≤ t)

]

= ot2→∞(1) + 1
2− γEry,α/e ⊗ E

0
r′
y,α/e

[(
t2

Xt2 + γt2

)1/2
exp

(
−3

8

∫ t2

0

ds

(Xs + γs)2

)

× ft2(Xs + γs,X ′s, s ≤ t2)1{∀s∈[t2,t],Xs<(2−γ)s+β′}

∣∣∣∣∣Fx,y
]
.

Since (see [Res92, Proposition 6.8.1] for instance)

lim
γ→2

lim
t→∞

1
2− γPXt2

(
∀s ≤ t,Xs < (2− γ)s+ β′ + (2− γ)t2

)
= lim

γ→2

1
2− γ

(
1− e−2(2−γ)(β′−Xt2 )

)
= 2(β′ −Xt2),

this shows that the liminf and limsup of (3.68) as ε→ 0 and then γ → 2 are equal to ot2→∞(1) plus

2√ry,α/ee2ry,α/e
(
η

e

)2
Ery,α/e ⊗ E

0
r′
y,α/e

[(
t2

Xt2 + γt2

)1/2

× exp
(
−3

8

∫ t2

0

ds

(Xs + 2s)2

)
(β′ −Xt2)ft2(Xs + 2s,X ′s, s ≤ t2)

∣∣∣∣∣Fx,y
]
.

By using (3.30) in the other direction, we see that the above term converges as t2 →∞ towards

2(η/e)2 lim
t2→∞

E0
ry,α/e

⊗ E0
r′
y,α/e

[
√
t2e
−t2 (−Xt2 + 2t2 + β′

)
e2Xt2ft2(Xs, X

′
s, s ≤ t2)

∣∣∣∣∣Fx,y
]

= 2 lim
ε→0

E0
ry,α/e

⊗ E0
r′
y,α/e

[√
| log ε|ε2

(
−
√
X2
t + (X ′t)2 + 2t+ β′

)
e2Xtft(Xs, X

′
s, s ≤ t)

∣∣∣∣∣Fx,y
]

recalling that t = log( ηeε) and since X ′ will be trapped by zero. We have shown that (3.68) converges
as ε→ 0 and then γ → 2 to the same limit as (3.69) as wanted. This concludes the proof of the fact
that (2− γ)−1 ˆ̂mγ

ε (A) converges in L2 as ε→ 0 and then γ → 2 towards 2ˆ̂µ(A).

Appendix 3.A Process of Bessel bridges: proof of Lemma 3.13

We prove Lemma 3.13 for completeness. It is a direct consequence of the following:

Lemma 3.30. For all δ ∈ {e−n, n ≥ 0}, let x ∈ D 7→ fx,δ ∈ [0,∞) be continuous functions. By
enlarging the probability space we are working on if necessary, we can construct a random field
(hx,δ, x ∈ D, δ ∈ (0, 1]) that is independent of (Bt, t ≤ τ) and such that

• for all x ∈ D, and n ≥ 0, (hx,e−t , t ∈ [n, n+ 1]) has the law of a zero-dimensional Bessel bridge
from fx,e−n to fx,e−n−1;
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• for all δ0 ∈ (0, 1] and x, y ∈ D, (hx,δ, δ ≤ δ0) and (hy,δ, δ ≤ δ0) are independent as soon as
|x− y| ≥ 2δ0;

• For all n ≥ 0, (hx,e−t , x ∈ D, t ∈ [n, n+ 1]) and (hx,e−t , x ∈ D, t /∈ [n, n+ 1]) are independent;

• for all n ≥ 0 and z ∈ e−n−10Z2 ∩ D, (hx,δ, x ∈ D,
⌊
en+10x

⌋
= en+10z, e−n−1 ≤ δ ≤ e−n) is

continuous.

Proof of Lemma 3.30. We start by explaining how to construct a continuous process (bu,vt , u, v ≥ 0, 0 ≤
t ≤ 1) such that for all u, v ≥ 0, (bu,vt , 0 ≤ t ≤ 1) has the law of a zero-dimensional Bessel bridge from u

to v. Let (b1→0,d=0
t , 0 ≤ t ≤ 1), (b0→1,d=0

t , 0 ≤ t ≤ 1) and (b0→0,d=4n
t , 0 ≤ t ≤ 1), n ≥ 1, be independent

Bessel bridges with starting and ending points and dimensions written in superscript. Since 0 is a
trap for zero-dimensional Bessel process, (b0→1,d=0

t , 0 ≤ t ≤ 1) is defined as the time reversal of a
zero-dimensional Bessel bridge from 1 to 0. For w ≥ 0, let (αw,n, n ≥ 1) be a sequence of random
variables such that for all n ≥ 1,

P (αw,n = 1,∀k 6= n, αw,k = 0) = 1
n! (w/2)2n−1Γ(n)I1(w)

and
P (∀k ≥ 1, αw,k = 0) = 1−

∑
n≥1

P (αw,n = 1, ∀k 6= n, αw,k = 0) .

Here I1 is a modified Bessel function of the first kind and Γ is the Gamma function. By using a single
uniform random variable on [0, 1], it is easy to build all the variables αw,n, w ≥ 0, n ≥ 1 on the same
probability space such that they are independent from the Bessel bridges above and such that for all
n ≥ 1, w 7→ αw,n is continuous. We now define for all u, v ≥ 0, and t ∈ [0, 1],

bu,vt = ub1→0,d=0
t + vb0→1,d=0

t +
∑
n≥1

α√uv,nb
0→0,d=4n
t .

By construction, (bu,vt , u, v ≥ 0, 0 ≤ t ≤ 1) is a continuous process. Moreover, by [PY82, Theorem
(5.8)], for all u, v ≥ 0, bu,v has the law of a zero-dimensional Bessel bridge from u to v over the time
interval [0, 1] as desired.

We now explain how to construct the process (hx,δ, x ∈ D, δ ∈ (0, 1]). For n ≥ 0 and x ∈ D,
define xn := e−n−10 ⌊en+10x

⌋
∈ e−n−10Z2. For all n ≥ 0 and z ∈ e−n−10Z2 ∩D, consider independent

continuous processes (hn,zx,δ , x ∈ D,xn = z, e−n−1 ≤ δ ≤ e−n) such that for all x ∈ D with xn = z,
(hn,zx,e−t , n ≤ t ≤ n + 1) has the law of a zero-dimensional Bessel bridge from fx,e−n to fx,e−n−1 .
This countable collection of independent continuous processes can be constructed thanks to the first
step above. We now define for all x ∈ D and δ ∈ (0, 1], hx,δ = hn,xnx,δ where n ≥ 0 is such that
e−n−1 < δ ≤ e−n. By construction, the process h satisfies the desired properties.
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Appendix 3.B Semi-continuity of subcritical measures: proof of
Proposition 3.3

In this section we explain how we obtain Proposition 3.3. We will only sketch the proof since it follows
from [Jeg20a] as well as from arguments having similar flavour as what we already did in this paper.

Proof. We will first truncate the measure to make it bounded in L2. We will then show that the
truncated version is continuous in γ by Kolmogorov’s continuity theorem and by L2 computations.
The statement on the non-truncated measures will then follow.

Let 0 < γ− < γ+ < 2. We are going to study the regularity of γ ∈ [γ−, γ+] 7→ mγ . Recall Notation
3.9 and the definition of the process (hx,δ, x ∈ D, δ ∈ (0, 1]). Fix γ̄ ∈ (γ+, 2) very close to γ+. For
β > 0 large, define for all ε = e−k and x ∈ D at distance at least ε from x0, the good event

Gε(x) :=
{
∀s ∈ [kx, k], hx,e−s ≤ γ̄s+ β

}
and the modified measures

m̄γ
ε (dx, β) = 1Gε(x)m

γ
ε (dx).

Since γ̄ > γ+, one can show that this modification does affect the measures in the L1 sense:

lim
β→∞

sup
γ∈[γ−,γ+]

lim sup
ε→0

Ex0 [mγ
ε (D)− m̄γ

ε (D,β)] = 0. (3.70)

Moreover, if γ̄ is close enough to γ+, the modified measures are bounded in L2 (consequence of [Jeg20a,
Proposition 4.2]) and we can show with a reasoning similar to what we did in Section 3.5.2 (this does
not follow completely from [Jeg20a] since the good events that we define here are slightly different
from the ones considered in [Jeg20a]) that for all Borel set A and all γ ∈ [γ−, γ+], (m̄γ

ε (A, β), ε > 0) is
a Cauchy sequence in L2. We will denote m̄γ(A, β) the limiting random variable. We can further show
that for all Borel set A and for all γ1, γ2 ∈ [γ−, γ+],

lim sup
ε→0

Ex0

[
(m̄γ1

ε (A, β)− m̄γ2
ε (A, β))2

]
≤ C(γ1 − γ2)2 (3.71)

for some C > 0 possibly depending on β, γ−, γ+, γ̄. This follows on the one hand from a reasoning
similar to what we have already done to transfer computations from local times to zero-dimensional
Bessel process, and on the other hand from the following estimate which is a consequence of (3.30):
for all K > 0, there exists C > 0 why may depend on K,β, γ−, γ+, γ̄ such that

lim sup
t→∞

sup
γ1,γ2∈[γ−,γ+]

sup
r∈[0,K]

√
t

∣∣∣∣∣E0
r

[(
e−

γ2
1
2 teγ1Xt − e−

γ2
2
2 teγ2Xt

)
1{∀s≤t,Xs≤γ̄s+β}

]∣∣∣∣∣ ≤ C(γ1 − γ2).

Let P := {[a, b)× [c, d) : a, b, c, d ∈ Q}. P is a countable pi-system generating the Borel sigma-algebra
on R2. From (3.71) and Kolmogorov’s continuity theorem, we deduce that we can build the variables
m̄γ(A, β) simultaneously for all γ ∈ [γ−, γ+], β ∈ N and A ∈ P in such a way that for all β ∈ N
and A ∈ P, γ ∈ [γ−, γ+] 7→ m̄γ(A, β) is continuous. Let m̄γ(A,∞) be the nondecreasing limit of

116 Contribution to multiplicative chaos theory



3.B. SEMI-CONTINUITY OF SUBCRITICAL MEASURES: PROOF OF PROPOSITION 3.3

(m̄γ(A, β), β ≥ 1). A nondecreasing sequence of continuous functions being lower-semicontinous, we
have shown that we can build on the same probability space the variables m̄γ(A,∞), γ ∈ [γ−, γ+], A ∈ P
such that for all A ∈ P, γ ∈ [γ−, γ+] 7→ m̄γ(A,∞) is lower-semicontinuous. For all γ ∈ [γ−, γ+], m̄γ

defines a Borel measure. By (3.70), for all γ ∈ [γ−, γ+], A ∈ P , mγ(A) = m̄γ(A,∞) Px0-a.s. Concluding
the proof of Proposition 3.3 is now routine.
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Chapter 4

Multiplicative chaos of the Brownian
loop soup

We construct a measure on the thick points of a Brownian loop soup in a bounded domain D of
the plane with given intensity θ > 0, which is formally obtained by exponentiating the square root
of its occupation field. The measure is constructed via a regularisation procedure, in which loops
are killed at a fix rate, allowing us to make use of the Brownian multiplicative chaos measures
previously considered in [BBK94, AHS20, Jeg20a]. At the critical intensity θ = 1/2, it is shown
that this measure coincides with the hyperbolic cosine of the Gaussian free field, which is closely
related to Liouville measure. This allows us to draw several conclusions which elucidate connections
between Brownian multiplicative chaos, Gaussian free field and Liouville measure. For instance, it is
shown that Liouville-typical points are of infinite loop multiplicity, with the relative contribution of
each loop to the overall thickness of the point being described by the Poisson–Dirichlet distribution
with parameter θ = 1/2. Conversely, the Brownian chaos associated to each loop describes its
microscopic contribution to Liouville measure. Along the way, our proof reveals a surprising exact
integrability of the multiplicative chaos associated to a killed Brownian loop soup. We also obtain
some estimates on the loop soup which may be of independent interest.

4.1 Introduction and main results

The two-dimensional Gaussian free field (GFF) and its associated Gaussian multiplicative chaos
(sometimes called Liouville measure) have been in recent years at the heart of some extraordinary
developments, in particular in connection with the study of Liouville quantum gravity. Formally, the
multiplicative chaos associated to a field h in a domain D ⊂ R2 is a measure of the form

µγ(dz) = lim
ε→0

εγ
2/2eγhε(z)dz (4.1)

where γ ∈ R is a parameter, h is typically a logarithmically correlated field, and hε denotes some
regularisation of h at scale ε. The convergence of this procedure (as the regularisation scale ε converges
to 0) is by no means obvious; in the case where h is in addition assumed to be Gaussian, this is precisely
the purpose of Gaussian multiplicative chaos theory, initially introduced by Kahane [Kah85] in the
1980s to model turbulence (following ideas of Kolmogorov and Mandelbrot) and further considerably
developed in the last decade [RV10, DS11, RV11, Sha16, Ber17]. Gaussian multiplicative chaos is
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a powerful tool to study properties of the underlying field h, particulary in connection with its
extreme values. By now, Gaussian multiplicative chaos is a fundamental object in its own right
which describes scaling limits arising naturally in many different contexts, including random matrices
[FK14, Web15, NSW18, LOS18, BWW18], the Riemann zeta function [SW20], and stochastic volatility
models in finance [BDM01] (see also [DRV12]); see the surveys [RV14], [Pow20b] and the book in
preparation [BP21] for more context and references.

More recently, it has been shown that an analogous theory can be developed in the case where h
describes (at least formally) the square root of the local time (i.e., occupation field) of a Brownian
trajectory; see [BBK94, AHS20, Jeg20a, Jeg21, Jeg19]. The construction of the associated multiplicative
chaos, a measure which we will denote in the following byM℘ and which is now termed Brownian
multiplicative chaos (following the terminology of [Jeg20a]), is one of the first examples (together
with [Jun18] which studies random Fourier series with i.i.d. coefficients) of a multiplicative chaos in
which the field h is not Gaussian or approximately Gaussian. It is, however, logarithmically correlated
as will be clear from the discussion below. More generally, as shown in [Jeg19], given a finite number of
independent Brownian trajectories ℘1, . . . , ℘n, it is possible to define a multiplicative chaos associated
to the square root of the combined occupation field of ℘1, . . . , ℘n; the corresponding measure (let us
denote it byM℘1,...,℘n in this introduction) can be thought of as a uniform measure on points that are
thick for the combined local times of all paths. A nontrivial fact proved in [Jeg19] is that, sampling
from this measure yields a point of multiplicity k (i.e., is visited by exactly k paths) with positive
probability for each 1 ≤ k ≤ n. More precisely, one can make sense of a measureM℘1∩...∩℘n which is
the restriction ofM℘1,...,℘n to points on the intersection of all trajectories; those two types of measures
are related by the a.s. identity

M℘1,...,℘n =
n∑
k=1

∑
{℘̃1,...,℘̃k}

M℘̃1∩···∩℘̃k (4.2)

where the second sum runs over all the possible choices of collections {℘̃1, . . . , ℘̃k} ⊂ {℘1, . . . , ℘n} of
pairwise distinct trajectories. This identity corresponds to choosing the trajectories which actually
contribute to the overall thickness at a given point x. (However we caution the reader that the identity
above is not entirely trivial because the measuresM℘̃1∩···∩℘̃k do not require the remaining paths in
{℘1, . . . , ℘n} \ {℘̃1, . . . , ℘̃k} to avoid this point).

Another, very different approach to the Gaussian free field is provided by the Brownian loop
soup, first introduced by Lawler and Werner [LW04]. This consists in a Poisson point processes LθD of
Brownian loops remaining in a domain D, where the intensity measure is of the form θµloop

D . Here µloop
D

is a certain infinite measure on unrooted loops (see (4.22) for a definition), and the intensity θ > 0
describes roughly speaking the local density of loops. The Brownian loop soup is a fundamental object
closely connected to other conformally invariant random processes such as SLE, the conformal loop
ensemble CLE, and the Gaussian free field. In particular, the Gaussian free field and the Brownian
loop soup with critical intensity parameter θ = 1/2 can be coupled in such a way that they are related
via Le Jan’s isomorphism ([LJ10, LJ11]), i.e., the occupation field of the loop soup (suitably recentered)
is given by half of the square of the Gaussian free field (also suitably recentered). See Section 4.2 for
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more references on Brownian loop soup and in particular Theorem 4.18 for Le Jan’s isomorphism.

The main purpose of this paper is to show how these two a priori orthogonal points of view on
the Gaussian free field are in fact deeply interwoven. To do so we first extend the construction of
[AHS20, Jeg20a] to a finite number of loops, or in fact even to an infinite number of loops but with
finite “density”, such as the loops of a Brownian loop soup of fixed intensity θ > 0 that are killed, if
each loop is killed independently at constant rate K > 0. This yields a measureMK

a which, informally
speaking, can be thought of as the uniform measure on the thick points of the occupation field of
this “killed” loop soup. Viewing this killing as an ultraviolet regularisation of the loop soup which
converges to the entire loop soup as K →∞, we show that, after suitable normalisation, the measures
MK

a converge to a limitMa which may be thought of as the multiplicative chaos associated to
the loop soup of intensity θ > 0 and is the main object of interest in this article.

We then specify this construction to the critical intensity θ = 1/2, and show that this measure
coincides with the hyperbolic cosine of the GFF, which is closely related to Liouville measure (essentially,
it is an unsigned version of it). This identification may be considered the second main contribution of
this paper. Together, these two results allow us to elucidate multiple connections between Gaussian
free field, Brownian loop soup and Liouville measure. For instance, we are able to describe precisely the
structure of Brownian loops in the vicinity of a Liouville typical point. Conversely, this result allows us
to view the Brownian multiplicative chaos of [BBK94, AHS20, Jeg20a] as describing the microscopic
contribution of each loop to Liouville measure (or, more precisely, the hyperbolic cosine of the GFF).

4.1.1 Construction of Brownian loop soup multiplicative chaos

Let a ∈ (0, 2) and θ > 0 be respectively a thickness parameter and an intensity parameter. Let D ⊂ C
be an open bounded simply connected domain and let LθD be a Brownian loop soup in D with intensity
θµloop

D . As mentioned above, the first aim of this article is to build the “uniform measure” Ma on
a-thick points of LθD. We need to start by recalling that for any Brownian-like trajectory ℘, there exists
a random Borel measureM℘

a supported on a-thick points of ℘ [BBK94, AHS20, Jeg20a]. This measure
is now known as Brownian multiplicative chaos and can be constructed, for instance, by exponentiating
the square root of the local times of ℘. Recall also (see Section 4.2.3 for precise definitions) that for any
finite number of independent Brownian-like trajectories ℘1, . . . , ℘n, there exists a measureM℘1∩···∩℘n

a

supported on a-thick points that have been generated by the interaction of the n trajectories [Jeg19].
To build the “uniform measure” on a-thick points of the loop soup, we start by thinning the set of

loops that we consider by killing each loop independently of each other at some rate K > 0, i.e. each
given loop ℘ ∈ LθD is killed with probability 1− e−KT (℘) where T (℘) denotes the duration of the loop
℘. We denote by LθD(K) the set of loops that have been killed (note that this differs from the perhaps
more standard massive loop soup). Obviously, LθD(K)→ LθD as K →∞ in the sense that LθD(K) is
an increasing collection in K > 0 and

⋃
K>0 LθD(K) = LθD. Consider

MK
a :=

∑
n≥1

1
n!

∑
℘1,...,℘n∈LθD(K)
∀i 6=j,℘i 6=℘j

M℘1∩···∩℘n
a (4.3)
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the measure on a-thick points that have been entirely created by loops in LθD(K). This definition is
justified by (4.2). Note that the factor 1

n! ensures that we count each subset {℘1, . . . , ℘n} of loops only
once. It is not a priori obvious that the left hand side of (4.3) is a finite measure; roughly speaking
this comes from the fact that the collection of loops LθD(K) has “finite density” for each K <∞ (the
number of loops in LθD(K) of diameter roughly 2−j close to a point x does not depend on j, which
translates into a finite expected total occupation time for LθD(K); it is therefore not surprising that the
corresponding thick point measureMK

a is finite, see e.g. (4.46) for a computation of the expectation
which implies a.s. finiteness).

The first result is the construction of the measure Ma, the multiplicative chaos defined by the
Brownian loop soup, and which is the main object of this paper.

Theorem 4.1. Let θ > 0 and a ∈ (0, 2). Then as K →∞, the convergence

(logK)−θMK
a →Ma

takes place in probability for the topology of weak convergence, where the right hand side is defined by
this convergence. Moreover, the limitMa satisfies the following properties.

1. Ma is non-degenerate: for all open set A ⊂ D,Ma(A) ∈ (0,∞) a.s. Furthermore, denoting by
CR(z,D) the conformal radius of D seen from a point z ∈ D, we have

E [Ma(dz)] = 1
2θa1−θΓ(θ) CR(z,D)adz. (4.4)

2. Measurability: Ma is independent of the labels underlying the definition of the killed loops and is
therefore measurable with respect to the loop soup. More precisely,Ma is σ(< LθD >)-measurable
(see (4.30)).

3. Conformal covariance: if ψ : D → D̃ is a conformal map between two bounded simply connected
domains, then (

Ma,D ◦ ψ−1
)

(dz̃) (d)=
∣∣∣(ψ−1)′(z̃)

∣∣∣2+a
M

a,D̃
(dz̃).

4. The carrying dimension ofMa
1 is almost surely equal to 2− a.

Remark 4.2. We will define in (4.11) below another, simpler approximation toMa (essentially just a
uniform measure on the thick points of a discrete loop rather, instead ofMK

a ). The corresponding
convergence result is stated in Theorem 4.12.

Remark 4.3. We also show that for all Borel sets A,B ⊂ C, limK→∞(logK)−2θE
[
MK

a (A)MK
a (B)

]
is

given by

1
4θa1−θΓ(θ)

∫
A

dz
∫
B

dz′CR(z,D)a CR(z′, D)a(2πGD(z, z′))1−θIθ−1
(
4πaGD(z, z′)

)
, (4.5)

1Recall that the carrying dimension of a measure µ is given by the infimum of d > 0 such that there exists a Borel set
A with Hausdorff dimension d and such that µ(A) > 0.
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where Iθ−1 is a modified Bessel function of the first kind whose definition is recalled in (4.223) and
GD is Green’s function in D (4.13). See Corollary 4.42. In particular, for all open set A ⊂ D,
limK→∞(logK)−2θE

[
MK

a (A)2
]
<∞ if, and only if, a < 1. It should be possible to show that one can

exchange the expectation and the limit (in the L2-phase {a ∈ (0, 1)}, this exchange is straightforward),
and this would show that E [Ma(A)Ma(B)] is given by (4.5). Because of the length of the paper, we
preferred to not include a proof of this statement.

Remark 4.4. In Theorem 4.55, we give a stronger form of conformal covariance which concerns not
only the measureMa but the couple (LθD,Ma).

4.1.2 Multiplicative chaos and hyperbolic cosine of Gaussian free field

We now turn to the connections between the multiplicative chaos measure Ma associated to the
Brownian loop soup and Liouville measure. This will require choosing the intensity of the loop soup to
be the critical value θ = 1/2. This value is already known to be special for two distinct (but related)
reasons. On the one hand, this is the value such that the (renormalised) occupation field of the loop
soup corresponds to the (Wick) square of the Gaussian free field (i.e., Le Jan’s isomorphism holds,
see Theorem 4.18 in the discrete and Remark 4.19 for the continuum case of interest here). On the
other hand, this is also the critical value for the percolation of connected components of the loop soup
clusters, as follows from the celebrated work of Sheffield and Werner [SW12]. We show here that in
addition, still at θ = 1/2, the associated multiplicative chaos corresponds to the hyperbolic cosine of
the Gaussian free field. Formally, this is the measure of the form

2 cosh(γh)dz = (eγh + e−γh)dz, (4.6)

where h =
√

2πϕ is a Gaussian free field, and where a and γ are related by the correspondence:

γ =
√

2a; a = γ2

2 .

In other words, the hyperbolic cosine of h is defined in (4.6) as the sum (up to an appropriate
multiplicative factor specified below) of the Liouville measures (4.1) with parameters γ and −γ
respectively (as constructed e.g. in [DS11], [Ber17]). Note that formally, our multiplicative chaos
measureMa is the exponential of the square root of the (renormalised) occupation field :` : of the loop
soup Lθ=1/2

D , so it is natural to expect in view of Le Jan’s isomorphism, thatMa(dz) = eγ|h|dz, which
on first inspection does not immediately coincide with the hyperbolic cosine of h. However, since h is
not a continuous function, only points where h is either very negative or very positive contribute to
eγ|h|dz, and it follows that for such points we may indeed write eγ|h| = eγh + e−γh. The theorem below
makes this connection precise.

Let h =
√

2πϕ (where as before ϕ is the Gaussian free field inD with zero-boundary conditions whose
covariance function is given by E [ϕ(z)ϕ(w)] = GD(z, w)). Thus with these notations, E(h(z)h(w)) =
2πGD(z, w) ∼ − log |w − z| as w − z → 0, which is consistent with the choice of normalisation in
Liouville quantum gravity literature (see e.g. [WP21] and [BP21] for an introduction to the Gaussian
free field and to Liouville quantum gravity).
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Theorem 4.5. Let θ = 1/2, a ∈ (0, 2) and γ =
√

2a. ThenMa has the same law as

1√
2πa

cosh (γh) = 1
2
√

2πa

(
eγh + e−γh

)
,

where e±γh is the Liouville measure with parameter ±γ associated with h. More precisely, there is a
coupling (ϕ,L1/2

D ,Ma) between a Gaussian free field ϕ, a Brownian loop soup with critical intensity
θ = 1/2, and a measureMa in which the three components are pairwise related as follows:

• Ma is the multiplicative chaos measure associated to L1/2
D as in Theorem 4.1;

• Ma is the hyperbolic cosine of h =
√

2πϕ, i.e.,Ma = 1√
2πa cosh (γh);

• ϕ and L1/2
D satisfy Le Jan’s isomorphism, in which the (renormalised) occupation field :`(L1/2

D ) :
of the loop soup L1/2

D is equal to the (Wick) square of the Gaussian free field ϕ. That is,
1
2 :ϕ2 : = :`(L1/2

D ) : (see Remark 4.19).

Theorem 4.5 gives a new perspective on Liouville measures by embedding them, or more precisely
the hyperbolic cosine of the GFF, in a two-dimensional family of measures indexed by θ > 0 and
γ ∈ (0, 2).

Remark 4.6. One informal consequence of Theorem 4.5 is that it allows us to describe the contribution
of each loop to Liouville measure (or more precisely to the hyperbolic cosine of the GFF): namely,
each loop contributes a macroscopic amount (as we will see in Theorem 4.8), given by its Brownian
multiplicative chaos, as defined in [Jeg20a] and [AHS20] (see Section 4.A for the extension to Brownian
loops).

Remark 4.7. We caution the reader that the relation between the GFF ϕ and the loop soup Lθ=1/2
D as

stated here (namely, Le Jan’s isomorphism) is not sufficient to determine uniquely the joint law of
(ϕ,Lθ=1/2

D ).

4.1.3 Brownian loops at a typical thick point

Theorem 4.5 raises a number of questions concerning the relations between Brownian loop soup and
multiplicative chaos (i.e., hyperbolic cosine of the Gaussian free field or ultimately Liouville measure).
Chief among those are questions of the following nature: sample a point z according to the multiplicative
chaos measure Ma. What does the loop soup look like in the neighbourhood of such points? In
other words (for the value θ = 1/2) what does the Brownian loop soup look like in the vicinity of a
Liouville-typical point? Obviously we know that the point z is almost surely γ-thick from the point of
view of Liouville measure (see e.g. Theorem 2.4 in [BP21]) so we expect the point z to also have an
atypically high local time, and so is also “thick” for the loop soup (this will be formulated precisely
below in Theorem 4.11). How do loops combine to create such a thick local time? Does the thickness
come from a single loop which visits z very often, or from an infinite number of loops that touch z,
with each loop having a typical occupation field (so z is not “thick” with respect to any single loop)?
As we see, the answer turns out to be an intermediate scenario. More precisely, we show below that
Liouville-typical points are of infinite loop multiplicity, with the relative contribution of each loop to
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the overall thickness of the point being described by the Poisson—Dirichlet distribution with parameter
θ = 1/2 (see e.g. [ABT03] for a definition and some properties of Poisson–Dirichlet distribution).

In fact, the theorem below will hold without restriction over θ > 0, and the parameter of the
corresponding Poisson–Dirichlet distribution will precisely be the intensity θ of the loop soup. The
behaviour above is encapsulated by the following theorem, which gives a precise description of the
so-called “rooted measure”. To formulate the result, we will need to decompose the loops touching a
point z into excursions (analogous to Itô excursions in one dimension). Let us say that a function of
LθD is admissible if it is invariant under reordering these excursions (see Definition 4.15 for a more
precise definition; see also Section 4.2.1 for details concerning the topology on the set of collections of
loops).

Let {a1, a2, . . . } be a random partition of [0, a] distributed according to a Poisson–Dirichlet
distribution with parameter θ. Conditionally on this partition, let Ξzai , i ≥ 1, be independent loops with
the following distribution: for all i ≥ 1, Ξzai is the concatenation of the loops in a Poisson point process
with intensity 2πaiµz,zD . Here, µz,zD is an infinite measure on loops that go through z (see (4.15)).

Theorem 4.8. Let θ > 0 and a ∈ (0, 2). For any nonnegative measurable admissible function F ,

E
[∫
D
F (z,LθD)Ma(dz)

]
= 1

2θa1−θΓ(θ)

∫
D
E
[
F (z,LθD ∪ {Ξzai , i ≥ 1})

]
CR(z,D)adz (4.7)

where the two collections of loops LθD and {Ξzai , i ≥ 1} appearing in the right hand side term are
independent.

Moreover, the joint law of the couple (LθD,Ma) is characterised by

• LθD has the law of a Brownian loop soup in D with intensity θ;

• Ma is measurable w.r.t. the equivalence class < LθD > (see (4.30));

• (4.7) is satisfied for any nonnegative measurable admissible function F .

Remark 4.9. Recall that, by Girsanov’s theorem, shifting the probability measure by the hyperbolic
cosine of the GFF amounts to adding a logarithmic singularity with strength γ to the GFF. More
precisely, and using the notations of Theorem 4.5, one has for any bounded measurable function F ,

E
[∫
D
F (z, h) cosh(γh(z))dz

]
=
∫
D

CR(z,D)γ2/2E [F (z, h+ 2πγσGD(z, ·))] dz,

where σ is a spin independent of h taking values +1 or −1 with equal probability 1/2. Theorem 4.8
above can be seen as explaining the way the Brownian loop soup creates this logarithmic singularity at
z. Since here it is easy to check that cosh(γh(z))dz is measurable with respect to h, the above identity
in fact characterises the joint law of (h, cosh(γh)) (see [Sha16] or (3.30) in [BP21]).

The above result, in conjunction with Theorem 4.5, immediately implies (in the case θ = 1/2) some
notable consequences in connection with Le Jan’s isomorphism. We state below a simple instance of
such a statement. The isomorphism below is closely related to (and in fact could also be deduced from)
the isomorphism in [ALS20, Proposition 3.9] where the occupation field of a Poisson point process of
boundary-to-boundary excursions is added.
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Corollary 4.10. Let z ∈ D and let Ξza be a loop as in Theorem 4.8 independent of the Brownian loop
soup L1/2

D with critical intensity θ = 1/2. Let :`(L1/2
D ) : denote the (renormalised) occupation field of

L1/2
D , and let `(Ξza) denote the occupation measure of Ξza (which is well defined as a distribution in D,

without any centering). Then

:`(L1/2
D ) :+`(Ξza)

(d)= 1
2 :ϕ2 :+γ

√
2πGD(z, ·)ϕ+ γ2

2 2πGD(z, ·)2

where, as before, γ =
√

2a. In particular, the expectation of `(Ξza) is given by a2πGD(z, ·)2.

4.1.4 Dimension of the set of thick points

The study of the multifractal behaviour of thick points of logarithmically correlated fields has attracted
a lot of attention in the past two decades. In particular, the Hausdorff dimension of the set of
thick points was established both in the case of planar Brownian motion [DPRZ01] and in the
case of the 2D Gaussian free field [HMP10]. Related results were also obtained in the discrete; see
[DPRZ01, Ros05, BR07, Jeg20b] for the random walk and [Dav06] for the discrete GFF. Many more
articles studied related questions concerning other log-correlated fields; see [Shi15, Arg17] for more
references.

We now define precisely a notion of thick points for the loop soup described informally earlier, and
state some results concerning these points. We show that with this definition,Ma is almost surely
supported on “a-thick points” of the loop soup. We also compute its Hausdorff dimension (a statement
which does not involve the multiplicative chaos). Our definition of thick points is in terms of crossings
of annuli. For z ∈ D, r > 0 and ℘ ∈ LθD a loop, we denote by N℘

z,r the number of upcrossings from
∂D(z, r) to ∂D(z, er) in ℘ (since ℘ is a loop, this is also equal to the number of downcrossings). Denote
also NL

θ
D

z,r :=
∑
℘∈LθD

N℘
z,r.

Theorem 4.11. Let θ > 0 and a ∈ (0, 2). Ma is almost surely supported by the set

T (a) :=
{
z ∈ D : lim

n→∞
1
n2N

LθD
z,e−n = a

}
, (4.8)

that is,Ma(D \ T (a)) = 0 a.s. Moreover, the Hausdorff dimension of T (a) equals 2− a a.s.

We mention that it would have been possible to quantify the thickness of a point z via the normalised
occupation measure of small discs, or circles, centred at z. This would have been closer to the notion
of thick points in [DPRZ01] and [Jeg20a]. To keep the paper of a reasonable size, we do not attempt
to prove a result for these notions of thick points. Note that, before the current work, it was not even
a priori immediately clear that points of infinite loop multiplicity exist with probability one.

In the next section, we establish the scaling limit of the set of thick points of random walk loop soup.
In particular, we will obtain in Corollary 4.13 the convergence of the number of discrete thick points
when appropriately normalised; as we will see this identifies a nontrivial subpolynomial term which
goes beyond the calculation of the exponent 2− a corresponding to the above dimension; interestingly
this subpolynomial term depends on the intensity θ itself.
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4.1.5 Random walk loop soup approximation

As mentioned before, Theorem 4.5 is natural from the point of Le Jan’s isomorphism in the continuum.
However this relation is far too weak to obtain a proof of this theorem (for instance, it is not even
clear at this point whether the hyperbolic cosine is a measurable function of the Wick square of
the GFF). Instead, we rely on a discrete approach where the relations hold pointwise, and with no
renormalisations, so that this type of difficulties does not arise. This approach also provides a very
natural approximation of the multiplicative chaos measureMa from a discrete random walk loop soup
([LTF07]): namely,Ma is the limit of the uniform measure on thick points of the discrete loop soup.
Let us now detail this result.

Without loss of generality, assume that the domain D contains the origin. For all N ≥ 1, we
consider a discrete approximation DN ⊂ D ∩ 1

NZ2 of D by a portion of the square lattice with mesh
size 1/N . Specifically,

DN :=
{
z ∈ D ∩ 1

N
Z2 :

there exists a path in 1
NZ2 from z to the origin

whose distance to the boundary of D is at least 1
N

}
. (4.9)

Let LθDN be a random walk loop soup with intensity θ. See Section 4.2.2 for a precise definition. For
any vertex z ∈ DN and any discrete path (℘(t))0≤t≤T (℘) parametrised by continuous time, we denote
by `z(℘) the local time of ℘ at z, i.e.

`z(℘) :=
∫ T (℘)

0
1{℘(t)=z}dt.

With our normalisation,

E
[ ∑
℘∈LθDN

`z(℘)
]
∼ θ

2π logN as N →∞.

We define the set of a-thick points by

TN (a) :=
{
z ∈ DN :

∑
℘∈LθDN

`z(℘) ≥ 1
2π a(logN)2

}
. (4.10)

We encode this set in the following point measure: for all Borel set A ⊂ C, define

MN
a (A) := (logN)1−θ

N2−a

∑
z∈TN (a)

1{z∈A}. (4.11)

In the next result and in the rest of the paper, we will denote

c0 := 2
√

2eγEM , (4.12)

where γEM is the Euler–Mascheroni constant (4.216). The constant c0 arises from the asymptotic
behaviour of the discrete Green function on the diagonal; see Lemma 4.93.

Theorem 4.12. Let θ > 0 and a ∈ (0, 2). The couple (LθDN ,M
N
a ) converges in distribution towards
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(LθD, 2θca0Ma), relatively to the topology induced by dL (4.29) for LθDN and the weak topology on C for
MN

a .

In particular,

Corollary 4.13. The convergence

(logN)1−θ

N2−a #TN (a)→ 2θca0Ma(D)

holds in distribution.

Theorem 4.12 can be seen as an interpolation and extrapolation of the scaling limit results of
[Jeg19] and [BL19] concerning, respectively, thick points of finitely many random walk trajectories
(informally, θ → 0+) and thick points of the discrete GFF (θ = 1/2).

The proof of Theorem 4.12 ends up taking a large part of this article (essentially, all of Part Two).
At a high level, the difficulties stem from the fact that (unlike in the continuum) it is very difficult
to compare directly two random walk loop soups with different lattice mesh sizes, thereby ruling
out the possibility to apply an L1 convergence argument as in Gaussian multiplicative chaos [Ber17].
Instead, we rely on results of [Jeg19] in which analogous difficulties were resolved in the case of a finite
number of random walk trajectories, together with a new discrete description (see Proposition 4.61)
of the rooted discrete measure (i.e., a discrete loop soup version of the Girsanov transform) which
must be proved by hand. These computations reveal a surprising amount of integrability, which we
think is interesting in its own right. Another technical ingredient which we obtain along the way is a
strengthening of a KMT-type coupling between the discrete loop soup and the continuum loop soup
proved by Lawler and Trujillo-Ferreras [LTF07]. This coupling allows us to show that discrete and
continuous loops of all mesoscopic scales are close to one another (in contrast with [LTF07], where the
comparison holds for sufficiently large mesoscopic scales), provided we are only interested in loops that
are localised close to a given point z ∈ D. This coupling is useful to obtain rough estimates on the
discrete loop soup such as large deviations for the number of crossings of annuli of a given scale. See
Lemma 4.86 for details.

4.1.6 Martingale and exact solvability

Before starting the proofs it is useful to highlight a few nontrivial aspects of the proofs. A crucial idea
is the identification of a certain measure-valued martingale mK

a (dz) with respect to the filtration FK
generated by LθD(K). The definition of this martingale is in itself highly nontrivial and is described
in Proposition 4.24. As follows a posteriori from our analysis, this martingale corresponds to the
conditional expectation ofMa given FK . Although it is a priori far from clear that this conditional
expectation should take the given form, it is nevertheless possible to guess a rough form for this
conditional expectation. Indeed, consider the decomposition of the entire loop soup LθD into the killed
part (LθD(K)) and its complement. These two parts are independent. Furthermore, by the isomorphism
theorem (see Theorem 4.18), the occupation field of the complement is given by one half of the square
of a massive Gaussian free field. This suggests thatMa can be described by the sum of two terms.
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The first term comes just from the hyperbolic cosine of this massive free field (since it is possible that a
point is thick without being visited at all by LθD(K)). The second term on the other hand describes the
possible interactions between these two parts: it measures the contribution of points whose thickness
comes in part from the massive free field and in another part from the killed loop soup. This interaction
term is thus described by an integral in which the integrand describes the respective thickness of each
part; however the precise law of this mixture cannot be easily inferred from combinatorial arguments
and was instead obtained by trial and error. We stress however that the appearance of the massive
free field (and its hyperbolic cosine) is what makes the ultraviolet regularisation by killing particularly
attractive from our point of view.

While these arguments are useful to guess the general rough form of the martingale, they cannot
be used to give a proof of the martingale property: rather, the martingale property is the engine that
drives the proof and the above explanation may only be seen as a justification after the facts. The
proof of the martingale property relies instead on a central observation (stated in Proposition 4.21 and
proved in Section 4.5), which allows us to compute exactly the expectation of the approximate measure
MK

a with finite K <∞. This expectation is computed in terms of the hypergeometric function 1F1

and the conformal radius of a point. This computation is the result of the triple differentiation of
a certain infinite series whose nth term involves an n-dimensional integral, see Lemma 4.33. The
fact that such a computation is at all possible is another stroke of luck which suggests the choice of
ultraviolet regularisation (by killing as opposed to say, by diameter) is particularly well suited to this
problem. The exact solvability which seems to underly this calculation is in fact a constant feature of
the paper; as shown in Part Two, analogous remarkable identities hold even at the discrete level. The
existence of such exact formulae for the ultraviolet regularisation of the Brownian loop soup by killing
seems to not have been noticed before; we hope it may prove useful in other contexts as well.

We end this introduction by pointing out that the results of this paper open the door to a
generalisation, in particular to non-half integer values of θ, of constructions from the Euclidean
Quantum Field Theory that relate the Wick powers of the GFF, the Gaussian multiplicative chaos and
the intersection and self-intersection local times of Brownian paths (see e.g., [Sym65, Sym66, Sym69,
Var69, Dyn84b, Dyn84c, Sim74, Wol78b, Wol78a, LG85, LJ11]). We plan to develop this in future
works.

Organisation of the paper In the next section, we will give some background on loop soups and
measures on paths both in the continuum and in the discrete. We will also recall the definitions of
Brownian multiplicative chaos measures. The rest of the paper is then be divided into two main parts
dealing with the continuum and the discrete settings respectively. Each of these parts starts with a
preliminary section (Sections 4.3 and 4.10 respectively) outlining the proofs of the main theorems at a
high level. The structure of each part is then described more thoroughly in these preliminary sections.
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4.2 Background

4.2.1 Measures on Brownian paths and Brownian loop soup

We start first by recalling some basic properties of the Brownian loop soup, mostly to introduce our
notations and choice of normalisations.

By Brownian motion we will denote the 2D Brownian motion with infinitesimal generator ∆ rather
than the standard Brownian motion, which has generator 1

2∆. Let D be an open domain which we
may assume to be bounded without loss of generality. Let pD(t, z, z) denote the transition probability
of Brownian motion killed upon leaving the domain D. If

pC(t, z, w) = 1
4πt exp

(
− |w − z|

2

4πt
)

denotes the transition probabilities of this Brownian motion in the full plane, and if πD(t, z, w) denotes
the probability that a Brownian bridge of duration t remains in the domain D throughout, then

pD(t, z, w) = pC(t, z, w)πD(t, z, w).

Let GD(z, w) denote Green function of −∆ on D with Dirichlet 0 boundary conditions; that is,

GD(z, w) =
∫ ∞

0
pD(t, z, w)dt. (4.13)

In our normalisation,
GD(z, w) ∼ − 1

2π log(|w − z|) (4.14)

as |w − z| → 0.
Next we recall the definitions of natural measures on Brownian paths and loops. For details, we

refer to [Law05, Chapter 5] and [LW04]. Given z, w ∈ D and t > 0, let Pz,wD,t denote the probability
measure on Brownian bridges from z to w of duration t, conditioned on staying in D. Let µz,wD denote
the following measure on continuous path from z to w in D:

µz,wD (d℘) =
∫ +∞

0
Pz,wD,t(d℘)pD(t, z, w)dt. (4.15)

The total mass of µz,wD is GD(z, w). In particular, it is infinite if z = w. The image of µz,wD by time
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reversal is µw,zD . Given a subdomain D′ ⊂ D and z, w ∈ D′,

µz,wD′ (d℘) = 1{℘ stays in D′}µ
z,w
D (d℘). (4.16)

Further, if z ∈ D and x ∈ ∂D, and ∂D is smooth near x, we will denote

µz,xD (d℘) = lim
ε→0

ε−1µz,x+ε−→n x
D (d℘), (4.17)

where −→n x is the normal unit vector at x pointing inwards. In this way, µz,xD is a measure on interior-to-
boundary Brownian excursions from z to x. Its total mass is given by

HD(z, x) = lim
ε→0

ε−1GD(z, x+ ε−→n x). (4.18)

This HD(z, x) is the Poisson kernel, the density of the harmonic measure from z. The probability
measure µz,xD /HD(z, x) is the law of the Brownian motion starting from z up to the first hitting time
of ∂D, conditioned on hitting ∂D in x. Now, if x, y ∈ ∂D and ∂D is smooth near x and near y, we
similarly define

µx,yD (d℘) = lim
ε→0

ε−2µ
x+ε−→n x,y+ε−→n y
D (d℘). (4.19)

In this way, µx,yD is a measure on boundary-to-boundary Brownian excursions from x to y. Its total
mass is given by

HD(x, y) = lim
ε→0

ε−2GD(x+ ε−→n x, y + ε−→n y). (4.20)

Here, HD(x, y) is the boundary Poisson kernel. Note that HD(x, x) = +∞.

Notation 4.14. For any z ∈ D and w ∈ D, respectively w ∈ ∂D, we will denote by ℘z,wD a Brownian
trajectory distributed according to

µz,wD /GD(z, w), respectively µz,wD /HD(z, w). (4.21)

If z ∈ ∂D and w ∈ D, we will denote by ℘z,wD a trajectory which is the time reversal of a path distributed
according to µw,zD /HD(w, z).

The natural measure on Brownian loops in D is

µloop
D (d℘) =

∫
D

∫ +∞

0
Pz,zD,t(d℘)pD(t, z, z)dt

t
dz. (4.22)

The measure µloop
D has an infinite total mass because of the ultraviolet divergence. The measure on

loops is invariant under time reversal. Given a subdomain D′ ⊂ D,

µloop
D′ (d℘) = 1{℘ stays in D′}µ

loop
D (d℘). (4.23)

The measure µloop
D can be rewritten as

µloop
D (d℘) = 1

T (℘)

∫
D
µz,zD (d℘)dz, (4.24)
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where T (℘) denotes the total duration of a generic path ℘.
We will also need in what follows the massive version of the measure on Brownian loops. Let K > 0

be a constant. Let GD,K(z, w) denote the massive Green function associated to −∆ + K, with
Dirichlet 0 boundary conditions. We have that

GD,K(z, w) =
∫ ∞

0
e−KtpD(t, z, w)dt. (4.25)

In Quantum Field Theory, K corresponds to the square of a particle mass. In terms of Brownian
motion, K is just a killing rate. The massive measure on Brownian loops in D is

µloop
D,K(d℘) = e−KT (℘)µloop

D (d℘). (4.26)

Note that the massive measure on Brownian loops was introduced in early works on Euclidean QFT
by Symanzik [Sym65, Sym66, Sym69].

The loops under the measures µloop
D (4.22) and µloop

D,K (4.26) are rooted, that is to say the loops
℘ have a well defined starting time and end time. However, one usually considers unrooted loops
[LW04, Law05], that is to say one identifies the loops under circular shifts of the parametrisation. Two
rooted loops ℘ and ℘̃ correspond to the same unrooted loop if T (℘) = T (℘̃), and there is s ∈ [0, T (℘)]
such that ℘̃(t) = ℘(t+ s) for t ∈ [0, T (℘)− s], and ℘̃(t) = ℘(t+ s− T (℘)) for t ∈ [T (℘)− s, T (℘)]. We
will denote by µloop∗

D , respectively µloop∗
D,K , the measures on unrooted loops induced by µloop

D , respectively
µloop
D,K .
By considering unrooted loops, one gains a covariance under conformal maps for µloop∗

D . Let D
and D̃ be two conformally equivalent open domains and ψ : D → D̃ a conformal map. Let Tψ be the
following transformation of paths induced by ψ. Given ℘ a path in D, one applies to ℘ the map ψ and
performs a change of time ds = |ψ′(℘(t))|2dt. Then µloop∗

D̃
is the image measure of µloop∗

D under Tψ; see
[LW04, Proposition 6] and [Law05, Proposition 5.27]. Note that in general, µloop

D̃
is not the image of

µloop
D under Tψ.

Given θ > 0, a Brownian loop soup LθD, as introduced in [LW04], is a Poisson point process of
intensity θµloop

D . We see it as a random infinite countable collection of Brownian loops in D. We will
consider both rooted and unrooted loops, depending on the context, and use the same notation LθD in
both cases. On simply connected domains, the Brownian loop soups were used in the construction
of Conformal Loop Ensembles CLEκ [SW12]. At the particular value of the intensity parameter
θ = 1/2, the loop soup L1/2

D is related to the continuum Gaussian free field (GFF) and to the CLE4

[LJ10, LJ11, SW12, QW19, ALS20]. These relations are part of the random walk/Brownian motion
representations of the GFF, also known as isomorphism theorems [Sym65, Sym66, Sym69, BFS82,
Dyn84a, Dyn84b, MR06, Szn12].

Now let us define the loops in LθD killed by a killing rate K. Let U℘, ℘ ∈ LθD, be a collection of
i.i.d. uniform random variables on [0, 1]. Given K > 0, set

LθD(K) :=
{
℘ ∈ LθD : U℘ < 1− e−KT (℘)

}
. (4.27)
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The subset LθD(K) of LθD consists of loops killed by K. The complementary LθD \ LθD(K) is a Poisson
point process of intensity θµloop

D,K . In other words it is a massive Brownian loop soup. The construction
through the uniform r.v.s U℘-s allows to couple LθD and the LθD(K) for all possible K on the same
probability space. Moreover, this coupling is monotone: if K ′ ≤ K, then LθD(K ′) ⊂ LθD(K) a.s.

It is easy to see that a.s., for every K > 0, LθD(K) is infinite. However,

E
[∣∣{℘ ∈ LθD(K)|T (℘) > ε}

∣∣] � log(ε−1), E
[∣∣{℘ ∈ LθD(K)|diam(℘) > ε}

∣∣] � log(ε−1),

whereas for the whole loop soup LθD,

E
[∣∣{℘ ∈ LθD|T (℘) > ε}

∣∣] � ε−1, E
[∣∣{℘ ∈ LθD| diam(℘) > ε}

∣∣] � ε−2.

For the sequel we will need to formalize a topology on collections of unrooted loops. First, let
us defined a distance on the continuous paths in C of finite duration. Given (℘1(t))0≤t≤T (℘1) and
(℘2(t))0≤t≤T (℘2) such paths, let be the distance

dpaths(℘1, ℘2) := | log(T (℘2)/T (℘1))|+ max
0≤s≤1

|℘2(sT (℘2))− ℘1(sT (℘1))|. (4.28)

If ℘1 and ℘2 are two rooted loops, i.e. ℘1(T (℘1)) = ℘1(0) and ℘2(T (℘2)) = ℘2(0), and if [℘1]
and [℘2] are the corresponding unrooted loops, i.e. the equivalence classes under circular shifts of
parametrisation, then let be the distance

dunrooted([℘1], [℘2]) := min
℘̃∈[℘1]

dpaths(℘̃, ℘2) = min
℘̃∈[℘2]

dpaths(℘1, ℘̃).

Now let us consider finite collections of unrooted loops. Here and in the sequel by collection we
mean a multiset. The elements of a multiset are unordered, but may come each with a finite multiplicity.
A collection can also be empty. Given L1 and L2 two such finite collections of unrooted loops on C, we
set the distance

dfin.col.(L1,L2) := min
σ∈Bij(L1,L2)

∑
℘∈L1

dunrooted(℘, σ(℘))

if L1 and L2 have same cardinal with multiplicities taken into account, and dfin.col.(L1,L2) = +∞
otherwise. In particular, the distance of the empty collection to any non-empty collection is +∞.

Given z ∈ C and r > 0, let D(z, r) denote the open disc with center z and radius r. Given L a
collection of unrooted loops, not necessarily finite, and r > 0, denote

L|r := {℘ ∈ L : ℘ stays in D(0, r), diam(℘) ≥ r−1}.

Let L be the following space:

L := {L collection of unrooted loops on C : ∀r > 0,L|r is finite}.

The empty collection also belongs to L. All the collections belonging to L are countable. We endow L
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with the following distance:

dL(L1,L2) :=
∫ +∞

1
e−r(dfin.col.((L1)|r, (L2)|r) ∧ 1)dr. (4.29)

A sequence (Lk)k≥0 converges to L for dL if and only if there is a positive increasing sequence (rj)j≥0,
with limj→+∞ rj = +∞, such that for every j ≥ 0,

lim
k→+∞

dfin.col.((Lk)|rj ,L|rj ) = 0.

It is easy to see that the induced metric space (L, dL) is complete. Moreover, the finite collections
are dense in L. Further, the finite collections can be approximated by a countable subset of finite
collections. Consider for instance the trigonometric series. Thus, the metric space (L, dL) is separable.
So, (L, dL) is a Polish space. We will often see the Brownian loop soups LθD and LθD(K) as r.v.s with
values in L.

4.2.1.0.1 Equivalence relation on (L, dL) and admissible functions We now formalise the
notion of functions F : L→ R that are invariant by exchanging the order of the excursions in the loops
at a given point z ∈ C. We will call such functions z-admissible functions.

Let ℘ : t ∈ [0, T (℘)] 7→ ℘t ∈ C be a continuous path in C with finite duration and such that
℘0 = ℘T (℘). Let z ∈ C be a point visited by ℘. To ℘ and z we can uniquely associate an at most
countable collection of excursions {e℘,zi , i ∈ I}, where by an excursion e we mean a continuous path
(et, 0 ≤ t ≤ ζ) such that e0 = eζ = z and et 6= z for all t ∈ (0, ζ), and such that the reunion of all e℘,zi
coincides with the loop ℘. In fact, these excursions inherit from ℘ a chronological order but we will
not need this.

For a fixed z ∈ C, we define an equivalence relation ∼z on unrooted loops by saying that two loops
℘ and ℘′ are equivalent if, and only if,

• either z is not visited by ℘, nor ℘′, and in that case the unrooted loops [℘] and [℘′] agree;

• or z is visited by both ℘ and ℘′ and the collections of unordered excursions {e℘,zi , i ∈ I} and
{e℘

′,z
i , i ∈ I ′} coincide.

We will denote < ℘ >z the equivalence class of a loop ℘ under the relation ∼z. If C ∈ L is a collection
of loops, we will denote < C >z:= {< ℘ >z, ℘ ∈ C}.

We can now give a precise definition of admissible functions.

Definition 4.15. Let z ∈ C. We will say that a function F : L→ R is z-admissible if F (·) is invariant
under the relation ∼z, i.e. if for all C, C′ ∈ L, F (C) = F (C′) as soon as < C >z=< C′ >z.

Functions F : D× L→ R (resp. F : D×D× L→ R) are called admissible if for all z ∈ D, F (z, ·)
is z-admissible (resp. if for all z, z′ ∈ D, F (z, z′, ·) is z-admissible and z′-admissible).

Examples of admissible functions include total time duration, number of crossings of an annulus,
etc.
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Finally, we introduce the σ-algebra

σ(
〈
LθD
〉

) := σ
(
F (LθD), F : L→ R bounded measurable s.t. ∀z ∈ C, F is z-admissible

)
. (4.30)

It is the σ-algebra generated by the equivalence class of LθD where two loops ℘ and ℘′ are identified if
and only if ℘ ∼z ℘′ for all z ∈ C. Note that this σ-algebra is included in σ(

〈
LθD
〉
z
) for any z ∈ D.

4.2.2 Measures on discrete paths and random walk loop soup

Here we will recall some properties of the continuous-time discrete-space random walk loop soups.
Let N ≥ 1 be an integer. We will denote ZN := 1

NZ, and work on the rescaled square lattice Z2
N .

Let ∆N be the discrete Laplacian on Z2
N :

(∆Nf)(z) := N2 ∑
w∈Z2

N

|w−z|= 1
N

(f(w)− f(z)), z ∈ Z2
N .

Note that with our normalisation, ∆N converges as N → +∞ to the continuum Laplacian ∆ on C. Let
(X(N)

t )t≥0 be the Markov jump process on Z2
N with infinitesimal generator ∆N . In other words, this is

the continuous-time simple symmetric random walk, with exponential holding times with mean 1
4N2 .

As N → +∞, (X(N)
t )t≥0 converges in law to the Brownian motion on C with infinitesimal generator ∆.

Let DN be a non-empty subset of Z2
N . Note that in the sequel we will typically consider sequences

(DN )N≥1 converging to continuum domains D ⊂ C as in (4.9). Let τZ2
N\DN

denote the first hitting
time of Z2

N \DN by X(N)
t . Denote

pDN (t, z, w) := N2Pz
(
X

(N)
t = w, τZ2

N\DN
> t
)
, z, w ∈ DN .

Note that pDN (t, z, w) = pDN (t, w, z). Denote

GDN (z, w) =
∫ +∞

0
pDN (t, z, w)dt.

If z or w is in Z2
N \DN , we set GDN (z, w) = 0. Defined this way, GDN is the discrete Green function.

It satisfies
−∆N,wGDN (z, w) = N21{z=w}, z, w ∈ DN ,

where the notation ∆N,w indicates that the discrete Laplacian ∆N is taken with respect to the variable
w.

Let Pz,wDN ,t denote the law of (X(N)
s )0≤s≤t, withX(N)

0 = z, conditionally onX(N)
t = w and τZ2

N\DN
> t.

Next we recall the discrete analogues of measures (4.15) and (4.22). For details, we refer to [LJ10, LJ11].
The measure µz,wDN will be a measure on nearest-neighbour paths from z to w in DN , parametrised by
continuous time, and of final total duration:

µz,wDN (d℘) =
∫ +∞

0
Pz,wDN ,t(d℘)pDN (t, z, w)dt. (4.31)
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The total mass of µz,wDN is GDN . The image of µz,wDN by time reversal is µw,zDN
.

In the case when Z2
N \ DN is also non-empty, let ∂DN denote the subset of Z2

N \ DN made of
vertices at graph distance 1 from DN , i.e. at Euclidean distance 1

N . Given z ∈ DN and x ∈ ∂DN ,
denote

µz,xDN = N
∑

w∈DN
|w−x|= 1

N

µz,wDN . (4.32)

Let HDN (z, x) denote the total mass of the measure µz,xDN . We have that

HDN (z, x) = N
∑

w∈DN
|w−x|= 1

N

GDN (z, w). (4.33)

Usually, we will add to trajectories under µz,xDN an additional instantaneous jump to x at the end,
without local time spent at x. In this way, the probability measure µz,xDN /HDN (z, x) is actually the
distribution of (X(N)

t )0≤t≤τZ2
N
\DN

given that X(N)
0 = z and conditionally on X(N)

τZ2
N
\DN

= x. Moreover,

HDN (z, x) = NPz
(
X(N)
τZ2
N
\DN

= x
)
.

So we see HDN (z, x) as the discrete Poisson kernel.
The measure µloop

DN
will be a measure on rooted nearest-neighbour loops in DN , parametrised by

continuous time, and of final total duration:

µloop
DN

(d℘) = 1
N2

∑
z∈DN

∫ +∞

0
Pz,zDN ,t(d℘)pDN (t, z, z)dt

t
. (4.34)

The measure µloop
DN

is invariant by time reversal. Note that the total mass of µloop
DN

is always infinite
because of the ultraviolet divergence. The measure puts an infinite mass on trivial "loops" that stay in
one vertex, without performing jumps. To the contrary, µloop

DN
puts a finite mass on loops that visit

at least two vertices and stay inside a finite box. More precisely, given z1, z2, . . . , z2n ∈ DN , with
|zi − zi−1| = 1

N and |z2n − z1| = 1
N , the weight given to the set of rooted loops starting from z1, then

successively visiting z2, . . . , z2n, and then returning to z1 is (2n)−14−2n. Moreover, conditionally on
this discrete skeleton, the holding times are i.i.d. exponential r.v.s with mean 1

4N2 . Given a subset
D′N ⊂ DN ,

µz,wD′N
= 1{℘ stays in D′N}µ

z,w
DN

, z, w ∈ D′N , µloop
D′N

= 1{℘ stays in D′N}µ
loop
DN

.

The measure on continuous time discrete space loops (4.34) first appeared in [LJ10, LJ11]. Related
measures on discrete time loops appeared in [BFS82, LTF07, LL10].
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We will also need a measure µ̌z,wDN related but different from µz,wDN . Given z, w ∈ DN , denote

µ̌z,wDN =
∑

z′,w′∈DN\{z,w}
|z′−z|= 1

N

|w′−w|= 1
N

µz
′,w′

DN\{z,w}. (4.35)

This is a measure on continuous time nearest-neighbour paths from a neighbour of z to a neighbour of
w, and staying in DN \ {z, w}. Actually, to a path under µ̌z,wDN we will add an initial jump from z to
the corresponding neighbour z′, and a final jump to w from the corresponding neighbour w′. In this
way we get a path from z to w, but with zero holding time in z and w.

We will also consider the massive case. Let K > 0 be a constant. Denote GDN ,K(z, w) the massive
Green function

GDN ,K(z, w) =
∫ +∞

0
e−KtpDN (t, z, w)dt. (4.36)

The massive version of the measure on loops (4.34) is

µloop
DN ,K

(d℘) = e−KT (℘)µloop
DN

(d℘),

where T (℘) is the total duration of a loop.

Again, given θ > 0, we will consider Poisson point processes of intensity θµloop
DN

, denoted LθDN . We
will consider both rooted and unrooted loops. These are random countable collections of loops in DN ,
known as continuous time random walk loop soups. Note that, if DN is finite, then LθDN contains
a.s. only finitely many non-trivial loops that visit at least two vertices. However, a.s., for every z ∈ DN ,
LθDN contains infinitely many trivial "loops" that only stay in z.

Now, consider a constant K > 0. Let U℘, ℘ ∈ LθDN , be a collection of i.i.d. uniform random
variables on [0, 1]. Define

LθDN (K) :=
{
℘ ∈ LθDN : U℘ < 1− e−KT (℘)

}
.

The subset LθDN (K) corresponds to loops killed by the killing rateK. The complementary LθDN \L
θ
DN

(K)
is a Poisson point process with intensity measure θµloop

DN ,K
. Unlike in the continuum case, LθDN (K) is

a.s. finite if DN is finite. This is because∫ ε

0
(1− e−Kt)dt

t
< +∞.

For a vertex z ∈ Z2
N and a path on Z2

N parametrised by continuous time (℘(t))0≤t≤T (℘), we denote
by `z(℘) the local time accumulated by ℘ at z, i.e.

`z(℘) :=
∫ T (℘)

0
1{℘(t)=z}dt.
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Given L a collection of path on Z2
N , we denote

`z(L) :=
∑
℘∈L

`z(℘). (4.37)

First we state some Markovian decomposition properties for the measures µz,wDN and µ̌z,wDN . These
are elementary, so we do not provide proofs.

Lemma 4.16. Let DN ⊂ Z2
N such that both DN and Z2

N \DN are non-empty.

1. Given z ∈ DN , under the probability measure GDN (z, z)−1µz,zDN (d℘), the local time `z(℘) is an
exponential r.v. with mean GDN (z, z). Conditionally on `z(℘), the behaviour of ℘ outside z is
given by a Poisson point process of excursions from z to z with intensity measure `z(℘)µ̌z,zDN .

2. Let z, w, z′ ∈ DN such that z′ is at a graph distance at least 2 from both z and w, i.e. |z′−z| > 1
N

and |z′ − w| > 1
N . Then for any bounded measurable function F ,∫

1{℘ visits z′}F (℘)µ̌z,wDN (d℘) =
∫
µ̌z,z

′

DN
(d℘1)

∫
µz
′,z′

DN\{z,w}(d℘)
∫
µ̌z
′,w
DN

(d℘2)F (℘1 ∧ ℘ ∧ ℘2),

where ∧ denotes the concatenation of paths.

3. Let z, w ∈ DN such that z and w are at a graph distance at least 2, i.e. |w − z| > 1
N . Then for

any bounded measurable function F ,∫
F (℘)µz,wDN (d℘) =

∫
µz,zDN (d℘1)

∫
µ̌z,wDN (d℘)

∫
µw,wDN\{z}(d℘2)F (℘1 ∧ ℘ ∧ ℘2).

Next we describe the law of the local times of loops in a random walk loop soup. For details, we
refer to [LJ10, LJ11].

Proposition 4.17 (Le Jan [LJ10, LJ11]). Let DN ⊂ Z2
N such that both DN and Z2

N \DN are non-
empty. Fix θ > 0 and consider the random walk loop soup LθDN . Given z ∈ DN , the collection of
random times (`z(℘))℘∈LθDN ,℘ visits z is a Poisson point process of (0,+∞) with intensity measure

1{t>0}θe
−t/GDN (z,z) dt

t
, (4.38)

that is to say these are the jumps of a Gamma subordinator. In particular, `z(LθDN ) follows a Gamma(θ)
distribution with density

1{t>0}
1

Γ(θ)GDN (z, z)θ t
θ−1e−t/GDN (z,z).

Conditionally on the family of local times (`z(℘))℘∈LθDN ,℘ visits z, the loops ℘ visiting z are obtained, up
to rerooting, by taking independent Poisson point processes of excursions from z to z with respective
intensities `z(℘)µ̌z,zDN . The collections of loops not visiting z is independent from the loops visiting z,
and distributed as LθDN\{z}.

Furthermore, given K > 0 and z ∈ DN , the collection of random times (`z(℘))℘∈LθDN \L
θ
DN

(K),℘ visits z
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is a Poisson point process of (0,+∞) with intensity measure

1{t>0}θe
−t/GDN,K(z,z) dt

t
. (4.39)

For the particular value of the intensity parameter θ = 1/2, the random walk loop soup L1/2
DN

is related to the discrete Gaussian free field (GFF) through the Le Jan’s isomorphism theorem
[LJ10, LJ11]. Let ϕN denote the discrete (massless) GFF on DN with condition 0 on Z2

N \DN . It is
a random centred Gaussian field with covariance kernel given by the Green function GDN . Given a
constant K > 0, there is also the massive discrete GFF ϕN,K , with covariance kernel GDN ,K .

Theorem 4.18 (Le Jan [LJ10, LJ11]). Let DN ⊂ Z2
N such that both DN and Z2

N \DN are non-empty.
Consider the random walk loop soup L1/2

DN
. Then, the occupation field (`z(L1/2

DN
))z∈DN is distributed as

1
2ϕ

2
N . Further, given a constant K > 0, the occupation field (`z(L1/2

DN
\ L1/2

DN
(K)))z∈DN is distributed as

1
2ϕ

2
N,K .

Remark 4.19. Note that in dimension 2, Le Jan’s isomorphism has a renormalised version in continuum
space involving the Wick’s square of the continuum GFF [LJ10, LJ11].

4.2.3 Brownian multiplicative chaos

This section recalls some facts about Brownian multiplicative chaos measures. These measures were
introduced in [BBK94, AHS20, Jeg20a] in the case of one given Brownian trajectory and can be
formally defined as the exponential of the square root of the local time of the trajectory (see [Jeg20a,
Theorems 1.1 and 1.2] for a construction that uses an exponential approximation). In the current
article, we will need to consider “multipoint” versions of these measures for finitely many independent
trajectories. This generalisation has been studied in [Jeg19] and was key in order to characterise the
law of Brownian multiplicative chaos. The current article focuses on the subcritical regime, but let
us mention that Brownian chaos measures have also been constructed at criticality, i.e. when a = 2
(equivalently, γ = 2); see [Jeg21].

For all i ≥ 1, let Di ⊂ C be a bounded simply connected domain and let zi ∈ Di be a starting
point. Let us consider independent random processes ℘i = (℘i(t))0≤t≤τi , i ≥ 1, in the plane such
that for each i ≥ 1, the law of ℘i is locally mutually absolutely continuous with respect to the law
of Brownian motion starting at zi and killed upon exiting for the first time Di. In order to recall
a rigorous definition of the Brownian chaos measures that we will consider in this article, we first
introduce local times of circles: for all i ≥ 1, z ∈ Di and ε > 0 be such that D(z, ε) ⊂ Di, let

Liz,ε := lim
r→0+

1
2r

∫ τi

0
1{ε−r≤|℘i(t)−z|≤ε+r}dt.

As shown in [Jeg20a, Proposition 1.1], these local times are well-defined simultaneously for all z and ε.
Recall that, in the current article, we consider Brownian motion with infinitesimal generator ∆ instead
of the standard Brownian motion considered in [Jeg20a, Jeg19] which has generator 1

2∆. Because of
this difference of normalisation, the local times defined above are 2 times smaller than the local times
used in [Jeg20a, Jeg19].
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This article will consider the following measures:

• M℘1∩···∩℘n
a , a ∈ (0, 2): measure on a-thick points coming from the interaction of the n trajectories.

Each trajectory is required to visit the thick point, but the way the thickness is distributed
among the n trajectories is not specified. This measure is defined as the limit in probability,
relatively to the topology of weak convergence, of

M℘1∩···∩℘n
a (A) := lim

ε→0
| log ε|ε−a

∫
A

1{ 1
ε

∑n

i=1 L
i
x,ε≥a| log ε|2}1{∀i=1...n,Lix,ε>0}dx, A ⊂ C Borel.

See [Jeg19, Proposition 1.1].

•
⋂n
i=1M℘i

ai ,
∑
ai < 2: measure supported on the intersection of the support of each measure, the

i-th trajectory is required to contribute exactly ai to the overall thickness. It is defined by:

n⋂
i=1
M℘i

ai (A) := lim
ε→0
| log ε|nε−

∑
ai

∫
A

n∏
i=1

1{ 1
ε
Lix,ε≥ai| log ε|2}dx, A ⊂ C Borel,

where the convergence holds in probability relatively to the topology of weak convergence. See
[Jeg19, Section 1.4].

These two types of measures are closely related. Indeed, on the one hand,
⋂n
i=1M℘i

ai is the Brownian
chaos measureM℘n

an with reference measure
⋂n−1
i=1 M℘i

ai , i.e.
⋂n
i=1M℘i

ai is also equal to

lim
ε→0
| log ε|ε−an1{ 1

ε
Lnx,ε≥an| log ε|2}

n−1⋂
i=1
M℘i

ai (dx). (4.40)

See [Jeg19, Proposition 1.2 (ii)]. On the other hand, the following disintegration formula holds [Jeg19,
Proposition 1.3]:

M℘1∩···∩℘n
a =

∫
a∈E(a,n)

da
n⋂
i=1
M℘i

ai (4.41)

showing that the thickness is uniformly distributed among ℘1, . . . , ℘n. In this formula and in the
remaining of the article, we denote by E(a, n) the (n− 1)-dimensional simplex: for all n ≥ 1, a > 0,

E(a, n) := {a = (a1, . . . , an) ∈ (0, a]n : a1 + · · ·+ an = a}. (4.42)

This disintegration formula allows us to naturally extend these definitions to “mixed” cases. For
instance, for a+ a′ < 2, we define

M℘1∩···∩℘n
a ∩M℘n+1∩···∩℘n+m

a′ =
∫

a∈E(a,n)
da
∫

a′∈E(a′,m)
da′

n+m⋂
i=1
M℘i

ai .

We finally explain a Girsanov-transform-type result associated to these measures, i.e. the way
the law of the paths ℘i changes after shifting the probability measure byM℘i

ai (dz). For this purpose,
we need to specify the laws of the trajectories ℘i, i ≥ 1. For all i ≥ 1, let Di be a bounded simply
connected domain, let xi ∈ D and let zi ∈ ∂Di be a point where the boundary Di is locally analytic.
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The independent trajectories ℘i, i ≥ 1 are then assumed to be Brownian paths from xi to zi in Di, i.e.
℘i ∼ µxi,ziDi

/HDi(xi, zi) (4.17). Let n ≥ 1 and ai > 0, i = 1 . . . n, be thickness parameters such that∑
ai < 2.
We will see that this shift amounts to adding infinitely many excursions from z to z that are

sampled according to a Poisson point process. Such excursions will play a prominent role in this paper
and we define them now.

Notation 4.20. We will denote by Ξza (or by Ξz,Da when we want to emphasise the dependence in
the domain D) the random loop rooted at z, obtained by concatenating a Poisson point process of
Brownian excursions from z to z of intensity 2πaµz,zD (4.15). Such a Poisson point process appears in
the description of a Brownian trajectory seen from a typical a-thick point [BBK94, AHS20, Jeg20a].
We will denote by ∧ the concatenation of paths.

Recall also Notation 4.14. [Jeg19, Proposition 1.4] states that for all bounded measurable function
F ,

E
[∫

C
F (z, ℘1, . . . , ℘n)

n⋂
i=1
M℘i

ai (dz)
]

= (2π)n
∫
∩Di

( n∏
i=1

HDi(z, zi)
HDi(xi, zi)

GDi(xi, z) CR(z,Di)ai
)

(4.43)

× E
[
F (z, {℘xi,zDi

∧ Ξz,Diai ∧ ℘z,ziDi
}i=1...n)

]
dz

where all the paths above are independent. The factor (2π)n is due to the different normalisations
of the Green function in [Jeg19] and in the current paper. In words, after the shift, the path ℘i is
distributed as the concatenation of three independent paths: a trajectory ℘xi,zDi

from xi to z in Di; a
loop Ξz,Diai rooted at z going infinitely many times through z; and a path ℘z,ziDi

from z to zi. Such a
description was already present in the paper [BBK94] in the context of one trajectory.

These results concern Brownian multiplicative chaos associated to independent Brownian trajectories
from internal points to boundary points in fixed domains, but they can be extended to the loops in the
Brownian loop soup. This will be made clear in Section 4.4.

Part One: Continuum

4.3 High level description of Proof of Theorem 4.1

In this section, we give a high-level description of the proof of Theorem 4.1. We start with the first
moment computations for MK

a . As mentioned in the introduction the first moment is surprisingly
explicit, which suggests that there is a certain amount of exact solvability or integrability in this
approximation of the loop soup. Indeed we will see that the first moment is expressed in terms
of Kummer’s confluent hypergeometric function 1F1(θ, 1, ·) whose definition is recalled in (4.226) in
Appendix 4.C. Recall also that CR(z,D) denotes the conformal radius of D seen from a point z ∈ D.

Proposition 4.21. Define for all u ≥ 0,

F(u) := θ

∫ u

0
e−t1F1(θ, 1, t)dt (4.44)

Antoine Jego 141



CHAPTER 4. MULTIPLICATIVE CHAOS OF THE BROWNIAN LOOP SOUP

and for all z ∈ D,

CK(z) := 2π(GD −GD,K)(z, z) = 2π
∫ ∞

0
pD(t, z, z)(1− e−Kt)dt. (4.45)

Then
E[MK

a (dz)] = 1
a

F (CK(z)a) CR(z,D)adz. (4.46)

The function CK(z) plays a prominent role in the following; except for the factor of 2π in front,
CK(z) corresponds to the Green function of loops that are killed and thus one may think of CK (which
also depends on D, even though D does not appear in the notation) as the covariance of the Gaussian
field encoding the occupation measure of killed loops. Note that CK(z) <∞, so that this field is in
fact defined pointwise.

Remark 4.22. In Lemma 4.32, we will obtain a more precise version of Proposition 4.21: we will get
analogous (but more complicated) expressions when the underlying probability measure has been tilted
byMK

a (dz), thereby showing a version of Theorem 4.8 valid even when K <∞. This will then play a
crucial role in second moment computations.

Proposition 4.21 allows us to compute asymptotics of the first moment in a relatively straightforward
manner.

Lemma 4.23. We have the following asymptotics:

1. There exists C > 0 such that for all u > 0,

F(u) ≤ C
{

u, if u ≤ 1,
uθ, if u ≥ 1,

(4.47)

Moreover,
lim
u→∞

u−θF(u) = 1
Γ(θ) . (4.48)

2.
lim
K→∞

CK(z)
logK = 1

2 . (4.49)

We note that this justifies the normalisation (logK)−θ chosen in the statement of Theorem 4.1.
Heuristically, (4.49) can be derived by noting that loops in (4.45) have a duration of order 1/K and
hence a typical diameter of order 1/

√
K, so that CK corresponds roughly to the Green function GD

evaluated at points x, y separated by ε = 1/
√
K. Plugging this in (4.14) yields (4.49).

A crucial consequence of this explicit first moment is a positive martingale which plays a key role
in our analysis. Recall that by (4.27), the collections LθD(K) are coupled on the same probability space
for different values of K, and the set of K-killed loops increases with K. We will denote by FK the
σ-algebra generated by the K-killed loops.

Proposition 4.24. Define a Borel measure mK
a (dz) as follows:

mK
a (dz) := 1

a1−θ CR(z,D)ae−aCK(z)dz +
∫ a

0
dρ 1

(a− ρ)1−θ CR(z,D)a−ρe−(a−ρ)CK(z)MK
ρ (dz). (4.50)
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Then (mK
a (dz),K > 0) is a (FK ,K > 0)-martingale (that is, mK

a (A) is a martingale in that filtration,
for any Borel set A ⊂ D).

We mention that the measure mK
a is well-defined since we show that the process a ∈ (0, 2) 7→ MK

a

is measurable relatively to the topology of weak convergence; see Definition 4.29 and the discussion
below.

The proof of Proposition 4.24 will be given in Section 4.5.3 (see also Section 4.8 for an alternative
proof). Intuitively (and as follows a posteriori from our results and Lévy’s martingale convergence
theorem), the measure on the left hand side corresponds to the conditional expectation ofMa given FK .
To understand what the identity (4.50) expresses, or alternatively to motivate the definition of mK

a (dz),
consider for simplicity of this discussion the special case θ = 1/2 where we may use isomorphism
theorems for clarity (Theorem 4.18). This conditional expectation should consist of two parts. The
first part of the conditional expectation is given by thick points created only by the massive GFF with
mass

√
K (this is the first term in the right hand side). The second part is given by points whose

thickness comes from a combination of the massive GFF and killed loops. The respective contribution
to the overall thickness a of the point is arbitrary in the interval [0, a], resulting in an integral. The
variable ρ ∈ [0, a] of integration corresponds to points which have a thickness of order ρ in the soup
of killed loops, and a thickness a− ρ in the massive GFF. This identity is therefore an analogue of
Proposition 1.3 in [Jeg19] (see also (4.41)). The presence of the factor 1/(a − ρ)1−θ in front is not
straightforward. A posteriori, it may be viewed as describing the “law” of this mixture of thicknesses.
See Remark 4.36 for more discussion on this point.

We now assume the conclusion of Proposition 4.24 and see how the proof proceeds. SincemK
a (A) ≥ 0

for all Borel set A, we deduce that (mK
a ,K > 0) converges almost surely for the topology of weak

convergence towards a Borel measure ma (see e.g. Section 6 of [Ber17]). We will show that except for a
normalisation factor, this is the same asMa in the statement of Theorem 4.1. To do this, the main step
will be to show that when K →∞, the integral in the right hand side of (4.50) concentrates around
the value ρ = a, so that mK

a is in fact very close toMK
a (up to a certain multiplicative constant). This

is the content of the following proposition:

Proposition 4.25. For all Borel set A ⊂ C,

lim
K→∞

E
[∣∣∣∣∣mK

a (A)− 2θΓ(θ)
(logK)θM

K
a (A)

∣∣∣∣∣
]

= 0. (4.51)

The convergence of ((logK)−θMK
a ,K > 0) follows directly from Propositions 4.24 and 4.25.

We now explain how Proposition 4.25 is obtained. The core of the proof, that we encapsulate in the
following result, consists in controlling the oscillations ofMK

a with respect to the thickness parameter
a.

Proposition 4.26. Let a ∈ (0, 2) and A b D. Then,

lim sup
ρ→a

lim sup
K→∞

sup
f

1
‖f‖∞ (logK)θE

[∣∣∣∣∫
D
f(z)MK

a (dz)−
∫
D
f(z)MK

ρ (dz)
∣∣∣∣] = 0,
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where the supremum runs over all bounded, non-zero, non-negative measurable function f : D → [0,∞)
with compact support included in A.

The proof of Proposition 4.26 will be given in Section 4.7. We now explain how to prove Proposition
4.25 assuming Proposition 4.26.

Proof of Proposition 4.25, assuming Proposition 4.26. Let A ⊂ C be a Borel set and for δ > 0, define
Aδ = A ∩ {z ∈ D : d(z,Dc) > δ}. Proposition 4.21 shows that

lim
δ→0

lim sup
K→∞

E
[∣∣∣mK

a (A)−mK
a (Aδ)

∣∣∣] = lim
δ→0

lim sup
K→∞

1
(logK)θE

[∣∣∣MK
a (A)−MK

a (Aδ)
∣∣∣] = 0.

Therefore, it is sufficient to show that for all δ > 0,

lim
K→∞

E
[∣∣∣∣∣mK

a (Aδ)−
2θΓ(θ)

(logK)θM
K
a (Aδ)

∣∣∣∣∣
]

= 0.

In other words, we can assume that A is compactly included in D. It is then easy to see that one has
the crude lower bound:

inf
z∈A

CK(z) ≥ c logK. (4.52)

(Indeed, if z ∈ Aδ, then CK(z) is at least equal to the function CK(z) associated with a ball of radius
δ around z, a quantity which in fact does not depend on z and whose asymptotics is given by Lemma
4.23). Let η > 0 be small. Proposition 4.21 implies that

E
[∣∣∣∣ma

K(A)−
∫
A

∫ a

a−η

dρ
(a− ρ)1−θ CR(z,D)a−ρe−(a−ρ)CK(z)MK

ρ (dz)
∣∣∣∣] (4.53)

= 1
a1−θ

∫
A

CR(z,D)ae−aCK(z)dz +
∫
A

∫ a−η

0

dρ
(a− ρ)1−θ CR(z,D)a−ρe−(a−ρ)CK(z)E

[
MK

ρ (dz)
]

= o(1) +
∫
A

dzCR(z,D)a
∫ a−η

0

dρ
ρ(a− ρ)1−θ F (CK(z)ρ) e−(a−ρ)CK(z)

as the first integral clearly converges to 0 when K →∞ using (4.52). Using (4.47) we can bound the
second integral by

C

∫
A

dz
∫ a−η

0

dρ
ρ(a− ρ)1−θ max

(
CK(z)ρ, CK(z)θρθ

)
e−(a−ρ)CK(z)

≤ C sup
z∈A
{e−ηCK(z) max(CK(z), CK(z)θ)}|A|

∫ a

0

dρ
ρ(a− ρ)1−θ max(ρ, ρθ).

The integral is in any case finite since θ > 0 and does not depend on K. Since CK(z)→∞, we deduce
that the right hand side above tends to zero. Overall, we see that (4.53) tends to 0 as K →∞.
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Hence

E
[∣∣∣∣∣mK

a (A)− 2θΓ(θ)
(logK)θM

K
a (A)

∣∣∣∣∣
]

≤ o(1) + E
[∣∣∣∣∣
∫
A

∫ a

a−η

dρ
(a− ρ)1−θ CR(z,D)a−ρe−(a−ρ)CK(z)MK

ρ (dz)− 2θΓ(θ)
(logK)θM

K
a (A)

∣∣∣∣∣
]

≤ o(1) +
∫ a

a−η

dρ
(a− ρ)1−θE

[∣∣∣∣∫
A

CR(z,D)a−ρe−(a−ρ)CK(z)(MK
ρ (dz)−MK

a (dz))
∣∣∣∣]

+
∫
A
E
[
MK

a (dz)
] ∣∣∣∣∣
∫ a

a−η

dρ
(a− ρ)1−θ CR(z,D)a−ρe−(a−ρ)CK(z) − 2θΓ(θ)

(logK)θ

∣∣∣∣∣ .
To control the third term of the above sum, we recall that E

[
MK

a (dz)
]
� (logK)θ (by Proposition

4.21 and Lemma 4.23), and we make a change of variable CR(z,D)a−ρe−(a−ρ)CK(z) = e−t. So the third
term is bounded by

C

∣∣∣∣(logK)θ
∫ a

a−η

dρ
(a− ρ)1−θ CR(z,D)a−ρe−(a−ρ)CK(z) − 2θΓ(θ)

∣∣∣∣
=
∣∣∣∣∣
( logK
CK(z)− log CR(z,D)

)θ ∫ η(CK(z)−log CR(z,D))

0

dt
t1−θ

e−t − 2θΓ(θ)
∣∣∣∣∣

which goes to zero as K →∞, uniformly in z ∈ A (see (4.49) and (4.220)). Therefore, the third term of
the sum vanishes. To bound the second term we use Proposition 4.26 where the function f is taken to
be f(z) = CR(z,D)a−ρe−(a−ρ)CK(z)1{z∈A} (this depends on K, but since the estimate in Proposition
4.26 is uniform, this is not a problem). We obtain that it is bounded by:

oη(1)(logK)θ
∫ a

a−η

dρ
(a− ρ)1−θ e

−c(a−ρ) logK ≤ Coη(1)

where the term oη(1) can be made arbitrarily small by choosing η sufficiently close to zero, uniformly
in K. To conclude, we have proven that

lim sup
K→∞

E
[∣∣∣∣∣mK

a (A)− 2θΓ(θ)
(logK)θM

K
a (A)

∣∣∣∣∣
]
≤ Coη(1).

Since the above left hand side term does not depend on η, by letting η → 0, we deduce that it vanishes.
This finishes the proof.

The rest of Part One is organised as follows:

• Section 4.4: Brownian chaos measures were defined for Brownian trajectories killed upon exiting
for the first time a given domain. This section explains how to transfer the definition to loops.
This specific choice of definition is important for some proofs in subsequent sections.

• Section 4.5: We study the first moment ofMK
a and provide a Girsanov-type transform associated

toMK
a (Lemma 4.32). In particular, this gives an explicit expression for the first moment ofMK

a .

Antoine Jego 145



CHAPTER 4. MULTIPLICATIVE CHAOS OF THE BROWNIAN LOOP SOUP

The formula obtained is expressed as a complicated sum of convoluted integrals, but we show in
Lemma 4.33 that it reduces to a very simple form as stated in Proposition 4.21 above. Finally,
this first moment study culminates in Section 4.5.3 with a proof of the fact that (mK

a ,K > 0) is
a martingale.

• Section 4.6: We initiate the study of the second moment of MK
a and give in Lemma 4.40 an

exact expression for the second moment of the (two-point) rooted measure. The exact formula
we obtain is arguably lengthy and the goal of Lemma 4.41 is to analyse its asymptotic behaviour.
This section concludes the proof of Proposition 4.26 in the L2-phase {a ∈ (0, 1)}.

• Section 4.7: This section aims to go beyond the L2-phase to cover the whole subcritical regime
{a ∈ (0, 2)}. To this end, we introduce a truncation requiring the number of crossings of dyadic
annuli to remain below a certain curve. Adding this truncation does change the measure with
high probability (Lemma 4.43) and turns the truncated measure bounded in L2 (Lemma 4.44).
The truncated measure is then shown to vary smoothly with respect to the thickness parameter
(Lemma 4.45).

• Section 4.8: A proof of Theorem 4.8 is given. As a consequence of our approach, a new proof of
Proposition 4.24 is given.

• Section 4.9: A proof that the limiting measureMa is independent of the labels underlying the
definition of the killing is given (Theorem 4.1, Point 2). We then show that the characterisation
of the law of the couple (LθD,Ma) given in Theorem 4.8 implies the conformal covariance of this
couple (Theorem 4.55). Finally, the conformal covariance of the measure is shown to implies its
almost sure positivity (Theorem 4.1, Point 1).

• Appendix 4.A: This section handles some technicalities concerning measurability of Brownian
chaos measures w.r.t. starting points, ending points, domains and thickness levels.

4.4 Multiplicative chaos for finitely many loops

Brownian multiplicative chaos measures have been defined for Brownian trajectories confined to a
given domain (for instance, killed upon exiting for the first time the domain). The purpose of this
section is to explain that we can also define these measures for the loops coming from the Brownian
loop soup. This is not a difficult task, but some proofs (not the results) in the subsequent sections
depend on the precise definition that we will take.

The rough strategy is to cut the loops into two pieces for which we can define a Brownian chaos.
We decided to do this by rooting the loops at the point with minimal imaginary part. We will restrict
ourselves to loops with height larger than a given threshold ε and we first want to describe the law of
this collection of loops. We start by introducing a few notations.

Notation 4.27. For any ℘ ∈ LθD, we denote by

mi(℘) := inf{Im(℘(t)) : t ∈ [0, T (℘)]}, Mi(℘) := sup{Im(℘(t)) : t ∈ [0, T (℘)]}, (4.54)
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and
h(℘) := Mi(℘)−mi(℘) (4.55)

the height, or vertical displacement, of ℘. We also write

mi(D) := inf{Im(z) : z ∈ D} and Mi(D) := sup{Im(z) : z ∈ D},

and for any real numbers y < y′,

Hy := {z ∈ C : Im(z) > y} and Sy,y′ := {z ∈ C : y < Im(z) < y′}. (4.56)

Consider now the collection of loops with height larger than some given ε > 0:

LθD,ε := {℘ ∈ LθD : h(℘) > ε}. (4.57)

In Lemma 4.28 below, we describe the law of LθD,ε. To do that, for each ℘ ∈ LθD,ε, we will root ℘ at the
unique point z⊥ where the imaginary part of ℘ is at its minimum. We will then stop the loop when its
height becomes for the first time larger than ε:

τε(℘) := inf{t ∈ [0, T (℘)] : Im(℘(t)) ≥ mi(℘) + ε}.

The loop will therefore be decomposed into two parts:

℘ε,1 := (℘(t))0≤t≤τε and ℘ε,2 := (℘(t))τε≤t≤T (℘). (4.58)

By construction, ℘ε,1 is an excursion from z⊥ to zε := ℘(τε) in the domain D ∩ Smi(℘),mi(℘)+ε and ℘ε,2
is an excursion from the internal point zε to the boundary point z⊥ in the domain D ∩Hmi(℘). See
Figure 4.1.

ε

D

℘ε,2

℘ε,1

z⊥

zε

Figure 4.1: Rooting a loop at the point with minimal imaginary part.

We can now describe the law of LθD,ε.
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Lemma 4.28. #LθD,ε is a Poisson random variable with mean given by θµloop
D (h(℘) > ε), with

µloop
D (h(℘) > ε) =

∫ Mi(D)−ε

mi(D)
dm

∫
D∩(R+im)

dz1

∫
D∩(R+i(m+ε))

dz2HD∩Sm,m+ε(z1, z2)HD∩Hm(z2, z1),

where HD∩Sm,m+ε(z1, z2) is a boundary Poisson kernel (4.20) in D ∩ Sm,m+ε(z1, z2) and HD∩Hm(z2, z1)
is a Poisson kernel (4.18) in D ∩Hm. Conditioned on {#LθD,ε = n}, LθD,ε is composed of n i.i.d. loops
with common law given by

1{h(·)>ε}µ
loop
D (·)/µloop

D ({℘ : h(℘) > ε}). (4.59)

Moreover, if ℘ is distributed according to the law (4.59) above, then the law of (z⊥, zε, ℘1,ε, ℘2,ε) is
described as follows:

1. Conditioned on (z⊥, zε) and denoting m = Im(z⊥), ℘1,ε and ℘2,ε are two independent Brownian
trajectories distributed according to

µz⊥,zεD∩Sm,m+ε
/HD∩Sm,m+ε(z⊥, zε) and µzε,z⊥D∩Hm/HD∩Hm(zε, z⊥)

respectively.

2. The joint law of (z⊥, zε) is given by: for all bounded measurable function F : C4 → R,

E [F (z⊥, zε)] = 1
Z

∫ Mi(D)−ε

mi(D)
dm

∫
D∩(R+im)

dz1

∫
D∩(R+i(m+ε))

dz2 (4.60)

HD∩Sm,m+ε(z1, z2)HD∩Hm(z2, z1)F (z1, z2)

Proof. Since D is bounded, we may assume without loss of generality that D is contained in the upper
half-plane H = H0. Next, we consider the measure on loops on H, µloop

H , and root the loops at their
lowest imaginary part. According to [LW04, Proposition 7], µloop

H then disintegrates as

∫ +∞

0
dm

∫
R+im

dz1 µ
z1,z1
Hm ,

where µz1,z1Hm is given by (4.19). Further, a path γ under a measure µz1,z1Hm with h(℘) > ε can be
decomposed as∫

1{h(℘)>ε}F (℘)µz1,z1Hm (d℘) =
∫
R+i(m+ε)

dz2

∫∫
F (℘1 ∧ ℘2)µz1,z2Sm,m+ε

(d℘1)µz2,z1Hm (d℘2).

This is similar to decompositions appearing in [Law05, Section 5.2]. So one gets the lemma in the
case of the upper half-plane H. The case of a domain D ⊂ H can be obtained by using the restriction
property (4.23). Indeed, given z1 ∈ D ∩ (R + im) and z2 ∈ D ∩ (R + i(m+ ε)), we have that

µz1,z2D∩Sm,m+ε
(d℘1) = 1{℘1 stays in D}µ

z1,z2
Sm,m+ε

(d℘1), µz2,z1D∩Hm(d℘2) = 1{℘2 stays in D}µ
z2,z1
Hm (d℘2).

From this lemma, it becomes clear that we can define Brownian chaos associated to the loops as
soon as we are able to define it for independent Brownian trajectories with random domains, starting
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points and ending points. We explain this carefully in Appendix 4.A; see especially Lemma 4.56. We
can now give a precise definition of Brownian multiplicative chaos associated to the loops in LθD(K).
We start by fixing ε > 0. For any ℘ ∈ LθD,ε, we denote by ℘2,ε the second part of the trajectory defined
in (4.58). Thanks to Lemmas 4.28 and 4.56, we can define

MK,ε
a :=

∑
n≥1

1
n!

∑
℘(1),...,℘(n)∈LθD,ε∩L

θ
D(K)

∀i 6=j,℘(i) 6=℘(j)

M
℘

(1)
2,ε∩···∩℘

(n)
2,ε

a . (4.61)

Definition 4.29. MK
a is defined as being the nondecreasing limit ofMK,ε

a as ε→ 0.

This procedure not only definesMK
a for a fixed a, but defines it as a measurable process, viewed as

a function of a ∈ (0, 2), relatively to the topology of weak convergence. Indeed, Lemma 4.56 gives not
only the measurability of the measures w.r.t. the starting points, ending points and domains, but also
w.r.t. the thickness level a. This justifies for instance that the martingale mK

a , defined in Proposition
4.24, is well-defined.

4.5 First moment computations and rooted measure

The goal of this section will be to give a proof of Proposition 4.21 and Proposition 4.24. We will also
state and prove in Lemma 4.32 a generalisation of Proposition 4.21, which describes the law of the
loop soup after reweighting by our measureMK

a (dz) (4.3).

4.5.1 Preliminaries

We will consider a finite number of Brownian-like trajectories ℘1, . . . , ℘n and consider their distribution
seen from a typical thick point z generated by the interaction of the n trajectories.

Recall Definition 4.15 where admissible functions are defined. We also recall that Ξza denotes the
loop rooted at z obtained by gluing a Poisson point process of Brownian excursions from z to z with
intensity measure 2πaµz,zD (4.15). The goal of this section is to prove:

Lemma 4.30. For any n ≥ 1 and any nonnegative measurable function F which is admissible,

∫
µloop
D (d℘1) . . . µloop

D (d℘n)F (z, ℘1, . . . , ℘n)M℘1∩···∩℘n
a (dz)

= CR(z,D)a
∫

a∈E(a,n)

da
a1 . . . an

E
[
F (z,Ξza1 , . . . ,Ξ

z
an)
]
dz, (4.62)

where (Ξzai)1≤i≤n are independent.

In particular, note that when n = 1 the expected mass of the Brownian chaos generated by a single
loop coming from the Brownian loop soup is finite; however this becomes infinite as soon as n ≥ 2.

Before starting the proof of this lemma, we point out that the emergence of the process Ξza can be
guessed (at least in the case θ = 1/2) thanks to isomorphisms theorems (from [ALS20, Proposition
3.9], but see also Corollary 4.10) in which the Gaussian free field has nonzero boundary conditions.

Antoine Jego 149



CHAPTER 4. MULTIPLICATIVE CHAOS OF THE BROWNIAN LOOP SOUP

We also comment on the method of proof. A natural approach to this lemma would be to exploit
the identity (4.24) which relates the loop measure µloop

D in terms of excursion measures µz,zD , and then
to approximate these excursion measures µz,zD by the more well-behaved µz,wD , then letting w → z.
Indeed, Girsanov-type transforms of chaos measures associated to trajectories sampled according
to µz,wD /GD(z, w) have been obtained in [AHS20], and would lead (formally) relatively quickly and
painlessly to formulae such as (4.62).

Unfortunately this appealing approach suffers from a subtle but serious technical drawback, which is
that this does not tie in well with our chosen definition forM℘1∩···∩℘n

a in Section 4.4. The issue is that
it is not obvious that the chaos measures associated to excursions to soups of excursions sampled from
µD(z, w) converge to the chaos measureM℘1∩···∩℘n

a defined in Section 4.4. Even if such a convergence
could be proved (so that one might take this as the definition ofM℘1∩···∩℘n

a ) it would not be clear that
the limit would be measurable with respect to the collection of loops ℘1, . . . , ℘n. Unfortunately this
measurability is a crucial feature, and so a different route must be taken. The approach we use in
Section 4.4 does not suffer from this problem: indeed, although the idea is here again to reduce the
loops to excursions, these excursions are measurably defined from ℘1, . . . , ℘n.

The proof of Lemma 4.30 below may therefore at first sight look a little unnatural and somewhat
mysterious: the idea is to start from the answer (i.e., from the right-hand side of (4.62)), write down the
explicit law of the decomposition of each loop in Ξza into excursions according to their point with lowest
imaginary part (this is the content of Lemma 4.31), and check that this agrees after simplifications
with the left hand side of (4.62).

Lemma 4.31. Let z ∈ D, a > 0 and F be a nonnegative measurable function which is admissible.
Then, E

[
F (Ξz,Da )

]
is equal to

2πa
∫ Im(z)

mi(D)
dm

∫
(R+im)∩D

dz⊥
CR(z,D ∩Hm)a

CR(z,D)a HD∩Hm(z, z⊥)2E
[
F (℘z,z⊥D∩Hm ∧ ℘

z⊥,z
D∩Hm ∧ Ξz,D∩Hma )

]
where the loops ℘z,z⊥D∩Hm , ℘

z⊥,z
D∩Hm and Ξz,D∩Hma are independent and distributed as in Notations 4.20 and

4.14.

In words, this lemma states that the point z⊥ of Ξz,Da with minimal imaginary part has a density
with respect to Lebesgue measure given by the above expression. Moreover, the law of Ξz,Da conditionally
on z⊥ ∈ R + im is given by the concatenation of two independents paths: the original path Ξza in the
smaller domain D ∩Hm and a loop ℘z,z⊥D∩Hm ∧ ℘

z⊥,z
D∩Hm in D ∩Hm joining z and z⊥. We point out that

it is not immediately obvious that the right hand side defines a probability law (i.e., is equal to 1 when
F ≡ 1) but this can be seen directly using variational considerations on the conformal radius of z in
D ∩Hm as m varies.

Proof of Lemma 4.31. By density-type arguments, we can assume that F is continuous (recall that
the topology on the space of continuous paths is the one associated to the distance dpaths (4.28)).

We first observe that it is enough to prove Lemma 4.31 in the case of the upper half plane H. Indeed,
let us assume that the result holds in that case and let D be a bounded simply connected domain. By
translating D if necessary, we can assume that D is contained in H. It is an easy computation to show
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the result for D from the result for H as soon as we know the following two restriction properties:

E
[
F (Ξz,Ha )1{Ξz,Ha ⊂D}

]
= CR(z,D)a

CR(z,H)aE
[
F (Ξz,Da )

]
(4.63)

and for any m > mi(D) and z⊥ ∈ (R + im) ∩D,

E
[
F (℘z,z⊥Hm ∧ ℘

z⊥,z
Hm )1{℘z,z⊥Hm ∧℘

z⊥,z
Hm ⊂D}

]
= HD∩Hm(z, z⊥)2

HHm(z, z⊥)2 E
[
F (℘z,z⊥D∩Hm ∧ ℘

z⊥,z
D∩Hm)

]
. (4.64)

(4.64) is a mere reformulation of the restriction property (4.16) on measures. To conclude the transfer
of the result to general domains, let us prove (4.63). It turns out that it is also a consequence of (4.16).
Indeed, by continuity of F ,

E
[
F (Ξz,Ha )1{Ξz,Ha ⊂D}

]
= lim

w→∞
e−2πaGH(z,w) ∑

n≥0

(2πGH(z, w))n

n! E
[
F (℘z,wH,1 ∧ · · · ∧ ℘

z,w
H,n)1{∀i=1...n,℘z,wH,i ⊂D

}]

where ℘z,wH,i , i = 1 . . . n, are i.i.d. and distributed according to (4.21). By the restriction property (4.16),
we further have

E
[
F (Ξz,Ha )1{Ξz,Ha ⊂D}

]
= lim

w→∞
e−2πaGH(z,w) ∑

n≥0

(2πGD(z, w))n

n! E
[
F (℘z,wD,1 ∧ · · · ∧ ℘

z,w
D,n)

]
=
(

lim
w→∞

e−2πa(GH(z,w)−GD(z,w))
)
E
[
F (Ξz,Da )

]
= CR(z,D)a

CR(z,H)aE
[
F (Ξz,Da )

]
This shows (4.63).

The rest of the proof is dedicated to showing Lemma 4.31 in the case of the upper half plane H.
By continuity of F , we have

E
[
F (Ξz,Ha )

]
= lim

w→z
e−2πaGH(z,w) ∑

n≥1

(2πaGH(z, w))n

n! E
[
F (℘z,wH,1 ∧ · · · ∧ ℘

z,w
H,n)

]
. (4.65)

By symmetry,

E
[
F (℘z,wH,1 ∧ · · · ∧ ℘

z,w
H,n)

]
= E

[
F (℘z,wH,1 ∧ · · · ∧ ℘

z,w
H,n)|∀i = 1 . . . n− 1,mi(℘z,wH,n) < mi(℘z,wH,i )

]
. (4.66)

To make the n trajectories independent, we will condition further on mini=1...n mi(℘z,wH,i ). Let us first
compute its distribution. For all m ∈ (0, Im(z)), we have

P
(

min
i=1...n

mi(℘z,wH,i ) > m

)
= P (℘z,wH ⊂ Hm)n = GHm(z, w)nGH(z, w)−n.

The Green function in the upper half plane is explicit and is equal to

GH(z, w) = 1
2π log |z − w̄|

|z − w|
, GHm(z, w) = 1

2π log |z − w̄ − 2im|
|z − w|

.
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By differentiating w.r.t. m, we deduce that the density of mini=1...n mi(℘z,wH,i ) is given by

n

π

GHm(z, w)n−1

GH(z, w)n
Im(z − w̄)− 2m
|z − w̄ − 2im|2 dm.

We now want to expand (4.66). Conditioned on mi(℘z,wH,n) = mini=1...n mi(℘z,wH,i ) = m, the n trajectories
are independent with the following distributions: the first n− 1 trajectories are trajectories from z

to w in Hm with law µz,wHm/GHm(z, w) and the last trajectory ℘min which reaches the lowest level is
distributed as follows:

E [f(℘min)] = 1
Zm(z, w)

∫
R+im

dz⊥HHm(z, z⊥)HHm(w, z⊥)E
[
f(℘z,z⊥Hm ∧ ℘

z⊥,w
Hm )

]
.

In the above equation, Zm(z, w) is the normalising constant

Zm(z, w) =
∫
R+im

HHm(z, z⊥)HHm(w, z⊥)dz⊥.

Overall, this shows that

E
[
F (℘z,wH,1 ∧ · · · ∧ ℘

z,w
H,n)

]
= n

π

GHm(z, w)n−1

GH(z, w)n
∫ Im(z)

0
dm Im(z − w̄)− 2m
|z − w̄ − 2im|2

1
Zm(z, w)

×
∫
R+im

dz⊥HHm(z, z⊥)HHm(z, w)E
[
F (℘z,wHm,1 ∧ · · · ∧ ℘

z,w
Hm,n−1 ∧ ℘

z,z⊥
Hm ∧ ℘

z⊥,w
Hm )

]
.

Plugging this back in (4.65), we have

E
[
F (Ξz,Ha )

]
= 2a lim

w→z
e−2πaGH(z,w) ∑

n≥1

(2πaGHm(z, w))n−1

(n− 1)!

∫ Im(z)

0
dm Im(z − w̄)− 2m
|z − w̄ − 2im|2

1
Zm(z, w)

×
∫
R+im

dz⊥HHm(z, z⊥)HHm(z, w)E
[
F (℘z,wHm,1 ∧ · · · ∧ ℘

z,w
Hm,n−1 ∧ ℘

z,z⊥
Hm ∧ ℘

z⊥,w
Hm )

]
= 2a lim

w→z
e−2πa(GH(z,w)−GHm (z,w))

∫ Im(z)

0
dm Im(z − w̄)− 2m
|z − w̄ − 2im|2

1
Zm(z, w)

×
∫
R+im

dz⊥HHm(z, z⊥)HHm(z, w)E
[
F (Ξ(z,w),Hm

a ∧ ℘z,z⊥Hm ∧ ℘
z⊥,w
Hm )

]

where in the last line we wrote Ξ(z,w),Hm
a for a trajectory which consists in the concatenation (at z say)

of all the excursion in a Poisson point process with intensity 2πaµz,wHm . At this stage, it is not a loop,
but it converges to Ξz,Hma as w → z. We are now ready to take the limit w → z. Firstly,

e−2πa(GH(z,w)−GHm (z,w)) → CR(z,Hm)a/CR(z,H)a.

Secondly, since the Poisson kernel is explicit in the upper half plane

HHm(z, z⊥) = 1
π

Im(z)−m
|z − z⊥|2

,
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we can compute

lim
w→z

Zm(z, w) = 1
π2

∫
R

(Im(z)−m)2

(x2 + (Im(z)−m)2)2 dx = 1
π2

1
Im(z)−m

∫
R

1
(x2 + 1)2 dx = 1

2π
1

Im(z)−m.

Therefore, as w → z, we have
Im(z − w̄)− 2m
|z − w̄ − 2im|2

1
Zm(z, w) → π

By dominated convergence theorem, we obtain that

E
[
F (Ξz,Ha )

]
= 2πaCR(z,Hm)a

CR(z,H)a
∫ Im(z)

0
dm

∫
R+im

dz⊥HHm(z, z⊥)2E
[
F (Ξz,Hma ∧ ℘z,z⊥Hm ∧ ℘

z⊥,z
Hm )

]
which concludes the proof.

Proof of Lemma 4.30. By density-type arguments, we can assume that F is continuous. By definition,
we can rewrite the left hand side of (4.62) as

lim
ε→0

∫
µloop
D (d℘1) . . . µloop

D (d℘n)1{∀i=1...ε,h(℘i)>ε}F (z, ℘1, . . . , ℘n)M
℘1
ε,2∩···∩℘

n
ε,2

a (dz)

= lim
ε→0

µloop
D (h(℘) > ε)nE

[
F (z, ℘1

ε,2, . . . , ℘
n
ε,2)M

℘1
ε,2∩···∩℘

n
ε,2

a (dz)
]

where in the second line, ℘iε,2, i = 1 . . . n, are i.i.d. trajectories with law (4.59) described in Lemma
4.28. Note also that in the second line we used the continuity of F and the fact that the first portion of
the trajectory ℘ε,1 vanishes as ε→ 0. We are going to expand this expression with the help of Lemma
4.28. The term µloop

D (h(℘) > ε) and the partition function Z in (4.60) will cancel out and we obtain
that the left hand side of (4.62) is equal to (we write below with some abuse of notation a product of
integrals instead of multiple integrals)

lim
ε→0

n∏
i=1

∫ Mi(D)−ε

mi(D)
dmi

∫
(R+imi)∩D

dzi⊥
∫

(R+i(mi+ε))∩D
dziεHSmi,mi+ε

(zi⊥, ziε)HD∩Hmi (z
i
ε, z

i
⊥) (4.67)

× E

F (z, (℘z
i
ε,z

i
⊥

D∩Hmi
)i=1...n)M

∩℘
ziε,z

i
⊥

D∩H
mi

a (dz)

 .
The trajectories ℘z

i
ε,z

i
⊥

D∩Hmi
are independent Brownian trajectories with law as in (4.21). By (4.43), the

last expectation above is equal to

(2π)n
∫

a∈E(a,n)
da

n∏
i=1

CR(z,D ∩Hmi)aiGD∩Hmi (z
i
ε, z)

HD∩Hmi (z, z
i
⊥)

HD∩Hmi (z
i
ε, z

i
⊥)

(4.68)

× E
[
F (z, (℘z

i
ε,z
D∩Hmi

∧ Ξz,D∩Hmiai ∧ ℘z,z
i
⊥

D∩Hmi
)i=1...n)

]
dz

where all the trajectories above are independent. When ε → 0, ziε → zi⊥ and it is easy to see that
℘
ziε,z
D∩Hmi

∧ ℘z,z
i
⊥

D∩Hmi
converges in distribution to a loop ℘z

i
⊥,z
D∩Hmi

∧ ℘z,z
i
⊥

D∩Hmi
that is the concatenation of

two independent paths distributed as in Notations 4.14. This loop will play the role of the loop whose
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imaginary part reaches the minimum among all loops in Ξz,Hai (see Lemma 4.31). Coming back to (4.67)
and (4.68), we see that the Poisson kernels HD∩Hmi (z

i
ε, z

i
⊥) appearing in both equations cancel out.

Noticing that as soon as Im(z) > mi + ε,∫
(R+i(mi+ε))∩D

HSmi,mi+ε
(zi⊥, ziε)GD∩Hmi (z

i
ε, z)dziε = HD∩Hmi (z, z

i
⊥),

we overall obtain that the left hand side of (4.62) is equal to

(2π)n
∫

a∈E(a,n)
da

n∏
i=1

∫ Im(z)

mi(D)
dmi

∫
(R+imi)∩D

dzi⊥CR(z,D ∩Hmi)aiHD∩Hmi (z, z
i
⊥)2

× E
[
F (z, (℘z

i
⊥,z
D∩Hmi

∧ ℘z,z
i
⊥

D∩Hmi
∧ Ξz,D∩Hmia )i=1...n)

]
.

Lemma 4.31 identifies this last expression with the right hand side of (4.62). This concludes the
proof.

4.5.2 First moment (Girsanov transform)

We now start the proof of Proposition 4.21 as well as describing the way the loop soup changes when
one shifts the probability measure byMK

a (dz). The following result is the analogue of Theorem 4.8 at
the approximation level. It is a quick consequence of Lemma 4.30.

Lemma 4.32. For any bounded measurable admissible function F ,

E
[
F (z,LθD)MK

a (dz)
]

=

CR(z,D)a
∑
n≥1

θn

n!

∫
a∈E(a,n)

da
a1 . . . an

E
[
n∏
i=1

(
1− e−KT (Ξzai )

)
F (z,LθD ∪ {Ξzai , i = 1 . . . n})

]
dz,

where (Ξzai)1≤i≤n are independent and independent of LθD.

Proof of Lemma 4.32. By definition ofMK
a in (4.3) and monotone convergence, we want to compute

E


∑

℘1,...,℘n∈LθD
∀i 6=j,℘i 6=℘j

n∏
i=1

(
1− e−KT (℘i)

)
F (z,LθD)M℘1∩···∩℘n

a (dz)

 . (4.69)

By Palm’s formula applied to the Poisson point process LθD, we can rewrite (4.69) as

θn
∫
µloop
D (d℘1) . . . µloop

D (d℘n)
n∏
i=1

(
1− e−KT (℘i)

)
ELθD

[
F (z,LθD ∪ {℘1, . . . , ℘n})

]
M℘1∩···∩℘n

a (dz).

By Lemma 4.30, this is equal to

CR(z,D)aθn
∫

a∈E(a,n)

da
a1 . . . an

E
[
n∏
i=1

(
1− e−KT (Ξzai )

)
F (z,LθD ∪ {Ξzai , i = 1 . . . n})

]
dz.
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This concludes the proof of Lemma 4.32.

We will get Proposition 4.21 simply by taking a function F depending only on z in Lemma 4.32.
Before this, we first state a lemma which shows that (somewhat miraculously, in our opinion) the
integrals appearing in Lemma 4.32 can be computed explicitly in terms of hypergeometric functions;
this is where the function F comes from in our results.

Lemma 4.33. The function F defined in (4.44) can be expressed as follows: for all u ≥ 0,

F(u) =
∑
n≥1

1
n!θ

n
∫

a∈E(1,n)

da1 . . . dan−1
a1 . . . an

n∏
i=1

(
1− e−uai

)
. (4.70)

Proof of Lemma 4.33. For all u ≥ 0, let F̂(u) denote the right hand side of (4.70). We will show that
F̂(u) = F(u). Note that we have

d
du

n∏
i=1

(1− e−uai) =
n∑
j=1

e−uaj
∏
i 6=j

(1− e−uai)

and by symmetry we deduce that

F̂′(u) = θe−u +
∑
n≥2

θn

(n− 1)!

∫
ai>0,a1+···+an−1<1

da1 . . . dan−1
a1 . . . an−1

e−u(1−(a1+···+an−1))
n−1∏
i=1

(1− e−uai)

= θe−u

1 +
∑
n≥2

θn−1

(n− 1)!

∫
ai>0,a1+···+an−1<1

da1 . . . dan−1
a1 . . . an−1

n−1∏
i=1

(euai − 1)

 . (4.71)

Differentiating further,

1
θ

d
du(euF̂′(u)) = θ

∑
n≥2

θn−2

(n− 2)!

∫
ai>0,a1+···+an−2<1

da1 . . . dan−2
a1 . . . an−2

n−2∏
i=1

(euai − 1)

×
∫ 1−(a1+···+an−2)

0
euan−1dan−1

= θeu

u

∑
n≥2

θn−2

(n− 2)!

∫
ai>0,a1+···+an−2<1

da1 . . . dan−2
a1 . . . an−2

n−2∏
i=1

(1− e−uai)

− θ

u

∑
n≥2

θn−2

(n− 2)!

∫
ai>0,a1+···+an−2<1

da1 . . . dan−2
a1 . . . an−2

n−2∏
i=1

(euai − 1).

By (4.71), we see that the second term in the right hand side is equal to −euF̂′(u)/u. We now define
the function G(u) to be the first term in the right hand side, multiplied by ue−u/θ. Thus we have

1
θ
eu(F̂′(u) + F̂′′(u)) = θeu

u
G(u)− eu

u
F̂′(u). (4.72)
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We further have

G′(u) = θ
∑
n≥3

θn−3

(n− 3)!

∫
ai>0,a1+···+an−3<1

da1 . . . dan−3
a1 . . . an−3

n−3∏
i=1

(1− e−uai)

×
∫ 1−(a1+···+an−3)

0
e−uan−2dan−2

= θ

u

∑
n≥3

θn−3

(n− 3)!

∫
ai>0,a1+···+an−3<1

da1 . . . dan−3
a1 . . . an−3

n−3∏
i=1

(1− e−uai)

− θe−u

u

∑
n≥3

θn−3

(n− 3)!

∫
ai>0,a1+···+an−3<1

da1 . . . dan−3
a1 . . . an−3

n−3∏
i=1

(euai − 1)

= θ

u
G(u)− 1

u
F̂′(u)

by definition of G and (4.71). Reformulating,

d
du

(G(u)
uθ

)
= G′(u)− θu−1G(u)

uθ
= − F̂′(u)

uθ+1 .

Thanks to (4.72), we deduce that

1
θ

d
du
(
u1−θ(F̂′(u) + F̂′′(u))

)
= − 1

uθ
F̂′′(u)

and
(1− θ)F̂′(u) + F̂′′(u) + u(F̂′′(u) + F̂′′′(u)) = 0.

By looking at the solutions of this equation (see [AS84, Section 13.1]), we deduce that there exist
c1, c2 ∈ R such that

F̂′(u) = c1e
−uU(θ, 1, u) + c2e

−u
1F1(θ, 1, u)

where U(θ, 1, u) = 1
Γ(θ)

∫∞
0 e−uttθ−1(1 + t)−θdt is Tricomi’s confluent hypergeometric function and

1F1(θ, 1, u) =
∑∞
n=0

θ(θ+1)...(θ+n−1)
n!2 un is Kummer’s confluent hypergeometric function. With (4.71), we

see that F̂′(u)→ θ as u→ 0. Hence c1 = 0 and c2 = θ. We have proven that

F̂′(u) = θe−u1F1(θ, 1, u)

and, therefore, F̂ = F. This concludes the proof of Lemma 4.33.

We can now conclude with a proof of Proposition 4.21.

Proof of Proposition 4.21. By Lemma 4.32 applied to the function F = F (z) depending only on z, and
by doing the change of variable bi = ai/a, we have

E[MK
a (dz)] = 1

a

∑
n≥1

θn

n!

∫
b∈E(1,n)

db
b1 . . . bn

n∏
i=1

E
[
1− e−KT (Ξza·bi )

]
CR(z,D)adz.
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By Palm’s formula and by recalling the definition (4.45) of CK(z), we have

E
[
1− e−KT (Ξza·bi )

]
= 1− exp

(
2πa · bi

∫ ∞
0

pD(t, z, z)(e−Kt − 1)dt
)

= 1− exp (−CK(z)a · bi) . (4.73)

With Lemma 4.33, we conclude that

E[MK
a (dz)] = 1

a
F(CK(z)a) CR(z,D)adz.

This concludes the proof.

4.5.3 The crucial martingale

We now turn to the proof of Proposition 4.24. We will see that it is the consequence of the following
two lemmas. We will first state these two lemmas, then show how they imply Proposition 4.24, and
then prove the two lemmas.

The first lemma shows that the function F, defined in (4.44) and appearing in the first moment of
MK

a , solves some integral equation. As we will see, this equation is precisely what is required in order
to show that the expectation of the martingale is constant.

Lemma 4.34. For all a ≥ 0 and v ≥ 0,∫ a

0

dρ
ρ(a− ρ)1−θ e

ρvF(ρv) + 1
a1−θ = eav

a1−θ . (4.74)

Let K ′ < K. The second lemma expresses the measureMK
a in terms ofMK′

ρ , ρ ∈ (0, a). Denote
byMK,K′

a the measure on a-thick points of loops in LθD(K)\LθD(K ′), i.e.

MK,K′
a :=

∑
n≥1

1
n!

∑
℘1,...,℘n∈LθD(K)\LθD(K′)

∀i 6=j,℘i 6=℘j

M℘1∩···∩℘n
a .

For any ρ ∈ (0, a), denote alsoMK,K′

a−ρ ∩MK′
ρ the measure on thick points, where the total thickness a

comes from a combination of loops in LθD(K) \ LθD(K ′) (with thickness a− ρ) and loops in LθD(K ′)
(with thickness ρ). More precisely,

MK,K′

a−ρ ∩MK′
ρ :=

∑
n,m≥1

1
n!m!

∑
℘1,...,℘n∈LθD(K)\LθD(K′)

∀i 6=j,℘i 6=℘j

∑
℘′1,...,℘

′
m∈LθD(K′)

∀i 6=j,℘′i 6=℘
′
j

M℘1∩···∩℘n
a−ρ ∩M℘′1∩···∩℘

′
m

ρ ,

whereM℘1∩···∩℘n
a−ρ ∩M℘′1∩···∩℘

′
m

ρ is defined in Section 4.2.3. We recall thatMK,K′

a−ρ ∩MK′
ρ may be viewed

as the Brownian chaos generated byMK,K′

a−ρ with respect to an intensity measure σ, which is itself an
(independent) Brownian chaos generated byMK′

ρ ; see (4.40).
We claim:
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Lemma 4.35. Let K ′ < K. We can decompose

MK
a =MK,K′

a +MK′
a +

∫ a

0
dρMK,K′

a−ρ ∩MK′
ρ . (4.75)

Remark 4.36. By taking K →∞, and writing K instead of K ′, it should be possible to deduce from
Lemma 4.35 and from our results, a posteriori, that we have an identity of the type:

νKa +
∫ a

0
νKa−ρ ∩MK

ρ = νa. (4.76)

Here, the measure νKa , is (informally) the uniform measure on thick points of the non-killed loop soup,
and νKa−ρ ∩MK

ρ would be a uniform measure on thick points created by both measures; both would
need to be defined carefully. One should further expect that νKa coincides with the exponential measure
on such points except for a factor of the form 1/a1−θ (this can heuristically be understood in the case
θ = 1/2 as coming from the tail of the Gaussian distribution).

Accepting the above, we see that (4.76) is consistent with the martingale in Proposition 4.24. The
identity (4.76) is in fact what motivated us to define the martingale in Proposition 4.24.

Let us see how Proposition 4.24 follows from Lemmas 4.34 and 4.35.

Proof of Proposition 4.24. Let K ′ < K. We first note that

E
[
MK,K′

a (dz)
]

= 1
a

F (aCK(z)− aCK′(z)) e−aCK′ (z) CR(z,D)adz. (4.77)

Indeed, the only difference with the expectation of MK
a is that loops are required to survive the

K ′-killing, so that 1− e−KT (℘) is replaced by e−K′T (℘) − e−KT (℘) and we find that

E
[
MK,K′

a (dz)
]

=
∑
n≥1

θn

n!

∫
a∈E(a,n)

da
n∏
i=1

e−aiCK′ (z) − e−aiCK(z)

ai
CR(z,D)adz.

(4.77) then follows by factorising by
∏
i e
−aiCK′ (z) = e−aCK′ (z) and by Lemma 4.33.

By (4.75) and properties of the intersection measure (in particular (1.6) in [Jeg19]), we have

E
[
MK

ρ (dz)|FK′
]

=MK′
ρ + E

[
MK,K′

ρ

]
+
∫ ρ

0
dβ E

[
MK,K′

ρ−β (z)
]
MK′

β (dz)

=MK′
ρ + 1

ρ
F (ρCK(z)− ρCK′(z)) e−ρCK′ (z) CR(z,D)ρdz

+
∫ ρ

0
dβ 1
ρ− β

F ((ρ− β)(CK(z)− CK′(z))) e−(ρ−β)CK′ (z) CR(z,D)ρ−βMK′
β (dz).
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Hence the conditional expectation E
[
mK
a |FK′

]
is equal to

aθ−1 CR(z,D)ae−aCK(z)dz +
∫ a

0
dρ 1

(a− ρ)1−θ CR(z,D)a−ρe−(a−ρ)CK(z)MK′
ρ (dz) (4.78)

+
∫ a

0

dρ
ρ(a− ρ)1−θ CR(z,D)ae−(a−ρ)CK(z)−ρCK′ (z)F (ρCK(z)− ρCK′(z)) dz

+
∫ a

0
dρ
∫ ρ

0
dβ 1

(ρ− β)(a− ρ)1−θ CR(z,D)a−βe−(a−ρ)CK(z)−(ρ−β)CK′ (z)

× F ((ρ− β)(CK(z)− CK′(z)))MK′
β (dz).

By Lemma 4.34 (with v = CK(z)− CK′(z)), the sum of the first and third terms in (4.78) is equal to

1
a1−θ CR(z,D)ae−aCK′ (z)dz.

On the other hand, by exchanging the two integrals, the fourth term is equal to∫ a

0
dβ CR(z,D)a−βe−(a−β)CK(z)MK′

β (dz)

×
∫ a

β

dρ
(ρ− β)(a− ρ)1−θ e

(ρ−β)(CK(z)−CK′ (z))F ((ρ− β)(CK(z)− CK′(z))) .

By Lemma 4.34, the integral with respect to ρ is equal to

e(a−β)(CK(z)−CK′ (z)) − 1
(a− β)1−θ

implying that the fourth term of (4.78) is equal to∫ a

0

dβ
(a− β)1−θ CR(z,D)a−βe−(a−β)CK′ (z)MK′

β (dz)

−
∫ a

0

dβ
(a− β)1−θ CR(z,D)a−βe−(a−β)CK(z)MK′

β (dz).

This second integral cancels with the second term of (4.78). Overall, this shows that

E
[
mK
a (dz)|FK′

]
= 1
a1−θ CR(z,D)ae−aCK′ (z)dz +

∫ a

0

dβ
(a− β)1−θ CR(z,D)a−βe−(a−β)CK′ (z)MK′

β (dz)

= mK′
a (dz).

This concludes the proof of Proposition 4.24.

The rest of the section is devoted to the proofs of Lemmas 4.34 and 4.35. We start with Lemma
4.34.
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Proof of Lemma 4.34. By doing the change of variable ρ = aβ, it is enough to show that∫ 1

0
dβ 1
β(1− β)1−θ e

avβF(avβ) = eav − 1.

Recall that for all u ≥ 0,

F(u) = θ

∫ u

0
dt e−t

∞∑
n=0

θ(n)

n!2 t
n

where we have let

θ(0) := 1 and θ(n) := θ(θ + 1) . . . (θ + n− 1), n ≥ 1. (4.79)

By exchanging the integral and the sum, we find that for all u ≥ 0,

F(u) = θ
∞∑
n=0

θ(n)

n!

(
1− e−u

n∑
k=0

uk

k!

)
= θe−u

∞∑
n=0

θ(n)

n!

∞∑
k=n+1

uk

k! .

Hence ∫ 1

0
dβ 1
β(1− β)1−θ e

avβF(avβ) = θ
∞∑
n=0

θ(n)

n!

∞∑
k=n+1

(av)k

k!

∫ 1

0
dβ βk−1

(1− β)1−θ .

Now, by (4.222), for all k ≥ 1,

∫ 1

0
dβ βk−1

(1− β)1−θ = (k − 1)!Γ(θ)
Γ(k + θ) = (k − 1)!

θ(k) ,

which implies that

∫ 1

0
dβ 1
β(1− β)1−θ e

avβF(avβ) = θ
∞∑
n=0

θ(n)

n!

∞∑
k=n+1

1
k.θ(k) (av)k

= θ
∞∑
k=1

1
k.θ(k) (av)k

k−1∑
n=0

θ(n)

n! .

Furthermore, we can easily show by induction that

k−1∑
n=0

θ(n)

n! = 1
θ

θ(k)

(k − 1)! .

We can thus conclude that∫ 1

0
dβ 1
β(1− β)1−θ e

avβF(avβ) =
∞∑
k=1

1
k! (av)k = eav − 1

as desired.

We now turn to the proof of Lemma 4.35.
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Proof of Lemma 4.35. We have

MK
a =

∑
n≥1

1
n!

∑
℘1 6=... 6=℘n∈LθD(K)

M℘1∩···∩℘n
a

=
∑
n≥1

1
n!

n∑
k=0

(
n

k

) ∑
℘1 6=... 6=℘k∈LθD(K′)

℘k+1 6=... 6=℘n∈LθD(K)\LθD(K′)

M℘1∩···∩℘n
a

The terms k = 0 and k = n give rise toMK,K′
a andMK′

a respectively. By Proposition 1.3 in [Jeg19]
(applied to Brownian loops instead of Brownian motions, although as explained in Section 4.A this is
justified), we can disintegrate

M℘1∩···∩℘n
a =

∫ a

0
dρM℘1∩···∩℘k

ρ ∩M℘k+1∩···∩℘n
a−ρ .

Therefore, letting m be n− k,

MK
a =MK,K′

a +MK′
a

+
∫ a

0
dρ
(∑
k≥1

1
k!

∑
℘1 6=... 6=℘k∈LθD(K′)

M℘1∩···∩℘k
ρ

)
∩
( ∑
m≥1

1
m!

∑
℘1 6=... 6=℘m∈LθD(K)\LθD(K′)

M℘1∩···∩℘m
a−ρ

)

=MK,K′
a +MK′

a +
∫ a

0
dρMK′

ρ ∩M
K,K′

a−ρ .

This concludes the proof of Lemma 4.35.

4.6 Second moment computations and multi-point rooted measure

The goal of this section is to initiate the study of the second moment.

4.6.1 Preliminaries

We start off by giving the analogue of Lemma 4.30 in the second moment case. A new process of
excursions will come into play, which we describe now. We first introduce the following special function:

B(u) :=
∑
k≥1

uk

k!(k − 1)! , u ≥ 0. (4.80)

B can be expressed in terms of the modified Bessel function of the first kind I1 (see (4.223)), but it is
more convenient to give a name to the function B instead of I1, since it comes up in many places below.

Let z, z′ ∈ D be two distinct points and let a, a′ > 0. We consider the cloud (meaning the point
process) of excursions Ξz,z

′

a,a′ such that for all k ≥ 1,

P
(
#Ξz,z

′

a,a′ = 2k
)

= 1
B
(
(2π)2aa′GD(z, z′)2

) (2π
√
aa′GD(z, z′))2k

k!(k − 1)! , (4.81)
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and conditionally on {#Ξz,z
′

a,a′ = 2k}, Ξz,z
′

a,a′ is composed of 2k independent and identically distributed
excursions from z to z′, with common law µz,z

′

D /GD(z, z′) (4.15). Note that Ξz,z
′

a,a′ is not a Poisson
point process of excursions, since (4.81) is not the Poisson distribution. However, one can see that it
becomes asymptotically Poisson (conditioned to be even), in the limit when z → z′. This fact will not
be needed in what follows but is useful to guide the intuition. The parity condition implicit in (4.81) is
crucial, since it allows us to combine these excursions into loops that visit both z and z′.

Recall the notion of admissible functions intoduced in Definition 4.15 and also Notation 4.20 where
the loops Ξza are defined.

Lemma 4.37. Let z, z′ ∈ D. Let 0 < a, a′ < 2. Let n,m ≥ 1, l ∈ {0, . . . , n ∧ m} and F =
F (z, z′, ℘1, . . . , ℘n, ℘

′
l+1, . . . , ℘

′
m) be a bounded measurable admissible function of two points and n+m−l

loops. We have∫
µloop
D (d℘1) . . . µloop

D (d℘n)µloop
D (d℘′l+1) . . . µloop

D (d℘′m) (4.82)

M℘1∩...℘n
a (dz)M

℘1···∩℘l∩℘′l+1∩...℘
′
m

a′ (dz′)F (z, z′, ℘1, . . . , ℘n, ℘
′
l+1, . . . , ℘

′
m)

= CR(z,D)a CR(z′, D)a′
∫

a∈E(a,n)
a′∈E(a′,m)

da
a1 . . . an

da′
a′1 . . . a

′
m

l∏
i=1

B
(
(2π)2aia

′
iGD(z, z′)2

)
× E

[
F
(
z, z′, {Ξz,z

′

ai,a′i
∧ Ξzai ∧ Ξz′a′i}

l
i=1; {Ξzai}

n
i=l+1; {Ξz′a′i}

m
i=l+1

)]
dzdz′

where all the random variables appearing above are independent and ∧ denotes concatenation in some
order (the precise order does not matter by admissibility).

Before we start with the proof of this lemma, we make a few comments on its meaning. Note that
in the left hand side, we can think of z and z′ respectively as having been sampled from Brownian
chaos measures associated with loops which can overlap: namely, ℘1, . . . , ℘l are common to both
collections. The right hand side expresses the law that results from this conditioning (or more precisely
reweighting): we get not only the Poisson point processes of excursions Ξzai and Ξz′a′i which already
appeared in Lemma 4.30, but also an independent non-Poissonian collection of excursions joining z
and z′ with law given by (4.81).

We encapsulate the heart of the proof Lemma 4.37 in Lemma 4.38 below. For a, a′ ∈ (0, 2), z ∈ D,
letMΞza

a′ denote the measure on a′-thick points generated by the loop Ξza (recall Notation 4.20). More
precisely,

MΞza
a′ :=

∑
k≥1

1
k!

∑
℘1,...,℘k

excursions of Ξza
∀i 6=j,℘i 6=℘j

M℘1∩···∩℘k
a′ . (4.83)

Lemma 4.38. Let z ∈ D, a, a′ ∈ (0, 2). For any nonnegative measurable admissible function F ,

E
[
MΞza

a′ (dz′)F (z′,Ξza)
]

= 1
a′

CR(z′, D)a′B((2π)2aa′GD(z, z′)2)E
[
F (z′,Ξza ∧ Ξz′a′ ∧ Ξz,z

′

a,a′)
]

dz′. (4.84)

We now explain how Lemma 4.37 is obtained from this result. We will then prove Lemma 4.38.
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Proof of Lemma 4.37. By Lemma 4.30, we can rewrite the left hand side of (4.82) as

CR(z,D)adz
∫

a∈E(a,n)

da
a1 . . . an

∫
µloop
D (d℘′l+1) . . . µloop

D (d℘′m)

× E
[
M

Ξza1∩···∩Ξzal∩℘
′
l+1∩···∩℘m

a′ (dz′)F (z, z′, {Ξzai}i=1...n; {℘′i}i=l+1...m)
]
.

Concluding the proof is then routine: we use the disintegration formula (4.41) to specify the thickness
of each trajectory, Lemma 4.30 and Lemma 4.38. We omit the details.

The rest of this section is dedicated to the proof of Lemma 4.38. As in the first moment computations
made in Section 4.5.1, we will need to have an understanding of the processes of loops involved in
Lemma 4.38 seen from their point with minimal imaginary part. Lemma 4.31 already achieves such a
description for Ξza. We now completes the picture by doing it for loops ℘z,z

′

D ∧ ℘z
′,z
D appearing in the

definition of Ξz,z
′

a,a′ .

Lemma 4.39. Let z, z′ ∈ D be distinct points. For all nonnegative measurable function F ,

E
[
F (℘z,z

′

D ∧ ℘z
′,z
D )

]
= 1
GD(z, z′)2

∫ mz

mi(D)
dmGD∩Hm(z, z′)

∫
(R+im)∩D

dz⊥HD∩Hm(z′, z⊥)HD∩Hm(z, z⊥)

× E
[
F (℘z,z

′

D∩Hm ∧ ℘
z′,z⊥
D∩Hm ∧ ℘

z⊥,z
D∩Hm) + F (℘z,z⊥D∩Hm ∧ ℘

z⊥,z
′

D∩Hm ∧ ℘
z′,z
D∩Hm)

]
We mention that the first (resp. second) term in the above expectation corresponds to the case

where the minimum of the loop ℘z,z
′

D ∧℘z
′,z
D is achieved by the second piece ℘z

′,z
D (resp. first piece ℘z,z

′

D ).

Proof. The proof is similar to the proof of Lemma 4.31. We first notice that, by restriction arguments,
it is enough to show the result for the upper half plane. We then show it exploiting explicit expressions
for the Green function and the Poisson kernel. We do not provide more details.

We finally prove Lemma 4.38.

Proof of Lemma 4.38. By density-type arguments, we can assume that F is continuous. Let mz :=
Im(z) and let Ξza,ε := {℘ excursion in Ξza : mi(℘) < mz − ε} be the set of excursions in Ξza which go
below Hmz−ε (recall Notation 4.27). In this proof, we will, with some abuse of notations, denote by
Ξza,ε both the set of excursions and the loop obtained as the concatenation of all these excursions.
#Ξza,ε is a Poisson variable with mean 2πaµz,zD (mi(℘) < mz − ε) and conditioned on #Ξza,ε = n, Ξza,ε
is composed of n i.i.d. excursions with common distribution ℘ε that we describe now. We root ℘ε
at the point z⊥ with minimal imaginary part and, recalling Notation 4.14, we have for any bounded
measurable function F ,

E [F (℘ε)] = 1
Zε

∫ mz−ε

mi(D)
dm

∫
(R+im)∩D

dz⊥HD∩Hm(z, z⊥)2E
[
F (℘z,z⊥D∩Hm ∧ ℘

z⊥,z
D∩Hm)

]
, (4.85)

where Zε is the normalising constant

Zε =
∫ mz−ε

mi(D)
dm

∫
(R+im)∩D

dz⊥HD∩Hm(z, z⊥)2.
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Note that Zε = µz,zD (mi(℘) < mz − ε). We can now start the computation of the left hand side of
(4.84). By continuity of F , it is equal to

lim
ε→0

e−2πaZε
∞∑
n=0

(2πaZε)n

n! E
[
MΞza,ε

a′ (dz′)F (z′,Ξza,ε)|#Ξza,ε = n
]

(4.86)

= lim
ε→0

e−2πaZε
∞∑
n=0

(2πaZε)n

n!

n∑
k=1

(
n

k

)
E
[
M℘1

ε∩···∩℘kε
a′ (dz′)F (z′, ℘1

ε ∧ · · · ∧ ℘nε )
]

where ℘iε, i = 1 . . . n, are i.i.d. trajectories distributed according to (4.85). The binomial coefficient
corresponds to the number of ways to choose k trajectories that actually visit z′ among the collection
of n trajectories. We now use the disintegration formula (4.41) to specify the contribution of each of
the k trajectories. To ease notations, in the following computations we denote by Di = D ∩Hmi and
we write with some abuse of notation a product of integrals instead of multiple integrals. Also, by
independence, the shift by the above intersection measure will not have any impact on ℘k+1

ε , . . . , ℘nε .
We will therefore remove these trajectories from the computations and add them back when it will be
necessary. We have

E
[
M℘1

ε∩···∩℘kε
a′ (dz′)F (z′, ℘1

ε ∧ · · · ∧ ℘kε)
]

= 1
Zkε

∫
a′∈E(a′,k)

da′
(

k∏
i=1

∫ mz−ε

mi(D)
dmi

∫
(R+imi)∩D

dzi⊥

)
(4.87)

×
(

k∏
i=1

HDi(z, zi⊥)2
)
E

 k⋂
i=1
M

℘
z,zi⊥
Di
∧℘

zi⊥,z
Di

a′i
(dz′)F

(
z′,

k∧
i=1

(℘z,z
i
⊥

Di
∧ ℘z

i
⊥,z
Di

)
) .

We decompose for all i = 1 . . . k,

M
℘
z,zi⊥
Di
∧℘

zi⊥,z
Di

a′i
=M

℘
z,zi⊥
Di

a′i
+M

℘
zi⊥,z
Di

a′i
+M

℘
z,zi⊥
Di
∩℘

zi⊥,z
Di

a′i

and we then expand

E

 k⋂
i=1
M

℘
z,zi⊥
Di
∧℘

zi⊥,z
Di

a′i
(dz′)F

(
z′,

k∧
i=1

(℘z,z
i
⊥

Di
∧ ℘z

i
⊥,z
Di

)
) (4.88)

=
∑

I1,I2,I3

E

⋂
i∈I1
M

℘
z,zi⊥
Di

a′i
∩
⋂
i∈I2
M

℘
zi⊥,z
Di

a′i
∩
⋂
i∈I3
M

℘
z,zi⊥
Di
∩℘

zi⊥,z
Di

a′i
(dz′)F

(
z′,

k∧
i=1

(℘z,z
i
⊥

Di
∧ ℘z

i
⊥,z
Di

)
)

where the sum runs over all partition of {1, . . . , k} in three subsets I1, I2 and I3. Recall that the
disintegration formula (4.41) yields

M
℘
z,zi⊥
Di
∩℘

zi⊥,z
Di

a′i
=
∫ a′i

0
dα′i M

℘
z,zi⊥
Di

a′i−α
′
i
∩M

℘
zi⊥,z
Di

α′i
. (4.89)
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Now, by (4.43), the expectation in the left hand side of (4.88) is equal to

∑
I1,I2,I3

( ∏
i∈I1∪I2

HDi(z′, zi⊥)
HDi(z, zi⊥)

2πGDi(z, z′) CR(z′, Di)a
′
i

)( ∏
i∈I3

a′i
HDi(z′, zi⊥)2

HDi(z, zi⊥)2 (2π)2GDi(z, z′)2 CR(z′, Di)a
′
i

)
(4.90)

× E
[
F
(
z′,

∧
i∈I1

(℘z,z
′

Di
∧ ℘z

′,zi⊥
Di

∧ ℘z
i
⊥,z
Di
∧ Ξz

′,Di
a′i

) ∧
∧
i∈I2

(℘z,z
i
⊥

Di
∧ ℘z

i
⊥,z
′

Di
∧ ℘z

′,z
Di
∧ Ξz

′,Di
a′i

)

∧
∧
i∈I3

(℘z,z
′

Di
∧ ℘z

′,z
Di
∧ Ξz′,Diai ∧ ℘z

′,zi⊥
Di

∧ ℘z
i
⊥,z
′

Di
)
)]
.

Note that the a′i in the product over i ∈ I3 comes from the integration of α′i in (4.89). When we
will plug this back in (4.87), we will have to multiply everything with the product of Poisson kernel
HDi(z, zi⊥)2. This latter product times the two products in parenthesis in (4.90) can be rewritten as( ∏

i∈I1∪I2
HDi(z′, zi⊥)HDi(z, zi⊥)2πGDi(z, z′) CR(z′, Di)a

′
i

)
×
( ∏
i∈I3

a′iHDi(z′, zi⊥)2(2π)2GDi(z, z′)2 CR(z′, Di)a
′
i

)

= (2π)k CR(z′, D)a′GD(z, z′)2k
( ∏
i∈I1∪I2

{
HDi(z′, zi⊥)HDi(z, zi⊥)GDi(z, z

′)
GD(z, z′)2

}CR(z′, Di)a
′
i

CR(z′, D)a′i

)

×
( ∏
i∈I3

{
2πa′iHDi(z′, zi⊥)2 CR(z′, Di)a

′
i

CR(z′, D)a′i

}GDi(z, z′)2

GD(z, z′)2

)
.

We recognise in the brackets above the density of the point zi⊥ with minimal imaginary part in
the loops ℘z,z

′,i
D ∧ ℘z

′,z,i
D (i ∈ I1 ∪ I2) and Ξz,Da′i (i ∈ I3); see Lemmas 4.39 and 4.31. The term

CR(z′, Di)a
′
i/CR(z′, D)a′i (resp. GDi(z, z′)2/GD(z, z′)2) corresponds to the probability for Ξz

′,D
a′i

(resp.

℘z,z
′,i

D ∧ ℘z
′,z,i
D ) to stay in Di. To make this more precise, we introduce the following events: for

all i = 1 . . . k, let Ei1(ε), resp. Ei2(ε) and Ei3(ε), be the event that the minimal height among the
trajectories ℘z,z

′,i
D , ℘z

′,z,i
D and Ξz

′,D
a′i

is smaller than mz − ε = Im(z)− ε and is reached by the first, resp.
second and third. Lemmas 4.39 and 4.31 imply that for all β ∈ {1, 2}, for all i ∈ Iβ,

∫ mz−ε

mi(D)
dmi

∫
(R+imi)∩D

dzi⊥
{
HDi(z′, zi⊥)HDi(z, zi⊥)GDi(z, z

′)
GD(z, z′)2

}CR(z′, Di)a
′
i

CR(z′, D)a′i

× E
[
F (z′, ℘z,z

′

Di
∧ ℘z

′,zi⊥
Di

∧ ℘z
i
⊥,z
Di
∧ Ξz

′,Di
a′i

)
]

= E
[
F (z′, ℘z,z

′,i
D ∧ ℘z

′,z,i
D ∧ Ξz

′,D
a′i

)1Ei
β

(ε)

]
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and that for all i ∈ I3,∫ mz−ε

mi(D)
dmi

∫
(R+imi)∩D

dzi⊥
{

2πa′iHDi(z′, zi⊥)2 CR(z′, Di)a
′
i

CR(z′, D)a′i

}GDi(z, z′)2

GD(z, z′)2

× E
[
F (z′, ℘z,z

′

Di
∧ ℘z

′,z
Di
∧ Ξz′,Diai ∧ ℘z

′,zi⊥
Di

∧ ℘z
i
⊥,z
′

Di
)
]

= E
[
F (z′, ℘z,z

′,i
D ∧ ℘z

′,z,i
D ∧ Ξz

′,D
a′i

)1Ei3(ε)

]
.

Overall, and going back to (4.87), we have obtained that

E
[
M℘1

ε∩···∩℘kε
a′ (dz′)F (z′, ℘1

ε ∧ · · · ∧ ℘kε)
]

= 1
Zkε

(2π)kGD(z, z′)2k
∫

a′∈E(a′,k)
da′

×
∑

I1,I2,I3

E

F(z′, k∧
i=1

(℘z,z
′,i

D ∧ ℘z
′,z,i
D ∧ Ξz

′,D
a′i

)
) ∏
i∈I1

1Ei1(ε)
∏
i∈I2

1Ei2(ε)
∏
i∈I3

1Ei3(ε)

 .
Plugging this back in (4.86) and remembering that we have to add the trajectories ℘k+1

ε , . . . , ℘nε , we
see that the left hand side of (4.84) is equal to

lim
ε→0

e−2πaZε
∞∑
n=0

n∑
k=1

(2πaZε)n−k

(n− k)!k! (2π
√
aGD(z, z′))2k

∫
a′∈E(a′,k)

da′

×
∑

I1,I2,I3

E

F(z′, k∧
i=1

(℘z,z
′,i

D ∧ ℘z
′,z,i
D ∧ Ξz

′,D
a′i

) ∧ ℘k+1
ε ∧ · · · ∧ ℘nε

) ∏
β∈{1,2,3}

∏
i∈Iβ

1Ei
β

(ε)


=
∞∑
k=1

(2π
√
aGD(z, z′))2k

k!

∫
a′∈E(a′,k)

da′

×
∑

I1,I2,I3

E

F(z′, k∧
i=1

(℘z,z
′,i

D ∧ ℘z
′,z,i
D ∧ Ξz

′,D
a′i

) ∧ Ξz,Da
) ∏
β∈{1,2,3}

∏
i∈Iβ

1Ei
β

(ε=0)

 .
Since, ∑

I1,I2,I3

∏
i∈Iβ

1Ei
β

(ε=0) = 1,

we can use additivity of Poisson point processes and then the fact that the Lebesgue measure of the
simplex E(a′, k) is equal to (a′)k−1/(k − 1)! to obtain that the left hand side of (4.84) is equal to

∞∑
k=1

(2π
√
aGD(z, z′))2k

k! E
[
F
(
z′,

k∧
i=1

(℘z,z
′,i

D ∧ ℘z
′,z,i
D ) ∧ Ξz

′,D
a′ ∧ Ξz,Da

)] ∫
a′∈E(a′,k)

da′

= 1
a′

∞∑
k=1

(2π
√
aa′GD(z, z′))2k

k!(k − 1)! E
[
F
(
z′,

k∧
i=1

(℘z,z
′,i

D ∧ ℘z
′,z,i
D ) ∧ Ξz

′,D
a′ ∧ Ξz,Da

)]
.

This is the right hand side of (4.84) which concludes the proof.
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4.6.2 Second moment

Combining Lemma 4.37 with a Palm formula type of argument, we obtain the following expression for
the second moment of functionals of our measure.

Lemma 4.40. For any bounded measurable admissible function F = F (z, z′,L) of a pair of points
z, z′ and a collection loops L, we have:

E[F (z, z′,LθD)MK
a (dz)MK

a′ (dz′)] = CR(z,D)a CR(z′, D)a′

×
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(a,n)

a′∈E(a′,m)

da
a1 . . . an

da′
a′1 . . . a

′
m

l∏
i=1

B
(
(2π)2aia

′
iGD(z, z′)2

)

× E
[

l∏
i=1

(
1− e

−KT (Ξz,z
′

ai,a
′
i

∧Ξzai∧Ξz′
a′
i

)
)

n∏
i=l+1

(
1− e−KT (Ξzai )

) m∏
i=l+1

(
1− e

−KT (Ξz′
a′
i

)
)

F
(
z, z′,LθD ∪ {Ξ

z,z′

ai,a′i
∧ Ξzai ∧ Ξz′a′i}

l
i=1 ∪ {Ξzai}

n
i=l+1 ∪ {Ξz

′

a′i
}mi=l+1

) ]
dzdz′

where all the above processes are independent.

Proof. In what follows, to shorten notations, we will write with some abuse of notation “℘1 6= . . . 6=
℘n ∈ LθD(K)” instead of “℘1, . . . , ℘n ∈ LθD(K) and for all i 6= j, ℘i 6= ℘j”. By definition of MK

a ,
EF (z, z′,LθD)MK

a (dz)MK
a′ (dz′) is equal to

∑
n,m≥1

1
n!m!E

∑
℘1 6=... 6=℘n∈LθD(K)
℘′1 6=... 6=℘′m∈LθD(K)

F (z, z′,LθD)M℘1∩...℘n
a (dz)M℘′1∩...℘

′
m

a′ (dz′)

=
∑

n,m≥1

1
n!m!

n∧m∑
l=0

l!
(
n

l

)(
m

l

)

× E
∑

℘1 6=... 6=℘n 6=℘′l+1 6=... 6=℘
′
m∈LθD(K)

∀i=1...l,℘′i=℘i

F (z, z′,LθD)M℘1∩...℘n
a (dz)M℘′1∩...℘

′
m

a′ (dz′).

l represents the number of loops that are in both sets of loops.
(n
l

)
(resp.

(m
l

)
) is the number of ways to

choose a subset of l loops in the set of n loops (resp. m loops). l! is then the number of ways to map
one subset to the other. Fix now, n,m ≥ 1 and l ∈ {0, . . . , n∧m}. By Palm’s formula, the expectation
above is equal to θn+m−l times

∫
µloop
D (d℘1) . . . µloop(℘n)µloop

D (d℘′l+1) . . . µloop(℘′m)
n∏
i=1

(
1− e−KT (℘i)

) m∏
i=l+1

(
1− e−KT (℘′i)

)
E
[
F (z, z′,LθD ∪ {℘i}ni=1 ∪ {℘′i}mi=l+1

]
M℘1∩...℘n

a (dz)M
℘1···∩℘l∩℘′l+1∩...℘

′
m

a′ (dz′)

where the expectation is only with respect to LθD. Lemma 4.37 concludes the proof.

In particular, Lemma 4.40 gives an explicit formula for the second moment. Indeed, we have already

Antoine Jego 167



CHAPTER 4. MULTIPLICATIVE CHAOS OF THE BROWNIAN LOOP SOUP

seen that
E
[
e−KT (Ξza)

]
= e−aCK(z).

Moreover,

E
[
e
−KT (Ξz,z

′

a,a′ )
]

= 1
B((2π)2aa′GD(z, z′)2)

∞∑
k=1

(2π
√
aa′GD(z, z′))2k

k!(k − 1)! E
[
e−KT (z→z′)

]2k

=
B
(

(2π)2aa′GD(z, z′)2E
[
e−KT (z→z′)

]2)
B((2π)2aa′GD(z, z′)2)

where in the above T (z → z′) is the running time of an excursion from z to z′ distributed according to
µz,z

′

D /GD(z, z′). We further notice that

GD(z, z′)E
[
e−KT (z→z′)

]
= GD,K(z, z′).

Overall, this shows that E[MK
a (dz)MK

a′ (dz′)] is equal to

CR(z,D)a CR(z′, D)a′
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(a,n)

a′∈E(a′,m)

da
a1 . . . an

da′
a′1 . . . a

′
m

×
l∏

i=1

(
B
(
(2π)2aia

′
iGD(z, z′)2

)
− e−aiCK(z)−a′iCK(z′)B

(
(2π)2aia

′
iGD(z, z′)2

))
×

n∏
i=l+1

(
1− e−aiCK(z)

) m∏
i=l+1

(
1− e−a′iCK(z′)

)
dzdz′. (4.91)

The purpose of the next section is to study the asymptotic properties of this expression. This will
basically conclude the proof of Theorem 4.1 in the L2-phase, but this will also be useful in order to go
beyond this phase to cover the whole L1-phase.

4.6.3 Simplifying the second moment

Let a, a′ > 0. Recall the definition (4.80) of B and define for all u, u′, v ≥ 0,

Ha,a′(u, u′, v) :=
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(a,n)

a′∈E(a′,m)
dada′

l∏
i=1

B(vaia′i)
aia′i

n∏
i=l+1

1− e−uai
ai

m∏
i=l+1

1− e−u′a′i
a′i

. (4.92)

v will be taken to be a multiple of GD(z, z′)2, whereas u and u′ will coincide with CK(z) and CK(z′)
respectively.

To get an upper bound on the second moment, we will start from the expression (4.91), and bound
the second line in that expression with a quantity that does not depend on K. We do so simply by
ignoring the second term in the product, which leads to the expression for H in (4.92). Intuitively, this
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amounts to ignoring the requirements that the loops that visit both z and z′ are killed. Indeed, since z
and z′ are typically macroscopically far away, such loops will be killed with high probability and so
ignoring the requirement gives us a good upper bound.

Lemma 4.41. Let a, a′ > 0. There exists C > 0 such that for all u, u′ ≥ 1, v > 0,

Ha,a′(u, u′, v) ≤ C(uu′)θv1/4−θ/2e2
√
vaa′ . (4.93)

Moreover, for all v > 0,

lim
u,u′→∞

Ha,a′(u, u′, v)
(uu′)θ = 1

Γ(θ)

(
aa′

v

) θ−1
2
Iθ−1

(
2
√
vaa′

)
. (4.94)

In particular, when θ = 1/2, for all v > 0,

lim
u,u′→∞

Ha,a′(u, u′, v)√
uu′

= 1
π
√
aa′

cosh(2
√
vaa′). (4.95)

Proof of Lemma 4.41. We start off by doing the change of variable (n,m, l) ← (n − l,m − l, l) and
obtain using Lemma 4.33 that Ha,a′(u, u′, v) is equal to

∑
n,m≥1 and l≥0

or n=m=0 and l≥1

θn+m+l

n!m!l!

∫
a∈E(a,n+l)

a′∈E(a′,m+l)
dada′

l∏
i=1

B(vaia′i)
aia′i

n+l∏
i=l+1

1− e−uai
ai

m+l∏
i=l+1

1− e−u′a′i
a′i

=
∑
l≥0

θl

l!

∫
a∈E(a,l+1)

a′∈E(a′,l+1)
dada′F(ual+1)

al+1

F(u′a′l+1)
a′l+1

l∏
i=1

B(vaia′i)
aia′i

+
∑
l≥1

θl

l!

∫
a∈E(a,l)

a′∈E(a′,l)
dada′

l∏
i=1

B(vaia′i)
aia′i

.

(4.96)

Let us explain briefly where this comes from. The first term is the “off-diagonal” term corresponding to
n,m ≥ 1 and l ≥ 0, while the second term is the “on-diagonal” term corresponding to n = m = 0 and
l ≥ 1. Furthermore, to get the expression of the first term, we reason as follows. The term da in the
first line concerns n+ l variables, a1, . . . , an+l, whose sum is fixed equal to a. We freeze a1, . . . , al and
first integrate over al+1, . . . al+n. We may call al+1 the sum of these n variables; thus a1 + . . .+al+1 = a.
Summing over n and applying Lemma 4.33 we recognise the expression for F(ual+1)/al+1. The same
can be done separately for da′, leading us to the claimed expression.

Now, let l ≥ 1, α, α′ > 0 and let us note that by definition of B,

∫
a∈E(α,l)

a′∈E(α′,l)
dada′

l∏
i=1

B(vaia′i)
aia′i

=
∫

a∈E(α,l)
a′∈E(α′,l)

dada′
∑

k1,...,kl≥1
vk1+···+kl

l∏
i=1

(aia′i)ki−1

ki!(ki − 1)! .

Using the fact that for all β > 0, k, k′ ≥ 1,

∫ β

0

xk−1

(k − 1)!
(β − x)k′−1

(k′ − 1)! dx = βk+k′−1

(k + k′ − 1)! ,
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we find by induction that

∫
a∈E(α,l)

da
l∏

i=1

aki−1
i

(ki − 1)! = αk1+···+kl−1

(k1 + · · ·+ kl − 1)! .

Hence

∫
a∈E(α,l)

a′∈E(α′,l)
dada′

l∏
i=1

B(vaia′i)
aia′i

=
∑

k1,...,kl≥1
vk1+···+kl (αα′)k1+···+kl−1

(k1 + · · ·+ kl − 1)!2
l∏

i=1

1
ki

=
∑
k≥l

vk
(αα′)k−1

(k − 1)!2
∑

k1,...,kl≥1
k1+···+kl=k

l∏
i=1

1
ki

and

∑
l≥1

θl

l!

∫
a∈E(α,l)

a′∈E(α′,l)
dada′

l∏
i=1

B(vaia′i)
aia′i

=
∑
k≥1

vk
(αα′)k−1

(k − 1)!2
k∑
l=1

θl

l!
∑

k1,...,kl≥1
k1+···+kl=k

l∏
i=1

1
ki
.

Looking at the series expansion of (1− x)−θ near 0 and recalling the definition (4.79) of θ(k), we see
that for all k ≥ 1,

k∑
l=1

θl

l!
∑

k1,...,kl≥1
k1+···+kl=k

l∏
i=1

1
ki

= θ(k)

k! .

We deduce that

∑
l≥1

θl

l!

∫
a∈E(α,l)

a′∈E(α′,l)
dada′

l∏
i=1

B(vaia′i)
aia′i

=
∑
k≥1

vk
(αα′)k−1

(k − 1)!2
θ(k)

k! . (4.97)

Taking α = a, α′ = a′, this gives an expression for the second term of (4.96). As for the first term in
(4.96), it can be computed in a similar manner: namely, we get

F(ua)
a

F(u′a′)
a′

+
∑
k≥1

vk

(k − 1)!2
θ(k)

k!

∫ a

0
dα
∫ a′

0
dα′(αα′)k−1 F(u(a− α))

a− α
F(u′(a′ − α′))

a′ − α′
. (4.98)

with α = a− al+1 = a1 + . . . al and, respectively, α′ = a′ − a′l+1 = a′1 + . . .+ a′l.
We then use (4.47) and (4.222) to bound

∫ a

0
αk−1 F(u(a− α))

a− α
dα ≤ Cuθ

∫ a

0

αk−1

(a− α)1−θ dα = Cuθak−1+θ (k − 1)!
θ(k) .

We finally find that the first term of (4.96) is at most

C(uu′)θ(aa′)θ−1 + C(uu′)θ(aa′)θ−1 ∑
k≥1

(vaa′)k

k!θ(k) = C(uu′)θ(aa′/v)θ/2−1/2Γ(θ)Iθ−1(2
√
vaa′).
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The second term of (4.96) can be bounded by cosh(2
√
vaa′). This concludes the proof of (4.93).

(4.94) follows as well by using the asymptotic F(w) ∼ wθ/Γ(θ) as w →∞ and by applying dominated
convergence theorem in (4.98). (4.95) follows from (4.224) and (4.221).

As a consequence, we obtain the following estimates on the second moment ofMK
a .

Corollary 4.42. There exists C > 0 such that for all K ≥ 1, z, z′ ∈ D, a, a′ ∈ (0, 2),

E
[
MK

a (dz)MK
a′ (dz′)

]
≤ C(aa′)θ/2−3/4(logK)2θGD(z, z′)1/2−θ exp

(
4π
√
aa′GD(z, z′)

)
.

Moreover,

lim
K→∞

E
[
MK

a (dz)MK
a′ (dz′)

]
(logK)2θ = 1

4θΓ(θ)

( √
aa′

2πGD(z, z′)

)θ−1

Iθ−1
(
4π
√
aa′GD(z, z′)

)
.

In particular, when θ = 1/2,

lim
K→∞

E
[
MK

a (dz)MK
a′ (dz′)

]
logK = 1

2π
√
aa′

cosh
(
4π
√
aa′GD(z, z′)

)
.

4.7 Going beyond the L2-phase

The goal of this section is to prove Proposition 4.26. We now describe the proof at a high level.
When the thickness parameter a is smaller than 1, we can directly apply Cauchy–Schwarz inequality
and control the second moment. (This could be done directly using Corollary 4.42). However when
a ∈ [1, 2), the second moment blows up. The broad strategy is by now well understood and consists in
introducing “good events”, similar to [Ber17]. In our context, this good event at a given point z ∈ D
will take the following form: we will require that the total number of crossings of each dyadic annulus
centred at z is upper bounded at each scale by some given scale-dependent quantity (see (4.99)). On
the one hand, adding these events does not change the measure with high probability (Lemma 4.43).
On the other hand, the measure restricted to the good events has a finite second moment which varies
smoothly with respect to the thickness parameter (Lemma 4.45).

In the entire section, we will fix a set A b D compactly included in D. We will always restrict
our attention to points lying in A and the estimates that we obtain may depend on A. We will only
provide the proof of Proposition 4.26 in the case ρ < a (which is in fact all that we use). The case
ρ > a would be similar as we have assumed a > 0.

We start by defining the “good events” that we will work with. For any countable collection C of
Brownian-like loops and for any r > 0 and z ∈ D, we define NCz,r to be the number of crossings from
∂D(z, r) to ∂D(z, er) in C (upward crossings, we do not count the way back). That is, NCz,r =

∑
℘∈C N

℘
z,r,

and N℘
z,r is the number of upcrossings of the interval [r, er] by the function |℘(·)− z|. Note that this is

an admissible functional of C and z.
Recall that the parameter a ∈ (0, 2) is the thickness parameter which is fixed throughout this paper.

We now choose a < b < 2 sufficiently close to a (in a way which will be specified later). Let r0 ∈ (0, 1)
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be small. For a given z ∈ D, we consider the good event

GK(z) :=
{
∀r ∈ {e−n, n ≥ 1} ∩ (0, r0) : NL

θ
D(K)

z,r ≤ b(log r)2
}
. (4.99)

As will be clear from what follows from Lemma 4.44, for typical (in the sense ofMK
ρ ) points, we expect

the number of crossings to be roughly a(log r)2, since the aspect ratio of the annulus is e. Given these
good events, we also define the modified version ofMK

ρ , ρ ∈ (0, a] as follows:

M̃K
ρ (dz) := 1GK(z)MK

ρ (dz). (4.100)

Note that we use the same parameter b in the definition of the good event for all ρ ≤ a above.
Proposition 4.26 will follow quickly from the following intermediate results.

Lemma 4.43. There exists w1 : (0, 1)→ (0,∞) such that w1(r0)→ 0 as r0 → 0 and such that for all
bounded measurable function f : D → R with compact support included in A, for all ρ ∈ [a/2, a] and
K ≥ 1,

E
[∣∣∣∣∫

D
f(z)MK

ρ (dz)−
∫
D
f(z)M̃K

ρ (dz)
∣∣∣∣] ≤ w1(r0) ‖f‖∞ (logK)θ.

To analyse the behaviour of M̃K
ρ , a key role will be played by the following estimate.

Lemma 4.44. Let η ∈ [0, 2− a). If b is close enough to a, then

sup
ρ∈[a/2,a]

sup
K≥1

1
(logK)2θ

∫
A×A

1
|z − z′|η

E
[
M̃K

ρ (dz)M̃K
ρ (dz′)

]
<∞.

Together with Frostman’s lemma, this essentially shows that any set S which supportsMa (or,
more precisely, M̃a but this has no impact by Lemma 4.43) has dimension at least 2− a. We will also
use this estimate (with η = 0) to show the following control, which is the main required estimate for
Proposition 4.26.

Lemma 4.45. Let r0 ∈ (0, 1) be fixed. If b is close enough to a, then

lim sup
ρ→a−

lim sup
K≥1

sup
f
‖f‖−2

∞ (logK)−2θE
[(∫

D
f(z)M̃K

ρ (dz)−
∫
D
f(z)M̃K

a (dz)
)2
]

= 0,

where the supremum is over all bounded, non-zero, non-negative measurable function f : D → [0,∞)
with compact support included in A.

Let us first briefly check that Lemmas 4.43 and 4.45 allow us to conclude the proof of Proposition
4.26.

Proof of Proposition 4.26. Let f : D → R be a bounded measurable function with compact support
included in A and let K ≥ 1, ρ ∈ [a/2, a]. By Lemma 4.43,

E
[∣∣∣∣∫

D
f(z)MK

ρ (dz)−
∫
D
f(z)MK

a (dz)
∣∣∣∣]

≤ 2w1(r0) ‖f‖∞ (logK)θ + E
[∣∣∣∣∫

D
f(z)M̃K

ρ (dz)−
∫
D
f(z)M̃K

a (dz)
∣∣∣∣] .
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Lemma 4.45 and Cauchy–Schwarz allow us to control the second right hand side term, so that

lim sup
ρ→a

lim sup
K→∞

sup
f

1
‖f‖∞ (logK)θE

[∣∣∣∣∫
D
f(z)MK

ρ (dz)−
∫
D
f(z)MK

a (dz)
∣∣∣∣] ≤ 2w1(r0).

Since the left hand side term is independent of r0, by letting r0 → 0, we deduce that it vanishes. This
concludes the proof.

The rest of this section is devoted to the proof of the three intermediate lemmas.

4.7.1 Number of crossings in the processes of excursions

We start by studying the number of crossings in the processes of excursions that appear in the second
moment computations. Recall that these processes are defined in Notation 4.20 and in (4.81). Let
z, z′ ∈ D and r > 0 be such that |z − z′| > er. We are going to study NCz,r for C = Ξza,Ξz

′
a or Ξz,z

′

a,a′ . We
start off with the first two variables. We can decompose

NΞza
z,r =

P∑
i=1

Gi and NΞz′a
z,r =

P ′∑
i=1

G′i

where P (resp. P ′) is the Poisson random variable corresponding to the number of excursions in Ξza
(resp. Ξz′a ) that touch ∂D(z, er) (resp. ∂D(z, r)) and Gi (resp. G′i), i ≥ 1, are i.i.d. random variables,
independent of P (resp. P ′), and distributed according to the number of crossings from ∂D(z, r) to
∂D(z, er) in a path distributed according to µz,zD (·|τz,er <∞) (resp. µz

′,z′

D (·|τz,r <∞))
If the domain D were a disc centred at z, then, by rotational invariance and Markov property, the

Gi’s would be geometric random variables. In general, this is only asymptotically true as r → 0. We
recall that we fix a set A b D compactly included in D during the whole Section 4.7.

Lemma 4.46. 1. P and P ′ are Poisson random variables with means given by

E [P ] = a log CR(z,D)
er

and E
[
P ′
]

= a log CR(z′, D)− aξD\D(z,r)(z′, z′)

where w 7→ ξD\D(z,r)(z′, w) is the harmonic extension of w ∈ ∂D ∪ ∂D(z, r) 7→ log |z′ − w| in the
domain D\D(z, r). In particular, for all z, z′ ∈ A, r > 0 such that e2 ≤ |z − z′|/r ≤ e3,

E [P ] = a log 1
r

+O(1) and E
[
P ′
]

= a log 1
r

+O(1). (4.101)

2. Let z, z′ ∈ A, r > 0 be such that e2 ≤ |z − z′|/r ≤ e3. The random variable Gi is stochastically
dominated by G+ and stochastically dominates G− where G± are geometric random variables
with success probabilities

p± = 1 + o(1)
| log r| .
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There exist C+, C− ∈ R, u+(r), u−(r) ∈ R that go to zero as r → 0 such that for all k ≥ 1,

(
1− 1 + u−(r)

| log r|

)k−1 (
1 + C−

log r

)
≤ P

(
G′i ≥ k

)
≤
(

1− 1 + u+(r)
| log r|

)k−1 (
1 + C+

log r

)
. (4.102)

(The quantities C+, C−, u+(r), u−(r) and the implicit constants in O(1) and o(1) may depend on
A.)

Proof. 1. We will rely on the following (probably well known) fact about Green function in a domain
U (which however may be a non simply connected domain) with Dirichlet boundary conditions on ∂U :
we claim that

GU (z, w) = − 1
2π log |z − w|+ ξU (z, w), (4.103)

where ξU (z, ·) is the harmonic extension of 1
2π log |z − ·| from ∂U to U . Furthermore, when U is simply

connected and z = w then ξU (z, z) = 1
2π log CR(z, U) (see, e.g., (1.4) in [BP21]). To see this, observe

that the difference between the two functions on the left and on the right hand sides of (4.103) is
harmonic in w (except possibly at w = z) and is at most o(log |z − w|) when w → z (for instance, one
may use domain monotonicity to see this). This difference also has zero boundary condition on ∂U .
An application of the optional stopping theorem therefore shows that this difference is identically zero
on U .

We obtain the mean of P by considering all trajectories that start from z and leave D(z, er);
equivalently we can subtract from all trajectories those that stay in D(z, er) and get the desired
asymptotics from Dirichlet Green function asymptotics:

2πaµzD(τz,er <∞) = 2πa lim
w→z

µz,wD (τz,er <∞)

= 2πa lim
w→z

GD(z, w)−GD(z,er)(z, w) = a log CR(z,D)
er

.

The mean of P ′ can be computed similarly using (4.103). (4.101) then follows.
2. Consider a Brownian motion starting from a point on ∂D(z, er), conditioned to hit z before

exiting D. This is a Markov process (it can be described through a certain h-transform, where
h(x) = GD(x, z)). By the strong Markov property and elementary properties of h-transforms, we can
stochastically dominate Gi by a geometric random variable whose success probability is given by

p+ := 1− min
x∈∂D(z,r)

µx,zD (τz,er <∞)
GD(x, z) = 1− min

x∈∂D(z,r)

1
GD(x, z)Ex

[
GD(Xτz,er , z)1{τz,er<∞}

]
.

Here Ex denotes the expectation with respect to a Brownian motion starting from x. Hence

p+ = 1−
log CR(z,D)

er + o(1)
log CR(z,D)

r + o(1)
= 1

log CR(z,D)
r

+ o

( 1
log r

)

where the o(1) terms are uniform over z restricted to A. The lower bound is similar with minima
replaced by maxima.
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We now turn to the case of G′i. For all k ≥ 1, using again elementary properties of the h-transform,

P
(
G′i ≥ k

)
≥ min

x∈∂D(z,er)
Px (τz,r < τ∂D)k−1 min

y∈∂D(z,r)

GD(y, z′)
GD(x, z′)

=
(

1− 1 + o(1)
| log r|

)k−1 (
1 + O(1)

log r

)
,

as desired.

We now state three corollaries of Lemma 4.46. The first corollary will be used in the proof of
Lemma 4.43 whereas the third one will be used in the proof of Lemma 4.44. The second one will be
useful in order to show thatMa is supported by T (a) almost surely (Theorem 4.11). We will only
prove the first corollary, since it is the most difficult one to prove and the proofs of the other two only
require small adaptations.

Note that, in Corollary 4.47, we will need to take into account the killing associated to the mass.
On the other hand, in Corollaries 4.49 and 4.48, this will not be necessary thanks to FKG-inequality
for Poisson point processes (see [Jan84, Lemma 2.1]).

Corollary 4.47. Let u ∈ (0, 1/2). There exists C(u) > 0 such that for all z ∈ A, r ∈ (0, 1) and ρ > 0,

E
[(

1− e−KT (Ξzρ)
)
e

u
| log r|N

Ξzρ
z,r

]
≤
(
1− e− ρ(3/2CK(z)+C(u)| log r|)

)
exp

(
ρ

u

1− u(1 + o(1))| log r|
)
(4.104)

where o(1)→ 0 as r → 0 and may depend on u and A.

By FKG-inequality for Poisson point processes, the expectation on the left hand side of (4.104) is
at least the product of the expectation of each of the two terms which behaves like (as we will see in
the proof below) (

1− e− ρCK(z))
)

exp
(
ρ

u

1− u(1 + o(1))| log r|
)
.

The content of Corollary 4.47 is therefore that upper bound matches the lower bound with the only
difference that CK(z) becomes the larger value 3/2CK(z) + C(u)| log r|.

Proof. Since u
| log r|N

Ξzρ
z,r and KT (Ξzρ) are additive functions of Ξzρ, Palm formula gives that the left hand

side of (4.104) is equal to

exp
(

2π ρ
∫
µz,zD (d℘)

(
e

u
| log r|N

℘
z,r − 1

))
− exp

(
2π ρ

∫
µz,zD (d℘)

(
e

u
| log r|N

℘
z,r−KT (℘) − 1

))
= E

[
e

u
| log r|N

Ξzρ
z,r

](
1− exp

(
2π ρ

∫
µz,zD (d℘)e

u
| log r|N

℘
z,r
(
e−KT (℘) − 1

)))
.

Our goal now is to bound from above

2π
∫
µz,zD (d℘)e

u
| log r|N

℘
z,r
(
1− e−KT (℘)

)
.
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We can rewrite it as

CK(z) + 2π
∫
µz,zD (d℘)

(
e

u
| log r|N

℘
z,r − 1

) (
1− e−KT (℘)

)
and by bounding for x > 1 and y ∈ (0, 1), (x−1)(1−y) ≤ ((x−1)2 +(1−y)2)/2 ≤ (x2−1)/2+(1−y)/2,
we obtain that it is at most

CK(z) + 1
2CK(z) + 1

22π
∫
µz,zD (d℘)

(
e

2u
| log r|N

℘
z,r − 1

)
.

We denote G a random variable whose law is given by N℘
z,r where ℘ is a trajectory distributed according

to µz,zD (·|τz,er)/µz,zD (τz,er <∞). Thanks to Lemma 4.46 point 2, an easy computation with geometric
random variables shows that

E
[
e

2u
| log r|G − 1

]
= 1

1− 2u − 1 + o(1) = 2u
1− 2u + o(1).

With Lemma 4.46 point 1, this implies that

2π
∫
µz,zD (d℘)

(
e

2u
| log r|N

℘
z,r − 1

)
= 2πµz,zD (τz,er <∞)E

[
e

2u
| log r|G − 1

]
≤ C(u)| log r|.

The same reasoning shows that

E
[
e

u
| log r|N

Ξzρ
z,r

]
= exp

(
ρ

u

1− u(1 + o(1))| log r|
)
.

Wrapping things up, we have proven that the left hand side of (4.104) is at most

(
1− e− ρ(3/2CK(z)+C(u)| log r|)

)
exp

(
ρ

u

1− u(1 + o(1))| log r|
)
.

This concludes the proof.

Corollary 4.48. There exist γ > 0 and r0 > 0 that may depend on a, b and A such that for all
r ∈ (0, r0) and z ∈ A,

P
(
NΞza
z,r <

{
a− b− a

2

}
(log r)2

)
≤ rγ . (4.105)

Corollary 4.49. Let a > 0, z, z′ ∈ A, r > 0 be such that e2 ≤ |z − z′|/r ≤ e3. Fix a parameter u > 0.
Then,

E
[
exp

(
− u

| log r|N
Ξza
z,r

)]
= exp

(
−a u

1 + u
(1 + o(1))| log r|

)
(4.106)

and
E
[
exp

(
− u

| log r|N
Ξz′a
z,r

)]
= exp

(
−a u

1 + u
(1 + o(1))| log r|

)
(4.107)

where the o(1) terms tend to 0 as r → 0 and may depend on A and u.

We now move on to the study of N
Ξz,z

′

a,a′
z,r , again in the setting where e2 ≤ |z − z′|/r ≤ e3. It is

convenient to first view the trajectories in Ξz,z
′

a,a′ as excursions from z′ to z (rather than a mixture of
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equal number of excursions going from z to z′ and vice-versa). When we time-reverse an excursion, an
upcrossing becomes a downcrossing. Since two upcrossings are necessarily separated by a downcrossing,
the error in counting the upcrossings when we fix the direction of the excursion as being from z′ to z is
at most 1. We can decompose

N
Ξz,z

′

a,a′
z,r =

#Ξz,z
′

a,a′∑
i=1

Gzi (r)

where Gzi (r), i ≥ 1, are i.i.d. random variables, independent of #Ξz,z
′

a,a′ , that correspond to the number
of crossings from ∂D(z, r) to ∂D(z, er) for a trajectory distributed according to µz

′,z
D /GD(z′, z). In the

same vein as in Lemma 4.46, 1 +Gzi (r) dominates and is dominated stochastically a geometric random
variable with success probability

p = 1 + o(1)
| log r| . (4.108)

Note in particular that since r → 0, p→ 0.
When we then consider the quantity which is really of interest to us, i.e., the number of crossings

of the annulus D(z, er) \ D(z, r) associated with the loops coming from concatenating the pairs of
excursions in Ξz,z

′

a,a′ , the resulting error from having considered the upcrossings of the reverse excursions
instead of those of the original excursions in (4.108) is therefore negligible.

In particular, we obtain:

Lemma 4.50. Let a, a′ > 0, z, z′ ∈ A, r > 0 be such that e2 ≤ |z − z′|/r ≤ e3. Fix a parameter u > 0.
Then

E
[
exp

(
− u

| log r|N
Ξz,z

′

a,a′
z,r

)]
=

B
(
(2π)2aa′GD(z, z′)2 1+o(1)

(1+u)2

)
B ((2π)2aa′GD(z, z′)2) , (4.109)

where the o(1) term tends to 0 as r → 0 (and may depend on A and u > 0).

Proof. For all c > 0, we have trivially

E
[
c

#Ξz,z
′

a,a′

]
= B

(
(2π)2aa′GD(z, z′)2c2)

B ((2π)2aa′GD(z, z′)2) ,

where we have used the definition of Ξz,z
′

a,a′ in (4.81) and the definition of B just above. Therefore,
applying this with c = E(e−uG/(| log r|)) (where G is the geometric random variable coming from (4.108))
concludes the proof.

4.7.2 Proof of Lemma 4.43 (typical points are not thick)

Before we begin the proof of Lemma 4.43, we will require an estimate which says that a Lebesgue-typical,
fixed point z is not thick for the measureMK

a . We will need to show this in a somewhat quantitative
way, and uniformly in K. For orientation, the number of crossings NL

θ
D

z,r of the annulus of scale r
around z roughly corresponds to the local time regularised at scale r around z accumulated by LθD, and
so is roughly of the order of the square of the GFF. For a typical point, we expect this to be roughly
log 1/r. For a Liouville typical point, this would instead be of the order of (log 1/r)2. The deviation
probability below may thus be expected to decay polynomially. Let us finally mention that it will be
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important for us to nail the right exponent in order to obtain the upper bound on the dimension of the
set T (a) of a-thick points (Theorem 4.11).

Lemma 4.51. For any λ ∈ (0, 1), there exists rλ > 0 such that for all r ∈ (0, rλ), z ∈ D and u > 0,

P
(
N
LθD
z,r ≥ u(log r)2

)
≤ rλu. (4.110)

Proof of Lemma 4.51. First of all, NL
θ
D

z,r is stochastically dominated by NL
θ
U

z,r where U is the disc centred
at z with radius being equal to the diameter of D. Without loss of generality, we can therefore assume
that the domain D is the unit disc D and that z is the origin. In the remaining of the proof, we will
write N ·

r instead of N ·
z,r.

For 0 < r1 < r2, we will denote by A(r1, r2) the annulus r2D \ r1D. For all k = 1, . . . , kmax :=
b− log rc − 1, consider the set of “loops at scale k”

Lk := {℘ ∈ LθD : ℘ ⊂ ek+1rD, ℘ crosses A(ek−1/2r, ekr)}.

We can decompose

N
LθD
r =

kmax∑
k=1

∑
℘∈Lk

N℘
r .

We now make three observations. Firstly, by thinning property of Poisson point processes, Lk,
k = 1 . . . kmax, are independent collections of loops. Secondly, conditioned on #Lk, Lk is composed of
#Lk i.i.d. loops with law

1{℘⊂ek+1rD,℘ crosses A(ek−1/2r,ekr)}µ
loop
D (d℘)

µloop
D ({℘ ⊂ ek+1rD, ℘ crosses A(ek−1/2r, ekr)})

. (4.111)

Finally, for each k, #Lk is a Poisson random variable whose mean is, by scaling invariance of the
Brownian loop measure, given by

µloop
ek+1rD({℘ crosses A(ek−1/2r, ekr)}) = µloop

D ({℘ crosses A(e−3/2, e−1)}).

Therefore E[#Lk] is a finite quantity that does not depend on k or r. Let Pk, k = 1 . . . kmax, be i.i.d.
Poisson random variables with the above mean. We have decomposed

N
LθD
r =

kmax∑
k=1

Pk∑
i=1

N
℘ki
r

where for all k and i, ℘ki are independent and distributed according to (4.111). Let λ ∈ (0, 1) be a
parameter. We have

E
[
exp

(
λ

| log r|N
LθD
r

)]
=

kmax∏
k=1

exp
{
E[P ]

(
E
[
e

λ
| log r|N

℘k

r

]
− 1

)}
. (4.112)
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The rest of the proof is dedicated to showing that for all k = 1 . . . kmax,

E
[
e

λ
| log r|N

℘k

r

]
≤ 1 + Cλ/| log r| (4.113)

for some constant Cλ depending only on λ. Indeed, this will imply that

E
[
exp

(
λ

| log r|N
LθD
r

)]
≤ eE[P ]Cλ

and the proof of Lemma (4.51) will be completed by Markov inequality.

We now turn to the proof of (4.113). Let k ∈ {1, . . . , kmax}. We are going to describe the law
(4.111) by rooting the loop ℘k at the unique point z where its modulus is maximal. We will denote
R = |z| and w the first hitting point of ek−1/2rD. The law (4.111) can be disintegrated as

1
Zk

∫ ek+1r

ekr
R dR

∫
R∂D

dz
2πR1{℘ crosses A(ek−1/2r,ekr)}µ

z,z
RD(d℘),

where the measure µz,zRD(d℘) is given by (4.19) and Zk is the normalising constant. This decomposition
is somewhat similar to [LW04, Proposition 8]. Further, the measure 1{℘ crosses A(ek−1/2r,ekr)}µ

z,z
RD(d℘) is

the image of the measure ∫
ek−1/2r∂D

dw µz,w
A(ek−1/2r,R)(d℘1)µw,zRD(d℘2)

under the concatenation (℘1, ℘2) 7→ ℘1 ∧ ℘2. This is similar to decompositions appearing in [Law05,
Section 5.2]. Moreover, in this decomposition, N℘1∧℘2

r = N℘2
r . It follows that for any bounded

measurable function F : R→ R, we have

E
[
F (N℘k

r )
]

= 1
Zk

∫ ek+1r

ekr
R dR

∫
R∂D

dz
2πR

∫
ek−1/2r∂D

dwHA(ek−1/2r,R)(z, w)HRD(w, z)Ew,zRD [F (N℘
r )]

(4.114)
where Ew,zRD is the expectation associated to the law µw,zRD(·)/HRD(w, z) (4.17) and Zk is the normalising
constant

Zk =
∫ ek+1r

ekr
R dR

∫
R∂D

dz
2πR

∫
ek−1/2r∂D

dwHA(ek−1/2r,R)(z, w)HRD(w, z).

Let n ≥ 1 and denote Pw the law of planar Brownian motion (Bt)t≥0 starting from w and τn the
first time that r∂D is reached after having already crossed the annulus A(r, er) n − 1 times in the
upward direction. We also denote by τR∂D the first hitting time of R∂D. The conditional law Pw,zRD can
be expressed as an h-transform of Pw as follows:

Pw,zRD(N℘
r ≥ n) = Ew

[
HRD(Bτn , z)
HRD(w, z) 1{τn<τR∂D}

]
.

Therefore,

Pw,zRD(N℘
r ≥ n) ≤

max|y|=rHRD(y, z)
HRD(w, z) Pw (τn < τR∂D) . (4.115)
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Since (log |Bt|)t≥0 is a martingale, for all 0 < r1 < r2 < r3, for all x ∈ r2∂D, we have

Px (τr1∂D < τr3∂D) = log(r3/r2)
log(r3/r1)

and by strong Markov property, we deduce that

Pw (τn < τR∂D) = log(R/ek−1/2r)
log(R/r)

( log(R/er)
log(R/r)

)n−1
.

Moreover, by Harnack inequality, the ratio of Poisson kernels in (4.115) can be bounded by some
constant independent of k and r. Recalling that R ∈ [ekr, ek+1r], this shows that

Pw,zRD(N℘
r ≥ n) ≤ C

k

(
1− 1

k

)n−1
.

Going back to (4.114), we have proven that when ℘k is distributed according to (4.111), then for all
n ≥ 1,

P
(
N℘k

r ≥ n
)
≤ C

k

(
1− 1

k

)n−1
.

Since λ < 1 and k ≤ | log r|, we deduce from the above bound that

E
[
e

λ
| log r|N

℘k

r

]
≤ 1 + C

k

(
−| log r|

λ
log

(
1− 1

k

)
− 1

)−1
≤ 1 + Cλ

| log r|

for some constant Cλ that depends only on λ. This proves (4.113) and concludes the proof of Lemma
4.51.

We are now ready to prove Lemma 4.43.

Proof of Lemma 4.43. Let f : D → R be a bounded measurable function with compact support
included in A, ρ ∈ [a/2, a] and K ≥ 1. By a union bound, we have

E
[∣∣∣∣∫

D
f(z)MK

ρ (dz)−
∫
D
f(z)M̃K

ρ (dz)
∣∣∣∣] ≤ ∑

r=e−n
n≥dlog(1/r0)e

∫
D
|f(z)|E

MK
ρ (dz)1{

N
Lθ
D

(K)
z,r >b(log r)2

}
 .

Let r = e−n for some n ≥ dlog(1/r0)e. By Lemma 4.32, we have

E

MK
ρ (dz)1{

N
Lθ
D

(K)
z,r >b(log r)2

}
 = CR(z,D)a

∑
n≥1

θn

n!

∫
a∈E(a,n)

da
a1 . . . an

(4.116)

× E

 n∏
i=1

(
1− e−KT (Ξzai )

)
1{∑n

i=1N
Ξzai
z,r +N

Lθ
D

(K)
z,r >b(log r)2

}
dz.

Let u ∈ (0, 1/2) be a parameter. By an exponential Markov inequality, we can bound the above
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indicator function by

1{∑n

i=1N
Ξzai
z,r >(ρ+ b−a

2 )(log r)2
} + 1{

N
Lθ
D

(K)
z,r > b−a

2 (log r)2

}
≤ e−u(ρ+ b−a

2 )| log r|
n∏
i=1

exp
(

u

| log r|N
Ξzai
z,r

)
+ 1{

N
Lθ
D

(K)
z,r > b−a

2 (log r)2

}.
By Corollary 4.47 and then by using the fact that

∑
ai = ρ, the expectation on the right hand side of

(4.116) is therefore at most

e−u(ρ+ b−a
2 )| log r|

n∏
i=1

(
1− e−ai(3/2CK(z)+C(u)| log r|)

)
exp

(
ai

u

1− u(1 + o(1))| log r|
)

+
n∏
i=1

(
1− e−aiCK(z))

)
P
(
N
LθD(K)
z,r >

b− a
2 (log r)2

)

= exp
{
−
(
u

(
ρ+b− a

2

)
− ρ u

1− u(1 + o(1))
)
| log r|

} n∏
i=1

(
1− e−ai(3/2CK(z)+C(u)| log r|)

)
(4.117)

+
n∏
i=1

(
1− e−aiCK(z))

)
P
(
N
LθD(K)
z,r >

b− a
2 (log r)2

)
.

By choosing u small enough, we can ensure

u

(
ρ+b− a

2

)
− ρ u

1− u = b− a
2 u− ρ u2

1− u

to be strictly positive. Therefore, if r is small enough, the first exponential in (4.117) can be bounded
by rγ for some γ > 0 depending on u, a and b (recall that ρ ∈ [a/2, a]). We use Lemma 4.51 to bound
the probability in (4.117) by rγ for some γ > 0. With Lemma 4.33 we therefore see that

E

MK
ρ (dz)1{

N
Lθ
D

(K)
z,r >b(log r)2

}
 ≤ 1

ρ
CR(z,D)arγ (F (ρ(3/2CK(z) + C(u)| log r|)) + F (ρCK(z)))

Using the inequality F(u) ≤ Cuθ, we conclude that

E

MK
ρ (dz)1{

N
Lθ
D

(K)
z,r >b(log r)2

}
 ≤ C(logK)θrc

for some C, c > 0 that may depend on a, b and A. Finally,

E
[∣∣∣∣∫

D
f(z)MK

ρ (dz)−
∫
D
f(z)M̃K

ρ (dz)
∣∣∣∣]

≤ C ‖f‖∞ (logK)θ
∑
r=e−n

n≥dlog(1/r0)e

rc ≤ C ‖f‖∞ (logK)θ(r0)c.
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This concludes the proof.

4.7.3 Proof of Lemma 4.44 (uniform integrability after truncation)

Proof. Let ρ ∈ [a/2, a] and let z, z′ ∈ A. The constants appearing in this proof may depend on a, b, r0

and A, but will be uniform in z, z′ and ρ. We want to bound from above

E
[
M̃K

ρ (dz)M̃K
ρ (dz′)

]
.

If |z − z′| ≥ r0, we simply bound this by

E
[
M̃K

ρ (dz)M̃K
ρ (dz′)

]
≤ C(logK)2θdzdz′

by Corollary 4.42, where C > 0 is some constant depending on r0. We now assume that |z−z′| < r0 and
we let r ∈ (0, r0)∩{e−n, n ≥ 1} be such that e2 ≤ |z−z′|/r ≤ e3. By Lemma 4.40, E

[
M̃K

ρ (dz)M̃K
ρ (dz′)

]
is at most

C
∑

n,m≥1
0≤l≤n∧m

1
(n− l)!(m− l)!l!θ

n+m−l
∫

a∈E(ρ,n)
a′∈E(ρ,m)

da
a1 . . . an

da′
a′1 . . . a

′
m

l∏
i=1

B
(
(2π)2aia

′
iGD(z, z′)2

)

× E
[
F
(
(Ξz,z

′

ai,a′i
∧ Ξzai ∧ Ξz′a′i)i=1...l, (Ξzai)i=l+1...n, (Ξz

′

a′i
)i=l+1...m

)]
dzdz′

with F (℘1, . . . , ℘n, ℘
′
l+1, . . . , ℘

′
m) being equal to

n∏
i=1

(
1− e−KT (℘i)

) m∏
i=l+1

(
1− e−KT (℘′i)

)
1{∑n

i=1N
℘i
z,r+

∑m

i=l+1 N
℘′
i

z,r≤b(log r)2
}.

Now, let u = 2
√
ρ/b − 1, which is positive if b is close enough to a, and observe that F (℘1, . . . , ℘n,

℘′l+1, . . . , ℘
′
m) is bounded from above by

Fu(℘1, . . . , ℘n, ℘
′
l+1, . . . , ℘

′
m) := ebu| log r| exp

− u

| log r|

n∑
i=1

N℘i
z,r −

u

| log r|

m∑
i=l+1

N
℘′i
z,r


×

n∏
i=l+1

(
1− e−KT (℘i)

) m∏
i=l+1

(
1− e−KT (℘′i)

)
.

Here we both neglect the killing part for ℘1 . . . ℘l and we bound the indicator function in the spirit of
an exponential Markov inequality. We have

E
[
Fu
(
(Ξz,z

′

ai,a′i
∧ Ξzai ∧ Ξz′a′i)i=1...l, (Ξzai)i=l+1...n, (Ξz

′

a′i
)i=l+1...m

)]
= ebu| log r|

l∏
i=1

E

exp

− u
| log r|N

Ξz,z
′

ai,a
′
i

z,r

E [exp
(
− u
| log r|N

Ξzai
z,r

)]
E

exp

− u
| log r|N

Ξz′
a′
i

z,r


n∏

i=l+1
E
[(

1− e−KT (Ξzai )
)

exp
(
− u
| log r|N

Ξzai
z,r

)] m∏
i=l+1

E
[(

1− e
−KT (Ξz′

a′
i

))
exp

(
− u
| log r|N

Ξz′ai
z,r

)]
.
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By FKG-inequality for Poisson point processes (see [Jan84, Lemma 2.1]),

E
[(

1− e−KT (Ξzai )
)

exp
(
− u
| log r|N

Ξzai
z,r

)]
≤ E

[
1− e−KT (Ξzai )

]
E
[
exp

(
− u
| log r|N

Ξzai
z,r

)]
. (4.118)

Recall that (see (4.106) and (4.107))

E
[
exp

(
− u
| log r|N

Ξzai
z,r

)]
= e−

u+o(1)
1+u ai| log r| and E

exp

− u
| log r|N

Ξz′
a′
i

z,r

 = e−
u+o(1)

1+u a′i| log r|

and (see (4.109))

B
(
(2π)2aia

′
iGD(z, z′)2

)
E

exp

− u
| log r|N

Ξz,z
′

ai,a
′
i

z,r

 = B
(

(2π)2aia
′
iGD(z, z′)2 1 + o(1)

(1 + u)2

)
.

The o(1) above go to zero as r → 0. In what follows, to ease notations, we will not write the o(1). This
is of no importance: alternatively, one can increase slightly the value of the thickness parameter ρ and
absorb the o(1) in doing so. We continue the computations and find that

l∏
i=1

B
(
(2π)2aia

′
iGD(z, z′)2

)
E
[
F
(
(Ξz,z

′

ai,a′i
∧ Ξzai ∧ Ξz′a′i)i=1...l, (Ξzai)i=l+1...n, (Ξz

′

a′i
)i=l+1...m

)]
≤ ebu| log r| exp

(
− u

1 + u

(
n∑
i=1

ai +
m∑
i=1

a′i

)
| log r|

)
n∏

i=l+1

(
1− e−aiCK(z)

) m∏
i=l+1

(
1− e−a′iCK(z′)

)

×
l∏

i=1
B
(
(2π)2aia

′
iGD(z, z′)2/(1 + u)2

)
.

Since
∑n
i=1 ai =

∑m
i=1 a

′
i = ρ, we have found that E

[
M̃K

ρ (dz)M̃K
ρ (dz′)

]
is at most

e(bu−2ρ u
1+u)| log r| ∑

n,m≥1
0≤l≤n∧m

1
(n− l)!(m− l)!l!θ

n+m−l
∫

a∈E(ρ,n)
a′∈E(ρ,m)

dada′
n∏

i=l+1

1− e−aiCK(z)

ai

×
m∏

i=l+1

1− e−a′iCK(z′)

a′i

l∏
i=1

B
(
(2π)2aia

′
iGD(z, z′)2/(1 + u)2)
aia′i

dzdz′

= e(bu−2ρ u
1+u)| log r|Hρ,ρ(CK(z), CK(z′), (2π)2GD(z, z′)2/(1 + u)2)dzdz′

where the function Hρ,ρ is defined in (4.92). By (4.93), we can further bound from above the expectation
E
[
M̃K

ρ (dz)M̃K
ρ (dz′)

]
by

C(logK)2θe(bu−2ρ u
1+u)| log r|GD(z, z′)1/2−θe4πρGD(z,z′)/(1+u)dzdz′.
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Recalling that r has been chosen in such a way that 2πGD(z, z′) = | log r|+O(1) and that u = 2
√
ρ/b−1,

we conclude that E
[
M̃K

ρ (dz)M̃K
ρ (dz′)

]
is at most

C(logK)2θ| log r|1/2−θ exp
((
b− 2(

√
b−√ρ)2

)
| log r|

)
dzdz′ ≤ C(logK)2θ|z − z′|−bdzdz′.

Since b can be made arbitrary close to a, this concludes the proof.

4.7.4 Proof of Lemma 4.45 (convergence)

Proof. Assume that b is close enough to a so that Lemma 4.44 holds for some η > 0. Let f : D → [0,∞)
be a non-negative bounded measurable function with compact support included in A and let a′ ∈ [a/2, a].
We have

E
[(∫

fdM̃K
a′ −

∫
fdM̃K

a

)2
]

= E
[∫

fdM̃K
a′

(∫
fdM̃K

a′ −
∫
fdM̃K

a

)]
+ E

[∫
fdM̃K

a

(∫
fdM̃K

a −
∫
fdM̃K

a′

)]
.

Let η > 0 be small. Since f is non-negative, we can bound

E
[∫

fdM̃K
a

(∫
fdM̃K

a −
∫
fdM̃K

a′

)]
≤ ‖f‖2∞

∫
A×A

1{|z−z′|≤η}E
[
M̃K

a (dz)M̃K
a (dz′)

]
+
∫
A×A

f(z)f(z′)1{|z−z′|>η}E
[
M̃K

a (dz)
(
M̃K

a (dz′)− M̃K
a′ (dz′)

)]
.

Thanks to Lemma 4.44, we know that

lim
η→0

lim sup
K→∞

1
(logK)2θ

∫
A×A

1{|z−z′|≤η}E
[
M̃K

a (dz)M̃K
a (dz′)

]
= 0.

We now deal with the second term. Let z, z′ ∈ A such that |z − z′| > η. We start by claiming that
there exist C > 0, r1 ∈ (0, r0) that may depend on η and b− a such that

(logK)−2θE
[
M̃K

a (dz)M̃K
a (dz′)

]
≤ η + (logK)−2θE

[
M̂K

a (dz)M̂K
a (dz′)

]
(4.119)

where M̂K
a (dz) is defined similarly as M̃K

a (dz) but with the good event restricting the number of
crossings of annulus for r ∈ (r1, r0) instead of r ∈ (0, r0). We omit the proof of this claim since it
follows along similar lines as the proof of Lemma 4.43. The point is that since z and z′ are at distance
macroscopic, there will be only a finite number of excursions between z and z′ so that (4.119) boils
down to Lemma 4.43. The conclusion of these preliminaries is that we have bounded

(logK)−2θ ‖f‖−2
∞ E

[∫
fdM̃K

a

(∫
fdM̃K

a −
∫
fdM̃K

a′

)]
(4.120)

≤ (logK)−2θ
∫
A×A

f(z)f(z′)
‖f‖2∞

1{|z−z′|>η}E
[
M̂K

a (dz)
(
M̂K

a (dz′)− M̂K
a′ (dz′)

)]
+ oη→0(1)

where oη→0(1)→ 0 as η → 0, uniformly in K ≥ 1, a′ ∈ [a/2, a] and f .
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Now let z, z′ ∈ A such that |z − z′| > η. By Lemma 4.40, E
[
M̂K

a (dz)M̂K
a′ (dz′)

]
is equal to

1
aa′

CR(z,D)a CR(z′, D)a′
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(1,n)

a′∈E(1,m)
dada′

E
l∏

i=1

1− e
−KT (Ξz,z

′

aai,a
′a′
i

)−KT (Ξzaai )−KT (Ξz′
a′a′

i

)

aia′i

n∏
i=l+1

1− e−KT (Ξzaai )

ai

m∏
i=l+1

1− e
−KT (Ξz′

a′a′
i

)

a′i

F

(
l∧

i=1
Ξz,z

′

aai,a′a′i
∧

n∧
i=1

Ξzaai ∧
m∧
i=1

Ξz′a′a′i ∧ L
θ
D

)
l∏

i=1
B
(
(2π)2aa′aia

′
iGD(z, z′)2

)
where

F (C) := 1{
∀r∈{e−n,n≥1}∩(r1,r0),NCz,r≤b(log r)2 and NC

z′,r≤b(log r)2
}.

We develop further this expression according to the number 2ki of excursions in Ξz,z
′

aai,a′a′i
, i = 1 . . . l.

In particular, Ξz,z
′

ki
will denote the concatenation of 2ki i.i.d. trajectories distributed according to

µz,z
′

D /GD(z, z′). E
[
M̂K

a (dz)M̂K
a′ (dz′)

]
is equal to

1
aa′

CR(z,D)a CR(z′, D)a′
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(1,n)

a′∈E(1,m)
dada′

∑
k1,...,kl≥1

E
l∏

i=1

1− e
−KT (Ξz,z

′
ki

)−KT (Ξzaai )−KT (Ξz′
a′a′

i

)

aia′i

n∏
i=l+1

1− e−KT (Ξzaai )

ai

m∏
i=l+1

1− e
−KT (Ξz′

a′a′
i

)

a′i

F

(
l∧

i=1
Ξz,z

′

ki
∧

n∧
i=1

Ξzaai ∧
m∧
i=1

Ξz′a′a′i ∧ L
θ
D

)
l∏

i=1

(2π
√
aa′aia′iGD(z, z′))2ki

ki!(ki − 1)!

In what follows, we will naturally couple the PPP of excursions away of z′ by decomposing Ξz′aai =
Ξz′a′ai ∧ Ξz′(a−a′)ai (recall that a

′ ≤ a). We can then decompose

a

CR(z,D)aE
[
M̂K

a (dz)
(

a

CR(z′, D)aM̂
K
a (dz′)− a′

CR(z′, D)a′ M̂
K
a′ (dz′)

)]
= S1 + S2 + S3
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where

S1 =
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(1,n)

a′∈E(1,m)
dada′

∑
k1,...,kl≥1


l∏

i=1

(2πa
√
aia′iGD(z, z′))2ki

ki!(ki − 1)! −
l∏

i=1

(2π
√
aa′aia′iGD(z, z′))2ki

ki!(ki − 1)!


E

l∏
i=1

1− e
−KT (Ξz,z

′
ki

)−KT (Ξzaai )−KT (Ξz′
aa′
i

)

aia′i

n∏
i=l+1

1− e−KT (Ξzaai )

ai

m∏
i=l+1

1− e
−KT (Ξz′

aa′
i

)

a′i

F

(
l∧

i=1
Ξz,z

′

ki
∧

n∧
i=1

Ξzaai ∧
m∧
i=1

Ξz′aa′i ∧ L
θ
D

)
,

S2 =
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(1,n)

a′∈E(1,m)
dada′

l∏
i=1

B
(
(2π)2aa′aia

′
iGD(z, z′)2

)

E
{

l∏
i=1

1− e
−KT (Ξz,z

′

aai,a
′a′
i

)−KT (Ξzaai )−KT (Ξz′
aa′
i

)

aia′i

n∏
i=l+1

1− e−KT (Ξzaai )

ai

m∏
i=l+1

1− e
−KT (Ξz′

aa′
i

)

a′i

−
l∏

i=1

1− e
−KT (Ξz,z

′

aai,a
′a′
i

)−KT (Ξzaai )−KT (Ξz′
a′a′

i

)

aia′i

n∏
i=l+1

1− e−KT (Ξzaai )

ai

m∏
i=l+1

1− e
−KT (Ξz′

a′a′
i

)

a′i

}

× F
(

l∧
i=1

Ξz,z
′

aai,a′a′i
∧

n∧
i=1

Ξzaai ∧
m∧
i=1

Ξz′aa′i ∧ L
θ
D

)

and

S3 =
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(1,n)

a′∈E(1,m)
dada′

l∏
i=1

B
(
(2π)2aa′aia

′
iGD(z, z′)2

)

E
l∏

i=1

1− e
−KT (Ξz,z

′

aai,a
′a′
i

)−KT (Ξzaai )−KT (Ξz′
a′a′

i

)

aia′i

n∏
i=l+1

1− e−KT (Ξzaai )

ai

m∏
i=l+1

1− e
−KT (Ξz′

a′a′
i

)

a′i

×
{
F

(
l∧

i=1
Ξz,z

′

aai,a′a′i
∧

n∧
i=1

Ξzaai ∧
m∧
i=1

Ξz′aa′i ∧ L
θ
D

)
− F

(
l∧

i=1
Ξz,z

′

aai,a′a′i
∧

n∧
i=1

Ξzaai ∧
m∧
i=1

Ξz′a′a′i ∧ L
θ
D

)}
.

(4.121)

We now claim that for all i ∈ {1, 2, 3}, uniformly in z, z′ ∈ A with |z − z′| > η,

lim sup
a′→a

lim sup
K→∞

1
(logK)2θSi = 0. (4.122)

For S1 and S2, this follows by bounding the function F by one and then by noting that we obtained
explicit expressions for the limit in K that are continuous with respect to the thickness parameters.
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See Corollary 4.42. We now explain how to deal with S3. We notice that on the event that none of
the excursions of

∧l
i=1 Ξz′(a−a′)a′i hits the circle ∂D(z′, r1), the difference of the function F appearing

in (4.121) vanishes. Since 0 ≤ F ≤ 1, we can therefore bound this difference by the indicator of the
complement of this event. After applying a union bound, we find that

E
l∏

i=1

1− e
−KT (Ξz,z

′

aai,a
′a′
i

)−KT (Ξzaai )−KT (Ξz′
a′a′

i

)

aia′i

n∏
i=l+1

1− e−KT (Ξzaai )

ai

m∏
i=l+1

1− e
−KT (Ξz′

a′a′
i

)

a′i

×
{
F

(
l∧

i=1
Ξz,z

′

aai,a′a′i
∧

n∧
i=1

Ξzaai ∧
m∧
i=1

Ξz′aa′i ∧ L
θ
D

)
− F

(
l∧

i=1
Ξz,z

′

aai,a′a′i
∧

n∧
i=1

Ξzaai ∧
m∧
i=1

Ξz′a′a′i ∧ L
θ
D

)}

≤ E
l∏

i=1

1− e
−KT (Ξz,z

′

aai,a
′a′
i

)−KT (Ξzaai )−KT (Ξz′
a′a′

i

)

aia′i

n∏
i=l+1

1− e−KT (Ξzaai )

ai

m∏
i=l+1

1− e
−KT (Ξz′

a′a′
i

)

a′i

×
m∑
j=1

∑
℘∈Ξz′

(a−a′)a′
j

1{℘ hits ∂D(z′,r1)}

≤
l∏

i=1

1
aia′i

n∏
i=l+1

1− Ee−KT (Ξzaai )

ai

m∏
i=l+1

1− Ee
−KT (Ξz′

a′a′
i

)

a′i

m∑
j=1

E
∑

℘∈Ξz′
(a−a′)a′

j

1{℘ hits ∂D(z′,r1)}.

Since
m∑
j=1

E
∑

℘∈Ξz′(a−a′)aj

1{℘ hits ∂D(z′,r1)} =
m∑
j=1

2π(a− a′)a′jµ
z′,z′

D (τ∂D(z′,r1) <∞)

= 2π(a− a′)a′µz
′,z′

D (τ∂D(z′,r1) <∞) ≤ C(a− a′)

for some constant C > 0 which may depend on r1, we have obtained that

S3 ≤ C(a− a′)
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(1,n)

a′∈E(1,m)
dada′

l∏
i=1

B
(
(2π)2aa′aia

′
iGD(z, z′)2)

aia′i

×
n∏

i=l+1

1− e−aaiCK(z)

ai

m∏
i=l+1

1− e−a′a′iCK(z′)

a′i

By Lemma 4.41, this is at most C(a− a′)(logK)2θ for some constant C > 0 that may depend on r1

and η. This finishes the proof of (4.122) for S3.
To conclude, we have proven that

lim sup
a′→a

lim sup
K→∞

(logK)−2θE
[
M̂K

a (dz)
(

a

CR(z′, D)aM̂
K
a (dz′)− a′

CR(z′, D)a′ M̂
K
a′ (dz′)

)]
= 0,

uniformly over z, z′ ∈ A with |z − z′| > η. Hence

lim sup
a′→a

lim sup
K→∞

(logK)−2θE
[
M̂K

a (dz)
(
M̂K

a (dz′)− M̂K
a′ (dz′)

)]
= 0.
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Coming back to (4.120), this implies that

lim sup
a′→a

lim sup
K→∞

(logK)−2θ ‖f‖−2
∞ E

[∫
fdM̃K

a

(∫
fdM̃K

a −
∫
fdM̃K

a′

)]
≤ oη→0(1).

Since the left hand side term does not depend on η, it has to be non positive. Similarly, the same
statement holds true when one exchanges a and a′ in the expectation above so that

lim sup
a′→a

lim sup
K→∞

(logK)−2θ ‖f‖−2
∞ E

[(∫
fdM̃K

a′ −
∫
fdM̃K

a

)2
]
≤ 0.

This concludes the proof.

4.7.5 Proof of Theorem 4.11 (thick points)

We conclude Section 4.7 with a proof of Theorem 4.11.

Proof of Theorem 4.11 and Point 4 of Theorem 4.1. We first start by showing thatMa is supported
on T (a). To this end, let us denote

T (a, r0, η) :=
{
z ∈ D : ∀r ∈ {e−n, n ≥ 1} ∩ (0, r0) :

∣∣∣∣ 1
n2N

LθD
z,r − a

∣∣∣∣ ≤ η} .
Let A b D be a Borel set compactly included in D. We argue that the following version of Lemma
4.43 holds:

lim
r0→0

lim sup
K→∞

1
(logK)θE

[∫
A

1{z /∈T (a,r0,η)}MK
a (dz)

]
= 0.

The only difference with Lemma 4.43 is that we require the number of crossings of annuli to be, not
only not too large, but also not too small. To prove that the number of crossings is not too small, we
use the same approach as what we did to prove Lemma 4.43 and we use FKG-inequality and Corollary
4.48 instead of Corollary 4.47. We omit the details. This shows that 1AMa is almost surely supported
by ⋃

r0>0
T (a, r0, η) =

{
z ∈ D : ∃r0 > 0, ∀r ∈ {e−n, n ≥ 1} ∩ (0, r0) :

∣∣∣∣ 1
n2N

LθD
z,r − a

∣∣∣∣ ≤ η} .
Since this is true for all η > 0 and for all A b D, this concludes the proof thatMa(D \ T (a)) = 0 a.s.

We now turn to the proof of the claims concerning the carrying dimension ofMa and the Hausdorff
dimension of T (a). We start with the lower bound and we let η ∈ [0, 2− a), A b D and we assume
that b is close enough to a so that Lemma 4.45 holds. Let us denote M̃a,r0 the limit of (logK)−θM̃K

a

(we keep track of the dependence in r0). By Lemma 4.44 and by Fatou’s lemma, the energy

er0(A) :=
∫
A×A

1
|z − z′|η

M̃a,r0(dz)M̃a,r0(dz′)

has finite expectation and is therefore almost surely finite. Moreover, Lemma 4.43 and Fatou’s lemma
also show that

lim
r0→0

E
[
Ma(A)− M̃a,r0(A)

]
= 0.
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The following event has therefore full probability measure

E :=
⋂
A

{
lim inf
n→∞

Ma(A)− M̃a,e−n(A) = 0 and ∀r0 ∈ {e−n, n ≥ 1}, er0(A) <∞
}

where the intersection runs over all set A of the form {z ∈ D,dist(z, ∂D) > e−n}, n ≥ 1. Now, let
B ⊂ D be a Borel set such thatMa(B) > 0. There exists some set A of the above form such that
Ma(B ∩A) > 0. Moreover, since for all r0 > 0,

Ma(B ∩A)− M̃a,r0(B ∩A) ≤Ma(A)− M̃a,r0(A),

we see that on the event E, we can find r0 ∈ {e−n, n ≥ 1}, such that M̃a,r0(B ∩A) > 0. But because
on the event E, the energy er0(A) is finite, Frostman’s lemma implies that the Hausdorff dimension of
B ∩A is at least η. To wrap things up, we have proven that almost surely, for all Borel set B such that
Ma(B) > 0, the Hausdorff dimension of B is at least η. Since η can be made arbitrary close to 2− a,
this concludes the lower bound on the carrying dimension ofMa. The lower bound on the dimension
of T (a) follows since we have already proven thatMa is almost surely supported on T (a).

We now turn to the upper bound. We will show that the Hausdorff dimension of T (a) is almost
surely at most 2 − a. Since Ma(D \ T (a)) = 0 a.s., this will also provide the upper bound on the
carrying dimension of Ma and it will conclude the proof. Let δ > 0 and denote by H2−a+δ the
(2− a+ δ)-Hausdorff measure. Let η > 0 be much smaller than δ. We first notice that

T (a) ⊂
⋃
N≥1

⋂
n≥N

{
z ∈ D : 1

n2N
LθD
z,e−n > a− η

}
⊂
⋂
N≥1

⋃
n≥N

{
z ∈ D : 1

n2N
LθD
z,e−n > a− η

}

and we can therefore bound,

H2−a+δ(T (a)) ≤ lim
N→∞

∑
n≥N
H2−a+δ

({
z ∈ D : 1

n2N
LθD
z,e−n > a− η

})
.

Now, let n ≥ 1 be large and denote by rn = e−n. Let {zi, i ∈ I} ⊂ D be a maximal r1+η
n -net of

D (in particular, #I � r
−2(1+η)
n ). If z ∈ D is such that |z − zi| < r1+η

n , we notice that the annulus
D(z, ern)\D(z, rn) contains the annulus D(zi, ern− r1+η

n )\D(zi, rn+ r1+η
n ), and therefore, the number

of crossings in LθD of the former annulus is smaller or equal than the number of crossings of the latter.
This shows that we can cover{

z ∈ D : 1
n2N

LθD
z,e−n > a− η

}
⊂
⋃
i∈I

{
z ∈ D(zi, e−(1+η)n), 1

n2N
LθD
zi,rn,η > a− η

}

where we have denoted by NL
θ
D

zi,rn,η the number of upcrossings of D(zi, ern − r1+η
n ) \D(zi, rn + r1+η

n )
in LθD. Let λ ∈ (0, 1) be close to 1. An immediate adaptation of Lemma 4.51 to annuli with slightly
different radii, shows that if n is large enough, then

P
( 1
n2N

LθD
zi,rn,η > a− η

)
≤ rλ(a−η)

n .
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Therefore

E
[
H2−a+δ

({
z ∈ D : 1

n2N
LθD
z,e−n > a− η

})]

≤ CE

∑
i∈I

(
r1+η
n

)2−a+δ
1{

1
n2N

Lθ
D

zi,rn,η
>a−η

}
 ≤ Cr(1+η)(−a+δ)+λ(a−η)

n .

By choosing λ and η close enough to 1 and 0, respectively, we can ensure the above power to be larger
than δ/2 (δ is fixed for now). We have proven that

E [H2−a+δ(T (a)] ≤ C lim
N→∞

∑
n≥N

rδ/2n = 0

and the Hausdorff dimension of T (a) is at most 2− a+ δ a.s. This concludes the proof.

4.8 Poisson–Dirichlet distribution

The aim of this section is two-fold: proving Theorem 4.8 as well as giving a new perspective on
the martingale (mK

a (dz),K ≥ 0). Indeed, it is likely that Theorem 4.8 could be also proven as a
consequence of the discrete approximation ofMa (Theorem 4.12) and as a consequence of Proposition
4.17. We decided to take another route which remains in the continuum setting. The advantage of this
approach is that it gives an independent proof of the fact that (mK

a (dz),K ≥ 0) is a martingale. This
is close in spirit to Lyons’ approach [Lyo97] to the Biggins martingale convergence theorem for spatial
branching processes originally established by Biggins [Big77].

We first prove (4.7). Recall from Section 4.2.1 that, conditionally on LθD, {U℘, ℘ ∈ LθD} =: U
denotes a collection of i.i.d. uniform random variables on [0, 1]. We will prove that for any nonnegative
measurable admissible function F ,

E
[∫
D
F (z,LθD,U)Ma(dz)

]
= 1

2θa1−θΓ(θ)

∫
D
E
[
F (z,LθD ∪ Ξa,U ∪ Ua)

]
CR(z,D)adz (4.123)

where in the RHS, the two collections of loops LθD and Ξa := {Ξzai , i ≥ 1} are independent, and,
conditionally on everything else, Ua denotes a collection of i.i.d. uniform random variables on [0, 1]
indexed by Ξa. This equation may seem stronger but is actually equivalent to (4.7). We recall that
LθD(K) =

{
℘ ∈ LθD : U℘ < 1− e−KT (℘)

}
denotes the loops killed at rate K and we further introduce

U(K) := {U℘, ℘ ∈ LθD(K)}. Conditionally on LθD(K), we see that U(K) is a collection of independent
random variables where U℘ is uniformly distributed in [0, 1− e−KT (℘)]. By the monotone class theorem,
it suffices to prove (4.123) for F (z,LθD,U) = 1{z∈A}G(LθD(K),U(K)) for G an arbitrary nonnegative
measurable function, A ⊂ D a Borel set and K > 0.

Recall the definition of Ma(A) in Theorem 4.1. By Proposition 4.25, Ma(A) is the (L1 by
Proposition 4.24) limit of 1

2θΓ(θ)m
K
a (A) where we recall that

mK
a (dz) := 1

a1−θ CR(z,D)ae−aCK(z)dz +
∫ a

0
dρ 1

(a− ρ)1−θ CR(z,D)a−ρe−(a−ρ)CK(z)MK
ρ (dz).
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We want to compute the LHS of (4.123) for 1{z∈A}G(LθD(K),U(K)) instead of F (z,LθD,U). Since
(mK

a (A), K ≥ 0) is a uniformly integrable martingale by Proposition 4.24,∫
D
E
[
1{z∈A}G(LθD(K),U(K))Ma(dz)

]
= 1

2θΓ(θ)E
[
G(LθD(K),U(K))mK

a (A)
]
. (4.124)

Set G(K) := G(LθD(K),U(K)) for concision. From the expression of mK
a (dz), we have

E
[
G(K)mK

a (dz)
]

= E1 + E2 (4.125)

with

E1 := 1
a1−θ CR(z,D)ae−aCK(z)E

[
G(K)

]
dz, (4.126)

E2 :=
∫ a

0
dρ 1

(a− ρ)1−θ CR(z,D)a−ρe−(a−ρ)CK(z)E
[
G(K)MK

ρ (dz)
]
. (4.127)

To compute E2, we first need to compute E
[
G(K)MK

ρ (dz)
]
for ρ ∈ [0, a]. Recall that by Lemma 4.32,

for any nonnegative measurable function F ,

E
[
F (z,LθD)MK

ρ (dz)
]

=

CR(z,D)ρ
∑
n≥1

θn

n!

∫
ρ∈E(ρ,n)

dρ
ρ1 . . . ρn

E
[
n∏
i=1

(
1− e−KT (Ξzρi )

)
F
(
z,LθD ∪ Ξzρ

)]
dz,

where ρ = (ρ1, . . . , ρn), dρ = d ρ1 . . .d ρn−1 and Ξzρ := (Ξzρi)1≤i≤n is independent of LθD. We rewrite
the RHS in a slightly different form. First, the term of index n in the sum is equal to

θn
∫
ρ∈E(ρ,n),ρ1<···<ρn

dρ
ρ1 . . . ρn

E
[
n∏
i=1

(
1− e−KT (Ξzρi )

)
F (z,LθD ∪ Ξzρ)

]
dz.

Secondly, recall from (4.73) that E[1− e−KT (Ξzρi )] = 1− e− ρi CK(z). Hence

E
[
n∏
i=1

(
1− e−KT (Ξzρi )

)
F (z,LθD ∪ Ξzρ)

]
=

n∏
i=1

(
1− e− ρi CK(z)

)
E
[
F (z,LθD ∪ Ξ̂zρ)

]

where Ξ̂zρ := {Ξ̂zρi , i = 1 . . . n} is a collection of independent loops independent of LθD, and Ξ̂zρi has the
distribution of Ξzρi biased by 1− e−KT (Ξzρi ). Combining the two, we see that

E
[
F (z,LθD)MK

ρ (dz)
]

=

CR(z,D)ρ
∑
n≥1

θn
∫
ρ∈E(ρ,n),ρ1<...<ρn

dρ
n∏
i=1

1− e− ρi CK(z)

ρi
E
[
F
(
z,LθD ∪ Ξ̂zρ

)]
dz.

Again, one can actually take a function F (z,LθD,U). From the proof of Lemma 4.32 and the previous
lines, one can check that the function F in the RHS will turn into F (z,LθD ∪ Ξ̂zρ,U ∪ Ûρ) where
Ûρ = {Û℘, ℘ ∈ Ξ̂zρ} is conditionally on everything else a collection of independent random variables,
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with Û℘ being uniform in [0, 1−e−KT (℘)]. Taking for F (z,LθD,U) the function G(K) = G(LθD(K),U(K)),
it implies that

E
[
G(K)MK

ρ (dz)
]

=

CR(z,D)ρ
∑
n≥1

θn
∫
ρ∈E(ρ,n),ρ1<...<ρn

dρ
n∏
i=1

1− e− ρi CK(z)

ρi
E
[
G(LθD(K) ∪ Ξ̂zρ,U(K) ∪ Ûρ)

]
dz.

From the expression of E2 in (4.127), after a change of variables (ρ1, . . . , ρn−1, ρ)→ (ρ1, . . . , ρn), we
get

E2 = CR(z,D)a
∑
n≥1

θn

∫
ρ1<...<ρn,ρ<a

e−(a−ρ)CK(z)

(a− ρ)1−θ

n∏
i=1

d ρi
1− e− ρi CK(z)

ρi
E
[
G(LθD(K) ∪ Ξ̂zρ,U(K) ∪ Ûρ)

]
dz

where ρ := ρ1 + . . .+ρn in the integral. We will reinterpret this equality via the following lemma whose
proof is deferred to the end of this section.

Lemma 4.52. Let {a1, a2, . . . } be a random partition of [0, a] distributed according to a Poisson-
Dirichlet distribution with parameter θ. Let u > 0. Remove each atom ai independently with probability
e−uai. Denote by â1 < . . . < âN the remaining atoms (there are only a finite number of them). Then

P (N = 0) = e−ua

and for any integer n ≥ 1, and 0 < ρ1 < . . . < ρn with ρ := ρ1 + . . .+ ρn,

P (N = n, â1 ∈ d ρ1, . . . , ân ∈ d ρn) = a1−θ

(a− ρ)1−θ e
−u(a−ρ)

n∏
i=1

θ

ρi
(1− e−u ρi)d ρi . (4.128)

Using the lemma with u = CK(z) and with the notation of the lemma, we get that

E2 = 1
a1−θ CR(z,D)aE

[
G(LθD(K) ∪ Ξ̂zâ,U(K) ∪ Ûâ)1{N≥1}

]
dz

where Ξ̂zâ = {Ξ̂zâi , i = 1 . . . N} and Ûâ := {Û℘, ℘ ∈ Ξ̂zâ} with natural notation. We also have

E1 = 1
a1−θ CR(z,D)aE

[
G(LθD(K),U(K))1{N=0}

]
.

From (4.125) , we get that

E
[
G(K)mK

a (dz)
]

= 1
a1−θ CR(z,D)aE

[
G(LθD(K) ∪ Ξ̂zâ,U(K) ∪ Ûâ)

]
dz (4.129)

with the convention that Ξ̂zâ and Ûâ are empty when N = 0. We observe that in the expectation in the
RHS, the loop soup LθD(K) ∪ Ξ̂zâ and the random variables U(K) ∪ Ûâ are distributed respectively as
the collection of loops killed at rate K in the loop soup LθD ∪ Ξa, and the random variables U ∪ Ua
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restricted to the killed loops. Integrating over z ∈ A, and recalling (4.124), it shows that we proved
(4.123) for F (z,LD,U) = 1{z∈A}G(LD(K),U(K)). Note that (4.129) also proves that (mK

a (dz),K > 0)
is a martingale, independently of the first proof given in Section 4.5.3.

With Proposition 4.54 below, it shows that the couple (LθD,Ma) satisfies the three points of
Theorem 4.8. The fact that they characterize the law is standard, see [BBK94, AHS20]. Fix LθD.
We need to show that if M̃a is another Borel measure which is measurable with respect to < LθD >

and verifies (4.7), then M̃a = Ma a.s. We define M̂a := M̃a − Ma. By (4.7) applied to M̃a

andMa, the expectation of
∫
D F (z,LθD)M̂a is zero for any bounded measurable admissible function

F . Take F (z,LθD) = M̂a(A)1{z∈A}1{|M̂a(A)|<c
} where c > 0 and A is a Borel set. We get that

E

M̂a(A)21{
|M̂a(A)|<c

} = 0 is zero, hence that E
[
M̂a(A)2

]
= 0 by monotone convergence, so that

M̃a(A) =Ma(A) a.s. It completes the proof of the characterization.

Proof of Lemma 4.52. That P(N = 0) = e−ua is clear so we only prove (4.128). Let {a1, a2, . . . } be a
random partition of [0, a] distributed according to a Poisson-Dirichlet distribution with parameter θ.
The atoms {a1, a2, . . . } can be constructed via the jumps of a Gamma subordinator. More precisely,
consider a Poisson point process {p1, p2, . . . } on R+ with intensity 1{x>0}

θ
xe
−xdx. Let Σ :=

∑
i≥1 pi be

the sum of the atoms of the PPP. Then, the collection {ap1
Σ , a

p2
Σ , . . .} is independent of Σ and distributed

as {a1, a2, . . . }. One can also say that the atoms {p1, p2, . . . } conditioned on Σ = a are distributed
as {a1, a2, . . . }. Using this representation, we remove each atom pi of the PPP independently with
probability e−upi . The remaining atoms form a PPP of intensity 1{x>0}

θ
xe
−x(1− e−ux)dx. Notice that

∫ ∞
0

θ

x
e−x(1− e−ux)dx = θ ln(u+ 1).

In particular, the set of remaining atoms is finite a.s. Let Np be its cardinality, and when Np ≥ 1, let
p̂1 < . . . < p̂Np these atoms ordered increasingly. For n ≥ 1, and 0 < ρ1 < . . . < ρn,

P (Np = n, p̂1 ∈ d ρ1, . . . , p̂n ∈ d ρn) = (u+ 1)−θ
n∏
i=1

θ

ρi
e− ρi(1− e−u ρi)d ρi .

The removed atoms are independent of the remaining atoms and form a PPP of intensity θ
xe
−(u+1)xdx.

It is the Lévy measure of a Gamma(θ, u+ 1) subordinator. In particular, the sum of all these atoms,
which is Σ −

∑Np
i=1 p̂i, has the Gamma(θ, u + 1) distribution, with density (u+1)θ

Γ(θ) sθ−1e−(u+1)sds. It
implies that , with ρ :=

∑n
i=1 ρi,

P (Np = n, p̂1 ∈ d ρ1, . . . , p̂n ∈ d ρn, Σ ∈ da) = 1
Γ(θ)(a−ρ)θ−1e−(u+1)(a−ρ)

n∏
i=1

θ

ρi
e− ρi(1− e−u ρi)d ρi da.

Dividing by the probability that Σ is in da, which is 1
Γ(θ)a

θ−1e−ada, we proved that

P (Np = n, p̂1 ∈ d ρ1, . . . , p̂n ∈ d ρn | Σ = a) =
(
1− ρ

a

)θ−1
e−u(a−ρ)

n∏
i=1

θ

ρi
(1− e−u ρi)d ρi .
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By the discussion at the beginning of the proof, we know that the distribution of (Np, p̂1, . . . , p̂Np)
conditionally on Σ = a is the one of (N, â1, . . . , âN ). The lemma follows.

4.9 Measurability, conformal covariance and positivity

We will start this section by proving that the measureMa is measurable w.r.t. the Brownian loop
soup, and even w.r.t. the smaller sigma algebra σ(

〈
LθD
〉

) defined in (4.30). This will prove Point 2 in
Theorem 4.1. From this, we will obtain the characterisation of the joint law of (LθD,Ma) as stated in
Theorem 4.8. This characterisation will allow us to obtain the conformal covariance of the measure
(actually a stronger version of it) which is the content of Point 3 in Theorem 4.1. In the last part of
this section, we will use the conformal invariance of the measure to deduce its almost sure positivity,
i.e. Theorem 4.1, Point 1.

4.9.1 Measurability

The purpose of this section is to prove Theorem 4.1, Point 2. In Appendix 4.A, we show that, essentially
by definition, for all K > 0, MK

a is measurable w.r.t. σ(
〈
LθD(K)

〉
); see Lemma 4.57. Hence, this

section consists in showing that the limiting measureMa does not depend on the labels underlying
the definition of killed loops.

Consider the Brownian loop soup LθD. Since D is bounded, one can order the loops in the decreasing
order of their diameter, (℘̂i)i≥1. Let (Ui)i≥1 be an i.i.d. sequence of uniform r.v.s in [0, 1], independent
from LθD. Given K > 0, we consider that LθD(K) is constructed according to (4.27), with the r.v. Ui
associated to the loop ℘̂i. Let Floops be the σ-algebra generated by the Brownian loop soup LθD, where
the loops are considered to be unrooted. It is the Borel σ-algebra for the topology on collections of
unrooted loops described in Section 4.2.1. For m ≥ 1, denote Fm the σ-algebra generated by

〈
LθD
〉

and the r.v.s (Ui)1≤i≤m, and F̌m the σ-algebra generated by
〈
LθD
〉
and the r.v.s (Ui)i>m. By Lemma

4.57, the random measureMa is measurable with respect to F̌1. We want to show thatMa admits a
modification coinciding a.s. withMa which is measurable with respect to σ(

〈
LθD
〉

).

Lemma 4.53. For every m ≥ 1,Ma is measurable with respect to F̌m.

Proof. For K > 0, denote

MK,m
a :=

∑
n≥1

1
n!

∑
℘1,...,℘n

∈LθD(K)∪{℘̂i,i=1...m−1}
∀i 6=j,℘i 6=℘j

M℘1∩···∩℘n
a .

Introducing this measure is useful since MK,m
a is independent of the first m labels Ui, i = 1 . . .m:

the m biggest loops will be always included, without having to check whether Ui < 1− e−KT (℘̂i) or
not. By Lemma 4.57, the random measureMK,m

a is measurable with respect to F̌m. Moreover, a.s.
for K large enough, we have for all i ∈ {1, . . . ,m}, Ui < 1 − e−KT (℘̂i). Thus, if K is large enough,
MK,m

a =MK
a and (logK)−θMK,m

a converges in probability as K → +∞ toMa. This shows thatMa

is F̌m-measurable.
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Proposition 4.54. A.s., we have that E[Ma|
〈
LθD
〉

] =Ma. In particular,Ma admits a modification

coinciding a.s. withMa which is measurable with respect to
〈
LθD
〉
.

Proof. Lemma (4.53) ensures that for every m ≥ 1, E[Ma|Fm] = E[Ma|
〈
LθD
〉
] a.s. Further, as

m→ +∞, E[Ma|Fm] converges toMa a.s. and in L1. This concludes.

4.9.2 Conformal covariance

Let ψ : D → D̃ be a conformal map between two bounded simply connected domains. Recall that in
Section 4.2.1, we introduced the transformation Tψ on paths defined by

Tψ : (℘(t), 0 ≤ t ≤ T (℘)) 7→
(
ψ(℘(S−1

ψ,℘(t)), 0 ≤ t ≤ Sψ,℘(T (℘))
)

where
Sψ,℘(t) =

∫ t

0
|ψ′(℘(s))|2ds.

For any collection C of loops in D, we define TψC := {Tψ℘, ℘ ∈ C}.

Theorem 4.55. (TψLθD, |(ψ−1)′(z̃)|−2−aMa,D ◦ ψ−1(dz̃)) and (Lθ
D̃
,Ma,D̃) have the same joint distri-

bution.

Proof. We are going to use the characterisation of the joint law of (Lθ
D̃
,Ma,D̃) given in Theorem 4.8

and we need to check that (TψLθD, |ψ′(ψ−1(z̃))|2+aMa,D ◦ψ−1) satisfies the three properties therein. By
conformal invariance of the unrooted loop measure µloop∗

D , TψLθD has the same law as Lθ
D̃
. This shows

the first property. The second property concerning the measurability is clear since it is stable under
conformal transformations. To conclude, we need to check the third property. Let F : D̃ × LD̃ → R be
a nonnegative measurable admissible function. By definition of the pushforward ofMa,D, we have

E
[∫
D̃
F (z̃, TψLθD)|ψ′(ψ−1(z̃))|2+aMa,D ◦ ψ−1(dz̃)

]
(4.130)

= E
[∫
D
F (ψ(z), TψLθD)|ψ′(z)|2+aMa,D(dz)

]
.

Since (z,L) ∈ D × LD 7→ F (ψ(z), TψL)|ψ′(z)|2+a ∈ R is a nonnegative measurable admissible function,
we can apply Theorem 4.8 to obtain that the left hand side of (4.130) is equal to

1
2θa1−θΓ(θ)

∫
D
E
[
F (ψ(z), Tψ(LθD ∪ {Ξzai,D, i ≥ 1}))

]
CR(z,D)a|ψ′(z)|2+adz.

Above, we wrote Ξzai,D instead of Ξzai to emphasise that the underlying domain is D. By doing the
change of variable z̃ = ψ(z), and because CR(z,D)|ψ′(z)| = CR(z̃, D̃), we obtain that the left hand
side of (4.130) is equal to

1
2θa1−θΓ(θ)

∫
D̃
E
[
F (z̃, Tψ(LθD ∪ {Ξ

ψ−1(z̃)
ai,D

, i ≥ 1}))
]

CR(z̃, D̃)adz̃.

Since the image of the measure µψ
−1(z̃),ψ−1(z̃)

D under Tψ is the measure µz̃,z̃
D̃

(see [Law05, Proposition
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5.5]), and by conformal invariance of LθD, we can rewrite

E
[
F (z̃, Tψ(LθD ∪ {Ξ

ψ−1(z̃)
ai,D

, i ≥ 1}))
]

= E
[
F (z̃,Lθ

D̃
∪ {Ξz̃

ai,D̃
, i ≥ 1})

]
.

To wrap things up, we have proven that

E
[∫
D̃
F (z̃, TψLθD)|ψ′(ψ−1(z̃))|2+aMa,D ◦ ψ−1(dz̃)

]
= 1

2θa1−θΓ(θ)

∫
D̃
E
[
F (z̃,Lθ

D̃
∪ {Ξz̃

ai,D̃
, i ≥ 1})

]
CR(z̃, D̃)adz̃

which is the third property characterising the joint law of (Lθ
D̃
,Ma,D̃). This concludes the proof.

4.9.3 Positivity

We conclude this section with the proof of Theorem 4.1, Point 1.

Proof of Theorem 4.1, Point 1. The claim that, for all open set A ⊂ D,Ma(A) is finite almost surely,
is clear since the total mass ofMa has finite expectation. We will therefore focus on proving that for
all open set A ⊂ D,Ma(A) > 0 almost surely. Let A be such a set and let A1 and A2 be two disjoint
subsets of A that are scaled copies of A, i.e. we can write Ai = fi(A) where fi, i = 1, 2, are affine
functions. In what follows, we keep track of the domain D where the loop soup lives by writingMa,D

instead ofMa. By only keeping loops that are contained in A, and by restriction property of Brownian
loop soup, we see thatMa,D(A) stochastically dominatesMa,A(A). It is therefore sufficient to show
that P (Ma,A(A) = 0) = 0. Similarly, by only keeping loops that are contained in A1 ∪A2, we obtain
that

P (Ma,A(A) = 0) ≤ P (Ma,A1∪A2(A1 ∪A2) = 0) .

SinceMa,A1∪A2(A1∪A2) is distributed like the independent sumMa,A1(A1)+Ma,A2(A2), we can rewrite
the probability on the right hand side as the product of P (Ma,Ai(Ai) = 0), i = 1, 2. Now, by conformal
covariance and because the Ai’s are affine transformations of A, P (Ma,Ai(Ai) = 0) = P (Ma,A(A) = 0),
i = 1, 2. We have therefore shown that

P (Ma,A(A) = 0) ≤ P (Ma,A(A) = 0)2 .

Since this probability is strictly smaller than one (the expectation Ma,A(A) is positive), it has to
vanish. This concludes the proof.

Appendix 4.A Measurability of Brownian multiplicative chaos

This section deals with some technicalities concerning the measurability of the Brownian chaos measures
w.r.t. the starting points, ending points, domains and thickness levels.

Denote by M the set of Borel measures on C equipped with the topology of weak convergence, and
by C the set of continuous trajectories in the plane with finite duration equipped with the topology
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induced by dpaths (4.28). Recall the definition (4.54) of mi(D) and Mi(D) and the definition (4.56) of
the half plane Hm. Denote by S the set

S := {(m,x0, z) ∈ (mi(D),Mi(D))×D ×D : x0 ∈ Hm, Im(z) = m}

equipped with its Borel σ-algebra. Let n ≥ 1. We consider a stochastic process

(mi, xi, zi)i=1...n ∈ S n 7→ (℘xi,ziD∩Hmi
)i=1...n ∈ C

such that for all (mi, xi, zi)i=1...n ∈ S n, ℘xi,ziD∩Hmi
, i = 1 . . . n, are independent Brownian trajectories

from xi to zi in the domain D ∩Hmi , i.e. distributed according to µxi,ziD∩Hmi
/HD∩Hmi (xi, zi) (4.17). We

consider a measurable version of this stochastic process, that is a version such that

(ω, (mi, xi, zi)i=1...n) ∈ Ω×S n 7→ (℘xi,ziD∩Hmi
)i=1...n(ω) ∈ C

is measurable (Ω stands here for the underlying probability space). In the next result, we consider
the multiplicative chaos measures associated to the above Brownian paths. The subset I ⊂ {1 . . . n}
encodes the trajectories involved and we will need to consider all these measures jointly in I.

Lemma 4.56. The process

(a, (mi, xi, zi)i=1...n) ∈ (0, 2)×S n 7→
(
M
∩i∈I℘

xi,zi
D∩Hmi

a

)
I⊂{1...n}

∈
∏

I⊂{1...n}
M #I (4.131)

is measurable.

Let us comment that the process (4.131) should actually possess a continuous modification, but
showing such a regularity is actually far from being simple (see Proposition 1.2 and Remark 1.1 of
[Jeg21]) and will not be needed in this article.

Proof. The Brownian chaos measures are defined as the pointwise limit of measures that are clearly
measurable w.r.t. the path (see Section 4.2.3 or [Jeg19, Proposition 1.1]). Therefore, the process
(4.131) is measurable as a pointwise limit of measurable processes.

We finish this section by showing that the measureMK
a on thick points of the massive loop soup

LD(K) is measurable w.r.t. σ(
〈
LθD
〉

) (4.30), a σ-algebra smaller than the one generated by LθD.

Lemma 4.57. The measureMK
a is measurable w.r.t. σ(

〈
LθD(K)

〉
).

Proof. For all ε > 0, n ≥ 1 and pairwise distinct loops ℘(1), . . . , ℘(n) ∈ LθD,ε ∩ LθD(K), the measure

M
℘

(1)
2,ε∩···∩℘

(n)
2,ε

a is a measurable function of the occupation measures of ℘(i)
2,ε, i = 1 . . . n. This is a

consequence of [Jeg19, Proposition 1.1]. Therefore, for all ε > 0, MK,ε
a is measurable w.r.t. the

σ-algebra Fε generated by the occupation measure of ℘2,ε, ℘ ∈ LθD(K). We conclude by noticing that
∩ε>0σ(Fδ, δ ∈ (0, ε)) is included in the σ-algebra generated by the occupation measure of ℘, ℘ ∈ LθD(K).
This proves Lemma 4.57 since the occupation measure of a loop ℘ is a function of its equivalence class
〈℘〉.
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Part Two: Discrete

4.10 Reduction

The purpose of this section is to explain the main lines of the proof of Theorem 4.12. The idea is to use
the result of [Jeg19] that shows that the scaling limit of the set of thick points of planar random walk,
killed upon exiting for the first time a given domain, is described by Brownian multiplicative chaos. In
order to use this result, we will first compare the discrete measures and the continuum measures at the
“approximation level”, i.e. for loops killed by the mass. We will then show that the discrete measures
with and without mass can be compared.

For K > 0, define the set of a-thick points of LθDN (K) by

TN,K(a) :=
{
z ∈ DN : `z(LθDN (K)) ≥ 1

2π a(logN)2
}

(4.132)

(see (4.37) for the definition of `z(LθDN (K))) and the associated point measure

MN,K
a (A) := logN

N2−a

∑
z∈TN,K(a)

1{z∈A}. (4.133)

Importantly, the normalisation of the measure is the same as in the case of a single random walk
trajectory (see (1.1) of [Jeg19]). Without the mass cutoff, there are much more loops and the measure
has to be tamed a bit more (see (4.11)).

Our first step will be to prove:

Proposition 4.58. There exists a universal constant c0 > 0, given by (4.12), such that, for any
fixed K > 0, (LθDN (K),MN,K

a ) converges in distribution as N → ∞ towards (LθD(K), ca0MK
a ). The

underlying topologies are the topology induced by the distance dL (4.29) and the topology of weak
convergence of measures.

The second step will be to control the effect of the mass on the measure:

Proposition 4.59. For any Borel set A ⊂ C,

lim sup
K→∞

lim sup
N→∞

E
[∣∣∣∣∣MN

a (A)− 2θ

(logK)θM
N,K
a (A)

∣∣∣∣∣
]

= 0.

Moreover, dL(LθDN ,L
θ
DN

(K)) goes to zero in probability as N →∞ and then K →∞.

We can now prove Theorems 4.12 and 4.5.

Proof of Theorem 4.12. This is an immediate consequence of Theorem 4.1 and Propositions 4.58 and
4.59.

Proof of Theorem 4.5. By Le Jan’s isomorphism (Theorem 4.18), we can couple a discrete GFF ϕN in
DN and a random walk loop soup L1/2

DN
with critical intensity in such a way that the occupation field

`(L1/2
DN

) and 1
2ϕ

2
N coincide. LetMN

a be the measure defined as in (4.11) and C0(D) be the space of
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continuous functions on D̄ that vanish on ∂D. We view ϕN as a random element of RC0(D) by setting
for all f ∈ C0(D),

ϕNf := 1
N2

∑
z∈DN

ϕN (z)f(z).

We are going to show that (ϕN ,L1/2
DN

, 2−θc−a0 MN
a ) converges in distribution (along a subsequence)

towards a triplet that satisfies all the relations required by Theorem 4.5. The topologies associated to
L1/2
DN

andMN
a are the same ones as in Theorem 4.12 and the topology associated to ϕN is the product

topology on RC0(D). To establish such a result, we only need to argue that

(i) (L1/2
DN

, 2−θc−a0 MN
a ) (d)−−→ (L1/2

D ,Ma) whereMa is the multiplicative chaos associated to L1/2
D from

Theorem 4.1;

(ii) (ϕN , 2−θc−a0 MN
a ) (d)−−→ (ϕ, 1√

2πa cosh(γh)) where cosh(γh) is the hyperbolic cosine associated to
h =
√

2πϕ;

(iii) (L1/2
DN

, ϕN ) (d)−−→ (L1/2
D , ϕ) along a subsequence (Nk)k≥1, where the Brownian loop soup L1/2

D and
the GFF ϕ satisfy Le Jan’s identity: :`(L1/2

D ) : = 1
2 :ϕ2 :.

Indeed, assume these three convergences. The law of (ϕNk ,L
1/2
DNk

, 2−θc−a0 MNk
a ) is tight since each of

the three components converges. Let (ϕ∞,L1/2
D,∞,Ma,∞) be any subsequential limit. The three pairwise

convergences above suffice to identify the law of this triplet: ϕ∞ is a GFF in D and L1/2
D,∞ is a critical

Brownian loop soup in D related by Le Jan’s identity; Ma,∞ is measurable w.r.t. LθD,∞ and is the
associated multiplicative chaos;Ma,∞ is measurable w.r.t. ϕ∞ and is the associated hyperbolic cosine.

To conclude the proof, we need to explain where (i)-(iii) come from. (i) is the content of Theorem
4.12. (ii) is a quick consequence of [BL19] as we are about to explain. By definition (4.11) ofMN

a and
because the occupation field of L1/2

DN
is equal to ϕ2

N/2 (without any normalisation),MN
a is equal to

ηNγ + ηN−γ where γ =
√

2a and ηN±γ are the measures defined by

ηN±γ(A) :=
√

logN
N2−γ2/2

∑
z∈DN

1{z∈A}1{±ϕN (z)≥ γ√
2π

logN
}, A ⊂ R2 Borel set.

By [BL19, Theorems 2.1 and 2.5], there exists some universal constant c∗ > 0 such that ηNγ converges
in distribution to c∗eγh where h =

√
2πϕ is a Gaussian free field in D. This convergence can be easily

extended to the joint convergence of (ϕN , ηNγ ) to (ϕ, c∗eγh). Indeed, this extension follows from a
simple use of Girsanov’s theorem and the details can be found in the proof of [BGL20, Lemma 6.9] in
a slightly different setting. The two convergences (ϕN , ηNγ )→ (ϕ, c∗eγh) and (ϕN , ηN−γ)→ (ϕ, c∗e−γh),
plus the fact that the limiting measures are measurable w.r.t. the underlying GFF ϕ, imply the joint
convergence (ϕN , ηNγ , ηN−γ)→ (ϕ, c∗eγh, c∗e−γh). In particular, (ϕN , ηNγ + ηN−γ)→ (ϕ, 2c∗ cosh(γh)) as
desired in (ii). The value of the constant c∗ can be computed looking at the first moment.

Finally, let us prove (iii). This is an immediate consequence of the two joint convergences

(L1/2
DN

, `(L1/2
DN

)− E`(L1/2
DN

)) (d)−−→ (L1/2
D , :`(L1/2

D ) :)
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and
(ϕN , ϕ2

N − Eϕ2
N ) (d)−−→ (ϕ, :ϕ2 :)

along a subsequence (N ′k)k≥1 (see the proof of [QW19, Lemma 6]). Indeed, these convergences implies
tightness of the quadruple (L1/2

DN
, `(L1/2

DN
)− E`(L1/2

DN
), ϕN , 1/2ϕ2

N − 1/2Eϕ2
N ) along (N ′k). Let (Nk)k≥1

be a further subsequence of (N ′k)k≥1 such that the quadruple above converges towards some

(L1/2
D , :`(L1/2

D ) :, ϕ, 1/2 :ϕ2 :)

along (Nk). To conclude, we only need to make sure that the second and fourth components of the
limiting variable agree. Our specific choice of coupling between L1/2

DN
and ϕN ensures that this is always

true at the discrete level. Therefore, it is also true in the limit.

Remark 4.60. Notice that the above argument does not establish convergence since Le Jan’s isomorphism
(as noted earlier) does not uniquely determine the joint law of the free field and loop soup. Nevertheless,
the subsequential limit satisfies the relations stated in Theorem 4.5.

The remaining of Part Two is organised as follows. In Section 4.11, we give exact expressions for
the first two moments associated toMN

a andMN,K
a , as well as describing the associated conditional

laws of the random walk loop soup LθDN . These exact formulae will be instrumental in the proof of
Proposition 4.59 which is achieved in Section 4.12. Finally, Section 4.13 is dedicated to the proof of
Proposition 4.58.

4.11 Exact expressions

In this section we will give the expressions of the first and second moments forMN
a andMN,K

a , as
well as give the corresponding conditional laws of the random walk loop soup LθDN .

4.11.1 First moment (discrete Girsanov)

Recall the definition (4.12) of the constant c0 which appears in the asymptotic of the Green function
on the diagonal; see (4.219).

In this section DN will be just a subset of Z2
N , with both DN and Z2

N \DN non-empty. For z ∈ DN ,
denote

CRN (z,DN ) := Nc−1
0 e−(logN)2/(2πGDN (z,z)).

As the notation suggests, we will use CRN (z,DN ) in a situation where it converges to a conformal
radius as N → +∞; see (4.219). Let qN (z) be the ratio

qN (z) := logN
2πGDN (z, z) .

If N → +∞ and the Euclidean distance from z to Z2
N \DN is bounded away from 0, then qN (z)→ 1;

see Lemma 4.93.

200 Contribution to multiplicative chaos theory



4.11. EXACT EXPRESSIONS

Given z, w ∈ DN , we will denote by µ̃z,wDN the renormalised measure

µ̃z,wDN :=
( 1

2π logN
)2
µ̌z,wDN , (4.134)

where µ̌z,wDN is given by (4.35). Given z ∈ DN and a > 0, we will denote by ΞzN,a the random loop in
DN , obtained by concatenating a Poisson point process of continuous time random walk excursions
from z to z of intensity 2πaµ̃z,zDN , and having a local time in z

`z(ΞzN,a) = 1
2πa(logN)2.

As in Section 4.5, we will consider admissible functions F which do not depend on the order of
excursions in a loop.

The following proposition is merely a rephrasing of Proposition 4.17 in terms of the random discrete
measureMN

a given by (4.11). It is to be compared to Theorem 4.8 for the continuum setting. The
Poisson-Dirichlet partition that appears below comes from the Gamma subordinator (4.38).

Proposition 4.61. Fix z ∈ DN and a > 0. For any bounded measurable admissible function F ,

E
[
F (LθDN )MN

a ({z})
]

= 1
N2Γ(θ)qN (z)θ logN

∫ +∞

a
ρθ−1 cρ0

Nρ−a CRN (z,DN )ρE
[
F (LθDN\{z} ∪ {Ξ

z
N,ai , i ≥ 1})

]
dρ,

where on the right-hand side, LθDN\{z} and {Ξ
z
N,ai

, i ≥ 1} are independent, the (ai)i≥1 is a Poisson-
Dirichlet partition PD(0, θ) of [0, ρ], and the ΞzN,ai are conditionally independent given (ai)i≥1.

Now let us consider the massive case. Fix K > 0 a constant. For z ∈ DN , denote

qN,K(z) := logN
2πGDN ,K(z, z) , CN,K(z) := 2π(GDN (z, z)−GDN ,K(z, z)),

JN,K(z) :=
∫ +∞

0
(e−t/GDN (z,z) − e−t/GDN,K(z,z))dt

t
.

Again, qN,K(z) tends to 1 if N → +∞ and the Euclidean distance from z to Z2
N \DN is bounded away

from 0.

Lemma 4.62. For every z ∈ DN and a > 0,

E
[
e−KT (ΞzN,a)

]
= e−(2π)−1a(logN)2(GDN,K(z,z)−1−GDN (z,z)−1)

= e−qN (z)qN,K(z)CN,K(z)a.

Proof. The expectation above is simply given by the ratio between (4.39) and (4.38) for t = 1
2πa(logN)2.

The following proposition is to be compared to Lemma 4.32 and Proposition 4.21.
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Proposition 4.63. For any bounded measurable admissible function F ,

E
[
F (LθDN )MN,K

a ({z})
]

(4.135)

= logN
N2 e−θJN,K(z)

∫ +∞

a
dρ cρ0
Nρ−a CRN (z,DN )ρ

∑
n≥1

θn

n!

∫
a∈E(ρ,n)

da
a1 . . . an

× E
[
n∏
i=1

(
1− e−KT (ΞzN,ai )

)
F (LθDN\{z} ∪ L̃

θ
DN ,K,z

∪ {ΞzN,ai , i = 1 . . . n})
]
,

where on the right-hand side, the three collections of loops LθDN\{z}, L̃
θ
DN ,K,z

and {ΞzN,ai , i = 1 . . . n}
are independent, the different ΞzN,ai are independent, and L̃θDN ,K,z is distributed as the loops in
LθDN \ L

θ
DN

(K) visiting z. In particular,

E
[
MN,K

a ({z})
]

= logN
N2 e−θJN,K(z)

∫ +∞

a

cρ0
Nρ−a CRN (z,DN )ρF(qN (z)qN,K(z)CN,K(z)ρ)dρ

ρ
, (4.136)

where F is given by (4.44).

Proof. The second identity follows from the first one and Lemma 4.62, by taking F = 1. See also
Lemma 4.33.

Regarding the identity (4.135), observe that the loops in LθDN (K) visiting z form a Poisson point
process which is a.s. finite, regardless of DN being finite or not. For instance, the intensity measure
for (`z(℘))℘∈LθDN (K),℘ visits z is

1{t>0}θ(e−t/GDN (z,z) − e−t/GDN,K(z,z))dt
t
,

which is the difference between (4.38) and (4.39). Its total mass is finite, equal to θJN,K(z). We obtain
(4.135) by summing over the values of #{℘ ∈ LθDN (K) : ℘ visits z}. We skip the details.

As a corollary,

Corollary 4.64. Let D be an open bounded simply connected domain, (DN )N be a discrete approxi-
mation of D as in (4.9) and f : D → [0,∞) be a nonnegative bounded continuous function. Then

sup
N≥1

E
[〈
MN

a , f
〉]
<∞ and lim

N→∞
E
[〈
MN

a , f
〉]

= ca0
aθ−1

Γ(θ)

∫
D
f(z) CR(z,D)adz.

Moreover,

sup
N≥1

E
[〈
MN,K

a , f
〉]
<∞ and lim

N→∞
E
[〈
MN,K

a , f
〉]

= ca0
F(CK(z)a)

a

∫
D
f(z) CR(z,D)adz.

Proof. With Propositions 4.61 and 4.63 in hand, checking this corollary is a simple computation.

4.11.2 Second moment (two-point discrete Girsanov)

Here we will deal with the second moments ofMN
a andMN,K

a .
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Given z ∈ DN , the Green function on DN \ {z} can be expressed as follows:

GDN\{z}(z
′, w′) = GDN (z′, w′)− GDN (z′, z)GDN (z, w′)

GDN (z, z) . (4.137)

Given z 6= w ∈ DN , denote

qN (z, w) := (logN)2

4π2(GDN (z, z)GDN (w,w)−GDN (z, w)2) .

Let G̃DN (z, w) denote the total mass of the measure µ̃z,wDN .

Lemma 4.65. Let z, w ∈ DN such that the graph distance on Z2
N between z and w is at least 2, i.e.

|w − z| > 1
N . Then,

G̃DN (z, w) = qN (z, w)GDN (z, w).

Proof. From (3) in Lemma 4.16 follows that the total mass of µ̌z,wDN equals

GDN (z, w)
GDN (z, z)GDN\{z}(w,w) = GDN (z, w)

GDN (z, z)GDN (w,w)−GDN (z, w)2 .

Given z 6= z′ ∈ DN , denote

CRN,z(z′, DN ) := Nc−1
0 e−(logN)2/(2πGDN\{z}(z

′,z′)).

Given z 6= z′ ∈ DN and a′ > 0, let Ξz′N,z,a′ denote the the random loop in DN \ {z}, obtained by
concatenating a Poisson point process of continuous time random walk excursions from z′ to z′ of
intensity 2πa′µ̃z

′,z′

DN\{z}, and having a local time in z′

`z′(Ξz
′
N,z,a′) = 1

2πa
′(logN)2.

By construction, Ξz′N,z,a′ does not visit z. Applying Lemma 4.62 to DN \ {z}, we have that

E
[
e
−KT (Ξz′

N,z,a′ )
]

= e−a
′CN,K,z(z′) (4.138)

where

CN,K,z(z′) := (logN)2

4π2GDN\{z}(z′, z′)GDN\{z},K(z′, z′)2π
(
GDN\{z}(z

′, z′)−GDN\{z},K(z′, z′)
)

(4.139)

where we recall that the massive Green function is defined in (4.36).

Lemma 4.66. Let z, z′ ∈ DN such that the graph distance on Z2
N between z and z′ is at least 2, i.e.
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|z′ − z| > 1
N . Let a > 0. Then for any bounded measurable function F ,

∫
1{℘ visits z′}F (℘)µ̃z,zDN (d℘)

= 2π
∫ +∞

0
da′ c

a′
0

Na′
CRN,z(z′, DN )a′

∫
µ̃z,z

′

DN
(d℘1)

∫
µ̃z
′,z
DN

(d℘2)E
[
F (℘1 ∧ Ξz′N,z,a′ ∧ ℘2)

]
,

where ∧ denotes the concatenation of paths.

Proof. This is a consequence of Lemma 4.16. By applying (2) in Lemma 4.16 in the case z = w, and
then (1) in Lemma 4.16 for the measure µz

′,z′

DN\{z}, we get that

∫
1{℘ visits z′}F (℘)µ̃z,zDN (d℘) (4.140)

= 4π2

(logN)2

∫ +∞

0
dte−t/GDN\{z}(z

′,z′)
∫
µ̃z,z

′

DN
(d℘1)

∫
µ̃z
′,z
DN

(d℘2)

× E
[
F (℘1 ∧ Ξz′N,z,2πt(logN)−2 ∧ ℘2)

]
.

We conclude by performing the change of variables a′ = 2πt(logN)−2.

Given z 6= z′ ∈ DN and a, a′ > 0, let Ξz,z
′

N,a,a′ denote the random collection of an even number of
excursions from z to z′ with the following law. For all k ≥ 1,

P
(
#Ξz,z

′

N,a,a′ = 2k
)

= 1
B
(
(2π)2aa′G̃DN (z, z′)2

) (2π
√
aa′G̃DN (z, z′))2k

k!(k − 1)! , (4.141)

where B is given by (4.80), and conditionally on {#Ξz,z
′

N,a,a′ = 2k}, Ξz,z
′

N,a,a′ is composed of 2k i.i.d.
excursions with common law µ̃z,z

′

DN
/G̃DN (z, z′). As in Section 4.6, we will consider admissible function,

invariant under reordering of excursions.

Lemma 4.67. Let z, z′ ∈ DN such that the graph distance on Z2
N between z and z′ is at least 2, i.e.

|z′ − z| > 1
N . Let a > 0. Then for any bounded measurable admissible function F ,

E
[
1{ΞzN,a visits z′

}F (ΞzN,a)
]

= e−a(2π)3G̃DN (z,z′)2GDN\{z}(z
′,z′)/(logN)2

∫ +∞

0

da′

a′
ca
′

0
Na′

CRN,z(z′, DN )a′B
(
(2π)2aa′G̃DN (z, z′)2)

× E
[
F (Ξz,z

′

N,a,a′ ∧ ΞzN,z′,a ∧ Ξz′N,z,a′)
]
,

where Ξz,z
′

N,a,a′, ΞzN,z′,a and Ξz′N,z,a′ are independent.

Proof. In ΞzN,a, the excursions away from z visiting z′ are independent from those not visiting z′. The
concatenation of the excursions not visiting z’ is distributed as ΞzN,z′,a. The excursions visiting z′ form
a Poisson point process which is a.s. finite. According to (4.140), the total mass of the corresponding
intensity measure is

2πa× 4π2

(logN)2 G̃DN (z, z′)2GDN\{z}(z
′, z′).
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According to Lemma 4.66, and excursion that goes k times there and back between z and z′ can be
decomposed into 2k excursion between z and z′ and k excursions Ξz′N,z,a′1 , . . . ,Ξ

z′

N,z,a′
k
from z′ to z′

not visiting z. The "thicknesses" (i.e. renormalised local times) a′1, . . . , a′k are random and i.i.d. The
excursions Ξz′N,z,a′1 , . . . ,Ξ

z′

N,z,a′
k
are conditionally independent given (a′1, . . . , a′k). The concatenation

Ξz′N,z,a′1 ∧ · · · ∧ Ξz′N,z,a′
k
is distributed as Ξz′N,z,a′ where a′ = a′1 + · · ·+ a′k. The 2k excursions from z to

z’ are i.i.d., independent from a′1, . . . , a
′
k and Ξz′N,z,a′1 , . . . ,Ξ

z′

N,z,a′
k
, each one distributed according to

µ̃z,z
′

DN
/G̃DN (z, z′). The distribution of (a′1, . . . , a′k) on the event that ΞzN,a performs k travels from z to

z′ (and k back) is

1{a′1,...,a′k>0}e
−a(2π)3G̃DN (z,z′)2GDN\{z}(z

′,z′)/(logN)2 (2π)2kakG̃DN (z, z′)2k

k!

×
k∏
i=1

( ca′i0
Na′i

CRN,z(z′, DN )a′ida′i
)
.

The induced distribution on a′ = a′1 + · · ·+ a′k is

1{a′>0}e
−a(2π)3G̃DN (z,z′)2GDN\{z}(z

′,z′)/(logN)2 (2π)2k(aa′)kG̃DN (z, z′)2k

k!(k − 1)!
ca
′

0
Na′

CRN,z(z′, DN )a′ da
′

a′
.

One recognizes above the k-th term in the expansion of B
(
(2π)2aa′G̃DN (z, z′)2); see (4.80). This

concludes.

Next we consider the loop measure µloop
DN

(4.34) and the decomposition of loops that visit two given
vertices z and z′.

Lemma 4.68. Let z, z′ ∈ DN such that the graph distance on Z2
N between z and z′ is at least 2, i.e.

|z′ − z| > 1
N . Then for any bounded measurable admissible function F ,∫
1{℘ visits z and z′}F (γ)µloop

DN
(d℘)

=
∫ +∞

0

da
a

CRN,z′(z,DN )a
∫ +∞

0

da′

a′
CRN,z(z′, DN )a′ c

a+a′
0

Na+a′ B
(
(2π)2aa′G̃DN (z, z′)2)

= E
[
F (Ξz,z

′

N,a,a′ ∧ ΞzN,z′,a ∧ Ξz′N,z,a′)
]
.

Proof. From Proposition 4.17 it follows that

∫
1{℘ visits z and z′}F (γ)µloop

DN
(d℘)

=
∫ +∞

0

da
a
e−a(logN)2/(2πGDN (z,z))E

[
1{ΞzN,a visits z′

}F (ΞzN,a)
]
.
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By combining with Lemma 4.67, we get that this further equals to∫ +∞

0

da
a
e−a(logN)2/(2πGDN (z,z))e−a(2π)3G̃DN (z,z′)2GDN\{z}(z

′,z′)/(logN)2

×
∫ +∞

0

da′

a′
ca
′

0
Na′

CRN,z(z′, DN )a′B
(
(2π)2aa′G̃DN (z, z′)2)

× E
[
F (Ξz,z

′

N,a,a′ ∧ ΞzN,z′,a ∧ Ξz′N,z,a′)
]
.

We have that

(logN)2

2πGDN (z, z) +
(2π)3G̃DN (z, z′)2GDN\{z}(z

′, z′)
(logN)2

= (logN)2

2πGDN (z, z) + (logN)2GDN (z, z′)2

2πGDN (z, z)2GDN\{z}(z′, z′)

=
(logN)2(GDN (z, z)GDN\{z}(z

′, z′) +GDN (z, z′)2)
2πGDN (z, z)2GDN\{z}(z′, z′)

= (logN)2

2πGDN (z, z) + (logN)2GDN (z, z′)2

2πGDN (z, z)2GDN\{z}(z′, z′)

= (logN)2GDN (z, z)GDN (z′, z′)
2πGDN (z, z)2GDN\{z}(z′, z′)

= (logN)2GDN (z′, z′)
2πGDN (z, z)GDN\{z}(z′, z′)

= (logN)2

2πGDN\{z′}(z, z)
= logN − log(c0)− log(CRN,z′(z,DN )).

This concludes.

Given z 6= z′ ∈ DN , denote
qN,z(z′) := logN

2πGDN\{z}(z′, z′)
, (4.142)

JN,K,z(z′) : =
∫

1{℘ visits z′}
(
1− e−KT (℘))µloop

DN\{z}(d℘)

=
∫ +∞

0

(
e−t/GDN\{z}(z

′,z′) − e−t/GDN\{z},K(z′,z′))dt
t
,

JN (z, z′) : =
∫

1{℘ visits z and z′}µ
loop
DN

(d℘), (4.143)

JN,K(z, z′) : =
∫

1{℘ visits z and z′}
(
1− e−KT (℘))µloop

DN
(d℘). (4.144)

The following proposition is to be compared to Lemma 4.40 in the continuum setting.

Proposition 4.69. Let z, z′ ∈ DN such that the graph distance on Z2
N between z and z′ is at least 2,

i.e. |z′ − z| > 1
N . Let a, a′ > 0 and K > 0. Then for any bounded measurable admissible function F

the following holds.
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1. The case massless-massless :

E[F (LθDN )MN
a ({z})MN

a′ ({z′})] = qN,z′(z)θqN,z(z′)θ(logN)2

N4Γ(θ)2 e−θJN (z,z′) (4.145)

∫
ρ,ρ̃>0
ρ+ρ̃≥a

dρρ̃θ−1dρ̃CRN,z′(z,DN )ρ+ρ̃
∫
ρ′,ρ̃′>0
ρ′+ρ̃′≥a′

dρ′ρ̃′θ−1dρ̃′CRN,z′(z,DN )ρ′+ρ̃′ cρ+ρ̃+ρ′+ρ̃′
0

Nρ+ρ̃+ρ′+ρ̃′−a−a′

×
∑
l≥0

θl

l!

∫
a∈E(ρ,l)

a′∈E(ρ′,l)

da
a1 . . . al

da′
a′1 . . . a

′
l

l∏
i=1

B
(
(2π)2aia

′
iG̃DN (z, z′)2

)
× E

[
F
(
LθDN\{z,z′} ∪ {Ξ

z,z′

N,ai,a′i
∧ ΞzN,z′,ai ∧ Ξz′N,z,a′i}

l
i=1 ∪ {ΞzN,z′,ãi , i ≥ 1} ∪ {Ξz′N,z,ã′i , i ≥ 1}

)]
,

where on the right-hand side the four collections of loops LθDN\{z,z′}, {Ξ
z,z′

N,ai,a′i
∧ ΞzN,z′,ai ∧ Ξz′N,z,a′i}

l
i=1,

{ΞzN,z′,ãi , i ≥ 1} and {Ξz′N,z,ã′i , i ≥ 1} are independent, (ãi)i≥1 and (ã′i)i≥1 are two independent Poisson-
Dirichlet partitions PD(0, θ) of respectively [0, ρ̃] and [0, ρ̃′], the ΞzN,z′,ãi, respectively Ξz′N,z,ã′i, are

independent conditionally on (ãi)i≥1, respectively (ã′i)i≥1, and the Ξz,z
′

N,ai,a′i
, ΞzN,z′,ai and Ξz′N,z,a′i are all

independent.
2. The case massless-massive :

E[F (LθDN )MN
a ({z})MN,K

a′ ({z′})] = qN,z′(z)θ(logN)2

N4Γ(θ) e−θ(JN,K,z(z′)+JN,K(z,z′)) (4.146)

∫
ρ,ρ̃>0
ρ+ρ̃≥a

dρρ̃θ−1dρ̃CRN,z′(z,DN )ρ+ρ̃
∫ +∞

a′
dρ′CRN,z′(z,DN )ρ′ cρ+ρ̃+ρ′

0
Nρ+ρ̃+ρ′−a−a′

×
∑
m≥1

0≤l≤m

θm

(m− l)!l!

∫
a∈E(ρ,l)

a′∈E(ρ′,m)

da
a1 . . . al

da′
a′1 . . . a

′
m

l∏
i=1

B
(
(2π)2aia

′
iG̃DN (z, z′)2

)

× E
[

l∏
i=1

(
1− e

−KT (Ξz,z
′

N,ai,a
′
i

∧Ξz
N,z′,ai

∧Ξz′
N,z,a′

i

)
)

m∏
i=l+1

(
1− e

−KT (Ξz′
N,z,a′

i

)
)

F
(
LθDN\{z,z′} ∪ L̃

θ
DN ,K,z′ ∪ {Ξ

z,z′

N,ai,a′i
∧ ΞzN,z′,ai ∧ Ξz′N,z,a′i}

l
i=1 ∪ {ΞzN,z′,ãi , i ≥ 1} ∪ {Ξz′N,z,a′i}

m
i=l+1

)]
,

where on the right-hand side the five collections of loops LθDN\{z,z′}, L̃
θ
DN ,K,z′

, {Ξz,z
′

N,ai,a′i
∧ ΞzN,z′,ai ∧

Ξz′N,z,a′i}
l
i=1, {ΞzN,z′,ãi , i ≥ 1} and {Ξz′N,z,a′i}

m
i=l+1 are independent, (ãi)i≥1 is a Poisson-Dirichlet partition

PD(0, θ) of [0, ρ̃], the ΞzN,z′,ãi are independent conditionally on (ãi)i≥1, the Ξz,z
′

N,ai,a′i
, ΞzN,z′,ai and Ξz′N,z,a′i

are all independent, and L̃θDN ,K,z′ is distributed as the loops in LθDN \ L
θ
DN

(K) visiting z′.
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3. The case massive-massive :

E[F (LθDN )MN,K
a ({z})MN,K

a′ ({z′})] = (logN)2

N4 e−θ(JN,K,z′ (z)+JN,K,z(z′)+JN,K(z,z′)) (4.147)

×
∫ +∞

a
dρCRN,z′(z,DN )ρ

∫ +∞

a′
dρ′CRN,z(z′, DN )ρ′ cρ+ρ′

0
Nρ+ρ′−a−a′

×
∑

n,m≥1
0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l!

∫
a∈E(ρ,n)

a′∈E(ρ′,m)

da
a1 . . . an

da′
a′1 . . . a

′
m

l∏
i=1

B
(
(2π)2aia

′
iG̃DN (z, z′)2

)

× E
[

l∏
i=1

(
1− e

−KT (Ξz,z
′

N,ai,a
′
i

∧Ξz
N,z′,ai

∧Ξz′
N,z,a′

i

)
)

n∏
i=l+1

(
1− e−KT (Ξz

N,z′,ai
)
) m∏
i=l+1

(
1− e

−KT (Ξz′
N,z,a′

i

)
)

F
(
LθDN\{z,z′} ∪ L̃

θ
DN ,K,z,z′ ∪ {Ξ

z,z′

N,ai,a′i
∧ ΞzN,z′,ai ∧ Ξz′N,z,a′i}

l
i=1 ∪ {ΞzN,z′,ai}

n
i=l+1 ∪ {Ξz

′

N,z,a′i
}mi=l+1

)]
,

where on the right-hand side the five collections of loops LθDN\{z,z′}, L̃
θ
DN ,K,z,z′

, {Ξz,z
′

N,ai,a′i
∧ ΞzN,z′,ai ∧

Ξz′N,z,a′i}
l
i=1, {ΞzN,z′,ai}

n
i=l+1 and {Ξz′N,z,a′i}

m
i=l+1, are independent, the Ξz,z

′

N,ai,a′i
, ΞzN,z′,ai and Ξz′N,z,a′i are

all independent, and L̃θDN ,K,z,z′ is distributed as the loops in LθDN \ L
θ
DN

(K) visiting z or z′.

Proof. Let us first consider the case 1. massless-massless. We divide the random walk loop soup LθDN
into four independent Poisson point processes:

• The loops visiting neither z nor z′. These correspond to LθDN\{z,z′}.

• The loops visiting z but not z′. We apply to these Proposition 4.61 in the domain DN \ {z′}.
These loops correspond to {ΞzN,z′,ãi , i ≥ 1}.

• The loops visiting z′ but not z. We apply to these Proposition 4.61 in the domain DN \ {z}.
These loops correspond to {Ξz′N,z,ã′i , i ≥ 1}.

• The loops visiting both z and z′. These form an a.s. finite Poisson point process. The corre-
sponding intensity measure is described, up to the factor θ, by Lemma 4.68. The corresponding
total mass is θJN (z, z′). These loops correspond to {Ξz,z

′

N,ai,a′i
∧ ΞzN,z′,ai ∧ Ξz′N,z,a′i}

l
i=1.

By combining the above, we obtain our expression.
Now let us consider the case 3. massive-massive. We divide the random walk loop soup LθDN into

five independent Poisson point processes:

• The loops visiting neither z nor z′. These correspond to LθDN\{z,z′}.

• The loops visiting z or z′ and surviving to the killing rate K. These correspond to L̃θDN ,K,z,z′ .

• The loops visiting z but not z′, and killed by K. These form an a.s. finite Poisson point
process. The total mass of the corresponding intensity measure is θJN,K,z′(z). We apply to these
Proposition 4.63 in the domain DN \ {z′}. These loops correspond to {ΞzN,z′,ai}

n
i=l+1.
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• The loops visiting z′ but not z, and killed by K. These form an a.s. finite Poisson point
process. The total mass of the corresponding intensity measure is θJN,K,z(z′). We apply to these
Proposition 4.63 in the domain DN \ {z}. These loops correspond to {Ξz′N,z,a′i}

m
i=l+1.

• The loops visiting both z and z′, and killed by K. These form an a.s. finite Poisson point process.
The total mass of the corresponding intensity measure is θJN,K(z, z′). We apply to these Lemma
4.68. These loops correspond to {Ξz,z

′

N,ai,a′i
∧ ΞzN,z′,ai ∧ Ξz′N,z,a′i}

l
i=1.

By combining the above, we obtain our expression.
The case 2. massless-massive is similar to and intermediate between the cases 1. and 3. We will

not detail it.

We finish this section with an elementary lemma that we state for ease of reference. We omit its
proof since it can be easily checked.

Lemma 4.70. Let D ⊂ R2 be a bounded simply connected domain, z, z′ be two distinct points of D.
Consider a discrete approximation (DN )N of D in the sense of (4.9) and let zN and z′N be vertices of
DN which converge to z and z′ respectively. Then

1− qN,zN (z′N ), JN (zN , z′N ), JN,K(zN , z′N ) and JN,K,zN (z′N ) (4.148)

all converge to 0. Moreover,
CN,K,zN (z′N )→ CK(z′). (4.149)

4.11.3 Convergence of excursion measures

The goal of this section is to prepare the proof of Proposition 4.59 by establishing the convergence of
the various measures on discrete paths that appear in the formulas obtained in Sections 4.11.1 and
4.11.2 towards their continuum analogues.

Consider D ⊂ C an open bounded simply connected domain containing the origin and (DN )N
a discrete approximation of D, with DN ⊂ Z2

N . See (4.9). First we deal with the convergence of
probability measures µ̃zN ,wNDN

/G̃DN (zN , wN ) with wN 6= zN .

Lemma 4.71. Let z, w ∈ D with z 6= w. Consider sequences (zN )N≥1 and (wN )N≥1, with zN , wN ∈
DN and

lim
N→+∞

zN = z, lim
N→+∞

wN = w.

Then the probability measures µzN ,wNDN
/GDN (zN , wN ) (4.31) converge weakly as N → +∞, for the

metric dpaths (4.28), towards µz,wD /GD(z, w) (4.15).

Proof. Since D is bounded, by performing a translation we can reduce to the case when D ⊂ H, where
H is the upper half-plane

H = {z ∈ C : Im(z) > 0},

and that for every N ≥ 1, DN ⊂ Z2
N ∩ H. First, we have that µzN ,wNZ2

N∩H
/GZ2

N∩H
(zN , wN ) converges

weakly towards µz,wH /GH(z, w). This follows from the following two points:
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• For every t > 0, the bridges probability measures PzN ,wNZ2
N∩H,t

converges towards the Brownian bridge
measure Pz,wH,t .

• The transition densities pZ2
N∩H

(t, zN , wN ) converge to pH(t, z, w) uniformly in t ∈ [0,+∞) (local
central limit theorem); see [LL10, Theorem 2.5.6].

• The discrete Green function GZ2
N∩H

(zN , wN ) converges to GH(z, w). This follows from [LL10,
Theorem 4.4.4] and the reflection principle.

Further, the measure µz,wD /GD(z, w) is obtained by conditioning a path under µz,wH /GH(z, w) to stay in
D. Similarly, µzN ,wNDN

/GDN (zN , wN ) is obtained by conditioning a path under µzN ,wNZ2
N∩H

/GZ2
N∩H

(zN , wN )
to stay in DN . Moreover, on the event that the path under µz,wH /GH(z, w) exits D, a.s. there is ε > 0
such that any continuous deformation of the path of size less than ε also has to exit D. This is because
a Brownian path exiting D will a.s. create a loop around the point where it first exits D. We refer
to [Lup16, Lemma 2.6] for details. Thus, one gets the convergence of µzN ,wNDN

/GDN (zN , wN ) towards
µz,wD /GD(z, w).

Proposition 4.72. Let z, w ∈ D with z 6= w. Consider sequences (zN )N≥1 and (wN )N≥1, with
zN , wN ∈ DN and

lim
N→+∞

zN = z, lim
N→+∞

wN = w.

Then the probability measures µ̃zN ,wNDN
/G̃DN (zN , wN ) (4.134) converges weakly as N → +∞, for the

metric dpaths (4.28), towards µz,wD /GD(z, w) (4.15).

Proof. According to the Markovian decomposition of Lemma 4.16, a path ℘ under µzN ,wNDN
/GDN (zN , wN )

has the same law as a concatenation of three independent paths ℘1 ∧ ℘̃ ∧ ℘2, with ℘̃ following
the distribution µ̃zN ,wNDN

/G̃DN (zN , wN ), ℘1 following the distribution µzN ,zNDN
/GDN (zN , zN ), and ℘2

following the distribution µwN ,wNDN\{zN}/GDN\{zN}(wN , wN ). Moreover, it is easy to see that diam(℘1),
T (℘1), diam(℘2) and T (℘2) converge in probability to 0 as N → +∞. Thus, the convergence
of µ̃zN ,wNDN

/G̃DN (zN , wN ) is equivalent to the convergence of µzN ,wNDN
/GDN (zN , wN ), and the latter

converge to µz,wD /GD(z, w) according to Lemma 4.71.

Next we deal with the convergence of measures µ̃zN ,zNDN
. Given z ∈ D and r > 0, let Ez,r denote the

event that a path goes at distance at least r from z. If r < d(z, ∂D), then µz,zD (Ez,r) < +∞.

Lemma 4.73. Let z ∈ D and r ∈ (0, d(z, ∂D)). Consider a sequence (zN )N≥1, zN ∈ DN , converging
to z. Then

lim
N→+∞

µzN ,zNDN
(EzN ,r) = µz,zD (Ez,r).

Moreover, the probability measures 1{EzN ,r}µ
zN ,zN
DN

/µzN ,zNDN
(EzN ,r) converge weakly as N → +∞, for

the metric dpaths, towards 1{Ez,r}µ
z,z
D /µz,zD (Ez,r).

Proof. Since D is bounded, by performing a translation we can reduce to the case when D ⊂ H and
that for every N ≥ 1, DN ⊂ Z2

N ∩H. We only need to show that

lim
N→+∞

µzN ,zNZ2
N∩H

(EzN ,r) = µz,zH (Ez,r) (4.150)
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and that the probability measures 1{EzN ,r}µ
zN ,zN
Z2
N∩H

/µzN ,zNZ2
N∩H

(EzN ,r) converge weakly towards the measure
1{Ez,r}µ

z,z
H /µz,zH (Ez,r). Indeed, the measure µzN ,zNDN

is a restriction of µzN ,zNZ2
N∩H

to the paths that stay in
DN and µz,zD is a restriction of µz,zH to the paths that stay in D. Using that, one can conclude as in the
proof of Lemma 4.71.

Now, consider (Bt)t≥0 a Brownian motion starting from z and let τr be the stopping time

τr := min{t ≥ 0 : |Bt − z| = r}.

Also consider (X(N)
t )t≥0 the Markov jump process on Z2

N (see Section 4.2.2) starting from zN and let
τN,r be the stopping time

τN,r := min{t ≥ 0 : |X(N)
t − z| ≥ r}.

The following holds:

µzN ,zNZ2
N∩H

(EzN ,r) = EzN
[
GZ2

N∩H
(X(N)

τN,r
, zN )

]
, µz,zH (Ez,r) = Ez

[
GH(Bτr , z)

]
.

So (4.150) follows from the convergence in law of X(N)
τN,r to Bτr and the convergence of GZ2

N∩H
(w, zN ) to

GH(w, z) uniformly for w away from z. Further, a path ℘ under the probability 1{Ez,r}µ
z,z
H /µz,zH (Ez,r)

can de decomposed as a concatenation ℘1 ∧ ℘2 with the following distribution. The distribution of ℘1

is that of (Bt)0≤t≤τr tilted by the density

GH(Bτr , z)
µz,zH (Ez,r)

.

Conditionally on ℘1, ℘2 follows the distribution µw,zH /GH(w, z), where w is the endpoint of ℘1. A
similar decomposition holds for a path under 1{EzN ,r}µ

zN ,zN
Z2
N∩H

/µzN ,zNZ2
N∩H

(EzN ,r), with X
(N)
t instead of Bt,

GZ2
N∩H

instead of GH and µw,zNZ2
N∩H

instead of µw,zH . So the desired convergence of measures follows from

the convergence in law of (X(N)
t )0≤t≤τN,r to (Bt)0≤t≤τr , the convergence of the Green functions GZ2

N∩H
to GH, and from Lemma 4.71.

Proposition 4.74. Let z ∈ D and r ∈ (0, d(z, ∂D)). Consider a sequence (zN )N≥1, zN ∈ DN ,
converging to z. Then

lim
N→+∞

µ̃zN ,zNDN
(EzN ,r) = µz,zD (Ez,r).

Moreover, the probability measures 1{EzN ,r}µ̃
zN ,zN
DN

/µ̃zN ,zNDN
(EzN ,r) converge weakly as N → +∞, for

the metric dpaths, towards 1{Ez,r}µ
z,z
D /µz,zD (Ez,r).

Proof. Denote
BN := {w ∈ DN : |w − zn| < r}.

According to the Markovian decomposition of Lemma 4.16, a path ℘ under 1{EzN ,r}µ
zN ,zN
DN

/µzN ,zNDN
(EzN ,r)

has the same law as a concatenation of three independent paths ℘1∧℘̃∧℘2, with ℘̃ following the distribu-
tion 1{EzN ,r}µ̃

zN ,zN
DN

/µ̃zN ,zNDN
(EzN ,r), ℘1 following the distribution µzN ,zNDN

/GDN (zN , zN ), and ℘2 following
the distribution µzN ,zNBN

/GBN (zN , zN ). Further, diam(℘1), T (℘1), diam(℘2) and T (℘2) converge in
probability to 0 as N → +∞. Thus, the convergence of 1{EzN ,r}µ̃

zN ,zN
DN

/µ̃zN ,zNDN
(EzN ,r) is equivalent
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to the convergence of 1{EzN ,r}µ
zN ,zN
DN

/µzN ,zNDN
(EzN ,r), and the latter converge to 1{Ez,r}µ

z,z
D /µz,zD (Ez,r)

according to Lemma 4.73. Moreover,

µzN ,zNDN
(EzN ,r) = GDN (zN , zN )GBN (zN , zN )( 1

2π logN
)2 µ̃zN ,zNDN

(EzN ,r).

Thus, µ̃zN ,zNDN
(EzN ,r) and µzN ,zNDN

(EzN ,r) have the same limit.

Corollary 4.75. Let z 6= z′ ∈ D and r ∈ (0, d(z, ∂D)). Consider sequences (zN )N≥1 and (z′N )N≥1,
with zN , z′N ∈ DN and

lim
N→+∞

zN = z, lim
N→+∞

z′N = z′.

Then
lim

N→+∞
µ̃zN ,zNDN\{z′N}

(EzN ,r) = µz,zD (Ez,r).

Moreover, the probability measures 1{EzN ,r}µ̃
zN ,zN
DN\{z′N}

/µ̃zN ,zNDN
(EzN ,r) converge weakly as N → +∞, for

the metric dpaths, towards 1{Ez,r}µ
z,z
D /µz,zD (Ez,r).

Proof. The measure µ̃zN ,zNDN\{z′N}
is obtained by restricting µ̃zN ,zNDN

to the paths that do not visit z′N .
Given that almost every path under µz,zD stays at positive distance from z′, the result follows from
Proposition 4.74.

4.12 Controlling the effect of mass in discrete loop soup

The purpose of this section is to prove Proposition 4.59. As in the continuum, the proof relies on a
careful analysis of truncated first and second moments. We start off by introducing the good events
that we will work with.

Let z ∈ N−1Z2 and r > 0. We will denote by ∂DN (z, r) the discrete circle defined as the outer
boundary of the discrete disc

DN (z, r) := z + {y ∈ N−1Z2 : |y| < r}.

If ℘ is a discrete trajectory on N−1Z2 and if C is a collection of such trajectories, we will denote by
N℘
z,r the number of upcrossings from ∂DN (z, r) to ∂DN (z, er) in ℘ and NCz,r =

∑
℘∈C N

℘
z,r. We will not

keep track of the dependence in the mesh size N−1 in the notations of the number of crossings since it
will be clear from the context.

Let η ∈ (0, 1− a/2) be a small parameter, b > a be close to a and define the discrete analogues of
the good event GK(z):

GN (z) :=
{
∀r ∈ {e−n, n ≥ 1} ∩ (N−1+η, r0) : N

LθDN
z,r ≤ b| log r|2

}
(4.151)

and
GN,K(z) :=

{
∀r ∈ {e−n, n ≥ 1} ∩ (N−1+η, r0) : N

LθDN (K)
z,r ≤ b| log r|2

}
. (4.152)
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We emphasise here that we only restrict the number of crossings of annuli at scales r > N−1+η. We
will see that it is enough to turn the measure into a measure bounded in L2 and it will simplify the
analysis since we will always look at scales at least mesoscopic (N−1+β, for some β > 0).

Once the good events are defined, we consider the modified versions ofMN
a andMN,K

a :

M̃N
a (dz) := 1GN (z)MN

a (dz) and M̃N,K
a (dz) := 1GN,K(z)MN,K

a (dz).

In the remaining of Section 4.12, we will fix a Borel set A compactly included in D and the constants
underlying our estimates will implicitly be allowed to depend on A, η, a and b.

The proof of Proposition 4.59 relies on three lemmas that are the discrete analogues of Lemmas
4.43, 4.44 and 4.45. We first state these lemmas without proof and explain how the proof of Proposition
4.59 is obtained from them.

We will first need to show that the introduction of the good events almost does not change the first
moment:

Lemma 4.76. We have
lim
r0→0

lim sup
N→∞

E
[∣∣∣M̃N

a (A)−MN
a (A)

∣∣∣] = 0 (4.153)

and
lim
r0→0

lim sup
K→∞

(logK)−θ lim sup
N→∞

E
[∣∣∣M̃N,K

a (A)−MN,K
a (A)

∣∣∣] = 0. (4.154)

Once the good events are introduced, the second moment becomes finite:

Lemma 4.77. For z ∈ D and N ≥ 1, denote by zN some element of DN closest to z (with some
arbitrary rule). If b > a is close enough to a, then∫

A×A
sup
N≥1

N4E
[
M̃N

a ({zN})M̃N
a ({z′N})

]
dzdz′ <∞ (4.155)

and ∫
A×A

sup
K≥1

(logK)−2θ sup
N≥1

N4E
[
M̃N,K

a ({zN})M̃N,K
a ({z′N})

]
dzdz′ <∞. (4.156)

Finally,

Lemma 4.78. If b > a is close enough to a, then

lim sup
K→∞

lim sup
N→∞

E

(M̃N
a (A)− 2θ

(logK)θM̃
N,K
a (A)

)2
 = 0. (4.157)

Proof of Proposition 4.59. Proposition 4.59 follows from Lemmas 4.76 and 4.78 in a very similar way
as Proposition 4.26 follows from Lemmas 4.43 and 4.45; see below Lemma 4.45. Note that we can first
restrict ourselves to a Borel set A compactly included in D since the contribution of points near the
boundary to the measures is negligible. We omit the details.

The remaining of Section 4.12 is organised as follows. We will start in Section 4.12.1 by analysing
the lengthy formulas appearing in Proposition 4.69 in the same spirit as what we did in Lemma 4.41.
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We will then study in Section 4.12.2 the number of crossings in the processes of excursions that appear
in Propositions 4.61, 4.63 and 4.69. The proofs of Lemmas 4.76, 4.77 and 4.78 will then be given in
Sections 4.12.3, 4.12.4 and 4.12.5 respectively.

4.12.1 Simplifying the second moment

Define for all λ, λ′ > 0, 0 < v < λ2 ∧ λ′2 and u, u′ ≥ 1,

Ĥa(λ, λ′, v) :=
∫
ρ,ρ̃>0
ρ+ρ̃≥a

d ρ dρ̃ e−λ(ρ+ρ̃)ρ̃θ−1
∫
ρ′,ρ̃′>0
ρ′+ρ̃′≥a

d ρ′ dρ̃′e−λ′(ρ′+ρ̃′)(ρ̃′)θ−1 (4.158)

×
∑
l≥1

θl

l!

∫
a∈E(ρ,l)

a′∈E(ρ′,l)
dada′

l∏
i=1

B(aia′iv)
aia′i

and

ˆ̂Ha(λ, λ′, u, u′, v) :=
∫ +∞

a
dρ e−λρ

∫ +∞

a′
dρ′e−λ′ρ′

∑
n,m≥1

0≤l≤n∧m

θn+m−l

(n− l)!(m− l)!l! (4.159)

×
∫

a∈E(ρ,n)
a′∈E(ρ′,m)

dada′
l∏

i=1

B (aia′iv)
aia′i

n∏
i=l+1

1− e−uai
ai

m∏
i=l+1

1− e−u′a′i
a′i

.

By Proposition 4.69, Ĥa is related to the second moment ofMN
a as follows:

E
[
MN

a ({z})MN
a ({z′})

]
= qN,z′(z)θqN,z(z′)θ(logN)2

N4−2aΓ(θ)2 e−θJN (z,z′)Ĥa(λ, λ′, v)

with

λ = logN − log CRN,z′(z,DN )− log c0, λ′ = logN − log CRN,z(z′, DN )− log c0 (4.160)

and v = (2πG̃DN (z, z′))2. On the other hand, by neglecting the killing for loops that visit both z and
z′, we see that ˆ̂Ha provides a good upper bound on the second moment of MN,K

a (see Proposition
4.69):

E
[
MN,K

a ({z})MN,K
a ({z′})

]
≤ (logN)2

N4−2a e−θ(JN,K,z′ (z)+JN,K,z(z′)+JN,K(z,z′)) ˆ̂Ha(λ, λ′, u, u′, v)

where λ, λ′ and v are as above and, recalling the definition (4.139) of CN,K,z(z′),

u = CN,K,z′(z) and u′ = CN,K,z(z′).

In the following lemma, which is the discrete counterpart of Lemma 4.41, we give exact expressions
for Ĥa and ˆ̂Ha and deduce upper bounds. These upper bounds will be crucial for us in order to prove
Lemma 4.77. Recall the definition (4.92) of Hρ,ρ′ .
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Lemma 4.79. We have

Ĥa(λ, λ′, v) = Γ(θ)v(1−θ)/2
∫

[a,∞)2
(tt′)(θ−1)/2e−λte−λ

′t′Iθ−1
(
2
√
vtt′

)
dtdt′ (4.161)

and
ˆ̂Ha(λ, λ′, u, u′, v) =

∫
[a,∞)2

e−λ ρe−λ
′ ρ′Hρ,ρ′(u, u′, v)d ρd ρ′ . (4.162)

Moreover, if λ ∧ λ′ ≥
√
v + 1 and if u, u′ ≥ 1, then

Ĥa(λ, λ′, v) ≤ Cv1/4−θ/2 1
(λ−

√
v)(λ′ −

√
v)e

(2
√
v−λ−λ′)a (4.163)

and
ˆ̂Ha(λ, λ′, u, u′, v) ≤ C(uu′)θv1/4−θ/2 1

(λ−
√
v)(λ′ −

√
v)e

(2
√
v−λ−λ′)a. (4.164)

Proof. In (4.97), we noticed that

∑
l≥1

θl

l!

∫
a∈E(ρ,l)

a′∈E(ρ′,l)
dada′

l∏
i=1

B(aia′iv)
aia′i

=
∑
k≥1

vk(ρ ρ′)k−1θ(k)

(k − 1)!2k! .

We can therefore rewrite

Ĥa(λ, λ′, v) =
∑
k≥1

vkθ(k)

k!

∫
ρ,ρ̃>0
ρ+ρ̃≥a

d ρdρ̃e−λ(ρ+ρ̃) ρ̃
θ−1 ρk−1

(k − 1)!

(λ↔ λ′
)

where the second term in parenthesis is equal to the first one with λ replaced by λ′. We can further
compute (see (4.222))

∫
ρ,ρ̃>0
ρ+ρ̃≥a

d ρdρ̃e−λ(ρ+ρ̃) ρ̃
θ−1 ρk−1

(k − 1)! =
∫ ∞
a

dt e−λt
∫ t

0
d ρ (t− ρ)θ−1 ρk−1

(k − 1)! = 1
θ(k)

∫ ∞
a

tθ+k−1e−λtdt.

We have obtained that

Ĥa(λ, λ′, v) =
∫ ∞
a

dt tθ−1e−λt
∫ ∞
a

dt′ t′θ−1
e−λ

′t′
∑
k≥1

(vtt′)k

k!θ(k) .

We recognise here a modified Bessel function (4.223) concluding the proof of (4.161).
To obtain the upper bound (4.163), we first bound (thanks to (4.225))

Iθ−1(u) ≤ Ceu/
√
u, u > 0,

which gives

Ĥa(λ, λ′, v) ≤ Cv1/4−θ/2
∫

[a,∞)2
(tt′)θ/2−3/4e−λt−λ

′t′e2
√
vtt′ dt dt′.
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We next bound 2
√
tt′ ≤ t+ t′ and

Ĥa(λ, λ′, v) ≤ Cv1/4−θ/2
(∫ ∞

a
tθ/2−3/4e−λte

√
vtdt

)(
λ↔ λ′

)
≤ Cv1/4−θ/2 1

(λ−
√
v)(λ′ −

√
v)e

(2
√
v−λ−λ′)a

where we used the assumption that λ ∧ λ′ ≥
√
v + 1 to obtain the last inequality. This concludes the

proof of (4.163).
(4.162) directly follows from the definition (4.92) of Hρ,ρ′ . The bound (4.164) then follows from

Lemma 4.41. This concludes the proof.

Remark 4.80. We now state a generalisation of (4.161) that will be needed in the proof of Lemma 4.78.
This generalisation is proven in a very similar way and we omit its proof. Let p : [0,∞)2 → [0, 1] be a
measurable function. Then for all k ≥ 1,∫

ρ,ρ̃>0
ρ+ρ̃≥a

d ρ dρ̃ e−λ(ρ+ρ̃)ρ̃θ−1
∫
ρ′,ρ̃′>0
ρ′+ρ̃′≥a

d ρ′ dρ̃′e−λ′(ρ′+ρ̃′)(ρ̃′)θ−1p(ρ+ ρ̃, ρ′ + ρ̃′) (4.165)

×
k∑
l=1

θl

l!

∫
a∈E(ρ,l)

a′∈E(ρ′,l)
dada′

l∏
i=1

∑
k1,...,kl≥1
k1+···+kl=k

vki(aia′i)ki−1

ki!(ki − 1)!

= vk

θ(k)k!

∫
(a,∞)2

e−λt−λ
′t′p(t, t′)(tt′)θ+k−1dt dt′.

To recover (4.161) from (4.165), one simply needs to take the function p = 1 and sum over k ≥ 1.
Similarly, one can prove that∫

ρ,ρ̃>0
ρ+ρ̃≥a

d ρdρ̃ e−λ(ρ+ρ̃)ρ̃θ−1
∫ ∞
a

dt′e−λ′t′
∑
m≥1

1≤l≤m

θm

(m− l)!l! (4.166)

×
∫

a∈E(ρ,l)
a′∈E(t′,m)

dada′
∑
k≥l

vkp(ρ+ ρ̃, ρ′, k)
∑

k1,...,kl≥1
k1+···+kl=k

l∏
i=1

(aia′i)ki−1

ki!(ki − 1)!

m∏
i=l+1

1− e−a′iu′

a′i

=
∑
k≥1

vk
∫

(a,∞)2
dt dt′ e−λte−λ′t′ tθ+k−1

k!(k − 1)!p(t, t
′, k)

( ∫ t′

0
dρ′ρ′k−1 F(u′(t′ − ρ′))

t′ − ρ′
+ t′

k−1
)
.

This latter equality will be useful in the mixed case massless–massive.

4.12.2 Number of crossings in the processes of excursions

In addition to A, η and b, we will also fix some large M > 0 throughout Section 4.12.2.
Let z, z′ ∈ A and r > 0 be such that D(z, er) ⊂ A and 1 ≤Mr/|z− z′| < e. In view of Propositions

4.61, 4.63 and 4.69, we will need to study the number of crossings NCz,r for C = ΞzN,a,ΞzN,z′,a and Ξz′N,z,a.
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By property of Poisson point processes, in each cases, we can decompose

NCz,r =
P∑
i=1

Gi

where Gi, i ≥ 1, are i.i.d. random variables independent of P with the following distributions: P is a
Poisson random variable with mean

E[P ] = 2πaµ̃z,zDN (τ∂DN (z,er) <∞), C = ΞzN,a,

E[P ] = 2πaµ̃z,zDN\{z′}(τ∂DN (z,er) <∞), C = ΞzN,z′,a,

E[P ] = 2πaµ̃z
′,z′

DN\{z}(τ∂DN (z,er) <∞), C = Ξz′N,z,a

and the common distribution of the Gi’s is the law of N℘
z,r where ℘ is distributed according to

1{℘ hits ∂DN (z,er)}µ̃
w,w
D′N

(d℘)
µ̃w,wD′N

(τ∂DN (z,er) <∞)

and
D′N = DN and w = z, C = ΞzN,a,
D′N = DN \ {z′} and w = z, C = ΞzN,z′,a,
D′N = DN \ {z} and w = z′, C = Ξz′N,z,a.

(4.167)

In what follows, we will refer to the variables P and Gi in “Cases 1, 2 and 3” when we mean
that we consider the number of excursions NCz,r in the cases C = ΞzN,a,ΞzN,z′,a and Ξz′N,z,a, respectively.
In the upcoming Lemmas 4.81 and 4.82, we will respectively estimate the mean of P and show that
the Gi’s can be well approximated by geometric random variable. These lemmas are to be compared
with Lemma 4.46 in the continuum, but we will see that the discrete setting leads to some technical
difficulties.

Lemma 4.81. Let z ∈ A and r ∈ {e−n, n ≥ 1}, r > N−1+η be such that D(z, er) ⊂ A. We have, in
Case 1,

E[P ] = a

(
1 +O

( 1
| log r|

))( 1
| log r| −

1
log(N)

)−1
. (4.168)

Let z′ ∈ A be such that 1 ≤Mr/|z − z′| < e and denote β = 1− | log r|
logN , so that r = N−1+β. Then, in

Cases 2 and 3,
E[P ] = a

(
1 +O

( 1
| log r|

)) 1
1− (1− β)2 | log r|. (4.169)

Proof of Lemma 4.81. We will show upper bounds on E[P ] as stated in the lemma. The matching
lower bounds will follow from the same proof: one simply has to replace maxima by minima below.

Let us first start by showing the following intermediate result: in Case 1,

E[P ] ≤ a (logN)2

2πGDN (z, z)GD(z,er)(z, z)
max

y∈∂DN (z,er)
GDN (y, z), (4.170)
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in Case 2,

E[P ] ≤ a (logN)2

2πGDN\{z′}(z, z)GD(z,er)(z, z)
max

y∈∂DN (z,er)
GDN\{z′}(y, z) (4.171)

and in Case 3,

E[P ] ≤ a (logN)2

2πGDN\{z}(z′, z′)
4Pz′

(
τ∂DN (z,er) < τ+

z′ ∧ τ∂DN
)

max
y∈∂DN (z,er)

GDN\{z}(y, z
′). (4.172)

We will show (4.170) and we will then explain what needs to be changed in order to have (4.171) and
(4.172). First of all, the total mass of 2πµ̃z,zDN is given by

1
2π (logN)2 ∑

w1,w2∼z
GDN\{z}(w1, w2)

= 1
2π (logN)2 ∑

w1,w2∼z

(
GDN (w1, w2)− GDN (w1, z)GDN (z, w2)

GDN (z, z)

)

where we used (4.137) to obtain the last equality. For w1 fixed, GDN (w1, ·) is harmonic outside of w1

which implies that ∑
w2∼z

GDN (w1, w2) = 4GDN (w1, z).

Since ∑
w1∼z

GDN (w1, z) = 4(GDN (z, z)− 1/4),

we obtain that the total mass of 2πµ̃z,zDN is equal to

1
2π (logN)2

4
∑
w1∼z

GDN (w1, z)−
1

GDN (z, z)

( ∑
w1∼z

GDN (w1, z)
)2


= 1
2π (logN)2

(
16(GDN (z, z)− 1/4)− 16

GDN (z, z) (GDN (z, z)− 1/4)2
)

= 1
2π (logN)2

(
4− 1

GDN (z, z)

)
.

Moreover, µ̃z,zDN normalised by its total mass is the law of a random walk (Xt)0≤t≤τ+
z

starting at z,
killed upon returning at z for the first time:

τ+
z := inf{t > 0 : Xt = z, ∃s ∈ (0, t), Xs 6= z}

and conditioned to stay in DN . We wish to compute the probability for such a walk to visit ∂DN (z, er).
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By strong Markov property, we have

Pz
(
τ∂DN (z,er) < τ+

z |τ+
z < τ∂DN

)
=

Pz
(
τ∂DN (z,er) < τ+

z < τ∂DN

)
Pz
(
τ+
z < τ∂DN

)
≤

Pz
(
τ∂DN (z,er) < τ+

z

)
Pz
(
τ+
z < τ∂DN

) max
y∈∂DN (z,er)

Py (τz < τ∂DN ) .

We can express these probabilities in terms of Green functions as follows:

Pz
(
τ+
z < τ∂DN

)
= 1− 1

4GDN (z, z) = GDN (z, z)− 1/4
GDN (z, z) ,

max
y∈∂DN (z,er)

Py (τz < τ∂DN ) =
maxy∈∂DN (z,er)GDN (y, z)

GDN (z, z)

and
Pz
(
τ∂DN (z,er) < τ+

z

)
= 1

4GD(z,er)(z, z)
. (4.173)

Overall, we have shown that

2πaµ̃z,zDN (τ∂DN (z,er) <∞) ≤ 1
2π (logN)2

(
4− 1

GDN (z, z)

) maxy∈∂DN (z,er)GDN (y, z)
4GD(z,er)(z, z)(GDN (z, z)− 1/4)

= (logN)2

2πGDN (z, z)GD(z,er)(z, z)
max

y∈∂DN (z,er)
GDN (y, z)

which is the desired upper bound (4.170). The proof of (4.171) follows along the exact same lines. To
prove (4.172), the only thing that needs to be changed is that now, instead of (4.173), we have

Pz
′ (
τ∂DN (z,er) < τ+

z′ ∧ τ∂DN
)
.

We leave it as it is and directly obtain (4.172).
We now move on to explaining how (4.168) and (4.169) follow from (4.170), (4.171) and (4.172).

We start with (4.168). By Lemma 4.93, we have

2πGDN (z, z) = logN +O(1), 2πGD(z,er)(z, z) = log(Nr) +O(1)

and
2π max

y∈∂DN (z,er)
GDN (y, z) = | log r|+O(1)

and therefore, in Case 1,

E[P ] ≤ a
(

1 +O

( 1
log r

)) logN | log r|
log(Nr) = a

(
1 +O

( 1
log r

))( 1
| log r| −

1
logN

)−1
.

This concludes the proof of (4.168). We now prove (4.169) in Case 2. Recall that β = 1−| log r|/ logN .
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Using the expression (4.137) of the Green function in DN \ {z′} and then Lemma 4.93, we see that

GDN\{z′}(z, z) = GDN (z, z)− GDN (z, z′)2

GDN (z′, z′) = 1
2π
(
1− (1− β)2

)
logN +O(1),

and if y ∈ ∂DN (z, er),

GDN\{z′}(y, z) = GDN (y, z)− GDN (y, z′)GDN (z, z′)
GDN (z′, z′)

= 1
2π
(
(1− β)− (1− β)2

)
logN +O(1) = β

2π | log r|+O(1).

Recall also that
GD(z,er)(z, z) = 1

2π log(Nr) +O(1) = β

2π logN +O(1).

Plugging these three estimates in (4.171) concludes the proof of (4.169) in Case 2.
To conclude the proof of Lemma 4.81, it remains to prove (4.169) in Case 3. We need to work a bit

more and we need to estimate precisely Pz′
(
τ∂DN (z,er) < τ+

z′ ∧ τ∂DN
)
. In view of what we did, in order

to conclude, it is enough to show that

Pz
′ (
τ∂DN (z,er) < τ+

z′ ∧ τ∂DN
)

=
(

1 +O

( 1
log r

))
π

2β logN . (4.174)

The rest of the proof is dedicated to this estimate. We claim that the probability on the left hand side
of (4.174) is at most equal to

1− Pz′
(
τ+
z′ < τ∂DN

)
1− Pz′

(
τ∂DN (z,er) < τ∂DN

)
maxy∈∂DN (z,er) Py (τz′ < τ∂DN )

Pz
′ (
τ∂DN (z,er) < τ∂DN

)
. (4.175)

Indeed, if we denote by

p = Pz
′ (
τ∂DN (z,er) < τ+

z′ ∧ τ∂DN
)

and q = Pz
′ (
τ+
z′ < τ∂DN (z,er) ∧ τ∂DN

)
,

the strong Markov property shows that

Pz
′ (
τ∂DN (z,er) < τ∂DN

)
= p+ qPz

′ (
τ∂DN (z,er) < τ∂DN

)
and also

Pz
′ (
τ+
z′ < τ∂DN

)
= q + pPz

′ (
τ+
z′ < τ∂DN |τ∂DN (z,er) < τ+

z′ ∧ τ∂DN
)

≤ q + p max
y∈∂DN (z,er)

Py (τz′ < τ∂DN ) .

Combining the two above estimates yields the claim (4.175). Now, by [LL10, Proposition 6.4.1],

Pz
′ (
τ∂DN (z,er) < τ∂DN

)
= 1− log |z′ − z|/(er) +O(1/ log r)

| log r|+O(1) = 1 +O

( 1
log r

)
.
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Moreover, for all y ∈ ∂DN (z, er),

Py (τz′ < τ∂DN ) = GDN (y, z′)
GDN (z′, z′) = 1− β +O

( 1
logN

)

and
1− Pz

′ (
τ+
z′ < τ∂DN

)
= 1

4GDN (z′, z′) = π

2 logN

(
1 +O

( 1
log r

))
.

Plugging those three estimates into (4.175) shows (4.174) (or more precisely, the upper bound, but the
lower bound is similar). This concludes the proof.

We now turn to the study of the variables Gi.

Lemma 4.82. Let z ∈ A and r ∈ {e−n, n ≥ 1}, r > N−1+η be such that D(z, er) ⊂ A. In Case 1, we
have for all k ≥ 1,

P (Gi ≥ k) =
(

1 +O

( 1
log r

))(
1− 1 +O(1/ log r)

| log r| − 1 +O(1/ log(Nr))
log(Nr)

)k−1
(4.176)

Let z′ ∈ A be such that 1 ≤ Mr/|z − z′| < e and denote β = 1 − | log r|
logN , so that r = N−1+β. There

exists Mη > 0 such that if M > Mη, then we have in Cases 2 and 3, for all k ≥ 1,

P (Gi ≥ k) =
(

1 +O

( 1
| log r|

))(
1− 2− β ± η2 +O(1/ log r)

β| log r|

)k−1

. (4.177)

Proof. We start with the following claim: let D′N be a finite subset of 1
NZ2, w ∈ D′N \ DN (z, er) and

let ℘ be distributed according to

1{℘ hits ∂DN (z,er)}µ̃
w,w
D′N

(d℘)
µ̃w,wD′N

(τ∂DN (z,er) <∞) .

Then for all k ≥ 1, P
(
N℘
z,r ≥ k

)
is at most

max
y1,y2∈∂DN (z,er)

GD′N (y1, w)
GD′N (y2, w)

(
max

y∈∂DN (z,er)
Py
(
τ∂D(z,r) < τ∂D′N ∧ τw

)
(4.178)

× max
y∈∂DN (z,r)

Py
(
τ∂DN (z,er) < τ∂D′N ∧ τw

) )k−1

and at least the same quantity with maxima replaced by minima. We will apply this with D′N and w
given as in (4.167). The proof of this claim is a quick consequence of strong Markov property. Indeed,
the trajectory ℘, after hitting for the first time ∂DN (z, er), has the law of a random walk starting
at some vertex of ∂DN (z, er) (with some law that is irrelevant to us), stopped upon reaching w and
conditioned to hit w before exiting D′N ; and we wish to estimate the probability for such a trajectory
to cross the annulus at least k − 1 times. We omit the details.

We now explain how the proof of Lemma 4.82 follows from (4.178). Recall that we will apply the
above claim with D′N and w given as in (4.167). In all cases, one can show that the ratio of the Green
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functions equals 1 + O(1/ log r). In all cases, we also have that the second probability in (4.178) is
equal to

max
y∈∂DN (z,r)

Py
(
τ∂DN (z,er) < τz

)
= max

y∈∂DN (z,r)

(
1−

GD(z,er)(y, z)
GD(z,er)(z, z)

)
.

By [Law13, Propositions 1.6.6 and 1.6.7], we deduce that

max
y∈∂DN (z,r)

Py
(
τ∂DN (z,er) < τz

)
= 1− 1 +O((Nr)−1)

log(Nr) +O(1) = 1− 1 +O(1/ log(Nr))
log(Nr) .

Now, in Case 1, the first probability in (4.178) is equal to

max
y∈∂DN (z,er)

Py
(
τ∂D(z,r) < τ∂DN

)
which is estimated in [LL10, Proposition 6.4.1] and is equal to

1− 1 +O(1/ log r)
| log r|+O(1) = 1− 1 +O(1/ log r)

| log r| .

This concludes the upper bound (4.176). The lower bound is similar. In Cases 2 and 3, the first
probability in (4.178) is equal to

max
y∈∂DN (z,er)

Py
(
τ∂D(z,r) < τ∂DN ∧ τz′

)
.

To conclude the proof of (4.177), a small computation shows that it is sufficient to prove that for all
y ∈ ∂DN (z, er),

p := Py
(
τ∂D(z,r) < τ∂DN ∧ τz′

)
= 1− 1 +O(1/M) +O(1/ log r)

β| log r| . (4.179)

The rest of the proof is dedicated to this estimate. The strategy is very similar to the one we used to
prove (4.174). Let us denote

q = Py
(
τz′ < τ∂DN ∧ τ∂D(z,r)

)
.

By the strong Markov property, we have

Py
(
τ∂DN (z,r) < τ∂DN

)
= p+ qPz

′ (
τ∂DN (z,r) < τ∂DN

)
and also

Py (τz′ < τ∂DN ) = q + pPy
(
τz′ < τ∂DN |τ∂DN (z,r) < τz′ ∧ τ∂DN

)
.
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Combining these two equalities yields

p =
Py
(
τ∂DN (z,r) < τ∂DN

)
− Py (τz′ < τ∂DN )Pz′

(
τ∂DN (z,r) < τ∂DN

)
1− Pz′

(
τ∂DN (z,r) < τ∂DN

)
Py
(
τz′ < τ∂DN |τ∂DN (z,r) < τz′ ∧ τ∂DN

)
= 1−

1− Py
(
τ∂DN (z,r) < τ∂DN

)
∗ ∗ ∗

+

(
Py
(
τz′ < τ∂DN |τ∂DN (z,r) < τz′ ∧ τ∂DN

)
− Py (τz′ < τ∂DN )

)
Pz′

(
τ∂DN (z,r) < τ∂DN

)
∗ ∗ ∗

where the denominator did not change from the first identity to the second one. The probability p
increases with the domain DN . By including a macroscopic disc centred at z inside DN (z is in the bulk
of D), we will obtain a lower bound on p and by including DN in a disc centred at z (D is bounded)
we will obtain an upper bound. Therefore, assume that D = D(z,R) for some R > 0. Now, by [LL10,
Proposition 6.4.1],

Pz
′ (
τ∂DN (z,r) < τ∂DN

)
= 1− log |z′ − z|/r +O(1/ log r)

log(R/r)

and
Py
(
τ∂DN (z,r) < τ∂DN

)
= 1− 1 +O(1/ log r)

log(R/r) .

Moreover,

Py
(
τz′ < τ∂DN |τ∂DN (z,r) < τz′ ∧ τ∂DN

)
≥ min

x∈∂DN (z,r)

GDN (x, z′)
GDN (z′, z′) = 1− β +O(1/ logN).

This shows that the denominator is equal to β +O(1/ log r). Since for all x ∈ ∂D(z, r), we can bound

1− C

M
≤ |x− z

′|
|y − z′|

≤ 1 + C

M
,

we have ∣∣∣Py (τz′ < τ∂DN |τ∂DN (z,r) < τz′ ∧ τ∂DN
)
− Py (τz′ < τ∂DN )

∣∣∣
≤ max

x∈∂DN (z,r)

|GDN (y, z′)−GDN (x, z′)|
GDN (z′, z′) ≤ O(1) 1

M logN

We obtain that
p = 1− 1 +O(1/M) +O(1/ log r)

β| log r|

which concludes the proof of (4.179). This finishes the proof of Lemma 4.82.

From Lemmas 4.81 and 4.82, we obtain the discrete analogues of Corollaries 4.47 and 4.49 that
we state below. We provide them without proofs since they follow from Lemmas 4.81 and 4.82 in the
same way as the two aforementioned Corollaries in the continuum follow from Lemma 4.46.

Note that in Case 1, although E[P ]/a and E[Gi] differ from (1 + o(1))| log r| which contrasts the
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continuous setting, the product E[P ]E[Gi] is still equal to a(1 + o(1))| log r|2 like in the continuum.

Corollary 4.83. Let u ∈ (0, 1/2). There exists C(u) > 0, r0 > 0 and c > 0 (which may depend on
a, b, η, A) such that for all z ∈ A and r = N−1+β ∈ (N−1+η, r0),

P
(
N

ΞzN,a
z,r > (a+ (b− a)/2)| log r|2

)
≤ rc (4.180)

and

E
[(

1− e−KT (ΞzN,a)
)
e

u
| log r|N

Ξz
N,a

z,r

]
≤
(
1− e−a(3/2qN (z)qN,K(z)CN,K(z)+C(u)| log r|)

)
(4.181)

× exp
(
a

u

1− uβ (1 + o(1))| log r|
)

To quickly see why we have u
1−uβ instead of u

1−u as in Corollary 4.47, we compute

E
[
e

u
| log r|N

Ξz
N,a

z,r

]
= exp

(
E[P ]E

[
e

u
| log rGi − 1

])
= exp

(
(1 + o(1))a

β
| log r|

( 1
1− uβ − 1

))
= exp

(
(1 + o(1))a u

1− uβ | log r|
)
.

Corollary 4.84. Let u > 0. There exists Mη > 0 such that for all M ≥ Mη, for all z, z′ ∈ DN ∩ A
and r = N−1+β > N−1+η being such that 1 ≤Mr/|z − z′| < e, we have

E
[
exp

(
− u

| log r|N
Ξz
N,z′,a

z,r

)]
≤ exp

(
−a u

(2− β)(2− β + βu+ η2)(1 + o(1))| log r|
)

(4.182)

and

E
[
exp

(
− u

| log r|N
Ξz′N,z,a
z,r

)]
≤ exp

(
−a u

(2− β)(2− β + βu+ η2)(1 + o(1))| log r|
)
. (4.183)

Finally, we will need a control on the number of excursions in the process Ξz,z
′

N,a,a′ (4.141). The
following lemma is to be compared with Lemma 4.50.

Lemma 4.85. Let u > 0. There exists M = M(η) large enough, so that if z, z′ ∈ DN ∩ A and
r = N−1+β > 0 are such that 1 ≤Mr/|z − z′| < e, then

E
[
exp

(
− u

| log r|N
Ξz,z

′

N,a,a′
z,r

)]
≤

B
(

(2π)2aa′G̃DN (z, z′)2(1 + o(1))
(
1 + βu

2−β+η2

)−2
)

B
(
(2π)2aa′G̃DN (z, z′)2

)
Proof. The proof follows from the definition (4.141) of Ξz,z

′

N,a,a′ and from Lemma 4.82 in a very similar
way as Lemma 4.50 was a consequence of Lemma 4.46. We omit the details.
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4.12.3 Proof of Lemma 4.76 and localised KMT coupling

We remind the reader that Lemma 4.76 shows that the restriction to good events comes essentially
for free in an L1 sense. To do this, a crucial argument is that a typical (deterministic) point z is
not thick for the discrete loop soups. In the continuum, the corresponding large deviation estimate
followed from Lemma 4.51. The proof of that lemma could probably be adapted with some tedious but
ultimately superficial difficulties coming from the fact that we cannot easily condition on the maximum
modulus of a loop when the space is discrete. However, we find it more instructive to deduce Lemma
4.76 from a coupling argument between discrete (random walk) loops and continuous (Brownian)
loops. This coupling is a relatively simple modification of an argument put forward by Lawler and
Trujillo-Ferreras [LTF07], in which discrete random walks loop soups were in fact first introduced,
with however one major difference. Indeed, [LTF07] shows that discrete and continuous loops are in
one-to-one correspondence provided that they are not too small (essentially, of discrete duration at
least Nκ with κ > 2/3, corresponding to loops of mesoscopic diameter Nκ/2/N = N−2/3 when we scale
the lattice so that the mesh size is 1/N). In this correspondence, Lawler and Trujillo-Ferreras show
furthermore that such loops are then not more than logN/N apart from one another with overwhelming
probability, similar to a KMT approximation rate from which the result of [LTF07] follows.

While the KMT approximation is excellent (we in fact do not need the full power of the logarithmic
KMT rate), the restriction to mesoscopic loops of sufficiently large polynomial diameter is problematic
for us. It would indeed prevent us from getting any meaningful estimate concerning the crossings
of annuli of diameter r � N−2/3. This would place a restriction on the thickness parameter a or
equivalently γ; in order to treat the whole range of values γ ∈ (0, 2) we need to be able to consider
crossings of annuli of any polynomial diameter r ≥ N−1+η, with η > 0 arbitrarily small (depending on
γ < 2).

On the other hand, it is fairly clear from the proof of [LTF07] that their result is sharp, and that
the coupling described above cannot hold without the restriction κ > 2/3; that is, at all scales smaller
than N−2/3 some discrete and continuous loops somewhere will be quite different from one another.
The lemma below shows however that if one is interested in the behaviour of small mesoscopic loops
locally (close to a given point z) then discrete and continuous loops at all polynomial scales may be
coupled to be close to one another. In this sense, Lemma 4.86 below is a localised strengthening of
Theorem 1.1 of [LTF07].

This lemma may be of independent interest, and we state it now. Let L̃θDN denote the discrete
skeleton of LθDN , which is formed by turning the continuous-time loops of LθDN into discrete-time
ones, which consist of the ordered (rooted) sequence of successive vertices visited by each loop. If
℘ ∈ LθD ∪ L̃θDN , let T (℘) denote the lifetime of ℘ (which is an integer if ℘ ∈ L̃θDN ). With a small abuse
of notation, we will consider a path ℘̃ ∈ L̃θDN as being defined over the entire interval of time [0, T (℘̃)]
via linear interpolation. Note that with our conventions, the time variable T (℘̃) is typically of order
N2 for a macroscopic discrete random walk loop ℘̃, while its space variable is of order 1 (i.e., the mesh
size is 1/N and ℘̃ takes values in (Z/N)2). The following will be applied with r of order N−1+η for
some η > 0.

Lemma 4.86. Fix θ > 0 and let η > 0. There exists c > 0 (depending on the intensity θ and on η)
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such that the following holds. Let z ∈ D. For all N−1+η ≤ r ≤ diam(D) we can define on the same
probability space LθD and L̃θDN in such a way that :

Ar,z = {℘ ∈ LθD;T (℘) ≥ r2

(logN)2 ; |℘(0)− z| ≤
√
T (℘) logN ; }

and Ãr,z,N = {℘̃ ∈ L̃θDN ;T (℘̃) ≥ r2N2

(logN)2 ; |℘̃(0)− z| ≤
√

T (℘̃)
N2 logN}

are in one-to-one correspondence with probability at least 1−c(logN)6/(rN) ≥ 1−cN−η/2. Furthermore,
if ℘ and ℘̃ are paired in this correspondence,

|T (℘̃)
N2 − T (℘)| ≤ (5/8)N−2; (4.184)

sup
0≤s≤1

|℘(sT (℘))− ℘̃(sT (℘̃))| ≤ cN−1 logN (4.185)

on an event of probability at least 1− cN−4.

Proof. We observe that the law of L̃θDN is that of a discrete random walk loop soup (in the sense of
[LTF07], i.e., in discrete time) with intensity θ. Using the notations from [LTF07], let q̃n denote the
mass of discrete random walk loops with duration exactly n (rooted at a specific point), and let qn
denote the total mass of Brownian loops whose duration falls in the interval [n− 3/8, n+ 5/8] starting
from a region of unit area (see top of p. 773 in [LTF07]). These constants are chosen so that the length
of this interval is 1 (needed for coupling) and qn and q̃n are as close as possible: that is, they coincide
not only in their first but also their second order, so that

|qn − q̃n| ≤ Cn−4.

To do the coupling it is easier to start with a random walk loop soup on the usual (unscaled) lattice Z2

and then apply Brownian scaling. That is, the Poisson processes of discrete loops emanating from each
possible x ∈ Z2 and of duration n ≥ (rN)2/(logN)2 with |Nz − x|Z2 ≤

√
n(logN), can then be put in

one-to-one correspondence for each n ≥ (rN)2 with a Poisson point processes of continuous Brownian
loops of duration t ∈ [n− 3/8, n+ 5/8] starting in a unit square centered at x. This coupling fails with
a probability at most

≤ C
∑

n≥r2N2/(logN)2

∑
x∈Z2;

|x−Nz|Z2≤
√
n logN

|qn − q̃n|

≤ C
∑

n≥(rN)2/(logN)2

n(logN)2n−4

= C(logN)6/(rN)4.

We then apply Brownian scaling to the above Brownian loops (this leaves the Brownian loop soup
invariant in law), and scale the space variable of the discrete random walk loops, which provides the
desired correspondence between Ar,z and Ãr,z,N .

By definition, the loops in this correspondence satisfy (4.184). We now finish the argument in a
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similar manner to [LTF07], coupling the discrete random walk and continuous Brownian loops of a
given duration and starting point in the manner of Corollary 3.3 in [LTF07], but with exponent n−k

instead of n−30 (as remarked in Corollary 3.2, the exponent 30 was arbitrary, and can be replaced with
any number k with a suitably chosen constant c = ck). Let A be the event that in this coupling,

A = { sup
0≤s≤1

|℘(sT (℘))− ℘̃(sT (℘̃))| ≥ ck
log(N6)
N

for some ℘ ∈ Ar,z, ℘̃ ∈ Ãr,z,N}.

Then we get (similar to [LTF07], except we cannot take advantage of the fact that the duration of
loops is at least N2/3, and we use an error bound on the coupling which is O(duration)−k instead of
O(duration)−30):

P(A) ≤ cθr2N−4 + r2N2N6N5ck(
r2N2

(logN)2 )−k

≤ cθr2N−4 + ckN
11(logN)2k(r2N2)1−k

≤ c(N−4 +N11+2η(1−k)(logN)2k)

where c depends on k and θ. If we choose k large enough that 2η(1− k) + 11 < −4, we obtain

P(A) ≤ cN−4,

where c depends on θ and η, as desired.

Lemma 4.87. Fix u > 0 and η > 0. There exists c > 0, such that for all r ≥ N−1+η (and r ≤ diam(D),
say), for all z ∈ DN ,

P
(
N
Lθ
DN\{z}

z,r > u| log r|2
)
≤ rc.

Proof. We first dominateN
Lθ
DN\{z}

z,r byN
LθDN
z,r ; that is, we forget about the restriction that the loops must

not visit z itself. We then apply the coupling of Lemma 4.86. Note that to each crossing of A(z, r, er)
by a discrete loop must correspond a crossing of the slightly smaller annulus A′ = A(z, 1.01r, 0.99er)
by a continuous Brownian loop to which it is paired; let NLDz,r′ denote the number of crossing of the
annulus A′ by the Brownian loop soup LD.

We now show that with overwhelming probability all possible loops that cross the annulus A(z, r, er)
are accounted for in the one-to-one correspondence of Lemma 4.86. To see this, observe that in order
for a loop ℘̃ to cross the annulus A(z, r, er) and not to be accounted for in the set Ãz,r,N , the loop ℘̃
must either be extremely short or start far away from z: more precisely, its duration T (℘̃) should be
less than

T (℘̃) ≤ r2N2

(logN)2 , (4.186)

or its starting point should be at a distance at least

|℘̃(0)− z| ≥
√

T (℘̃)
N2 (logN) (4.187)
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from z. Either possibility is of course very unlikely since it requires the loop to travel a great distance
in a short span of time. Let B̃1 (resp. B̃2) denote the set of (discrete) loops which verify (4.186) (resp.
(4.187)) and cross the annulus A(z, r, er).

Let us show first E(B̃1) decays faster than any polynomial. Fix n ≤ r2N2/(logN)2 and a starting
point x. For a discrete random walk loop ℘̃ of duration T (℘̃) = n and started at x, the probability to
cross an annulus of width r in time n is bounded by

Cn exp(−c r2N2

n ) ≤ Cn exp(−c(logN)2),

for some universal constants c, C > 0. The exponential term above is obtained from elementary large
deviation estimates (e.g. Hoeffding inequality) for discrete unconditioned random walk via a maximal
inequality, and the factor n in front accounts for the conditioning to return to the starting point in
time n. Summing over n ≤ r2N2, and multiplying by the intensity of loops of duration n (which is at
most polynomial) we see that E(B̃1) ≤ NC exp(−c(logN)2) and so decays faster than any polynomial.

Let us turn to B̃2, which we can handle similarly. Fix n ≥ r2N2/(logN)2, and a starting point
x ∈ D∩(Z/N)2 such that |x−z| ≥

√
n logN/N (note that this means n ≤ diam(D)(N/ logN)2 ≤ CN2.

In order for a random walk loop ℘̃ starting from x and of duration n to cross A, it must touch A and
so travel a distance at least

√
n logN/(2N) in time n. This is also bounded by

Cn exp(−cn(logN)2

n ) ≤ Cn exp(−c(logN)2).

Summing again over all possible values of x and n ≤ CN2, we get E(B̃2) ≤ NC exp(−c(logN)2) and
so also decays faster than any polynomial.

Thus, except on an event of probability at most CN−η/2, N
LDN\{z}
z,r ≤ NLDz,r′ . We can now use

Lemma 4.51 to bound the probability that the continuous loop soup has many crossing of the annulus
A′ = A(z, 1.01r, 0.99er). Since the right hand side of the bound in Lemma 4.51 is of the desired form
(in fact, is more precise), we deduce

P
(
N
Lθ
DN\{z}

z,r > u| log r|2
)
≤ CN−η/2 + rc,

for some c > 0. Since r ≥ N−1+η, the right hand side above is at most rc for some (possibly different)
value of c (depending on η and u only).

We now have all the ingredients we need to prove Lemma 4.76.

Proof of Lemma 4.76. By Proposition 4.61, we have

E
[∣∣∣M̃N

a (A)−MN
a (A)

∣∣∣] = E
[∫
A

1GN (z)cMN
a (dz)

]
= logN

Γ(θ)N2

∑
z∈DN∩A

qN (z)θ
∫ ∞
a

d ρ c
ρ
0 ρ

θ−1

Nρ−a CRN (z,DN )ρ

× P
(
∃r ∈ {e−n, n ≥ 1} ∩ (N−1+η, r0), N

Lθ
DN\{z}

∪ΞzN,ρ
z,r > b| log r|2

)
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Let z ∈ DN ∩A. By Lemma 4.93, we can bound qN (z) ≤ C and CRN (z,DN ) ≤ C for some constant
C > 0. We divide the integral over ρ ∈ (a,∞) into two parts corresponding to the integrals from a

to a+ (b− a)/2 and from a+ (b− a)/2 to infinity respectively. To bound the latter contribution, we
simply bound the probability in the integrand by 1 and observe that

∫ ∞
a+(b−a)/2

Cρ ρθ−1

Nρ−a d ρ ≤ C

N (b−a)/2 logN
.

To bound the contribution of the integral for ρ ∈ (a, a+ (b− a)/2), we notice that the probability in
the integrand can be bounded by its value at ρ = a+ (b− a)/2. Because

∫ a+(b−a)/2

a
d ρ C

ρ ρθ−1

Nρ−a ≤
C

logN ,

this leads to∫ a+(b−a)/2

a
d ρ C

ρ ρθ−1

Nρ−a P
(
∃r ∈ {e−n, n ≥ 1} ∩ (N−1+η, r0), N

Lθ
DN\{z}

∪ΞzN,ρ
z,r > b| log r|2

)

≤ C

logN P
(
∃r ∈ {e−n, n ≥ 1} ∩ (N−1+η, r0), N

Lθ
DN\{z}

∪Ξz
N,a+(b−a)/2

z,r > b| log r|2
)

A union bound, Corollary 4.83 and Lemma 4.87 show that the above probability is bounded by Crc0
for some C, c > 0. This concludes the proof of (4.153). The proof of (4.154) is an interpolation of the
proofs of (4.153) and Lemma 4.43. Note that we use (4.181) instead of (4.180). We leave the details
to the reader.

4.12.4 Proof of Lemma 4.77 (truncated L2 bound)

Proof of Lemma 4.77. Let z, z′ ∈ A ∩DN . Assume for now that |z − z′| < N−1+η. By forgetting the
good events and the requirement that z′ is a-thick, we can simply bound

E
[
M̃N

a ({z})M̃N
a ({z′})

]
≤ (logN)2−2θ

N4−2a P (z ∈ TN (a)) ≤ C (logN)1−θ

N4−a .

Since |z − z′| < N1−η, we can further bound

(logN)1−θNa ≤ log(N)Na ≤ 1
1− η log

( 1
|z − z′|

) 1
|z − z′|a/(1−η) .

Since η is smaller than 1− a/2, a/(1− η) is smaller than 2 which guarantees that∫
A×A

log
( 1
|z − z′|

) 1
|z − z′|a/(1−η) dzdz′ <∞.

The remaining of the proof consists in controlling the contribution when |z − z′| ≥ N−1+η. We
will denote |z − z′| = N−1+β and β is therefore at least η. Let M > 0 be a large parameter. Let
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r ∈ {e−n, n ≥ 1} ∩ (0, r0) be such that

|z − z′|
M

≤ r < e
|z − z′|
M

.

We choose M large enough to ensure that r < r0, but it will be also important to take M large enough
to ensure that we can use Corollary 4.84 and Lemma 4.85. For any collection C of discrete loops, define

F (C) := 1{NCz,r<b| log r|2}.

By only keeping the requirement on the number of crossings of DN (z, er) \ DN (z, r), we can bound

E
[
M̃N

a ({z})M̃N
a ({z′})

]
≤ E

[
F (LθDN )MN

a ({z})MN
a ({z′})

]
.

As in the proof of Lemma 4.44, we will bound F in the spirit of an exponential Markov inequality:
define

F1(C) := r−b exp
(
− 1
| log r|N

C
z,r

)
.

We have F ≤ F1. We use Proposition 4.69 and the notations therein to bound the expectation of
F1(LθDN )MN

a ({z})MN
a ({z′}). We end up with the following expectation to bound:

E
[
F1
(
LθDN\{z,z′} ∪ {Ξ

z,z′

N,ai,a′i
∧ ΞzN,z′,ai ∧ Ξz′N,z,a′i}

l
i=1 ∪ {ΞzN,z′,ãi , i ≥ 1} ∪ {Ξz′N,z,ã′i , i ≥ 1}

)]
. (4.188)

This expectation does not increase when one forgets LθDN\{z,z′} above and we bound it by

r−b
l∏

i=1
E

exp

− 1
| log r|N

Ξz,z
′

N,ai,a
′
i

z,r


× E

E
exp

− 1
| log r|

 l∑
i=1

N
Ξz
N,z′,ai

z,r +
∑
i≥1

N
Ξz
N,z′,ãi

z,r

∣∣∣∣∣∣ ãi, i ≥ 1


×
(
z ↔ z′

)
where in the above, we wrote informally that the last line corresponds to the second line with the
processes of excursions around z replaced by the corresponding processes of excursions around z′. By
superposition property of Poisson point processes and because

∑
i≥1 ãi = ρ̃ and

∑l
i=1 ai = ρ,

l⋃
i=1

ΞzN,z′,ai ∪
⋃
i≥1

ΞzN,z′,ãi
(d)= ΞzN,z′,ρ+ρ̃

and a similar result for z′. By Corollary 4.84 and by taking M large enough (depending on η), the
expectation in the second line is bounded by

exp
(
− ρ+ρ̃

(2− β)(2 + η2)(1 + o(1))| log r|
)
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The expectation in the third line can be bounded by the same quantity with ρ+ρ̃ replaced by ρ′+ρ̃′

(see (4.183)). Lemma 4.85 allows us to bound the expectation in the first line by

l∏
i=1

B
(

(2π)2aia
′
iG̃DN (z, z′)2(1 + o(1))

(
2−β+η2

2+η2

)2
)

B
(
(2π)2aia′iG̃DN (z, z′)2

) .

To wrap things up, we have obtained that (4.188) is at most

r−b
l∏

i=1

B
(

(2π)2aia
′
iG̃DN (z, z′)2(1 + o(1))

(
2−β+η2

2+η2

)2
)

B
(
(2π)2aia′iG̃DN (z, z′)2

) exp
(
− ρ+ρ̃+ ρ′+ρ̃′

(2− β)(2 + η2)(1 + o(1))| log r|
)

Plugging this into Proposition 4.69 and using the function Ĥ defined in (4.158), we obtain that

E
[
M̃N

a ({z})M̃N
a ({z′})

]
≤
qN,z′(z)θqN,z(z′)θ(logN)2

N4−2aΓ(θ)2 e−θJN (z,z′)r−bĤa(λ, λ′, v)

where
λ = logN − log CRN,z′(z,DN )− log c0 + 1

(2− β)(2 + η2)(1 + o(1))| log r|,

λ′ = logN − log CRN,z(z′, DN )− log c0 + 1
(2− β)(2 + η2)(1 + o(1))| log r|,

and

v = (2π)2G̃DN (z, z′)2(1 + o(1))
(

2− β + η2

2 + η2

)2

.

Since JN (z, z′) (4.143) is nonnegative and qN,z(z′) (4.142) is bounded from above (this follows from
(4.137) and Lemma 4.93), we further bound

E
[
M̃N

a ({z})M̃N
a ({z′})

]
≤ CN−4+2a(logN)2r−bĤa(λ, λ′, v) (4.189)

and it remains to estimate Ĥa(λ, λ′, v). We have

λ = (logN)2

2πGDN\{z′}(z, z)
+ 1

(2− β)(2 + η2)(1 + o(1))| log r|

= 1
β(2− β) logN + (1 + o(1)) 1

(2− β)(2 + η2) | log r| = (1 + o(1))λ′

and

√
v = (1 + o(1)) 2− β + η2

(2 + η2)β(2− β) | log r|.
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We see that λ−
√
v is always of order logN . In particular, λ >

√
v + 1 so that we can use (4.163) and

bound

Ĥa(λ, λ′, v) ≤ Cv1/4−θ/2 1
(λ−

√
v)(λ′ −

√
v)e

(2
√
v−λ−λ′)a ≤ C

(logN)2 r
o(1)e(2

√
v−λ−λ′)a.

Coming back to (4.189), we have obtained that

E
[
M̃N

a ({z})M̃N
a ({z′})

]
≤ N−4r−b+o(1) exp

(
a(2
√
v − λ− λ′ + 2 logN)

)
An elementary computation shows that

√
v − λ+ logN = (1 + o(1)) 1

β(2− β)

(
2− 2β + η2

2 + η2 − (1− β)
)
| log r|

≤ (1 + o(1)) η2

β(2− β) | log r| ≤ (1 + o(1))η| log r|

where we use the fact that β ∈ [η, 1] to obtain the last inequality. By choosing η and b − a small
enough, we can therefore ensure that

b| log r|+ a(2
√
v − λ− λ′ + 2 logN) ≤ c| log r|

for some constant c smaller than 2. To conclude, we have proven that

E
[
M̃N

a ({z})M̃N
a ({z′})

]
≤ CN−4|z − z′|−c

for some c < 2. This provides an integrable domination as stated in (4.155).
The proof of (4.156) is very similar. Note that we use (4.164) instead of (4.163) and, as in the

proof of Lemma 4.44 (specifically (4.118)), we use FKG-inequality for Poisson point processes (see
[Jan84, Lemma 2.1]) in order to decouple, on the one hand, the killing associated to the mass and, on
the other hand, the negative exponential of the number of crossings. We do not give more details.

4.12.5 Proof of Lemma 4.78 (convergence)

In this section, we assume that the parameter b, used in the definitions (4.151) and (4.152) of the good
events, is close enough to a so that the conclusions of Lemma 4.77 hold. By developing the product,
we have

E

(M̃N
a (A)− 2θ

(logK)θM̃
N,K
a (A)

)2


=
∫
A×A

N4E
[
M̃N

a (z)
(
M̃N

a (z′)− 2θ

(logK)θM̃
N,K
a (z′)

)]
dzdz′

+
∫
A×A

N4E
[

2θ

(logK)θM̃
N,K
a (z)

(
2θ

(logK)θM̃
N,K
a (z′)− M̃N

a (z′)
)]

dzdz′.
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Lemma 4.77 provides the domination we need in order to apply dominated convergence theorem and it
only remains to show that for fixed distinct points z, z′ ∈ A,

lim sup
K→∞

lim sup
N→∞

N4E
[
M̃N

a (z)
(
M̃N

a (z′)− 2θ

(logK)θM̃
N,K
a (z′)

)]
≤ 0 (4.190)

and

lim sup
K→∞

lim sup
N→∞

N4E
[

2θ

(logK)θM̃
N,K
a (z)

(
2θ

(logK)θM̃
N,K
a (z′)− M̃N

a (z′)
)]
≤ 0. (4.191)

We emphasise that, since z and z′ are fixed points of the continuous set A, they are at a macroscopic
distance from each other. We will sketch the proof of (4.190). Since the proof of (4.191) is very similar,
we will omit it. Let r1 > 0 be much smaller than |z − z′| ∨ r0 and consider the good events G′N (z)
and G′N,K(z) defined in the same way as GN (z) and GN,K(z) (see (4.151) and (4.152)) except that the
restriction on the number of crossings of annuli is only on radii r ∈ (r1, r0) instead of (N−1+η, r0). The
advantage of the event G′N (z), compared to GN (z), is that it is a macroscopic event which is well suited
to study asymptotics as the mesh size goes to zero (see (4.196)). Since z and z′ are at a distance much
larger than r1, one can show that

lim inf
K→∞

lim inf
N→∞

N4

(logK)θE
[
M̃N

a (z)M̃N,K
a (z′)

]
≥ −or1→0(1) + lim inf

K→∞
lim inf
N→∞

N4

(logK)θE
[
MN

a (z)MN,K
a (z′)1G′N (z)∩G′N,K(z′)

]
where or1→0(1)→ 0 as r1 → 0 and may depend on z, z′, a, b, η, r0. This estimate is in the same spirit
as Lemma 4.76 and we omit the details. We can therefore bound the left hand side of (4.190) by

or1→0(1) + lim sup
K→∞

lim sup
N→∞

N4E
[
MN

a (z)1G′N (z)
(
MN

a (z′)1G′N (z′) −
2θ

(logK)θM
N,K
a (z′)1G′N,K(z′)

)]
.

(4.192)
The rest of the proof is dedicated to showing that the second term above vanishes. Letting r1 → 0 will
conclude the proof of (4.190).

Proposition 4.69 gives an exact expression for the expectation in (4.192). We use the notations
therein that we recall for the reader’s convenience. The loops visiting z are divided into two collections
of loops: the ones that also visit z′ and the ones that do not. l ≥ 0 corresponds to the number of
loops in the first collections and ai, i = 1 . . . l, are the thicknesses at z of each individual loop in that
collection. ãi, i ≥ 1, are the thicknesses at z of the loops which visit z but not z′. Finally, ρ =

∑l
i=1 ai

and ρ̃ =
∑
i≥1 ãi are the overall thicknesses of the two above sets of loops. Similar notations are used

for the point z′. We define EN (ai, a′i, i = 1 . . . l, ρ̃, ρ̃′) the event that for all r ∈ {e−n, n ≥ 1} ∩ (r1, r0)
and w ∈ {z, z′}, the number NCw,r of discrete crossings in the collection

C := LθDN\{z,z′} ∪ {Ξ
z,z′

N,ai,a′i
∧ ΞzN,z′,ai ∧ Ξz′N,z,a′i}i=1...l ∪ {ΞzN,z′,ãi}i≥1 ∪ {Ξz

′
N,z,ãi′}i≥1

is at most b(log r)2. We also define pN (ai, a′i, i = 1 . . . l, ρ̃, ρ̃′) the probability of the event EN (ai, a′i, i =
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1 . . . l, ρ̃, ρ̃′). Note that, by superposition property of Poisson point processes, this probability only
depends on the ãi via their sum

∑
ãi = ρ̃. When l = 0, this probability degenerates to the probability

p′N (ρ̃, ρ̃′, 0) where the restriction concerns the number of crossings of LθDN\{z,z′} ∪ {Ξ
z
N,z′,ãi

}i≥1 ∪
{Ξz′N,z,ãi′}i≥1. The notation p′N (ρ̃, ρ̃′, 0) is justified by the fact that it corresponds to the case k =
0 of the probability p′N (ρ̃, ρ̃′, k) that will be defined in (4.194) below. By Proposition 4.69, the
expectation E

[
MN

a (z)1G′N (z)MN
a (z′)1G′N (z′)

]
is then equal to (4.145) where the expectation of the

function F has to be replaced by pN (ai, a′i, i = 1 . . . l, ρ̃, ρ̃′). In the display below, we develop this last
probability according to the number 2ki of trajectories that were used to form the i-th loop Ξz,z

′

N,ai,a′i
.

By superposition of Poisson point processes and by definition of Ξz,z
′

N,ai,a′i
(see (4.141)), we can rewrite

pN (ai, a′i, i = 1 . . . l, ρ̃, ρ̃′) as

l∏
i=1

1
B
(
(2π)2aia′iG̃DN (z, z′)2

)∑
k≥l

(
2πG̃DN (z, z′)

)2k ∑
k1,...,kl≥1
k1+···+kl=k

l∏
i=1

(aia′i)ki
ki!(ki − 1)!p

′
N (ρ+ ρ̃, ρ′ + ρ̃′, k)

(4.193)
where

p′N (ρ+ ρ̃, ρ′ + ρ̃′, k) := P
(
∀r ∈ {e−n, n ≥ 1} ∩ (r1, r0), ∀w ∈ {z, z′}, (4.194)

N
Lθ
DN\{z,z′}

w,r +
2k∑
i=1

N℘i
w,r +N

Ξz
N,z′,ρ+ρ̃

w,r +N
Ξz′
N,z,ρ′ +ρ̃′

w,r ≤ b(log r)2
)

and where ℘i, i = 1 . . . 2k, are i.i.d. trajectories with common law µ̃z,z
′

DN
/G̃DN (z, z′). When one plugs

this in (4.145), the products of the functions B cancel out and, by using the notations λ, λ′ and v as in
(4.160), we deduce that

N4E
[
MN

a (z)1G′N (z)MN
a (z′)1G′N (z′)

]
= qN,z′(z)θqN,z(z′)θ(logN)2

Γ(θ)2 e−θJN (z,z′)N2a (4.195)

×
∫
ρ,ρ̃>0
ρ+ρ̃≥a

d ρdρ̃ e−λ(ρ+ρ̃)ρ̃θ−1
∫
ρ′,ρ̃′>0
ρ′+ρ̃′≥a

d ρ′ dρ̃′e−λ′(ρ′+ρ̃′)(ρ̃′)θ−1

×
∑
l≥1

θl

l!

∫
a∈E(ρ,l)

a′∈E(ρ′,l)
dada′

∑
k≥l

vkp′N (ρ+ ρ̃, ρ′ + ρ̃′, k)
∑

k1,...,kl≥1
k1+···+kl=k

l∏
i=1

(aia′i)ki−1

ki!(ki − 1)!

plus the following term which corresponds to the case l = 0:

qN,z′(z)θqN,z(z′)θ(logN)2

Γ(θ)2 e−θJN (z,z′)N2a
∫

(a,∞)2
e−λt−λ

′t′p′N (t, t′, 0)(tt′)θ−1dtdt′.

By Lemma 4.70, the multiplicative factor in front of the first integral in (4.195) is asymptotic to
(logN)2N2aΓ(θ)−2. (4.165) gives a simple expression for the remaining part of the right hand side of
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(4.195) and

N4E
[
MN

a (z)1G′N (z)MN
a (z′)1G′N (z′)

]
∼ (logN)2N2a

Γ(θ)2

∑
k≥0

vk

θ(k)k!

∫
(a,∞)2

e−λt−λ
′t′p′N (t, t′, k)(tt′)θ+k−1dtdt′.

We now argue that for any fixed k ≥ 0, t, t′ ≥ a,

p′N (t, t′, k) −−−−→
N→∞

p′(t, t′, k) := P
(
∀r ∈ {e−n, n ≥ 1} ∩ (r1, r0), ∀w ∈ {z, z′}, NCw,r ≤ b(log r)2

)
(4.196)

where
C := LθD ∪ {℘i}i=1...2k ∪ {Ξzt ,Ξz

′
t′ }

with ℘i, i = 1 . . . 2k, i.i.d. trajectories distributed according to µz,z
′

D /GD(z, z′) and the above collections
of trajectories are all independent. This follows from 1) the convergence of µ̃z,z

′

DN
/G̃DN (z, z′) towards

µz,z
′

D /GD(z, z′) established in Proposition 4.72, 2) the convergence of LθDN\{z,z′} towards L
θ
D [LTF07],

and 3) the convergence of µ̃z,zDN\{z′} towards µ
z,z
D stated in Corollary 4.75. It is then a simple verification

that the integral concentrates around t = t′ = a as N →∞ (recall that λ and λ′ are defined in (4.160)
and go to infinity) and

N4E
[
MN

a (z)1G′N (z)MN
a (z′)1G′N (z′)

]
∼ 1

Γ(θ)2
(logN)2

λλ′
N2ae−a(λ+λ′) ∑

k≥0

vka2θ+2k−2

θ(k)k!
p′(a, a, k) (4.197)

∼ (c0)2a

Γ(θ)2 CR(z,D)a CR(z′, D)a
∑
k≥0

(2πGD(z, z′))2ka2θ+2k−2

θ(k)k!
p′(a, a, k).

For the mixed case, the situation is slightly different. Because of the killing, the expectation of
MN

a (z)1G′N (z)MN,K
a (z′)1G′N,K(z′) is expressed in terms of (see Proposition 4.69)

E

 l∏
i=1

(
1− e

−KT (Ξz,z
′

N,ai,a
′
i

∧Ξz
N,z′,ai

∧Ξz′
N,z,a′

i

)
)

m∏
i=l+1

(
1− e

−KT (Ξz′
N,z,a′

i

)
)

1EN (ai,a′i,i=1...l,ρ̃,ρ̃′)

 .
Since the points z and z′ are macroscopically far apart, the durations of the loops Ξz,z

′

N,ai,a′i
, i = 1 . . . l,

are macroscopic and one can show that the first product is very close to 1. With an argument very
similar to what was done in Corollary 4.47, one can show that the expectation of the second product
times the indicator function is well approximated by

E

 m∏
i=l+1

(
1− e

−KT (Ξz′
N,z,a′

i

)
)P (EN (ai, a′i, i = 1 . . . l, ρ̃, ρ̃′)

)
=

m∏
i=l+1

(
1− e−a′iCN,K,z(z′)

)
pN (ai, a′i, i = 1 . . . l, ρ̃, ρ̃′)

where CN,K,z(z′) is defined in (4.139). Using (4.146) together with (4.193), we obtain that the
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expectation N4E
[
MN

a (z)1G′N (z)MN,K
a (z′)1G′N,K(z′)

]
has the same asymptotics as

qN,z′(z)θ(logN)2

Γ(θ) e−θ(JN,K,z(z′)+JN,K(z,z′))N2a

×
(∫

ρ,ρ̃>0
ρ+ρ̃≥a

d ρ dρ̃ e−λ(ρ+ρ̃)ρ̃θ−1
∫ ∞
a

d ρ′ e−λ′ ρ′
∑
m≥1

1≤l≤m

θm

(m− l)!l!

∫
a∈E(ρ,l)

a′∈E(ρ′,m)
dada′

∑
k≥l

vkp′N (ρ+ ρ̃, ρ′, k)
∑

k1,...,kl≥1
k1+···+kl=k

l∏
i=1

(aia′i)ki−1

ki!(ki − 1)!

m∏
i=l+1

1− e−a′iCN,K,z(z′)

a′i

+
∫ ∞
a

dρ̃ρ̃θ−1e−λρ̃
∫ ∞
a

dρ′e−λ′ρ′p′N (ρ̃, ρ′, 0)
∑
m≥1

θm

m!

∫
a′∈E(ρ′,m)

da′
m∏
i=1

1− e−a′iCN,K,z(z′)

a′i

)
.

The second term of the sum in parenthesis corresponds to the case l = 0. The front factor is asymptotic
to Γ(θ)−1(logN)2N2a, whereas the first term in parenthesis can be simplified thanks to (4.166) and the
second term in parenthesis can be directly expressed in terms of the function F (see (4.44)). Overall,
we obtain that N4E

[
MN

a (z)1G′N (z)MN,K
a (z′)1G′N,K(z′)

]
has the same asymptotics as

(logN)2

Γ(θ) N2a
(∑
k≥1

vk
∫

(a,∞)2
dt dt′ e−λte−λ′t′ tθ+k−1

k!(k − 1)!p
′
N (t, t′, k)

×
( ∫ t′

0
dρ′ρ′k−1 F(CN,K,z(z′)(t′ − ρ′))

t′ − ρ′
+ t′

k−1
)

+
∫

(a,∞)2
dt dt′ e−λte−λ′t′tθ−1p′N (t, t′, 0)F (CN,K,z(z′)t′)

t′

)
.

By dominated convergence theorem, Lemma 4.23 and the convergence (4.149) of CN,K,z(z′) towards
CK(z′), we have

lim
K→∞

lim
N→∞

2θ

(logK)θ
∫ t′

0
dρ′ρ′k−1 F(CN,K,z(z′)(t′ − ρ′))

t′ − ρ′
= 1

Γ(θ)

∫ t′

0
dρ′ρ′k−1(t′ − ρ′)θ−1.

The right hand side term can be computed thanks to (4.222) and is equal to (k−1)!
Γ(θ)θ(k) t

′k+θ−1. From this
and the asymptotic behaviour (4.196) of p′N (t, t′, k), one can easily deduce that the asymptotics of
2θ(logK)−θN4E

[
MN

a (z)1G′N (z)MN,K
a (z′)1G′N,K(z′)

]
is given by

1
Γ(θ)2

(logN)2

λλ′
N2ae−a(λ+λ′) ∑

k≥0

vka2θ+2k−2

k!θ(k) p′(a, a, k)

∼ (c0)2a

Γ(θ)2 CR(z,D)a CR(z′, D)a
∑
k≥0

(2πGD(z, z′))2ka2θ+2k−2

θ(k)k!
p′(a, a, k).

Since we obtain the same limit as in (4.197), it concludes the proof of (4.190). The proof of (4.191)
follows from a very similar line of argument. This concludes the proof of Lemma 4.78.
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4.13 Scaling limit of massive random walk loop soup thick points

The goal of this section is to prove Proposition 4.58. As already alluded to, it relies heavily on an
analogous statement from [Jeg19] about thick points of finitely many random walk trajectories running
from internal to boundary points that we state now.

Let (Di, xi, zi), i ∈ I, be a finite collection of bounded simply connected domains Di ⊂ C with
internal points xi ∈ Di and boundary points zi ∈ ∂Di. Assume that the boundary points zi are pairwise
distinct (i 6= j =⇒ zi 6= zj) and that for all i ∈ I, the boundary of Di is locally analytic near zi
(below we will apply this result to boundaries that are locally flat at zi). Let ℘i, i ∈ I, be independent
Brownian trajectories that start at xi and are conditioned to exit Di at zi, i.e. ℘i ∼ µxi,ziDi

/HDi(xi, zi);
see (4.17). Let Di,N be a discrete approximation of Di by a portion of the square lattice with mesh size
1/N as in (4.9) (take xi as a reference point instead of the origin) and let xi,N ∈ Di,N and zi,N ∈ ∂Di,N

be such that xi,N → xi and zi,N → zi as N → ∞. Let ℘i,N , i ∈ I, be independent random walk
trajectories starting at xi,N and conditioned to exit Di,N at zi,N .

For all subset J of the set of indices I, letM∩j∈J℘j,Na be the measure supported on a-thick points
coming from the interaction of all the trajectories ℘j,N , j ∈ J : for all Borel set A ⊂ C,

M∩j∈J℘j,Na (A) := logN
N2−a

∑
x∈∩j∈Dj,N

1{x∈A}1{∑
j∈J `x(℘j,N )≥ a

2π (logN)2
}1{∀j∈J,`x(℘j,N )>0}. (4.198)

Recall also thatM∩j∈J℘ja denotes the Brownian chaos associated to ℘j , j ∈ J , where each trajectory is
required to contribute to the thickness; see Section 4.2.3. Of course, when ∩j∈JDj = ∅, these measures
degenerate to zero. [Jeg19] shows that:

Theorem 4.88 (Theorem 5.1 of [Jeg19]). As N →∞, the joint convergence(
M∩j∈J℘j,Na , J ⊂ I, ℘i,N , i ∈ I

)
→
(
ca0M

∩j∈J℘j
a , J ⊂ I, ℘i, i ∈ I

)
holds in distribution where the topology associated toM∩j∈J℘j,Na is the topology of vague convergence
on ∩j∈JDj and the topology associated to ℘i,N is the one induced by dpaths (4.28).

To use this result, we will first need to describe a decomposition of the loop soup similar to the one
described in Lemma 4.28 that holds in the discrete setting.

4.13.1 Decomposition of random walk loop soup

Let DN ⊂ Z2
N be such that both DN and Z2

N \DN are non-empty. Denote

mi(DN ) := inf{Im(z) : z ∈ DN} and Mi(DN ) := sup{Im(z) : z ∈ DN}.

Consider the random walk loop soup LθDN . For ℘ ∈ L
θ
DN

, we will use the same notations mi(℘), Mi(℘)
(4.54) and h(℘) (4.55) as in the continuum case. Unlike in the continuum case, a loop ℘ ∈ LθDN can
travel several times back and forth between R + imi(℘) and R + iMi(℘). So we will restrict to loops
℘ ∈ LθDN that do this only once in each direction. We will root such a loop at the first time (for the
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circular order) it visits R+ imi(℘) after having visited R+ iMi(℘) (see Figure 4.1 for an illustration in
the continuum setting). This time is well defined provided ℘ travels only once back and forth between
R + imi(℘) and R + iMi(℘), and after rerooting it is set to 0. We will denote by z⊥ the position of ℘
at this time, as in the continuum case. We have that z⊥ ∈ ZN + imi(℘). Note however that in discrete
℘ may also visit other points in ZN + imi(℘). Given ε > 0, we will denote

LθDN ,ε := {℘ ∈ LθDN : h(℘) ≥ ε and (4.199)

℘ travels only once back and forth between R + imi(℘) and R + i(mi(℘) + dεeN )},

where dεeN := N−1dNεe. Note that in discrete we add this condition of a single round trip between
R + imi(℘) and R + i(mi(℘) + dεeN ). Recall that we root the loops ℘ ∈ LθDN ,ε at z⊥. Denote

τε(℘) := inf{t ∈ [0, T (℘)] : Im(℘(t)) ≥ mi(℘) + dεeN}

for ℘ ∈ LθDN ,ε. As in the continuum, we decompose the loop into two parts

℘ε,1 := (℘(t))0≤t≤τε and ℘ε,2 := (℘(t))τε≤t≤T (℘). (4.200)

Denote zε := ℘(τε). Recall the notations Hy and Sy,y′ for upper half planes and horizontal strips (4.56).

Lemma 4.89. #LθDN ,ε is a Poisson random variable with mean given by

θ
1
N

∑
mi(DN )≤m≤Mi(DN )

1
N

∑
z1∈DN∩(R+im)

1
N

∑
z2∈DN∩(R+i(mi +dεeN ))(

NHDN∩Sm−N−1,m+dεeN
(z1, z2)

)
HDN∩Hm(z2, z1),

where HDN∩Sm−N−1,m+dεeN
(z1, z2) and HDN∩Hm(z2, z1) are the discrete Poisson kernels (4.33) in DN ∩

Sm−N−1,m+dεeN , respectively DN∩Hm. Conditionally on #LθDN ,ε, the loops in L
θ
DN ,ε

are i.i.d. Moreover,
for each ℘ ∈ LθDN ,ε, the joint law of (z⊥, zε, ℘ε,1, ℘ε,2) can be described as follows:

1. Conditionally on (z⊥, zε), ℘ε,1 and ℘ε,2 are two independent trajectories distributed according to

µz⊥,zεDN∩Sm−N−1,m+dεeN
/HDN∩Sm−N−1,m+dεeN

(z⊥, zε) and µzε,z⊥DN∩Hm/HDN∩Hm(zε, z⊥) (4.201)

respectively, where µz⊥,zεDN∩Sm−N−1,m+dεeN
and µzε,z⊥DN∩Hm follow the definition (4.32).

2. The joint law of (z⊥, zε) is given by: for all z1, z2 ∈ DN , P((z⊥, zε) = (z1, z2)) is equal to

1
Z

1{z1,z2∈DN ,Im(z2)=Im(z1)+dεeN}
(
NHDN∩Sm−N−1,m+dεeN

(z1, z2)
)
HDN∩Hm(z2, z1), (4.202)

with m = Im(z1).
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Proof. This is equivalent to saying that the concatenation ℘1 ∧ ℘2 under the measure

1
N2

∑
mi(DN )≤m≤Mi(DN )

∑
z1∈DN∩(R+im)

z2∈DN∩(R+i(mi +dεeN ))

µz1,z2DN∩Sm−N−1,m+dεeN
(d℘1)µz2,z1DN∩Hm(d℘2) (4.203)

corresponds, up to rerooting of loops, to the measure on loops µloop
DN

restricted to the loops γ with
h(℘) ≥ ε and that travel only once back and forth between R + imi(℘) and R + i(mi(℘) + dεeN ). For
this, it is enough to check that the weights of the discrete skeletons of unrooted loops under this two
measures coincide. Indeed, in both cases, the holding times conditionally on the discrete skeletons
are i.i.d. exponential r.v.s with mean 1

4N2 . Given k ≥ 2, k even, the weight of a discrete-time nearest
neighbour rooted loop of length k in DN under µloop

DN
is 1

k4−k. So the weight of the corresponding
discrete-time unrooted loop is 4−k, provided the loop is aperiodic, that is to say its smallest period is
k. This is simply because then the unrooted loop corresponds to k different rooted loops. Moreover, a
loop that travels only once back and forth between R + imi(℘) and R + i(mi(℘) + dεeN ) is necessarily
aperiodic. Further, the weight of a possible discrete-time path with k1 jumps under µz1,z2DN∩Sm−N−1,m+dεeN

is N4−k1 . Similarly, the weight of a possible discrete-time path with k2 jumps under µz2,z1DN∩Hm is
N4−k2 . Thus, the weight of the couple is N24−(k1+k2), and k1 + k2 is the length of the loop created by
concatenation. The N2 is compensated by the N−2 factor in (4.203). So the weights of the discrete
skeletons coincide.

We conclude this section with a result about the convergence of the quantities appearing in Lemma
4.89 towards the quantities appearing in Lemma 4.28. In the following result, we assume that D is a
bounded simply connected domain and that (DN )N is the associated discrete approximations as in
(4.9).

Lemma 4.90. 1. For all n ≥ 0, we have

lim
N→∞

P
(
#LθDN ,ε = n

)
= P

(
#LθD,ε = n

)
. (4.204)

2. Let (zN⊥ , zNε ) and (z⊥, zε) be distributed according to the laws (4.202) and (4.60), respectively. Then

(zN⊥ , zNε ) (d)−−−−→
N→∞

(z⊥, zε). (4.205)

3. Let ℘N and ℘ be distributed according to the laws described in Lemmas 4.89 and 4.28, respectively.
Then

T (℘N ) (d)−−−−→
N→∞

T (℘). (4.206)

Proof. (4.204) and (4.205) follow from Lemmas 4.89 and 4.28 and from the convergence of the discrete
Poisson kernel towards its continuum analogue. Alternatively, these two claims follow from the
convergence in distribution of LθDN ,ε towards L

θ
D,ε for the topology induced by dL (4.29). This latter

fact is a direct consequence of the coupling of [LTF07] between random walk loop soup and Brownian
loop soup. We omit the details. To prove (4.206), one only needs to notice that the law of T (℘N ) is
given by the law of the total duration of LθDN ,ε conditioned on #LθDN ,ε = 1. The same holds for the
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Brownian loop soup. Therefore, (4.206) follows from the joint convergence of #LθDN ,ε and the total
duration of LθDN ,ε which is again a consequence of [LTF07].

4.13.2 Proof of Proposition 4.58

We now have all the ingredients for the proof of Proposition 4.58.

Proof of Proposition 4.58. We will focus on the convergence of the measure MN,K
a towards its con-

tinuum analogue MK
a . Indeed, since Theorem 4.88 also takes care of the joint convergence of the

trajectories, it is not difficult to extend our proof to the joint convergence of the measure MN,K
a

together with the killed loops LθDN (K).
Let ε > 0. We first restrict LθDN (K) to the loops with height larger than ε: recall the definition

(4.199) of LθDN ,ε and recall that loops ℘ in LθDN ,ε are naturally split into two trajectories ℘ε,1 and ℘ε,2
(see (4.200)). The first part ℘ε,1 becomes negligible as ε→ 0. Therefore, we will not loose much by
only looking at the second part and we define the following measure: for all Borel set A,

MN,K,ε
a (A) := logN

N2−a

∑
z∈DN

1{z∈A}1{∑
℘∈Lθ

DN ,ε
∩Lθ

DN
(K) `z(℘ε,2)≥ a

2π (logN)2

}.
This definition is very close to the one without the restriction on the height; see (4.132) and (4.133).
In (4.61) we define an analogous measureMK,ε

a in the continuum. The main part of the proof is to
show that for any nondecreasing bounded continuous function g : [0,∞) → R and any nonnegative
bounded continuous function f : D → [0,∞),

lim inf
N→∞

E
[
g
(〈
MN,K,ε

a , f
〉)]
≥ E

[
g
(
ca0

〈
MK,ε

a , f
〉)]

. (4.207)

Let us assume that (4.207) holds and let us explain how Proposition 4.58 follows. Firstly, Corollary
4.64 shows that

sup
N≥1

E
[
MN,K

a (D)
]
<∞

implying tightness of
(
MN,K

a , N ≥ 1
)
for the topology of weak convergence (see e.g. [Kal73, Lemma

1.2] for an analogous statement concerning the topology of vague convergence). LetM∞,Ka be any
subsequential limit. By first extracting a subsequence, we can assume without loss of generality
that

(
MN,K

a , N ≥ 1
)
converges in distribution towardsM∞,Ka . To conclude, we need to show that

M∞,Ka
(d)= ca0MK

a . To this end, it is enough to show that, for any nonnegative bounded continuous
function f : D → [0,∞),

〈
M∞,Ka , f

〉
and ca0

〈
MK

a , f
〉
have the same distribution (see e.g. [Kal73,

Lemma 1.1] for a similar statement for the topology of vague convergence). Let f be such a function,
g : [0,∞) → R be a bounded nondecreasing function and let ε > 0. By first using the convergence
in distribution of

〈
MN,K

a , f
〉
towards

〈
M∞,Ka , f

〉
, then by using monotonicity of g and finally by

exploiting (4.207), we have

E
[
g
(〈
M∞,Ka , f

〉)]
= lim

N→∞
E
[
g
(〈
MN,K

a , f
〉)]
≥ lim inf

N→∞
E
[
g
(〈
MN,K,ε

a , f
〉)]
≥ E

[
g
(
ca0

〈
MK,ε

a , f
〉)]

.
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By definition ofMK
a (see Definition 4.29),

〈
MK,ε

a , f
〉
converges a.s. to

〈
MK

a , f
〉
as ε→ 0. Hence

E
[
g
(〈
M∞,Ka , f

〉)]
≥ E

[
g
(
ca0

〈
MK

a , f
〉)]

.

Since this is valid for all nondecreasing bounded continuous function g, we deduce that
〈
M∞,Ka , f

〉
stochastically dominates ca0

〈
MK

a , f
〉
. Because their expectations agree (Corollary 4.64 and Proposition

4.21), they must have the same distribution. This shows the expected convergenceMN,K
a → ca0MK

a .
Next, we move on to the proof of (4.207). By conditioning on the number of loops in LθDN ,ε and by

Fatou’s lemma, we have

lim inf
N→∞

E
[
g
(〈
MN,K,ε

a , f
〉)]
≥
∞∑
n=0

lim inf
N→∞

P
(
#LθDN ,ε = n

)
E
[
g
(〈
MN,K,ε

a , f
〉)
|#LθDN ,ε = n

]
.

The claim (4.204) in Lemma 4.90 shows that for all n ≥ 0, P
(
#LθDN ,ε = n

)
converges as N →∞ to

its analogue in the continuum and it remains to show that

lim inf
N→∞

E
[
g
(〈
MN,K,ε

a , f
〉)
|#LθDN ,ε = n

]
≥ E

[
g
(
ca0

〈
MK,ε

a , f
〉)
|#LθD,ε = n

]
. (4.208)

Fix n ≥ 1. Let ℘i,N , i = 1 . . . n, be i.i.d. loops so that LθDN ,ε, conditioned on #LθDN ,ε = n, has the
same distribution as {℘1,N , . . . , ℘n,N} (see Lemma 4.89). We split these loops into two pieces ℘i,Nε,1 and
℘i,Nε,2 as in (4.200). Let Ui, i = 1 . . . n, be i.i.d. uniform random variables on [0, 1] that are independent
of the loops above. By checking which loops are killed (in the next display, I corresponds to the set of
indices of killed loops), we can rewrite the expectation on the left hand side of (4.208) as

∑
I⊂{1,...,n}

∏
i/∈I

E
[
e−KT (℘i,N )

]
E
[
g

(〈
M

℘i,Nε,2 ,i∈I
a , f

〉)
1{∀i∈I,Ui<1−e−KT (℘i,N )

}]

=
n∑
k=0

(
n

k

)
E
[
e−KT (℘1,N )

]n−k
E
[
g

(〈
M

℘1,N
ε,2 ,...,℘

k,N
ε,2

a , f

〉)
1{∀i=1...k,Ui<1−e−KT (℘i,N )

}] (4.209)

with the convention that, when k = 0, the last expectation equals 1 and with, for all k = 1 . . . n,

M
℘1,N
ε,2 ,...,℘

k,N
ε,2

a (A) := logN
N2−a

∑
z∈DN∩A

1{∑k

i=1 `z(℘i,Nε,2 )≥ a
2π (logN)2

}, A Borel set. (4.210)

The measure above differs from the measures introduced in (4.198) since it does not require all the
trajectories to visit the point z. By looking at the subset I ⊂ {1, . . . , k} of loops that actually contribute
to the thickness, we see that they are related by

M
℘1,N
ε,2 ,...,℘

k,N
ε,2

a =
∑

I⊂{1,...,k}
M
∩i∈I℘i,Nε,2
a . (4.211)

Let us come back to the analysis of the asymptotics of (4.209). By (4.206) we already have the
convergence of E

[
e−KT (℘1,N )

]
towards E

[
e−KT (℘)

]
where ℘ is distributed according to (4.59). In

Lemma 4.91 below, we show that a consequence of Theorem 4.88 is that the liminf of the second
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expectation in (4.209) is at least

E
[
g

(
ca0

〈
M

℘1
2,ε,...,℘

k
2,ε

a , f

〉)
1{∀i=1...k,Ui<1−e−KT (℘i)}

]
.

Here ℘i, i = 1 . . . k, andM
℘1

2,ε,...,℘
k
2,ε

a are the continuum analogues of the notations we introduced above.
More precisely, ℘i, i = 1 . . . k, are i.i.d. loops distributed according to (4.59) and

M
℘1
ε,2,...,℘

k
ε,2

a :=
∑

I⊂{1,...,k}
M
∩i∈I℘iε,2
a (4.212)

whereM
∩i∈I℘iε,2
a is the Brownian chaos associated to ℘iε,2, i ∈ I; see Section 4.A. Wrapping things up,

we have obtained that the liminf of the left hand side of (4.208) is at least

n∑
k=0

(
n

k

)
E
[
e−KT (℘1)

]n−k
E
[
g

(
ca0

〈
M

℘1
2,ε,...,℘

k
2,ε

a , f

〉)
1{∀i=1...k,Ui<1−e−KT (℘i)}

]
.

By reversing the above line of argument (which is possible thanks to Lemma 4.28), we see that this is
exactly the right hand side of (4.208). It concludes the proof.

We finish this section by stating and proving Lemma 4.91. As in the proof of Proposition 4.58,
we will consider two sets of i.i.d. loops ℘i,N , i = 1 . . . n, and ℘i, i = 1 . . . n, in the discrete and in the
continuum respectively, as well as their associated measures M

℘1,N
ε,2 ,...,℘

n,N
ε,2

a and M
℘1
ε,2,...,℘

n
ε,2

a defined
respectively in (4.210) and (4.212). Let also Ui, i = 1 . . . n, be i.i.d. uniform random variables on [0, 1]
that are independent of the loops above.

Lemma 4.91. Let f : D → [0,∞) be a nonnegative continuous function and g : [0,∞) → R be a
nondecreasing bounded continuous function. Then,

lim inf
N→∞

E
[
g

(〈
M

℘1,N
2,ε ,...,℘

n,N
2,ε

a , f

〉)
1{∀i=1...n,Ui<1−e−KT (℘i,N )

}] (4.213)

≥ E
[
g

(
ca0

〈
M

℘1
2,ε,...,℘

n
2,ε

a , f

〉)
1{∀i=1...n,Ui<1−e−KT (℘i)}

]
. (4.214)

Proof of Lemma 4.91. To ease notations, we will assume that n = 1. The general case follows from
similar arguments. In particular, note that the convergence of the Brownian chaos measures in Theorem
4.88 holds jointly for any number of trajectories. In what follows, we will denote (zN⊥ , zNε , ℘Nε,1, ℘Nε,2),
resp. (z⊥, zε, ℘ε,1, ℘ε,2), a random element whose law is described in Lemma 4.89, resp. in Lemma 4.28.
We also consider a uniform random variable U on [0, 1] independent of all the variables above.

The expectation in (4.213) is equal to

∑
z̃N⊥ ,z̃

N
ε ∈DN

P
(
(zN⊥ , zNε ) = (z̃N⊥ , z̃Nε )

)
E
[
g

(〈
M

℘Nε,2
a , f

〉)
1{

U<1−e−KT (℘N )
}∣∣∣∣ (zN⊥ , zNε ) = (z̃N⊥ , z̃Nε )

]
.

(4.215)

Let us fix z̃⊥, z̃ε ∈ D and denote z̃N⊥ = N−1 bNz̃⊥c and z̃Nε = N−1 bNz̃εc. Assume that the event
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EN := {(zN⊥ , zNε ) = (z̃N⊥ , z̃Nε )} has positive probability. By Lemma 4.89, conditioned on this event,
℘N1,ε and ℘N2,ε are independent random walk trajectories distributed according to (4.201). By Theorem

4.88, the joint law of (M
℘Nε,2
a , T (℘Nε,2)) conditioned on EN converges weakly towards the joint law of

(ca0M
℘ε,2
a , T (℘ε,2)) conditioned on E := {(z⊥, zε) = (z̃⊥, z̃ε)}. The topology considered is the product

topology with, on the one hand, the topology of vague convergence of measures on D(z̃⊥) := {z ∈
D : Im(z) > Im(z̃⊥)} and, on the other hand, the standard Euclidean topology on R. Because of this
topology, we introduce for any δ > 0 a bounded continuous function fδ : D → [0,∞) which coincide
with f on {z ∈ D(z̃) : dist(z,C \D(z̃⊥)) > δ} and which has a support compactly included in D(z̃⊥).
We choose fδ in such a way that f ≥ fδ. Since the support of fδ is a compact subset of D(z̃⊥), we will
be able to use the convergence of the measures integrated against fδ.

By conditional independence of ℘Nε,1 and ℘Nε,2 (and of ℘ε,1 and ℘ε,2), we can add a third component

and we have the joint convergence of (M
℘Nε,2
a , T (℘Nε,2), T (℘Nε,1)). We add this third component because

we are interested in the total duration T (℘N ) = T (℘Nε,1) + T (℘Nε,2). Overall, this shows that for all
δ > 0,

lim inf
N→∞

E
[
g

(〈
M

℘Nε,2
a , f

〉)
1{

U<1−e−KT (℘N )
}∣∣∣∣ (zN⊥ , zNε ) = (z̃N⊥ , z̃Nε )

]
≥ lim inf

N→∞
E
[
g

(〈
M

℘Nε,2
a , fδ

〉)
1{

U<1−e−KT (℘N )
}∣∣∣∣ (zN⊥ , zNε ) = (z̃N⊥ , z̃Nε )

]
= E

[
g
(
ca0

〈
M℘ε,2

a , fδ
〉)

1{U<1−e−KT (℘)}
∣∣∣ (z⊥, zε) = (z̃⊥, z̃ε)

]
.

Since
〈
M℘ε,2

a , fδ
〉
→
〈
M℘ε,2

a , f
〉
as δ → 0 in L1 (see Remark 4.92 below), we have obtained

lim inf
N→∞

E
[
g

(〈
M

℘Nε,2
a , f

〉)
1{

U<1−e−KT (℘N )
}∣∣∣∣ (zN⊥ , zNε ) = (z̃N⊥ , z̃Nε )

]
≥ E

[
g
(
ca0

〈
M℘ε,2

a , f
〉)

1{U<1−e−KT (℘)}
∣∣∣ (z⊥, zε) = (z̃⊥, z̃ε)

]
.

Moreover, by (4.205), (zN⊥ , zNε ) converges in distribution towards (z⊥, zε). One can then use an approach
similar to the one used in [Jeg19] (see especially Lemma 3.6 therein) to deduce that the liminf of
(4.215) is at least∫

D×D
P ((z⊥, zε) = (dz̃⊥, dz̃ε))E

[
g
(
ca0

〈
M℘ε,2

a , f
〉)

1{U<1−e−KT (℘)}
∣∣∣ (z⊥, zε) = (z̃⊥, z̃ε)

]
.

We omit the details. This concludes the proof since the last display is equal to the expectation in
(4.214).

Remark 4.92. In the above proof, we had to consider a function fδ whose support was compactly
included in the underlying domain. We then got rid of this function by letting δ → 0 and arguing
that

〈
M℘ε,2

a , fδ
〉
→
〈
M℘ε,2

a , f
〉
in L1. This is justified by the simple fact that the first moment of

the measure (see (1.4) in [Jeg19]), evaluated against a set located at a distance at most δ from the
boundary of the domain, vanishes as δ → 0. In the discrete, because of poorer estimates on the discrete
Poisson kernel, these estimates near the boundary are not as clear and this is why the convergence
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obtained in [Jeg19] is stated for the topology of vague (instead of weak) convergence. We mention
nevertheless that these difficulties might very well be overcome for a flat portion of the boundary,
which is the case in the setting of the current article. But our point is that this is not needed.

Appendix 4.B Green function

In this section, we briefly recall the behaviour of the Green function in the discrete setting. The
Euler–Mascheroni constant γEM will appear in the asymptotics of the discrete Green function and we
recall that it is defined by

γEM = lim
n→+∞

(
− log(n) +

∑
1≤k≤n

1
k

)
. (4.216)

Lemma 4.93. There exists C > 0 such that for all z, z′ ∈ DN ,

GDN (z, z′) ≤ 1
2π log max

(
N,

1
|z − z′|

)
+ C. (4.217)

For all set A compactly included in D, there exists C = C(A) > 0 such that for all z, z′ ∈ A ∩DN ,

GDN (z, z′) ≥ 1
2π log max

(
N,

1
|z − z′|

)
− C. (4.218)

For all z ∈ D, if we denote zN a point in DN closest to z, then

lim
N→∞

GDN (zN , zN )− 1
2π logN = 1

2π log CR(z,D) + 1
2π

(
γEM + 1

2 log 8
)
. (4.219)

Proof. (4.217) and (4.218) are direct consequences of Theorem 4.4.4 and Proposition 4.6.2 of [LL10].
(4.219) can be found for instance in Theorem 1.17 of [Bis20]. Note that the constant 1

2π

(
γEM + 1

2 log 8
)

is the constant order term in the expansion of the 0-potential on Z2; see [LL10, Theorem 4.4.4]. We
emphasise that in the current paper GDN (z, z) blows up like 1

2π logN whereas in [LL10] and [Bis20],
GDN (z, z) blows up like 2

π logN , hence the difference of factor 4 between our setting and theirs.

Appendix 4.C Special functions

In this section, we recall the definition and list a few properties of some special functions that appear
in the current paper.
• Gamma function:

Γ(x) =
∫ ∞

0

1
t1−x

e−tdt, x > 0. (4.220)

When x = 1/2,
Γ(1/2) =

√
π. (4.221)

• The Beta function is related to the Gamma function as follows:∫ 1

0
tx−1(1− t)y−1dt = Γ(x)Γ(y)

Γ(x+ y) , x, y > 0. (4.222)
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• Modified Bessel function of the first kind:

Iα(x) =
∞∑
n=0

1
n!Γ(n+ α+ 1)

(
x

2

)2n+α
, x > 0, α > −1. (4.223)

Using Legendre duplication formula Γ(x)Γ(x+ 1/2) = 21−2x√πΓ(2x), we see that when α = −1/2,

I−1/2(x) =
√

2
π

1√
x

cosh(x). (4.224)

In general, for all α > −1,
Iα(x) ∼ ex√

2πx
as x→∞. (4.225)

• Kummer’s confluent hypergeometric function:

1F1(θ, 1, x) = 1 +
∑
n≥1

θ(θ + 1) . . . (θ + n− 1)
n!2 xn, x ≥ 0, θ > 0. (4.226)

For any θ > 0,
1F1(θ, 1, x) ∼ 1

Γ(θ)e
xxθ−1 as x→∞. (4.227)

See [AS84, Section 13.5].
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