
Université Paris Diderot – Paris 7

École Doctorale de Sciences Mathématiques de Paris Centre
Laboratoire d’Informatique Algorithmique: Fondements et Applications

THÈSE

en vue d’obtenir le grade de
Docteur de l’Université Paris Diderot

Spécialité informatique

présentée et soutenue par

Adeline PIERROT

Combinatoire et algorithmique
dans les classes de permutations

Thèse dirigée par Dominique ROSSIN

Soutenue publiquement le
26 juin 2013

devant le jury composé de:

Directeur de thèse: Dominique ROSSIN

Rapporteurs: Michael ALBERT

Mireille BOUSQUET-MÉLOU

Examinateurs: Frédérique BASSINO

Robert CORI

Frédéric MAGNIEZ

Cyril NICAUD

Contents

Introduction 11

Preliminaries: Definitions and some background 19
0.1 Permutation patterns and permutation classes 19
0.2 Substitution decomposition of permutations 22

I Structure of permutation classes 29

Foreword: A fully algorithmic method to make explicit the structure
of a permutation class 31

1 Simple permutations as a poset 35
1.1 Introduction . 36
1.2 Preliminaries . 36

1.2.1 Exceptional permutations . 36
1.2.2 General results on binary relational structures 37

1.3 Pattern containment on simple permutations 39
1.3.1 Simple patterns of simple permutations 39
1.3.2 Simple pattern containing a given simple permutation 40

1.4 Simple permutations as a poset . 43
1.4.1 Paths in the poset of simple permutations 43
1.4.2 Degree of vertices in the poset . 45

1.5 Generating simple permutations in a permutation class 48
1.5.1 An algorithm for substitution-closed classes 48
1.5.2 An algorithm for not substitution-closed classes 50

2 Finitely many simple permutations? 53
2.1 Introduction . 54
2.2 Preliminaries . 55

2.2.1 Pin-permutations and pin representations 55
2.2.2 Pin words . 56
2.2.3 Decidability procedure . 58

2.3 Characterization of classes with finitely many proper pin-permutations . . . 61
2.3.1 Pattern containment and piecewise factor relation 61
2.3.2 Pattern containment and set inclusion 64
2.3.3 Characterizing when a class has a finite number of

proper pin-permutations . 66
2.4 Pin words of pin-permutations . 66

2.4.1 Characterization of pin-permutations 67
2.4.2 Reading of children of a linear node 70

Contents 3

2.4.3 Non-recursive case: size 1 and simple pin-permutations 72
2.4.4 Non-recursive case: decomposition trees with a linear root 76
2.4.5 Recursive case: decomposition trees with a linear root 80
2.4.6 Recursive case: decomposition trees with a prime root 83

2.5 Building deterministic automata accepting the languages Lπ 88
2.5.1 Generic constructions of deterministic automata 89
2.5.2 Pin-permutation of size 1 and simple pin-permutations 91
2.5.3 Pin-permutations with a linear root: non-recursive case 94
2.5.4 Pin-permutations with a linear root: recursive case 98
2.5.5 Pin-permutations with a prime root: recursive case 102
2.5.6 Marking states . 105
2.5.7 Complexity analysis . 106

2.6 A polynomial algorithm deciding whether a class contains a finite number
of simple permutations . 107
2.6.1 Finitely many parallel alternations and wedge simple permutations

in C? . 108
2.6.2 Finding pin-permutations in the basis. 108
2.6.3 Finitely many proper pin-permutations in C? 109
2.6.4 Main result . 111

3 Combinatorial specification of permutation classes 113
3.1 Introduction . 114
3.2 Combinatorial Structures and Random Generation 115

3.2.1 Constructible combinatorial structures and generating functions . . . 115
3.2.2 Automatic methods for uniform random generation 117

3.3 Combinatorial system describing C . 119
3.3.1 The simple case of substitution-closed classes 119
3.3.2 Adding constraints for classes that are not substitution-closed 120

3.4 Disambiguation of the system . 126
3.4.1 General framework . 127
3.4.2 Disambiguation . 127
3.4.3 Compute an equation for a restriction 130

3.5 Case study of C = Av(2413, 1243, 2341, 531642, 41352) 132
3.5.1 Ambiguous system for C . 132
3.5.2 Disambiguation . 135
3.5.3 Experiments . 138

3.6 Conclusion and perspectives . 139

II Sorting with two stacks in series 141

Foreword: Stack sorting 143

4 Pushall sorting: a new notion closely linked with general sorting 147
4.1 Introduction . 148
4.2 Pushall sorting vs. 2-stack sorting . 149

4.2.1 A word approach . 149
4.2.2 Stack configurations . 151
4.2.3 Decomposition and stack sorting . 154
4.2.4 Basis of stack sorting classes . 162

4 Contents

4.3 Pushall sorting and bicoloring . 164
4.3.1 A simple characterization . 164
4.3.2 Increasing sequences in a valid coloring 170
4.3.3 Case study . 174
4.3.4 A first polynomial algorithm . 184

4.4 An optimal algorithm . 184
4.4.1 Rooting colorings . 184
4.4.2 Algorithm for 	-indecomposable permutations 187
4.4.3 Final algorithm . 188

5 A polynomial algorithm deciding if a permutation is 2-stack sortable 191
5.1 Introduction . 192
5.2 Definitions and notations . 193
5.3 Study of two-stack sorting processes . 194

5.3.1 Stack configurations and accessibility 194
5.3.2 From time ti to time ti+1 . 199

5.4 An iterative algorithm . 202
5.4.1 A first naive algorithm . 202
5.4.2 Towards the sorting graph . 204
5.4.3 First step: G(1) . 206
5.4.4 From step i to step i+ 1 . 207

5.5 Complexity Analysis . 212
5.6 Conclusion and perspectives . 213

List of Figures and Tables 216

List of Algorithms 218

Bibliography 221

Contents 5

Résumé

Cette thèse porte sur l’étude des classes de permutations à motifs exclus. Une analyse
combinatoire des permutations via leur décomposition par substitution permet d’obtenir
des résultats algorithmiques. La première partie de la thèse étudie la structure des classes
de permutations. Plus précisément on donne un algorithme pour calculer une spécification
combinatoire pour une classe de permutations donnée par sa base de motifs exclus. La
spécification est obtenue si et seulement si la classe contient un nombre fini de permutations
simples, cette condition étant testée par l’algorithme lui-même. Cet algorithme puise sa
source dans les travaux de Albert et Atkinson établissant qu’une classe ayant un nombre
fini de permutations simples a une base finie et une série génératrice algébrique, et dans
les travaux suivants de Brignall et al. Les méthodes développées utilisent la théorie des
langages et des automates, les ensembles partiellement ordonnés, l’introduction de motifs
obligatoires.

La seconde partie de la thèse donne un algorithme polynomial décidant si une permu-
tation donnée en entrée est triable par deux piles connectées en série. L’existence d’un
algorithme polynomial résolvant cette question est un problème longtemps resté ouvert,
que l’on clôt dans cette thèse en introduisant une nouvelle notion, le tri par sas, qui est
une restriction du tri par piles général. On résout d’abord le problème de décision dans
le cas particulier du tri par sas, en utilisant un codage des procédures de tri par un bi-
coloriage du diagramme des permutations. Puis on résout le problème général en montrant
qu’une procédure de tri général correspond à plusieurs étapes de tri par sas qui doivent
être compatibles.

Abstract

This work is dedicated to the study of pattern closed classes of permutations. Algorith-
mic results are obtained thanks to a combinatorial study of permutation classes through
their substitution decomposition. The first part of the thesis focuses on the stucture of
permutation classes. More precisely, we give an algorithm which derives a combinatorial
specification for a permutation class given by its basis of excluded patterns. The specifi-
cation is obtained if and only if the class contains a finite number of simple permutations,
this condition being tested algorithmically. This algorithm takes its root in the theorem
of Albert and Atkinson stating that every permutation class containing a finite number
of simple permutations has a finite basis and an algebraic generating function, and its
developments by Brignall and al.

The second part of the thesis gives a polynomial algorithm deciding whether a permu-
tation given as input is sortable trough two stacks in series. The existence of a polynomial
algorithm answering this question is a problem that stayed open for a long time, which is
solved in this thesis by introducing a new notion, the pushall sorting, which is a restriction
of the general stack sorting. We first solve the decision problem in the particular case of the
pushall sorting, by encoding the sorting procedures through a bicoloring of the diagrams
of the permutations. Then we solve the general case by showing that a sorting procedure
in the general case corresponds to several steps of pushall sorting.

Remerciements

Je remercie Dominique, tout d’abord pour m’avoir donné l’envie de faire une thèse, ce
que je ne comptais pas faire avant mon stage de M2 sous sa direction, et aussi pour son
encadrement décontracté mais attentif. Sa disponibilité malgré l’éloignement relatif de nos
laboratoires respectifs, et son dynamisme lors de nos séances de travail ont été une grande
motivation. Je le remercie enfin de la liberté et de la confiance qu’il m’a toujours accordées,
et du fait que l’on ait réellement travaillé ensemble, presque comme deux collègues plutôt
que comme un directeur et un dirigé.

Je remercie mes rapporteurs, Mireille Bousquet-Mélou et Michael Albert, pour avoir
accepté la lourde tâche de rapporter ma thèse, pour leur relecture attentive et leurs com-
mentaires précis et utiles pour améliorer le manuscrit.

Merci également à Frédérique Bassino, Robert Cori, Frédéric Magniez et Cyril Nicaud
d’avoir accepté de faire partie du jury.

De façon peut-être un peu étrange, je voudrais remercier deux lieux : l’ENS et le
LIAFA, deux lieux qui ont en commun d’être extrêmement riches aussi bien sur le plan
scientifique que sur le plan humain et dans lesquels je me suis sentie dans mon élément.

J’ai eu la chance de bénéficier de l’environnement extrêmement favorable que constitue
le LIAFA pour effectuer ma thèse, que ce soit du point de vue de son positionnement géo-
graphique stratégique au cœur de Paris, de l’efficacité de ses secrétaires Noëlle et Nathalie
(qu’elles soient ici remerciées), de la cohérence de ses thématiques scientifiques et de sa
relative petite taille, qui avec la convivialité de ses membres en font une grande famille
dans laquelle on a un réel plaisir à échanger entre membres de toutes les équipes, de ses
nombreux séminaires et groupes de travail, en particulier le séminaire thésard commun
avec PPS, à la fois une grande source de culture générale, une occasion de mieux com-
prendre ses voisins de bureau, et un moment de détente partagée avec les inconditionnels
croissants, sans oublier le fameux gâteau du vendredi, une institution coup de pouce à
la convivialité et aux échanges entre équipes, et surtout l’excellente ambiance qui règne
entre les thésards (les repas tous ensemble à midi, le “poulpe”, les sorties thésards, et
surtout l’entraide permanente, que ce soit à propos de questions scientifiques, de LaTeX,
de l’anglais, des enseignements ou de l’administration !). Je voudrais remercier plus partic-
ulièrement Mathilde, ma grande sœur de thèse, que j’ai toujours considérée un peu comme
un modèle, Cezara, d’une certaine façon un peu une grande sœur elle aussi, Jérémie, An-
toine et Bruno, mes dieux du système, Élie, source de culture scientifique inépuisable,
Luc, Jehanne, Irène, Timo, Jad, Axel, ADG, Denis... Je voudrais aussi remercier l’équipe
combinatoire du LIAFA, et surtout les femmes qui en font partie ou qui viennent à son
séminaire, en particulier Anne, Enrica, Sylvie, Marie et Dominique, bien sûr pour leur
convivialité, mais aussi d’être une preuve que l’on peut être une femme accomplie et faire
de la recherche. Je ne l’aurais probablement pas envisagé pour moi-même si je n’avais pas
connu leur exemple.

8 Remerciements

Mais je ne serais jamais arrivée au LIAFA si je n’avais pas eu auparavant la chance de
passer par l’ENS. Ce qui pour moi fait la richesse de l’ENS, ce sont avant tout les personnes
qui la rendent vivante, et en particulier ses élèves. Bien sûr par leurs qualités scientifiques,
mais surtout par leurs qualités humaines. Mon entrée à l’ENS a été un peu comme la
découverte d’une seconde famille, et je suis certaine que les amitiés qui s’y sont nouées
le seront pour la vie. Véritable ville dans la ville, entre les cours, l’internat, la cantine,
et surtout les multiples activités, tellement nombreuses et attirantes que l’on ne sait où
donner de la tête ! En ce qui me concerne j’ai trouvé mon bonheur avec le club cirque, que
je remercie pour les vendredis soirs, les week-ends et les conventions, en particulier Émilia
et Florent, Christophe et Séverine, Denise et Jérôme, Chloé et Rémi, Ismaël, et Claude.
Merci à Émilia et Claude de m’avoir fait découvrir le cirque par leur enthousiasme et leur
patience, et aux autres de m’avoir donné envie de continuer grâce à leur complicité et la
bonne ambiance qu’ils font régner au club ! Je n’oublie pas non plus les multiples clubs de
danse : rock, valse, west coast swing, pompoms, danse indienne... Merci à tous les bons
cavaliers ;) et à tous ceux qui ont contribué à faire de ces clubs des endroits chaleureux
et vivants ! En particulier un grand merci à David pour m’avoir fait découvrir le west
coast swing, pour les confidences autour d’un verre et pour les balades dans Paris. Merci à
Rachel, blonde foncée (ben oui ça se voit extérieurement) pour avoir éveillé la danseuse qui
sommeillait en moi et pour m’avoir écrit des rôles sur mesure dans ses pièces de théâtre,
sans compter son apport à ma culture cinématographique de blonde (avec la complicité
d’Émilia, Denise, Irène et Manon !). Merci aussi à Camille, Simon, Fathi, Marie, Daphné,
Rémi, Béa et Matthias, pour la danse bien sûr, mais pas uniquement. Enfin je garderai
toujours un excellent souvenir de la courô, oasis de calme et de beauté verdoyante au milieu
du tourbillon parisien !

Au delà de mon ancienne école et de mon laboratoire, j’ai l’impression d’appartenir à
une communauté extrêmement chaleureuse dans laquelle je me suis épanouie durant ma
thèse, qui est la communauté de l’informatique-mathématique, et plus particulièrement
sa composante Aléa. Je remercie le GDR-IM pour les journées nationales et les écoles
jeunes chercheurs, une occasion bienvenue de rencontrer des thésards d’autres horizons et
de thématiques proches, et d’échanger nos expériences respectives. Merci aux membres de
l’ANR Magnum pour nos réunions et discussions extrêmement enrichissantes, et à l’équipe
combinatoire du LaBRI pour les JBC, placées sous les auspices de la bonne chère. En-
fin et surtout, je remercie tous les organisateurs successifs et participants à la conférence
Aléa, dont la réputation n’est plus à faire. J’apprécie chaque année sa qualité scientifique,
son cadre idyllique au bord des calanques, l’hébergement au CIRM, les pauses midi à
rallonge, le ping-pong, les joyeuses séances d’exercices, la fameuse soirée bouillabaisse, et
plus généralement l’excellente ambiance qui y règne ! Je voudrais remercier plus partic-
ulièrement Alice (pour le partage de chambres à Aléa et à Montréal, les soirées jeux et le
cirque sur les pelouses d’Oxford !), Basile (pour la musique, le Pérou, et les discussions
existentielles), Julien C. (pour la complicité et le squattage; pratique l’appart près de la
gare !), Gwendal (pour le Japon, le chabada et son flegme), Julien D. (pour les remparts
de Séville...), Valentin (pour son organisation sans faille de magnifiques voyages), Jérémie,
Matthieu, Axel et Adrien, chacun unique à sa façon, et je n’oublie pas Florent, les balades
dans les calanques et les loups-garous.

Au delà de ces exemples particuliers, je voudrais remercier plus généralement le milieu
de la recherche et de l’enseignement supérieur français en mathématiques et informatique
fondamentale, ou du moins la partie que j’ai eu l’occasion de côtoyer. Une fois de plus je
voudrais attirer l’attention sur les qualités humaines plutôt que sur les qualités scientifiques,

Remerciements 9

qui d’ailleurs ne sont pas en reste. J’ai vraiment l’impression que les gens essaient de
s’entraider et de se comprendre pour faire ensemble de belles choses, plutôt que de tenter
de tirer la couverture à soi comme cela peut malheureusement être parfois le cas ailleurs
ou dans d’autres domaines. De plus la confiance et l’autogestion des horaires de travail et
des choix scientifiques laissés aux chercheurs sont extrêmement stimulants.

Bien entendu la recherche n’est tout de même pas totalement un monde de bisounours,
et tout n’est pas toujours rose. La liberté implique des choix qui ne sont pas toujours
évidents, voire anxiogènes. De plus le caractère extrêmement pointu de la recherche fait
que même nos voisins de bureau ne comprennent pas vraiment ce que nous faisons, d’où
parfois le sentiment d’être vraiment seul face à ses problèmes, et totalement incompris. Et
aussi l’impression de ne pas être à la hauteur lorsqu’on cherche et que l’on ne trouve pas,
les moments de découragement lorsqu’on s’aperçoit que notre piste ne mène nulle part, et
l’irritante petite question dans les moments de doute : “Mais à quoi ça sert tout ça ?”.

Heureusement dans ce cas il suffit de s’ouvrir un peu, et il se trouve toujours un collègue
compatissant qui prête une oreille attentive à nos doléances, et qui nous explique pourquoi
même si tout cela est bien vrai, il n’échangerait sa place contre rien au monde !

Je voudrais remercier mes coauteurs, en particulier Dominique bien sûr, mais aussi
Mathilde, Frédérique, Carine, Guillaume et Mathieu. Le travail en groupe est toujours
extrêmement convivial et stimulant, et la confrontation avec des points de vues et des
méthodes et personnalités variées est extrêmement enrichissant.

Parmi les gens que je ne sais où placer car ils rentrent dans plusieurs cases, je voudrais
remercier Sandrine pour les discussions existentielles, ainsi que Hervé.

Je remercie aussi tous mes amis qui n’ont aucun rapport avec le monde de l’enseignement
supérieur et de la recherche, pour m’aider à rester ouverte au “monde réel” et à garder les
pieds sur terre. J’ai une pensée particulière pour mes deux amies d’enfance Claire et Danaé.
On se voit de moins en moins souvent, mais c’est chaque fois un grand plaisir !

Merci à tous les anonymes ou amis qui m’ont demandé au détour d’une conversation
en quoi consiste la recherche en maths et si ça sert à quelque chose, ce qui m’a permis de
prendre du recul en tentant de leur répondre.

Je remercie aussi les professeurs qui ont participé à développer mon goût pour le savoir
et les sciences, et j’en profite pour faire un pied de nez à ceux qui auraient pu m’en dégoûter
– spéciale dédicace à mes professeurs de mathématiques de 4e et de seconde !

Je dois beaucoup à ma famille, que je remercie de m’avoir toujours soutenue. Je sais que
quels que soient les problèmes dans le grand vilain monde extérieur, je pourrai toujours
trouver à la maison un cocon protecteur, havre de paix et de quiétude. En particulier
je remercie mon père de me comprendre et pour ses conseils, ma mère d’être une source
inépuisable d’optimisme, toujours à voir coûte que coûte le bon côté des choses et à chercher
des solutions (souvent astucieuses !), ma sœur d’être ma complice depuis tant d’années (on
ne compte plus les crises de fous rires et les confidences !), et mon frère simplement de
continuer à être là de temps en temps malgré la distance.

J’ai une petite pensée pour mes grands-parents, dont je devine la fierté.
Je remercie plus globalement la famille plus élargie pour tous les bons moments passés

ensemble. Quelle chance d’avoir une famille si soudée !

Enfin, merci à toi qui te reconnaîtra d’être tombé du ciel au moment où j’avais le plus
besoin de toi. Ta présence à mes côtés, ta confiance et ta patience me rendent plus forte et

10 Remerciements

me poussent à donner le meilleur de moi-même, en particulier durant cette période intense
de fin de thèse.

Introduction

L’un des objectifs des mathématiques est de fournir une base théorique à l’étude du monde
réel à travers l’utilisation de ses modèles abstraits en physique, chimie ou biologie. En
effet le réel est intrinsèquement compliqué et il est nécessaire de le simplifier, de l’abstraire
et de le modéliser pour le comprendre. Dans cette optique, on souhaite que les résultats
théoriques obtenus puissent avoir des applications sur les objets réels dont les modèles
mathématiques sont issus. L’équilibre est difficile à trouver entre trop abstraire et mod-
éliser, au risque que les résultats théoriques ne soient plus applicables aux objets réels,
ou au contraire ne pas assez abstraire et modéliser et avoir des objets mathématiques
trop compliqués pour pouvoir obtenir le moindre résultat théorique. Il faut trouver un
compromis entre puissance des résultats théoriques et applicabilité desdit résultats.

Au fil des siècles, tant de connaissances et de données scientifiques ont été amassées
qu’il n’est plus possible d’être un spécialiste à la pointe de la recherche dans toutes les
disciplines scientifiques: en effet une vie entière ne suffit pas à s’approprier tous les résultats
obtenus au cours de l’histoire. Pour réussir à traiter la quantité de données amassées, et
pour automatiser les calculs et ainsi gagner du temps, l’homme à eu recours à la machine,
donnant naissance à l’informatique.

La combinatoire et l’algorithmique sont deux grands domaines de l’informatique théorique,
situés à la frontière entre les mathématiques et l’informatique. L’idée est d’utiliser les
théories mathématiques pour obtenir des résultats qui puissent être utilisés par des ma-
chines. Le principe de l’algorithmique est de donner des méthodes pour automatiser le
calcul de la réponse à certains problèmes, afin qu’il puisse être effectué par une machine.
Il est important que ces méthodes soient efficaces. En effet, devant la multitude de don-
nées amassées et la taille immense de ces données, par exemple en biologie concernant
le séquençage de l’ADN, trouver un algorithme efficace permet dans certains cas de faire
passer le temps de calcul de plusieurs centaines d’années à quelques minutes, ce qui rend
envisageable en pratique des calculs qui auparavant restaient dans le domaine du théorique.

La combinatoire, elle, se concentre sur l’étude des “configurations”, c’est-à-dire des
structures discrètes respectant certaines contraintes bien formalisées. Ces structures sont
des modèles d’objets réels que l’on cherche à décrire avec des règles formelles simples.

L’une des branches les plus anciennes de la combinatoire est le dénombrement : lorsque
les structures étudiées sont munies d’une notion de taille telle que pour tout entier n
le nombre d’objets de taille n est fini (on appelle classe combinatoire un ensemble de
structures vérifiant une telle propriété), on cherche à calculer le nombre d’objets de taille
n pour tout entier n. Idéalement, on espère trouver une formule close en fonction de n,
mais l’existence d’une telle formule n’est pas garantie. On peut aussi s’intéresser à la
série génératrice de la classe combinatoire, qui est une fonction codant le nombre d’objets
de taille n pour tout n. Dans ce cas on cherche à obtenir une expression de la série
génératrice, ou un système d’équations satisfait par la série génératrice. Enfin on peut

12 Introduction

chercher un équivalent asymptotique du nombre d’objets de taille n lorsque n tend vers
l’infini.

L’étude du dénombrement s’est beaucoup développée avec l’essor des probabilités et
des statistiques, au point que certains scientifiques ont tendance à assimiler combinatoire
et dénombrement.

Cependant la combinatoire, loin de se limiter au dénombrement, est un domaine où les
problèmes sont extrêmement riches et divers, et comporte de nombreuses autres branches.

On peut citer par exemple la génération exhaustive ou la génération aléatoire des objets
étudiés, qui permettent entre autres de vérifier des conjectures ou de tester des algorithmes.

La combinatoire s’attache aussi à décrire les propriétés intrinsèques des structures
étudiées, à caractériser les objets étudiés de la façon la plus simple possible, diverses car-
actérisations pour les mêmes structures pouvant se révéler adaptées à différents aspects de
l’étude de ces structures, à étudier les transformations d’une structure en une autre (par ex-
emple au moyen de bijections entre classes combinatoires), ou à étudier les sous-structures
que l’on peut extraire d’une structure donnée.

Pour plus de détails à propos des objectifs de la combinatoire, se référer à l’introduction
intitulée Qu’est ce que la combinatoire ? du livre [Ber68].

Combinatoire et algorithmique sont naturellement liées. En effet la combinatoire est
très utile à l’algorithmique : connaître la structure des objets étudiés et leurs propriétés
combinatoires permet d’obtenir des algorithmes plus efficaces. De plus le dénombrement,
qui est une branche de la combinatoire, permet d’analyser la complexité des algorithmes,
et la génération aléatoire permet de tester les algorithmes en pratique.

Inversement, l’algorithmique est utile à la combinatoire. En effet, lorsqu’un théorème
de combinatoire permet d’affirmer l’existence d’une certaine structure, il est naturel de
chercher un algorithme qui permet de tester si un objet donné vérifie les hypothèses du
théorème assurant l’existence de la structure, et aussi de chercher un algorithme qui calcule
ladite structure.

Cette thèse illustre ces deux aspects du lien entre algorithmique et combinatoire, en
se concentrant sur le cas des classes de permutations : dans la première partie on utilise
l’algorithmique pour décider si une classe de permutations contient un nombre fini de per-
mutations simples, ce qui est l’hypothèse du théorème principal de [AA05], qui assure alors
que la série génératrice de la classe permutations est algébrique. De plus on donne un algo-
rithme permettant de calculer une spécification combinatoire de la classe de permutations
lorsque cette hypothèse est vérifiée, ce qui permet entre autres de calculer la série généra-
trice. Dans la seconde partie, on utilise une étude combinatoire des permutations afin
d’obtenir un algorithme polynomial résolvant un problème conjecturé NP-complet dans
la littérature, à savoir le problème de décision de l’appartenance d’une permutation à la
classe des permutations triables par deux piles connectées en série.

Les objets combinatoires au cœur de cette thèse sont les permutations, vues comme des
mots composés de lettres distinctes et ordonnées. Ici on ne s’intéressera pas aux propriétés
algébriques des permutations, en particulier on n’utilisera pas la notion de groupe, ni même
la composition des permutations. On se concentrera plutôt sur les permutations vues
comme une généralisation bi-dimensionnelle des mots : les lettres ne sont pas seulement
ordonnées entre elles par leur ordre d’apparition dans le mot, mais aussi par leur valeur.
Plus précisément, dans cette thèse une permutation de taille n sera considérée comme un
mot de n lettres contenant une unique fois chaque lettre de 1 à n.

On s’intéresse en particulier à la notion de motif dans les permutations, qui est une
généralisation naturelle de la notion de sous-mot : un sous-mot est obtenu à partir d’un

Introduction 13

mot en sélectionnant les éléments apparaissant à certains indices ; le sous-mot est obtenu
en renormalisant les indices : l’élément apparaissant au premier indice sélectionné dans
le mot devient l’élément d’indice 1 du sous-mot, l’élément apparaissant au second indice
sélectionné dans le mot devient l’élément d’indice 2 du sous-mot, et ainsi de suite. Les
permutations étant une généralisation bi-dimensionnelle des mots, avec un ordre à la fois
sur les indices et sur les valeurs des lettres, il est logique que la notion de motif, généralisant
celle de sous-mot, subisse une double normalisation, à la fois sur les indices et sur les
valeurs. Ainsi si dans une permutation on sélectionne les éléments apparaissant à certains
indices, disons k indices distincts, qu’on les garde dans le même ordre d’apparition en
renormalisant les indices de 1 à k, et qu’on renormalise aussi les valeurs de 1 à k en
gardant l’ordre relatif des valeurs des lettres, on obtient une seconde permutation qui est
motif de la première. Par exemple 132 est un motif de la permutation 31487265 qu’on
peut obtenir en sélectionnant les éléments 4, 7 et 5 apparaissant aux indices 3, 5 et 8 et en
effectuant la double normalisation en indice et en valeur.

La relation de motif étant une relation d’ordre partiel, il est naturel de s’intéresser aux
ensembles fermés par le bas pour cette relation, que l’on appelle classes de permutations.
En d’autres termes, si une permutation σ appartient à une classe de permutations C, alors
tous les motifs de σ appartiennent aussi à C ; de plus cette propriété caractérise les classes
de permutations.

L’ensemble de toutes les permutations est trivialement une classe de permutations. Le
premier exemple non trivial de classe de permutations que l’on trouve dans la littérature
est l’ensemble des permutations triables par une pile, étudié par Donald Knuth dans le
volume 1 de The Art of Computer Programming [Knu68] en 1968 avant que la notion de
motif n’ait été formalisée.

La combinatoire des classes de permutations est maintenant un domaine bien établi,
en pleine expansion depuis les années 90. Jusque dans les années 2000, la plupart des
articles se concentrent sur l’étude d’une classe de permutations donnée, dont la base est
finie et explicite et contient souvent des motifs de taille seulement 3 ou 4. Depuis une
dizaine d’années, une nouvelle ligne de recherche a émergé, essayant d’obtenir les résultats
les plus généraux possibles sur les classes de permutations. La première partie de cette
thèse s’inscrit dans cette dernière ligne de recherche. La deuxième partie de la thèse revient
aux origines des classes de permutations, à savoir l’étude du tri par piles.

L’outil principal utilisé dans cette thèse est la décomposition par substitution des per-
mutations. La décomposition par substitution est un principe général, qui s’applique à
d’autres structures que les permutations, par exemple aux graphes. L’idée, comme pour la
décomposition des nombres entiers en facteurs premiers, est de décomposer l’objet en struc-
tures plus simples à manipuler car plus petites que l’objet initial et ayant des propriétés
plus fortes : les structures premières (appelées aussi simples ou indécomposables).

Contributions et plan détaillé de la thèse

Cette thèse s’inscrit dans la cadre de la combinatoire des classes de permutations. Les
principaux objectifs de la thèse sont de nature algorithmique. Plus précisément la pre-
mière partie de la thèse fournit une chaîne entièrement algorithmique pour calculer une
spécification combinatoire pour une classe de permutations de base finie (sous certaines
conditions testées algorithmiquement). La seconde partie donne un algorithme polynomial
pour résoudre un problème ayant été conjecturé NP-complet dans la littérature, à savoir
le problème d’appartenance d’une permutation à la classe des permutations triables par
deux piles connectées en série.

14 Introduction

On commence dans une partie préliminaire par rappeler les définitions et notations
ainsi que quelques résultats généraux concernant les classes de permutations.

Partie I

La partie 1 de la thèse puise sa source dans l’article [AA05], qui établit le théorème suivant :

Theorem 0.1. Si une classe de permutations contient un nombre fini de permutations
simples, alors sa base est finie et sa série génératrice est algébrique.

Comme remarqué dans [AA05], la preuve de ce théorème est constructive, et permet
d’obtenir un sytème d’équations pour la série génératrice en utilisant le principe d’inclusion-
exclusion. En adaptant cette preuve en contournant le principe d’inclusion-exclusion, on
obtient une spécification combinatoire de la classe, à savoir un système d’équations com-
binatoires non-ambigu qui décrit récursivement les permutations de la classe à partir de
la permutation de taille 1 en utilisant seulement des constructions combinatoires (union
disjointe, produit cartésien, suite...). Cette spécification combinatoire donne une meilleure
compréhension de la classe puisqu’elle en décrit les éléments, de plus elle permet par des
méthodes automatiques d’obtenir un système d’équations positives satisfait par la série
génératrice de la classe, et de faire de la génération aléatoire de permutations de la classe.

La première partie de la thèse décrit une chaîne algorithmique qui teste si une classe
contient un nombre fini de permutations simples et le cas échéant en calcule une spécifica-
tion combinatoire.

Chapitre 1

Le chapitre 1 étudie le poset (c’est-à-dire l’ensemble partiellement ordonné) des permu-
tations simples pour l’ordre donné par la relation de motif entre permutations. Les per-
mutations simples sont les briques de base dans la décomposition par substitution des
permutations, et elles jouent un rôle crucial dans l’étude de la structure des classes de
permutations (voir [Bri10] pour un résumé sur les permutations simples).

Dans le chapitre 1, on part des résultats généraux obtenus par Schmerl et Trotter
sur les structures de relations binaires irréflexives [ST93] que l’on raffine dans le cas des
permutations. Parmi les structures indécomposables (qui correspondent aux permutations
simples), Schmerl et Trotter distinguent les structures indécomposables critiques, qui corre-
spondent aux permutations exceptionnelles définies dans [AA05]. En utilisant les résultats
de [ST93], on montre que si σ et π sont des permutations simples telles que π est motif de
σ (ce qu’on note π < σ), alors il existe une chaîne de permutations σ(0), σ(1), . . . , σ(k) telle
que σ(0) = σ, σ(k) = π, σ(i+1) < σ(i) et |σ(i)|− |σ(i+1)| ∈ {1, 2} pour tout i, |σ| désignant la
taille de la permutation σ. En utilisant les propriétés des permutations simples, on renforce
ce résultat pour obtenir le résultat principal de ce chapitre : si σ n’est pas exceptionnelle,
alors on peut trouver une telle chaîne de permutations telle que les différences de taille
soient toutes de 1, et si σ est exceptionnelle, alors les différences de taille soient toutes de
2.

On donne ensuite plusieurs conséquences de ce résultat, qui permettent de mieux com-
prendre la structure du poset des permutations simples. Tout d’abord on sait que lorsque
l’on supprime un point d’une permutation simple, le motif obtenu (en renormalisant le
résultat) est une permutation qui n’est pas forcément simple. Étant donnée une permu-
tation simple fixée, on s’intéresse aux points qui, lorsqu’ils sont supprimés, donnent un
motif simple. On montre que ces points sont quasiment tous les points de la permutation ;

Introduction 15

plus précisément on montre que le nombre moyen Dn de tels points pour une permutation
simple de taille n vérifie Dn = n− 4− 4

n +O(1
n2). De plus, les motifs simples obtenus en

supprimant ces points sont tous distincts. On étudie symétriquement le nombre de points
que l’on peut ajouter à une permutation simple de taille n de sorte qu’elle reste simple :
on montre qu’il vaut exactement (n+ 1)(n− 3) et que les sur-permutations obtenues sont
toutes distinctes.

Par ailleurs, le résultat principal du chapitre nous permet également de concevoir un
algorithme polynomial (par rapport à la taille de la sortie) pour générer les permutations
simples d’une classe de permutations close par substitution ayant une base finie, en prenant
en entrée la base. Cet algorithme commence par considérer les permutations simples de
taille 4 et itère sur la taille des permutations. Les résultats obtenus sur le poset des
permutations simples permettent de trouver en temps polynomial les permutations simples
de taille n+ 1 de la classe en connaissant seulement les permutations simples de taille n et
n− 1 de la classe. Notons que notre algorithme ne requiert aucun test de motif. Bien que
nous décrivions cet algorithme dans le cadre général des classes closes par substitution, nous
l’appliquons aux classes ne contenant qu’un nombre fini de permutations simples. En effet
l’algorithme termine si et seulement si la classe contient un nombre fini de permutations
simples. Il peut également être utilisé pour générer les permutations simples de toute classe
close par substitution jusqu’à une taille donnée, même si le nombre total de permutations
simples de la classe est infini. La complexité globale de cet algorithme est polynomiale en
le nombre de permutations simples de la classe. Enfin on adapte cet algorithme pour les
classes qui ne sont pas closes par substitution, au prix d’une perte d’efficacité.

Le chapitre 1 permet donc de mieux comprendre la structure du poset des permutations
simples, et fournit un algorithme qui est l’une des étapes de la chaîne algorithmique décrite
dans la partie 1.

Chapitre 2

Le chapitre 2 est consacré à une autre étape de la chaîne algorithmique décrite dans la
partie 1, à savoir décider si une classe donnée par sa base (finie) contient un nombre fini de
permutations simples. Remarquons que le fait de considérer uniquement des bases finies
n’est pas une restriction, car on sait d’après un résultat de [AA05] que si la base est infinie,
alors la classe contient un nombre infini de permutations simples.

Notre algorithme suit la structure de la méthodologie donnée par [BRV08], où il est
prouvé qu’on peut décider en 3 étapes si une classe contient un nombre fini de permutations
simples, en testant si la classe contient un nombre fini de permutations de 3 types : les
permutations parallèles, les permutations simples en chevron, et les permutations en épin-
gles propres. Cependant l’article [BRV08] s’attache uniquement à montrer que le problème
est décidable, et non à fournir un algorithme effectif pour le résoudre.

En étudiant en détails la procédure de décision donnée par [BRV08], on peut montrer
qu’elle est algorithmisable, mais de complexité fortement exponentielle. Plus précisément,
en utilisant un résultat de [AAAH01] et la caractérisation des permutations parallèles et
simples en chevron donnée dans [BRV08], on montre que les 2 premières étapes peuvent
s’effectuer en temps O(`.m logm), où ` est le nombre de permutations de la base, et m
la taille maximale d’une permutation dans la base. Par contre en suivant la procédure
de [BRV08], la dernière étape s’effectue en temps au moins O(2m.`.2

m
). De plus, cette

dernière étape nécessite d’identifier les éléments de la base qui sont des permutations en
épingle et de calculer l’ensemble des mots d’épingles qui leur sont associés, deux problèmes
dont l’algorithmisation n’est pas traitée dans [BRV08].

16 Introduction

En se basant sur l’étude des permutations simples réalisées dans [BBR11], on donne
un algorithme effectif pour cette dernière étape, de complexité O(n log n+ s2k) où n est la
somme des tailles des permutations de la base B, s est la taille maximale d’une permutation
en épingle de B et k est le nombre de permutations en épingle de B. On utilise le même
codage des permutations en épingles par des mots sur un alphabet fini que dans [BRV08],
et on utilise la théorie des automates. Notre construction d’automates est algorithmique
et efficace.

De plus dans le cas particulier des classes closes par substitution, on donne une vari-
ante de notre algorithme qui est linéaire en n sur cette dernière étape, et de complexité
O(n log n) au total.

Chapitre 3

Dans le chapitre 3, on donne un algorithme pour calculer une spécification combinatoire
pour une classe de permutations à partir de sa base et de son ensemble de permutations
simples, en supposant que ce dernier est fini (ce qui d’après le théorème 0.1 implique que
la base elle aussi est finie). Remarquons qu’avec les résultats des chapitres 1 et 2, il est
suffisant de connaître la base pour pouvoir décider si le nombre de permutations simples
de la classe est fini et pour pouvoir les calculer le cas échéant. Le chapitre 3 clôt donc la
chaîne algorithmique de la partie 1.

Après quelques rappels sur les structures combinatoires et la génération aléatoire, le
chapitre 3 part de la preuve du théorème 0.1 de [BBR11] : en explicitant et détaillant
cette preuve, on la transforme en un algorithme effectif qui utilise la décomposition par
substitution des permutations pour obtenir une grammaire algébrique décrivant les arbres
de décomposition des permutations de la classe. Cependant la grammaire obtenue peut
être ambiguë. Dans [BBR11], l’ambiguïté est levée en utilisant l’inclusion-exclusion, ce
qui peut faire apparaître des termes négatifs que nous ne voulons éviter car ils n’ont pas
de sens combinatoire. On utilise donc une autre méthode qui nous permet d’obtenir une
spécification combinatoire : on transforme les unions non disjointes en unions disjointes de
termes étant définis à la fois par des motifs exclus et par des motifs obligatoires (et non
plus uniquement par des motifs exclus comme c’est le cas des classes de permutations). De
plus on donne un exemple complet du déroulement de cette méthode.

Obtenir une spécification combinatoire permet d’avoir une description combinatoire
récursive de nos objets, d’obtenir un système d’équations pour la série génératrice, et
surtout de faire de la génération aléatoire de permutations de la classe. Notre chaîne
algorithmique permet donc d’obtenir un outil pouvant servir à tester des conjectures, et à
pousser plus loin l’étude des classes de permutations. Cependant cette chaîne algorithmique
ne calcule son résultat que lorsque le nombre de permutations simples de la classe est fini.

Notons que l’article [BHV08b] étend le résultat de [AA05] en prouvant que la série
génératrice de certains sous-ensembles d’une classe contenant un nombre fini de permu-
tations simples est algébrique. Cette preuve est elle aussi constructive et n’utilise pas
d’inclusion-exclusion. Il est donc possible que les résultats du chapitre 3 puissent être
généralisés en transformant la preuve de [BHV08b] en un véritable algorithme. Enfin, la
complexité de l’algorithme donné dans le chapitre 3 reste à analyser.

Partie II

La partie II est consacrée au tri des permutations avec 2 piles connectées en série. Plus
précisément, on donne un algorithme polynomial pour décider si une permutation est

Introduction 17

triable par 2 piles en série. Cet algorithme s’appuie sur une nouvelle notion introduite
dans cette thèse, qui est la notion de tri par sas (pushall sorting en anglais).

Chapitre 4

Le chapitre 4 introduit une nouvelle restriction du tri avec deux piles en série, appelé tri
par sas. Il s’agit d’un tri en deux étapes, une première étape où l’on doit d’abord mettre
tous les éléments dans les piles sans rien écrire en sortie, et une seconde étape où l’on sort
les éléments des piles (on n’a plus rien le droit de prendre dans l’entrée). On montre que
pour un tel type de tri, la connaissance de l’état des piles (appelé configuration de piles) à
la fin de la première étape caractérise l’ensemble du processus de tri.

En utilisant les configurations de piles et la décomposition par substitution des per-
mutations, on donne des conditions nécessaires et suffisantes récursives pour qu’une per-
mutation à racine linéaire (notion définie par la suite dans les préliminaires) soit triable
par deux piles en série (abrégé en 2-triable) ou triable par sas (abrégé en sas-triable). On
remarque que l’ensemble des permutations sas-triables est une sous-classe de la classe des
permutations 2-triables, et que ces deux classes sont très liées. On caractérise les per-
mutations à racine linéaire de la base de chacune des deux classes, et on montre que la
base des permutations sas-triables est infinie (on sait aussi d’après [Mur02] que la base des
permutations 2-triables est infinie).

Enfin on donne un algorithme polynomial pour décider si une permutation est sas-
triable. On commence par prouver qu’une permutation est sas-triable si et seulement si
son diagramme admet un certain type de bicoloriage, appelé bicoloriage valide et défini par
des motifs colorés exclus. On montre qu’on peut décider en temps linéaire par rapport à
la taille n de la permutation si un bicoloriage est valide, et on montre qu’une permutation
indécomposable a au plus 9n coloriages valides (pour une notion d’indécomposabilité définie
par la suite et notée 	-indécomposable). Grâce à la décomposition des permutations, ceci
nous donne un algorithme en O(n2) qu’on prouve optimal pour calculer un codage de
tous les processus de tri par sas d’une permutation donnée. En particulier cet algorithme
permet de décider si une permutation est triable par sas.

Chapitre 5

Le chapitre 5 décrit un algorithme polynomial permettant de décider si une permutation
est triable par 2 piles en série. Ceci clôt une question restée longtemps ouverte ; par ailleurs
ce problème a été conjecturé NP-complet dans la littérature.

Décider si une permutation est triable par une unique pile est simple car toute permuta-
tion triable admet exactement un tri. Par contre avec deux piles en série, une permutation
peut être triable de nombreuses façons différentes. Par exemple la permutation décrois-
sante de taille n admet 2n−1 procédures de tri. Il est difficile de décider si une permutation
est 2-triable car tester tous les tris possibles est exponentiel, et il y a pas de tri canonique
connu : les tris glouton connus ne trient qu’une partie des permutations 2-triable.

L’une des clés de l’algorithme polynomial du chapitre 5 est de limiter le nombre de tris
à tester en définissant une propriété P sur les tris, et en prouvant que toute permutation
2-triable admet un tri respectant une propriété appelée P . Cette propriété P correspond
en quelque sorte à faire sortir les petits éléments des piles le plus vite possible. Par exemple
la propriété P implique que si σki est un minimum droite-gauche (appelé aussi élément
saillant inférieur droit), alors tous les éléments plus petits que σki sont déjà sortis des piles
lorsque σki y entre.

18 Introduction

L’algorithme procède en s étapes, où s est le nombre de minima droite-gauche de σ.
Soit σki le i-ème minimum droite-gauche de σ, à l’étape i l’algorithme calcule tous les tris
vérifiant la propriété P du préfixe de σ finissant par σki . Pour décider si σ est triable, il
suffit alors de tester si l’ensemble calculé à la dernière étape est non vide.

Un second point clé de l’algorithme est de coder l’ensemble de tris calculés, qui peuvent
être en nombre exponentiel, sous la forme d’un graphe de taille polynomiale qu’on appelle
un graphe de tri. Le graphe de l’étape i + 1 est calculé à partir du graphe de l’étape i et
de l’ensemble des tris par sas d’une sous-permutation définie par σki+1

qui sont calculés en
faisant appel à l’algorithme du chapitre 4.

La notion de tri par sas définie dans cette thèse est essentielle à notre algorithme
polynomial.

Cette notion de tri par sas peut se généraliser pour t piles en série avec t > 2, mais il
semble difficile de l’utiliser pour obtenir un algorithme polynomial décidant si une permu-
tation est triable par t piles en série.

Preliminaries: Definitions and some
background

0.1 Permutation patterns and permutation classes

In this section we define the concepts used throughout the thesis. In particular, we start
by defining the one main object, namely the permutations.

Definition 0.2. For any integers i and j, let us denote by [i..j] the interval of integers
between i and j: [i..j] = {k ∈ N | i ≤ k ≤ j}. A permutation of size n is a bijective
function from [1..n] onto itself. We denote by |σ| the size of a permutation σ, Sn the set
of permutations of size n and S = ∪n≥1Sn the set of all permutations.

For all i ∈ [1..n], we denote by σi = σ(i) the image of i by σ. We say that the element
σi of σ has index i and value σi. We write a permutation σ ∈ S as the word σ = σ1σ2 . . . σn
where n = |σ|. A permutation of size n is then a word containing each integer from 1 to
n exactly once.

Example 0.3. The permutation σ = 3 5 1 4 2 is the bijective function such that σ(1) = 3,
σ(2) = 5, σ(3) = 1, σ(4) = 4 and σ(5) = 2.

We usually write permutations as words, but it will also be useful to have a pictorial
description of permutations, which we now introduce.

Definition 0.4. The diagram of a permutation σ ∈ Sn is the set of points in the plane at
coordinates (1, σ1), (2, σ2), . . . , (n, σn). Figure 1 shows an example of such a diagram.

The leftmost (resp. rightmost, lowest, topmost) point of σ is the point (1, σ1) (resp.
(n, σn), (σ−1(1), 1), (σ−1(n), n)) in the diagram of σ. We say that (i, σi) is in a corner of
the diagram of σ if (i, σi) ∈ {(1, 1), (1, n), (n, 1), (n, n)}.

To shorten notations, we sometimes write σi to refer to the point (i, σi).

i

σ(i)

Figure 1: Diagram of σ = 1 8 3 6 4 2 5 7

20 Preliminaries: Definitions and some background

Definition 0.5. The bounding box of a set of points E in the plane is the smallest axis-
parallel rectangle containing the set E (see Figure 2). This box defines nine regions in the
plane that form a partition of the plane:

• The bounding box itself.

• The sides of the bounding box (L,R,U,D on Figure 2 for left, right, up, down).

• The corners of the bounding box (1, 2, 3, 4 on Figure 2).

3

2 1

4

RL

D

U

Figure 2: Diagram of σ = 12 13 11 3 1 7 10 2 9 8 5 6 4 and the bounding box of {7, 2, 9, 5, 6}.

Since we consider permutations as words, it is natural to consider subwords of permu-
tations. But a subword w of a permutation σ ∈ S is not necessarily an element of S as
there is no reason for w to contain each integer from 1 to |w| exactly once. We have to
renormalize w to obtain a permutation.

Definition 0.6. Two sequences w = w1 . . . wk and v = v1 . . . vk of distinct integers are
order isomorphic if they have the same relative comparisons, that is, for all i, j ∈ [1..n],
wi < wj if and only if vi < vj .

The normalization of w is the unique σ ∈ Sk such that w is order isomorphic to σ.

Example 0.7. The normalization of 2 5 4 9 is 1 3 2 4.

Using normalization, we can define a relation on permutations similar to the notion of
subwords.

Definition 0.8. A permutation π = π1 . . . πk is a pattern of the permutation σ = σ1 . . . σn
if σ has a subsequence that is order isomorphic to π, that is, k ≤ n and there exist indices
1 ≤ i1 < i2 < . . . < ik ≤ n such that σi` < σim whenever π` < πm.

Then σi1 . . . σik is called an occurrence of π in σ and we say that σ contains π. Otherwise
σ is said to avoid π.

Example 0.9. The permutation σ = 1 4 2 5 6 3 contains the pattern 1 3 4 2 whose
occurrences in σ are 1 5 6 3, 1 4 6 3, 2 5 6 3 and 1 4 5 3. But σ avoids the pattern 3 2 1
as none of its subsequences of length 3 is order isomorphic to 3 2 1, i.e. is decreasing.

Remark 0.10. The pattern containment relation is a partial order on S. We then write
π ≤ σ to denote that π is a pattern of σ, and we write π < σ when π ≤ σ and π 6= σ.

0.1 Permutation patterns and permutation classes 21

The notion of pattern in permutation can be visualised using diagrams. To obtain a
pattern of a permutation σ, start with the diagram of σ, select some points and delete the
others, finally delete blank rows and columns from the diagram. The diagram obtained is
then the diagram of a pattern of σ (see Figure 3).

×

×

Figure 3: The permutation 3 5 1 4 2 contains 2 1 3 as a pattern.

Although the notion of pattern comes from the concept of subword, normalization
makes it much more complicated. For instance, deciding whether a word is a subword of
another can be done in linear time w.r.t. the sizes of the words, while the same decision
problem is NP-complete for permutation patterns (see [BBL98]).

The concept of pattern is used in particular in the definition of permutation classes.
Permutation classes arise naturally in a variety of settings, ranging from sorting (see, e.g.,
Bóna’s survey [B0́3]) to algebraic geometry (see, e.g., Lakshmibai and Sandhya [LS90]).
This thesis focuses on the study of permutation classes, which we now define.

Definition 0.11. A permutation class is a set of permutations closed downwards under
pattern relation. In other words, a set C is a permutation class if and only if for any σ ∈ C,
if π ≤ σ, then π ∈ C.

Example 0.12. The set ∪∞n=1{1 2 . . . n} is a permutation class whereas {4 2 3 5 1, 3 2 1} is
not a permutation class.

A permutation class may be given by a property stable for <, or may be defined with
excluded patterns.

Definition 0.13. Let E be any set of permutations, we denote by Av(E) the set of
permutations avoiding every element of E: Av(E) = {σ ∈ S | ∀π ∈ E, π � σ}

Proposition 0.14. For any set E of permutations, Av(E) is a permutation class.

Two distinct sets of permutations E and F may give the same set (i.e. Av(E) = Av(F))
when there are relations between elements of E or of F . To avoid this, we use the concept
of antichains.

Definition 0.15. An antichain is a set of pairwise incomparable elements. More precisely,
a set E of permutations is an antichain if for any σ 6= π in E, π � σ.

Theorem 0.16. For any permutation class C, there is a unique (possibly infinite) antichain
B such that C = Av(B). This antichain B, which consists of the minimal permutations
not in C, is called the basis of C. More formally, B = {σ /∈ C | ∀π < σ, π ∈ C}.

The name basis may be confusing: contrary to basis of vector spaces for instance,
elements of the basis of a permutation class do not belong to the class.

Permutation classes are characterized by their bases. But some permutation classes
have infinite bases. This is the case for example for the class of 2-stack sortable permuta-
tions studied in Part 2.

22 Preliminaries: Definitions and some background

We denote by Cn the set C ∩ Sn, that is, the permutations in C of size n, and we refer
to
∑
|Cn|xn as the generating function for C.

Permutation classes have been widely studied in the literature, mainly from a pattern-
avoidance point of view. See [BM03, Eli04, KM03, Vat08] among many others. The main
result about the enumeration of permutation classes is the recent proof of the Stanley-Wilf
conjecture by Marcus and Tardos [MT04], who established that for any class C, there is a
constant c such that the number of permutations of size n in C is at most cn.

0.2 Substitution decomposition of permutations

Substitution decomposition is a general framework, adapted to various families of discrete
objects [MR84], that is based on core items and relations and in which every object can
be recursively decomposed into core objects using relations. In the case of permutations,
core elements are simple permutations and the relations are substitutions.

The substitution decomposition of permutations is somehow similar to prime factor-
ization of integers. There is indeed existence and uniqueness of the decomposition. The
ground permutations playing the role of prime numbers are the simple permutations, which
are defined thanks to the notion of interval (or block).

Definition 0.17. An interval of a permutation σ is a set of contiguous indices I = [k..k+
` − 1] such that the set of values σ(I) = {σ(i) | i ∈ I} also forms an interval of natural
numbers.

A block of σ is a factor σkσk+1 . . . σk+`−1 of σ such that the set of values {σk, σk+1, . . . , σk+`−1}
is an interval.

The integer ` is called the size of the interval or of the block.

Intervals and blocks convey the same notion: a set of elements {(k1, σk1), (k2, σk2), . . . , (k`, σk`)}
whose set of indices {k1, . . . , k`} and set of values {σk1 , σk2 , . . . , σk`} both form intervals
of natural numbers. However this notion can be defined from the point of view of indices
or from the point of view of values.

Example 0.18. 5 7 4 6 is a block of 2 5 7 4 6 1 3 whose corresponding interval is [2..5].

Remark 0.19. A factor σkσk+1 . . . σk+`−1 is a block of σ if and only if on the diagram of
σ, the bounding box of {σk, σk+1, . . . , σk+`−1} has no point on its sides.

More generally in the diagram of σ, any bounding box of points without any point on
its sides corresponds to a block of σ. Then this bounding box is a square which is itself a
diagram of a permutation (if translated to the origin).

This is illustrated by Figure 4.

Figure 4: The block 3 5 4 in the permutation 6 3 5 4 1 7 2.

Every permutation σ ∈ Sn has blocks (resp. intervals) of sizes 1 and n: the singletons
{i} with 1 ≤ i ≤ n and σ itself (resp. [1..n]).

0.2 Substitution decomposition of permutations 23

Definition 0.20. An interval or block of a permutation σ ∈ Sn is trivial if it is of size 1
or n, i.e. if it is either a singleton or the whole permutation.

Definition 0.21. A permutation is simple if it contains no block, except the trivial ones
and if it is not 1, 12 or 21.

Notice that the permutations 1, 12 and 21 also have only trivial intervals, nevertheless
they are not considered to be simple in this thesis. Just as 1 is not considered as a prime
number in the factorization of integers, it is natural not to consider the permutation 1
as simple. The choice of considering 12 and 21 as not simple is not widely shared in the
literature. However 12 and 21 have a different behaviour than other simple permutations,
as we will see for example in Theorem 0.27. Moreover this choice will simplify many
statements.

As no permutation of size 3 has only trivial intervals, the smallest simple permutations
are of size 4. There are two of them: 2413 and 3142.

We can check on the diagram of a permutation whether it is simple: A permutation
different from 1, 1 2 and 2 1 is simple if and only if on its diagram, every non-trivial bounding
box has at least a point on its side (see Remark 0.19).

Example 0.22. The permutation 6 3 5 4 1 7 2 is not simple as shown in Figure 4, whereas
3 1 7 4 6 2 5 is a simple permutation (see Figure 5).

Figure 5: The permutation 3 1 7 4 6 2 5 is simple: each non-trivial bounding box has a point
on its side.

For a detailed study of simple permutations, in particular from an enumerative point of
view, we refer the reader to [AA05, AAK03, Bri10]. Let us only mention that the number
of simple permutations of size n is asymptotically equivalent to n!

e2
as n grows:

Theorem 0.23 (Theorem 5 of [AAK03]). Let sn be the number of simple permutations of
size n. Then:

sn =
n!

e2

(
1− 4

n
+

2

n(n− 1)
+O(n−3)

)
Blocks and simple permutations are the two key concepts involved in substitution

decomposition. We now define substitution.
If σ is a permutation of Sn and π ∈ Sp then substituting π in σ at position i leads

to the permutation α = σ̄1σ̄2 . . . σ̄i−1(π1 + σi − 1) . . . (πp + σi − 1)σ̄i+1 . . . σ̄n+p−1 where

σ̄j =

{
σj if σj ≤ σi,
p+ σj − 1 otherwise.

For convenience, as multiple substitutions can occur in a

permutation we will denote by σ[1, 1, . . . , 1, π︸︷︷︸
i

, 1, . . . , 1] this substitution.

Consider for example the substitution of π = 3 1 2 4 in σ = 2 5 4 6 7 1 3 at position
3 (i.e. replacing σ3 = 4). We obtain the permutation α = 2 8 6 4 5 7 9 10 1 3 and write
α = 2 5 4 6 7 1 3[1, 1, 3 1 2 4, 1, 1, 1, 1].

24 Preliminaries: Definitions and some background

This notation naturally generalizes to σ[π1, π2, . . . , πn], and it has been defined in [AA05]
under the name of inflation. Let σ be a permutation of size n and π1, . . . , πn be n
permutations of size p1, . . . , pn respectively. Define the substitution σ[π1, π2, . . . , πn] of
π1, π2, . . . , πn in σ to be the permutation obtained by concatenation of n sequences of
integers S1, . . . , Sn from left to right, such that for every i, j, the integers of Si form an in-
terval, are ordered in a sequence order isomorphic to πi, and Si consists of integers smaller
than Sj if and only if σi < σj .

This operation of substitution is easier to describe on the diagram of permutations as
presented in Figures 6 and 7: the diagram of σ[π1, π2, . . . , πn] is obtained from the one of
σ by replacing each point σi by a block containing the diagram of πi.

Example 0.24. The substitution 1 3 2[2 1, 1 3 2, 1] gives the permutation 2 1 4 6 5 3 (see
Figure 6).

Figure 6: The permutation 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3

More formally:

Definition 0.25. Let σ ∈ Sn and π1, . . . , πn be n permutations of Sp1 , . . ., Spn respectively.
The substitution τ = σ[π1, π2, . . . , πn] of π1, π2, . . . , πn in σ is

σ[π1, π2, . . . , πn] = shift(π1, σ1) . . . shift(πk, σk)
where shift(πi, σi) = shift(πi, σi)(1) . . . shift(πi, σi)(pi) and

shift(πi, σi)(x) = πi(x) + pσ−1(1) + . . .+ pσ−1(σi−1) for any x between 1 and pi.
We also say that σ[π1, π2, . . . , πn] provides a block decomposition of τ .

Figure 7: The permutation 213[21, 312, 4123] = 5 4 3 1 2 9 6 7 8.

Two different substitutions may give the same permutation. For example the permu-
tation 5 4 3 1 2 9 6 7 8 of Figure 7 can be obtained as 213[21, 312, 4123] or 12[54312, 4123].
To ensure uniqueness, we have to impose further restrictions.

For any n ≥ 2, let In be the permutation 12 . . . n and Dn be n(n − 1) . . . 1. We use
the notations ⊕ and 	 for denoting respectively In and Dn, for any n ≥ 2. This allows to
write substitutions of the form ⊕[π1, π2, . . . , πn] = In[π1, π2, . . . , πn] or 	[π1, π2, . . . , πn] =
Dn[π1, π2, . . . , πn] without ambiguity, the integer n being determined by the number of
blocks πi.

0.2 Substitution decomposition of permutations 25

Definition 0.26. A permutation σ is ⊕-indecomposable (resp. 	-indecomposable) if it
cannot be written as ⊕[π1, π2, . . . , πn] (resp. 	[π1, π2, . . . , πn]), for any n ≥ 2. Otherwise
σ is ⊕-decomposable (resp. 	-decomposable).

Simple permutations, together with the families (In) and (Dn), are enough to describe
all permutations through their substitution decomposition:

Theorem 0.27. (first appeared implicitly in [HS01]) Every permutation σ ∈ Sn with n > 1
can be uniquely decomposed as either:

• ⊕[π1, π2, . . . , πk], with π1, π2, . . . , πk ⊕-indecomposable,

• 	[π1, π2, . . . , πk], with π1, π2, . . . , πk 	-indecomposable,

• α[π1, . . . , πk] with α a simple permutation.

For example, σ = 1 3 2 4 can be written either as 12[1, 2 1 3] = ⊕[1, 2 1 3] or 1 2 3[1, 2 1, 1] =
⊕[1, 2 1, 1] but in the first form, π2 = 2 1 3 is not ⊕-indecomposable, thus we use the second
decomposition.

It is important for stating Theorem 0.27 that 12 and 21 are not considered as simple
permutations. An equivalent version of this theorem, which includes 12 and 21 among
simple permutations, is given in [AA05] and reproduced below:

Theorem 0.28 (Proposition 2 of [AA05]). Let σ ∈ S. There is a unique simple permuta-
tion α and sequence π1, π2, . . . , πk ∈ S such that σ = α[π1, π2, . . . , πk]. If α 6= 12, 21, then
π1, π2, . . . , πk are also uniquely determined by σ. If α = 12 or 21, then π1, π2 are unique
so long as we require that π1 is ⊕-indecomposable or 	-indecomposable respectively.

Since we do not consider 12 and 21 to be simple, this can be reformulated by:

Theorem 0.29. Every permutation σ of size n > 1 can be uniquely decomposed as either:

• 12[π1, π2], with π1 ⊕-indecomposable,

• 21[π1, π2], with π1 	-indecomposable,

• α[π1, π2, . . . , πk] with α a simple permutation.

Even though Theorems 0.27 and 0.29 are equivalent, they give two different points of
view on substitution decomposition, that are complementary. Theorem 0.27 provides a
decomposition that is intrinsically unique but with an infinite family of skeletons ⊕ and
	. On the contrary, Theorem 0.29 uses skeletons 12 and 21 only, but somehow breaks
the symmetry by favouring one representation of ⊕[π1, π2, . . . , πn] as 12[τ1, τ2], among the
many it may have (it is only the choice of the representative where τ1 is ⊕-indecomposable,
i.e. τ1 = π1, that allows us to achieve uniqueness). Theorem 0.27 is therefore preferred
for a use in combinatorics, where uniqueness is essential. This is the point of view that is
further developed in this section. On the other hand, Theorem 0.29 is more adapted for
a use of substitution decomposition in algorithms, as it allows to deal only with 12 and
21 instead of skeletons ⊕ and 	 of arbitrary arity n ≥ 2. This formalism for substitution
decomposition will be used in Chapter 3.

Remark 0.30. The simple permutation α in the third item of Theorems 0.27 and 0.29 is
a pattern of the permutation σ. Hence, as soon as σ belongs to some permutation class C,
then so does α.

26 Preliminaries: Definitions and some background

Notice that the πi’s correspond to blocks in the permutation σ. Another important
remark is that:

Remark 0.31. Any block of σ = α[π1, . . . , πk] (with α a simple permutation) is either σ
itself, or is included in one of the πi’s.

Theorem 0.27 provides the first step in the decomposition of a permutation σ. To
obtain its full decomposition, we can recursively decompose the permutations πi in the
same fashion, until we reach permutations of size 1, leading to a complete decomposition
where each permutation which appears is either Ik,Dk (denoted by ⊕,	 respectively) or a
simple permutation. This recursive decomposition can naturally be represented by a tree,
that is called the substitution decomposition tree (or decomposition tree for short) of σ,
where a substitution α[π1, . . . , πk] is represented by a node V labeled α with k ordered
children, and the subtrees rooted at the children of V represents the πi’s. In the sequel
we will say “a child of the node V ” instead of “a permutation corresponding to the subtree
rooted at a child of the node V ”.

Example 0.32. Let σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7. Its recursive de-
composition can be written as

3 1 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]].
and its diagram and decomposition tree are given in Figure 8.

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Figure 8: The substitution decomposition tree and the diagram (where non-trivial
blocks corresponding to internal nodes are marked by rectangles) of the permutation
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7.

Definition 0.33. The substitution decomposition tree T of a permutation σ is the unique
labeled ordered tree encoding the substitution decomposition of σ, where each internal
node is either labeled by ⊕,	 or by a simple permutation σ. The nodes labeled by ⊕ or
	 are called linear nodes. The nodes labeled by a simple permutation σ are called prime
nodes.

Notice that in decomposition trees, each node labeled by α has arity |α|, each subtree
maps onto a block of σ, and there are no edges between two nodes labeled by⊕, nor between
two nodes labeled by 	, since the πi are ⊕-indecomposable (resp. 	-indecomposable) in
the first (resp. second) item of Theorem 0.27.

From Theorem 0.27 we have:

Theorem 0.34. Permutations are in one-to-one correspondence with substitution decom-
position trees.

0.2 Substitution decomposition of permutations 27

Theorem 0.35. The substitution decomposition tree of a permutations of size n can be
computed in time O(n). Conversely given a substitution decomposition tree, we can compute
the permutation it encodes in linear time w.r.t. its number of leaves.

Of course, especially for algorithmic use, equivalent decomposition trees can be defined
using Theorem 0.29 instead of Theorem 0.27.

Example 0.36. The permutation σ = 10 12 14 11 13 1 21 19 16 18 20 17 15 4 8 3 2 9 5 6 7 can
be recursively decomposed as
σ = 3142 [13524, 1, 7524631, 37218456]

= 3142 [12[1, 2413], 1, 21[1, 21[41352[1, 1, 1, 1, 1], 1], 24153[1, 1, 21[1, 1], 1, 12[1, 12[1, 1]]]
and its decomposition tree is given in Figure 9.

3 1 4 2

12

2413

21

21

41352

2 4 1 5 3

21 12

12

Figure 9: Decomposition tree of σ = 10 12 14 11 13 1 21 19 16 18 20 17 15 4 8 3 2 9 5 6 7.

Substitution decomposition allows to define decomposition trees, but also substitution
closure:

Definition 0.37. The substitution closure Ĉ of a permutation class C is defined as ∪k≥1Ck
where C1 = C and Ck+1 = {σ[π1, . . . , πn] | σ ∈ C and πi ∈ Ck for any i from 1 to n = |σ|}.

Because simple permutations contain no intervals, we have:

Proposition 0.38. For any class C, the simple permutations in Ĉ are exactly the simple
permutations in C.

Consequently, for any permutation class C containing 12 and 21, its closure Ĉ is the class
of all permutations whose decomposition trees can be built on the set of nodes {⊕,	}∪SC ,
where SC denotes the set of simple permutations in C. If C does not contain 12 (resp. 21),
we have to remove ⊕ (resp.) from the set of nodes. Note that in this latter case, SC = ∅
and for each n, C contains exactly one permutation of size n: the decreasing permutation
Dn (resp. the identity In)

Definition 0.39. A permutation class C is substitution-closed if C = Ĉ, or equivalently if
for any permutation σ of C, and any permutations π1, π2, . . . , πn of C (with n = |σ|), the
permutation σ[π1, π2, . . . , πn] also belongs to C.

The terminology wreath-closed permutation class is also used, derived from the term
wreath product sometimes used to denote the substitution operation in the context of
permutations [AS02, AA05].

28 Preliminaries: Definitions and some background

Example 0.40. The class Av(231) of permutations sortable by a stack is not substitution-
closed. Indeed 231 = 21[12, 1] /∈ Av(231) while 1, 12 and 21 belong to Av(231). The
substitution closure of Av(231) is the class Av(2413, 3142) of separable permutations: both
classes contain 12 and 21 but no simple permutation.

Note that the substitution closure of a permutation class C is the smallest substitution-
closed class containing C.

To decide whether a permutation class is substitution-closed, we can use this simple
characterization:

Proposition 0.41 (Proposition 1 of [AA05]). A class is substitution-closed if and only if
its basis consists entirely of simple permutations (or maybe 1, 12 or 21 for trivial classes).

As noticed for substitution closure, a substitution-closed permutation class can be seen
as the set of decomposition trees built on the set of nodes {⊕,	} ∪ SC .

Substitution-closed classes are useful since many results are easier to prove for substitution-
closed classes, and can then be extended to any permutation class using substitution clo-
sure.

This is for example the case of the main theorem of [AA05] stating that any permu-
tation class containing only finitely many simple permuations has an algebraic generating
function.

Part I

Structure of permutation classes

Foreword: A fully algorithmic
method to make explicit the
structure of a permutation class

Since the definition of the pattern relation among permutations by Knuth in the 70’s [Knu73b],
the study of permutation patterns and permutation classes in combinatorics has been a
quickly growing research field, and is now well-established. Most of the research done in this
domain concerns enumeration questions on permutation classes (see [BM03, Eli04, KM03]
and their references among many others). Most articles are focused on a given class
C = Av(B) where the basis B of excluded patterns characterizing C is finite, explicit,
and in most cases contains only patterns of size 3 or 4. Another line of research on per-
mutation classes has been emerging for almost a decade: it is interested in properties or
results that are less precise but apply to families of permutation classes that are as wide
as possible. Examples of such general results may regard enumeration of permutation
classes that fall into general frameworks [AA05, ALR05, MT04, Vat08], properties of the
corresponding generating functions [AA05, BHV08a, BHV08b, BRV08], growth rates of
permutation classes [AAB+10, Cib09, MT04, Vat10, Vat11], order-theoretic properties of
permutation classes [AAB+13, ARS11, Bri12, VW11], and so on. This second point of
view is not purely combinatorial but instead is intimately linked with algorithms. Indeed,
when stating general structural results on families of permutation classes, it is natural to
associate to an existential theorem an algorithm that tests whether a class given in input
falls into the family of classes covered by the theorem, and in this case to compute the
result whose existence is guaranteed by the theorem.

Certainly the best illustration of this paradigm that can be found in the literature is
the result of Albert and Atkinson [AA05], stating that every permutation class containing
a finite number of simple permutations has a finite basis and an algebraic generating
function, and its developments by Brignall et al. in [BHV08b, BHV08a, BRV08]. A
possible interpretation of this result is that the simple permutations that are contained
in a class somehow determine how structured the class is. Indeed, the algebraicity of the
generating function is an echo of a deep structure of the class that appears in the proof of
the theorem of [AA05]: the permutations of the class (or rather their decomposition trees)
can be described by a context-free grammar.

In this theorem, as well as in other results obtained in this field [AA05, AAK03,
BBPR10, Bri10, BHV08b, BRV08, PR12, Vat08], it appears that simple permutations play
a crucial role. They can be seen as encapsulating most of the difficulties in the study of
permutation classes considered in their generality, both in algorithms and combinatorics.

The first part of this thesis is about these general results that can be obtained for large
families of permutation classes, and is resolutely turned towards algorithmic considerations.
It takes its root in [AA05] and in particular in the theorem of Albert and Atkinson that

32 Foreword: Algorithmic method to make explicit the structure of a class

we already mentioned.
Because an algebraic generating function is a witness of the combinatorial structure

of a permutation class, we may interpret testing whether a permutation class has a finite
number of simple permutations as testing a sufficient condition for a permutation class to
be well structured.

The study of the intrinsic structure of some permutation classes lies at the boundary
between algorithmics and combinatorics. The goal is indeed not only to give combinatorial
criteria on the class so that one can talk about a structured class (which is not a formally
defined concept, but means properties like having an rational algebraic generating function,
having a finite base, having a natural recursive description) but also having algorithms to
test those criteria.

In addition more could and should be done on the algorithmization of finding structure
in permutation classes. In particular, the first part of this thesis provides efficient algo-
rithms that not only test that there is an underlying structure in a permutation class, but
that also compute this structure. In particular, our goal in this part is to provide a general
algorithmic method to obtain a combinatorial specification for any permutation class C
from its basis B, assuming this set is finite.

By a combinatorial specification of a class (see [FS09]), we mean an unambiguous
system of combinatorial equations that describes recursively the permutations of C using
only combinatorial constructors (disjoint union, cartesian product, sequence, . . .) and
permutations of size 1.

As discussed in [AA05], the proof of the main theorem therein is constructive. Namely,
given the basis B of a class C, and the set SC of simple permutations in C (assuming that
both are finite), the proof of the main theorem of [AA05] describes how to compute an
algebraic system of equations satisfied by the generating function of C, proving thereby that
it is algebraic. The main step is actually to compute a (possibly ambiguous) context-free
grammar of trees for the permutations of C, or rather their decomposition trees.

Such a context-free grammar of trees almost captures the combinatorial structure of
a permutation class. The only reason why it does not do so completely is because the
grammar may be ambiguous, and thus may generate several times the same permutation
in the class. On the other hand, unambiguous context-free grammars of trees fall exactly
in the context of the combinatorial specifications of [FS09], and describing a permutation
class by such a combinatorial specification is undoubtedly demonstrating the structure of
the class. Consequently, we aim at describing an algorithm to compute this combinatorial
specification.

This part of the thesis provides a full algorithmic chain from the basis (when finite)
of a permutation class C to a specification for C. This procedure may fail to compute its
result, when C contains an infinite number of simple permutations, this condition being
tested algorithmically.

We now describe the different steps of this algorithmic chain, which is illustrated by
Figure 10.

First, we should ensure that C falls into the set of permutation classes we can handle,
i.e. ensure that C contains a finite number of simple permutations. Chapter 2 gives an
algorithm for this first step, following the line opened by [BRV08].

Second, when finite, we compute the set SC of simple permutations in C. An algorithm
for this second step is described in Chapter 1, and its complexity analyzed. It should be
noticed that the complexity of this algorithm also depends on the size of its output, namely
on |SC | and on max{|π| : π ∈ SC}.

Third, from B and SC , we turn the constructive proof of [AA05] into an actual algo-

Foreword: Algorithmic method to make explicit the structure of a class 33

rithm, that computes the (possibly ambiguous) context-free grammar of trees describing
the decomposition trees of the permutations of C.

Finally, we transform this (possibly ambiguous) context-free grammar into an unam-
biguous combinatorial specification for C. We describe in Chapter 3 an algorithm for these
last two steps, whose complexity is still to be analyzed.

Combining these four steps provides an algorithm to obtain from a basis B of excluded
patterns a combinatorial specification for the permutation class C = Av(B) when C contains
a finite number of simple permutations. We are not only convinced of the importance of
this result from a theoretical point of view, but also (and maybe more importantly) we are
confident that it will be of practical use to the permutation patterns community. Indeed,
from a combinatorial specification, it is of course possible with the methodology of [FS09]
to immediately deduce a system of equations for the generating function of C. But other
algorithmic developments can be considered. In particular, this opens the way to obtaining
systematically Boltzmann random samplers of permutations in a class, or to the automatic
evaluation of the Stanley-Wilf growth rate of a class.

Since simple permutations play a crucial role in describing the structure of a permuta-
tion class, we start by studying in Chapter 1 the poset of simple permutations with respect
to the pattern containment relation.

34 Foreword: Algorithmic method to make explicit the structure of a class

B: finite basis of excluded patterns

B contains only simple permutations
Av(B) is substitution-closed

B contains permutations that are not simple
Av(B) is not substitution-closed

Is there a finite number
of simple permutations in the class C = Av(B)?

(Chapter 2)

O(n log n+ p2k) O(n lnn)

Computation of the subset Sc of simple permutations in C
(Chapter 1)

Exit

O(N.`p+2.|B|) O(N.`4)

Compute an ambiguous
combinatorial system for C

Compute an unambiguous
system of equations for
generating functions, us-
ing the inclusion-exclusion
principle

Disambiguate the com-
binatorial system to get
an unambiguous positive
system

Specification for C

Generating functions

Boltzmann sampler

Chapter 3

No

Yes

Figure 10: Automatic process from the basis of a permutation class to generating function
and Boltzmann sampler. The complexities are given w.r.t. n =

∑
β∈B |β|, k =]B, p =

max{|β| : β ∈ B}, N =]SC and ` = max{|π| : π ∈ SC} where SC is the set of simple
permutations of C.

Chapter 1

Simple permutations as a poset

This chapter studies the poset of simple permutations with respect to the pattern in-
volvement. We specialize results on critically indecomposable posets obtained by Schmerl
and Trotter in [ST93] to simple permutations and prove that if σ and π are two sim-
ple permutations such that π < σ then there exists a chain of simple permutations
σ(0) = σ, σ(1), . . . , σ(k) = π such that |σ(i)| − |σ(i+1)| = 1, or 2 when permutations are
exceptional, and σ(i+1) < σ(i). This structural result on permutations and pattern involve-
ment has many consequences. First, it gives the average number of points in a simple
permutation that can be removed and give another simple permutation. Second, it gives
rise to an algorithm polynomial in the size of the output to generate the set of simple per-
mutations in a substitution-closed class of permutations. This algorithm can be adapted
for non-substitution-closed classes but with a loss of efficiency.

36 Chapter 1. Simple permutations as a poset

1.1 Introduction

Simple permutations play a key role in the study of permutation classes. More precisely,
they are core objects in the substitution decomposition of permutations. For example, if a
class contains a finite number of simple permutations then it is finitely based, meaning that
the class can be expressed as the set of permutations that do not contain as pattern any
permutation of a finite set B. Moreover, the generating function of the permutation class
is then algebraic. Also, even though the pattern involvement problem is NP-complete in
general, there exists an FPT algorithm [BR06] whose parameter is the length of the largest
simple permutation that appears as a pattern of the involved permutations.

In this chapter, we study the set of simple permutations with respect to the pattern
containment relation, starting from results of [ST93]. In [ST93], Schmerl and Trotter study
finite irreflexive binary relational structures and prove many structural results on critically
indecomposable structures. They notice that their results holds for graphs, partially or-
dered sets (posets), tournaments, and oriented graphs.

We focus on permutations and show that the general results on binary relational struc-
tures can be refined in our case, with simple permutations playing the role of indecom-
posable structures. More precisely, if σ and π are two simple permutations such that π
is pattern of σ, results of [ST93] imply that there exists a chain of simple permutations
σ(0) = σ, σ(1), . . . , σ(k) = π such that |σ(i)| − |σ(i+1)| = 1 or 2 and σ(i+1) < σ(i). Using
the structure of simple permutations, we strengthen the result and show that except when
σ is exceptional, we can find a chain with all size differences of 1. Moreover when σ is
exceptional there exists a chain with all size differences of 2.

This structural result on permutations and pattern involvement has many consequences.
First, it allows us to compute the average number of points in a simple permutation that
can be removed, one at each time, in order to obtain another simple permutation, showing
that it is almost the case of each point of the permutation. We also give the exact number
of points in a simple permutation that can be added to give another simple permutation.
Second, it gives rise to a polynomial algorithm (polynomial in this size of the output) to
generate simple permutations of a finitely based substitution-closed class of permutations.
This algorithm roughly starts by looking to simple permutations of size 4 and iterates over
the size of permutations. The characterization of the preceding chain translates into a
polynomial time algorithm for finding simple permutations of size n+ 1 in Av(B) knowing
only simple permutations of size n and n−1 in this class. Note that our algorithm requires
no pattern involvement test. Although we give this algorithm in the general framework
of substitution-closed permutation classes, we apply it for classes containing only a finite
number of simple permutations. It can be also used to generate the simple permutations of
any substitution-closed class up to a given size, even if the number of simple permutations
in the class is infinite. The overall complexity of this algorithm is polynomial in the number
of simple permutations. This algorithm is then adapted for non-substitution-closed classes
but with a loss of efficiency.

1.2 Preliminaries

1.2.1 Exceptional permutations

A subset of simple permutations, called exceptional and introduced in [AA05], plays a key
role in this chapter.

Definition 1.1. Exceptional permutations are permutations defined below for everym ≥ 2

1.2 Preliminaries 37

(see Figure 1.1):

• 2 4 6 8 . . . (2m) 1 3 5 . . . (2m− 1) — type 1

• (2m− 1) (2m− 3) . . . 1 (2m) (2m− 2) . . . 2 — type 2

• (m+ 1) 1 (m+ 2) 2 . . . (2m) m — type 3

• m (2m) (m− 1) (2m− 1) . . . 1 (m+ 1) — type 4

Figure 1.1: Exceptional permutations of type 1, 2, 3 and 4

Remark 1.2. For m ≥ 3, there are exactly 4 exceptional permutations of size 2m. But
there are only 2 exceptional permutations of size 4: 2413, which is of type 1 and of type
4, and 3142, which is of type 2 and of type 3.

Notice also that, if we remove the symbols 2m− 1 and 2m from the first two types, we
obtain another exceptional permutation of the same type; and likewise if we remove the
symbols in the last two positions from the types 3 and 4 and renormalize the result.

Proposition 1.3. Let σ, σ′ be two exceptional permutations with |σ| ≤ |σ′|. Then σ ≤ σ′

if and only if σ and σ′ are exceptional permutations of the same type.

Figure 1.2: Parallel alternations Figure 1.3: Wedge alternations

A more general kind of permutations containing exceptional permutations will appear
naturally in this chapter. An alternation is a permutation in which every odd entry lies to
the left of every even entry, or any symmetry of such a permutation. A parallel alternation
is an alternation in which these two sets of entries form monotone subsequences, either
both increasing or both decreasing. A wedge alternation is an alternation in which the two
sets of entries form monotone subsequences pointing in opposite directions. See Figures 1.2
and 1.3 for examples.

Exceptional permutations are simple alternations:

Proposition 1.4. Exceptional permutations are simple permutations. Moreover among
parallel or wedge alternations, only exceptional permutations are simple.

1.2.2 General results on binary relational structures

In this subsection, we recall results of [ST93] that we use in the sequel. First we recall
the terminology used in [ST93]. We restrict ourselves to structures of type 1 while [ST93]
deals generally with structures of type k.

38 Chapter 1. Simple permutations as a poset

A binary relational structure A of type 1 consists of a non-empty underlying set A
together with a binary relation R ⊆ A× A. We write A as (A;R). The order of A is |A|,
the number of elements of A; in particular A is finite if A is finite. If R is irreflexive (that
is, if aRa for no a ∈ A) then A is irreflexive.

The only structures that we will be encountering are finite, irreflexive, binary structures
of type 1, so we will henceforth use the word ‘structure’ to refer just to these. Graphs,
partially ordered sets (posets), tournaments, and oriented graphs are examples of such
structures. For instance if A = (A;R), then A is a poset if and only if aRc whenever aRb
and bRc.

A structure B is a substructure of A if A = (A;R), B = (B;S), B ⊆ A, and S =
R ∩ (B ×B). If B is isomorphic to a substructure of A then B is embeddable in A.

The lexicographic product A∗B of two structures A = (A;R) and B = (B;S) is defined
to be (A × B;T), where (a1, b1)T (a2, b2) if and only if either a1Ra2 or else a1 = a2 and
b1Sb2.

A structure A is indecomposable if, whenever A is embeddable in B1 ∗ B2, then A is
embeddable in B1 or in B2. This definition of indecomposable has a useful equivalent in
terms of intervals.

Let A = (A;R) be a structure, and let I ⊆ A be a subset. Then I is an interval of A
if whenever a, b ∈ I and c ∈ A \ I, then both aRc if and only if bRc and cRa if and only if
cRb. The interval I is nontrivial if 2 ≤ |I| < |A|.

Proposition 1.5 (Proposition 1.1 of [ST93]). A structure A is indecomposable if and only
if it contains no nontrivial intervals.

Notice that this definition of indecomposable structures is very similar to the definition
of simple permutations (Definition 0.21).

We now state main results of [ST93] that we use in the sequel.

Proposition 1.6 (Theorem 2.1 of [ST93]). Suppose A = (A;R) is indecomposable and
|A| ≥ 3. Then there is an indecomposable B ⊆ A such that either |B| = 3 or |B| = 4.

Proposition 1.7 (Theorem 2.2 of [ST93]). Suppose A = (A;R) is indecomposable and
B ⊆ A is also indecomposable, where 3 ≤ |B| ≤ |A| − 2. Then there is an indecomposable
C such that B ⊆ C ⊆ A and |C| = |B|+ 2.

An indecomposable structureA = (A;R) is critically indecomposable if whenever a ∈ A,
then A \ {a} is not indecomposable.

Propositions 1.6 and 1.7 imply a strong result about critically indecomposable struc-
tures.

Proposition 1.8 (Corollary 3.1 of [ST93]). Suppose that A is a critically indecomposable
structure of order n and that 3 ≤ m ≤ n. Then A has an indecomposable substructure of
order m if and only if n−m is even.

For indecomposable structures which are not critically indecomposable, Schmerl and
Trotter gives the following result:

Proposition 1.9 (Corollary 5.10 of [ST93]). Suppose A is an indecomposable structure of
order n which is not critically indecomposable, and suppose 5 ≤ m ≤ n. Then A has an
indecomposable substructure of order m.

Finally, Theorem 5.1. of [ST93] gives the list of critically indecomposable structures (up
to isomorphism of skeletons). Then this result is specialized to graphs, posets, tournaments
and oriented graphs in Corollary 5.8 of [ST93]. The result that we use is the one about
posets. To state it we first need to define two particular families of posets.

1.3 Pattern containment on simple permutations 39

Definition 1.10. For each r ≥ 2 we define two posets Pr and P ′r of order 2r. Let
Vr = {a1, a2, . . . ar, b1, b2, . . . br}, we set Pr = (Vr;Pr) and P ′r = (Vr;P

′
r) where

xPry ⇔ x = ai and y = bj for some i ≥ j, and
xP ′ry ⇔ (x, y) ∈ {(ai, bj), (ai, aj), (bi, bj)} for some i < j.

Proposition 1.11 (Corollary 5.8 (2) of [ST93]). A structure A is a critically indecompos-
able poset if and only if it is isomorphic to either Pr or P ′r for some r ≥ 2.

1.3 Pattern containment on simple permutations

1.3.1 Simple patterns of simple permutations

In this section, we specialize and extend results from [ST93] to permutations.
The idea of applying results of [ST93] to permutations comes from [AA05], where it is

used to prove the following theorem:

Theorem 1.12 (Theorem 5 of [AA05]). If π is simple, then either there is a one-point
deletion that is also simple or π is exceptional (in which case it has a two point deletion
that is simple).

We develop and make more precise this idea in this section.
To each permutation σ is associated a poset P (σ) = ([1..n], <) where i < j ⇔ (i <

j and σi < σj). Recall that a poset on [1..n] is indecomposable if it does not contain
any non-trivial interval with respect to the relation, < in our case. It is critically in-
decomposable if furthermore whenever an element is removed, the resulting poset is not
indecomposable. In the specific case of permutations those poset characteristics can be
translated as stated in the following propositions:

Proposition 1.13. The poset P (σ) is indecomposable if and only if σ is simple or is equal
to 1, 12 or 21.

Proof. By definition of simple permutations (Definition 0.21), this is a direct consequence
of Proposition 1.5 noticing that intervals of σ corresponds to intervals of P (σ). �

Proposition 1.14. P (σ) is critically indecomposable if and only if σ is exceptional.

Proof. This is a consequence of Corollary 5.8(2) of [ST93] (Proposition 1.11). �

The standard poset isomorphism can be transposed to integer posets.

Definition 1.15. Let A,B ⊂ N be posets, then A ≡ B if A and B are isomorphic as
posets and the isomorphism keeps the natural integer ordering on N.

Proposition 1.16. Let σ and π be permutations. Then π ≤ σ if and only if there exists
A ⊂ P (σ) such that A ≡ P (π).

The next four propositions are mere translations of results from [ST93] on permutations,
using the three propositions above.

Proposition 1.17. Let σ be a simple permutation, then either 2 4 1 3 or 3 1 4 2 is a simple
pattern of σ.

Proof. This is a direct consequence of Proposition 1.6, noticing that there are no simple
permutations of size 3 and there are only two simple permutations of size 4. �

40 Chapter 1. Simple permutations as a poset

Proposition 1.18. Let π, σ be two simple permutations with π ≤ σ. If |π| ≤ |σ| − 2, then
there exists a simple permutation τ such that π ≤ τ ≤ σ and |τ | = |π|+ 2.

Proof. This is the mere translation of Theorem 2.2 of [ST93] (Proposition 1.7). �

Proposition 1.19. Let σ be an exceptional permutation. If 3 ≤ m ≤ |σ|, then σ has a
simple pattern of size m if and only if m is even.

Proof. This is a direct consequence of Proposition 1.8 as every exceptional permutation is
of even size. �

The preceding result gives the sizes of simple patterns for exceptional permutations.
For non-exceptional ones, the following proposition concludes:

Proposition 1.20. Let σ be a non-exceptional simple permutation. If 4 ≤ m ≤ |σ| then
σ has a simple pattern of size m.

Proof. This is the mere translation of Proposition 1.9 extended to size 4 using Proposi-
tion 1.17. �

Using Proposition 1.20, we can refine the result of Proposition 1.19:

Proposition 1.21. If σ is an exceptional permutation, then for every m such that 3 ≤
m ≤ |σ|:

• If m is odd, then σ has no simple pattern of size m.

• Otherwise m is even and σ has exactly one simple pattern of size m which is the
exceptional permutation of the same type as σ.

Proof. The first item (m is odd) is a direct consequence of Proposition 1.19. For the second
point, σ has at least one simple pattern π of size m by Proposition 1.19. Suppose now that
π is not exceptional, then m ≥ 5 as simple permutations of size 4 are exceptional. Then,
using Proposition 1.20, π has a simple pattern τ of size 5, thus τ is a pattern of σ but of
odd size which is forbidden by Proposition 1.19. So π is exceptional and of the same type
as σ from Proposition 1.3. �

A direct consequence of the preceding proposition is that all simple patterns of excep-
tional permutations are exceptional. Moreover the biggest proper simple pattern of an
exceptional permutation σ has size |σ| − 2. For non-exceptional simple permutations, we
can find simple patterns by deleting only one point:

Proposition 1.22. Let σ be a simple permutation. Then σ has a simple pattern of size
|σ| − 1 if and only if σ is not exceptional.

Proof. Consequence of Proposition 1.19 and Proposition 1.20 above. �

1.3.2 Simple pattern containing a given simple permutation

The results obtained in the preceding section describe how a simple permutation can give
other simple permutations by deleting elements. In the sequel, we add another constraint
on patterns, that is we want to delete an element in a simple permutation σ containing
a simple permutation π as a pattern to obtain another simple permutation σ′ such that
π ≤ σ′.

Proposition 1.24 deals with the case |π| = |σ|−2 and relies on the following intermediate
result:

1.3 Pattern containment on simple permutations 41

Proposition 1.23. Let τ be a non-simple permutation such that τ \ {τi} is simple. Then
τi belongs to an interval of size 2 of τ or is in a corner of the diagram of τ .

Proof. As τ is not simple, τ contains at least one non-trivial interval I. As I is an interval
of τ , I \{τi} is an interval of τ \{τi}. But τ \{τi} is simple thus I \{τi} is a trivial interval
of τ \{τi}, hence is a singleton {τk} or the whole permutation τ \{τi}. But I is non-trivial
so in the first case I = {τi, τk} and τi belongs to an interval of size 2 of τ , and in the second
case I = τ \ {τi} and τi is in a corner of the diagram of τ . �

Proposition 1.24. Let σ be a non-exceptional simple permutation of size n and π a simple
permutation of size n − 2 such that π ≤ σ. Then there exists a simple permutation τ of
size n− 1 such that π ≤ τ ≤ σ.

Proof. Assume that such a permutation τ does not exist. We prove that this leads to a
contradiction. Let i, j such that π = σ \ {σi, σj}. If σ \ {σi} is simple then τ = σ \ {σi}
would contradict our hypothesis. Thus σ\{σi} is not simple, but π = σ\{σi, σj} is simple.
From Proposition 1.23, σj belongs to an interval of size 2 of σ \ {σi} or is in a corner of
the bounding box of the diagram of σ \ {σi} thanks to π. By symmetry between i and j
the same results holds when exchanging these two indices. So there are 3 different cases:

• σi and σj are both in a corner thanks to π. In that case π is a non-trivial interval
of σ, which contradicts the fact that σ is simple.

• σi belongs to an interval I of size 2 of σ\{σj} and σj is in a corner of σ\{σi} thanks
to π (the same proof holds when exchanging i and j). As σ is simple, σj is not in
a corner of σ, but is in a corner of σ \ {σi}. Thus σi is the only point separating
σj from a corner (see Figure 1.4 for an example). Let i1 such that I = {i, i1}, then
σj is the only point separating σi1 from σi, so π = σ \ {σi1 , σj}. If σ \ {σi1} is
simple then τ = σ \ {σi1} would contradict our hypothesis that such a permutation
τ does not exist. Thus σ \ {σi1} is not simple, but π = σ \ {σi1 , σj} is simple.
Hence from Proposition 1.23 σj belongs to an interval J of size 2 of σ \ {σi1}, or is
in a corner of σ \ {σi1} which is impossible as σi separate it from one corner and
|σ| ≥ 4. Let j1 such that J = {j, j1}, then π = σ \ {σi1 , σj1}. If σ \ {σj1} is simple
then τ = σ \ {σi1} gives a contradiction. Letting i0 = i and j0 = j, we recursively
build this way i0, j0, i1, j1, . . . such that ∀k, π = σ \ {σik , σjk} = σ \ {σjk , σik+1

} and
σ \ {σik} and σ \ {σjk} are not simple, until reaching all points of σ, i.e. until ik = n
or jk = n in the case depicted in Figure 1.4. Points σi and σi1 are in increasing or
decreasing order. For each case, σi1 has a determined position (see Figure 1.4). Then
the positions of σik and σjk are fixed for all k. Indeed only σjk−1

separates σik from
σik−1

, and σik does not separate σik−1
from σik−2

. The same reasoning goes for σjk .
Therefore, depending on the position of σi1 , σ is either a parallel alternation or a
wedge alternation, and thus is exceptional or not simple, a contradiction.

σj

σi π

σj

σj1

σi

σi1
π

σj

σj1

σi
σi1
π

Figure 1.4: Diagram of σ in the second case of the proof of Proposition 1.24.

42 Chapter 1. Simple permutations as a poset

• σi belongs to an interval I of size 2 of σ \ {σj} and σj belongs to an interval J of
size 2 of σ \ {σi}. Letting i1 be such that I = {i, i1}, I is an interval of σ \ {σj}
but σ is simple thus σj is the only point separating σi from σi1 . Letting j1 be such
that J = {j, j1}, J is an interval of σ \ {σi} but σ is simple thus σi is the only point
separating σj from σj1 . This indeed is one of the two cases depicted in Figure 1.5
(up to symmetry). Let i′0 = i and j′0 = j, we recursively build j′0, i1, j′1, i2 . . . (resp.
i′0, j1, i

′
1, j2 . . .) until reaching all points of σ, i.e. until ik = n or j′k = n (resp. jk = 1

or i′k = 1) in the case depicted in Figure 1.5. We have π = σ \{σi, σj} = σ \{σi1 , σj}.
If σ \ {σi1} is simple then τ = σ \ {σi1} contradicts our hypothesis that such a
permutation τ does not exist. Thus σ \ {σi1} is not simple, but π = σ \ {σi1 , σj}
is simple. Therefore from Proposition 1.23, σj belongs to an interval J ′ of size 2 of
σ\{σi1} or lies in a corner of σ\{σi1} which is impossible if i1 6= n (up to symmetry).
Let J ′ = {j, j′1} then π = σ \ {σi1 , σj} = σ \ {σi1 , σj′1}. If σ \ {σj′1} is simple then
τ = σ \{σi1} contradicts our hypothesis. Moreover π = σ \{σi, σj} = σ \{σi, σj1}. If
σ\{σj1} is simple then τ = σ\{σj1} fulfill the theorem, contradiction. Thus σ\{σj1}
is not simple but π = σ \ {σj1 , σi} is simple so that σi belongs to an interval I ′ of
size 2 of σ \ {σj1} or lies in a corner of σ \ {σj1}, which is impossible if j1 6= 1 (up to
symmetry). Letting i′1 be such that I ′ = {i, i′1}, then π = σ\{σi, σj1} = σ\{σi′1 , σj1}.
If σ \ {σi′1} is simple then τ = σ \ {σi′1} fulfill our theorem, contradiction. Similarly
to the preceding case, we can prove by induction until reaching all points of σ that
either σ is a parallel alternation or a wedge permutation so that σ is exceptional or
not simple, providing the desired contradiction. �

σj1

σj

σi

σi1

σj1
σj

σi

σi1

σj1
σj

σj′1
σi′1

σi σi1

σj1 σj

σj′1

σi′1

σi σi1

Figure 1.5: Diagram of σ in the third case of the proof of Proposition 1.24.

Thanks to Proposition 1.24 and a straightforward induction, we are able to state our
main result on pattern involvement of simple permutations.

Theorem 1.25. Let π < σ be two simple permutations with σ non-exceptional. Then there
exists a simple permutation τ such that π ≤ τ < σ and |τ | = |σ| − 1.

Proof. We prove this result by induction on |σ| − |π| using Proposition 1.18. If |σ| − |π| is
odd, using recursively Proposition 1.18 we find a simple permutation τ such that π ≤ τ ≤ σ
and |τ | = |σ|− 1. If |σ|− |π| is even, we find a simple permutation τ ′ such that π ≤ τ ′ ≤ σ
and |τ ′| = |σ| − 2 and we apply Proposition 1.24 which ensures the existence of a simple
permutation τ such that π ≤ τ ′ ≤ τ ≤ σ and |τ | = |σ| − 1. �

Theorem 1.25 has many implications. First, it gives structural results on the poset of
simple permutations, studied in the next section. Second it leads to an efficient algorithm
for computing the set of simple permutations in a permutation class (see Section 1.5).

1.4 Simple permutations as a poset 43

1.4 Simple permutations as a poset

In this section we study the poset of simple permutations with respect to the pattern
containment relation. We represent this poset by an oriented graph G, whose vertices
are the simple permutations, and with an edge from a simple permutation σ to a simple
permutation π if and only if π < σ and there is no simple permutation τ such that
π < τ < σ. Then π < σ if and only if there is a path from σ to π in G. From Theorem 1.25,
if σ is not exceptional there is an edge from σ to π if and only if we can obtain π from σ
by deleting one point, and from Proposition 1.21 if σ is exceptional, there is an edge from
σ to π if and only if π is exceptional of the same type of σ and |σ| = |π|+2. In this section
we study other properties of G. We first focus on paths of G, then we study the degree of
vertices in G.

2 7 4 8 1 6 3 5

2 4 7 1 6 3 5 2 6 4 7 1 3 5 2 6 4 7 1 5 3 2 7 4 1 6 3 5 6 3 7 1 5 2 4

2 4 1 6 3 5 2 4 6 1 3 5 2 4 6 1 5 3 2 5 3 6 1 4 2 6 4 1 3 5 2 6 4 1 5 3 3 6 1 5 2 4 5 2 6 4 1 3 5 3 6 1 4 2

2 4 1 5 3 2 5 3 1 4 3 1 5 2 4 3 5 1 4 2 4 2 5 1 3

2 4 1 3 3 1 4 2

Figure 1.6: The poset of simple permutations which are pattern of 2 7 4 8 1 6 3 5. Colored
nodes are exceptional ones.

1.4.1 Paths in the poset of simple permutations

In Theorem 1.26, we prove that if a simple permutation σ has a simple pattern π, then
there is a path in G from σ to π in the graph whose first part consists of non-exceptional
simple permutations of consecutive sizes and second part of exceptional permutations (one
of the parts can be empty). Conversely, all paths from σ to π are of this form. Then we
extend this result in Theorem 1.29 to prove that whenever σ is not exceptional, there is
such a path such that the second part of the path is empty, that is we can reach π from σ
by deleting one element at a time and all the permutations involved are simple.

Theorem 1.26. Let π < σ be simple permutations, then there exists a chain of simple
permutations σ(0) = σ, σ(1), . . . , σ(k−1), σ(k) = π and m ∈ [0..k] such that for all i ∈ [1..k],
σ(i) < σ(i−1) and:

• |σ(i−1)| − |σ(i)| = 1 if 1 ≤ i ≤ m (in particular σ(i−1) is not exceptional),

• |σ(i−1)| − |σ(i)| = 2 if m+ 1 ≤ i ≤ k
• if m < k then σ(i) is exceptional for m ≤ i ≤ k.

Conversely, all paths from σ to π are of this form.

Proof. If σ is exceptional, then π is exceptional of the same type as σ (from Proposi-
tion 1.21). Then we set m = 0 and k = (|σ|− |π|)/2, and σ(i) are exceptional permutations
of the same type as σ and size between |π| and |σ|.

If σ is not exceptional, we set σ(0) = σ, and using Theorem 1.25, for i ≥ 1 we construct
by induction σ(i) such that σ(i) is simple, π ≤ σ(i) < σ(i−1) and |σ(i)| = |σ(i−1)| − 1 while

44 Chapter 1. Simple permutations as a poset

σ(i−1) is not exceptional and π 6= σ(i−1). We iterate until σ(j) = π, then m = k = |σ| − |π|
and we have the result, or until σ(j) is exceptional. Then π is exceptional of the same
type as σ(j). Then we set m = j and k = m + (|σ(j)| − |π|)/2, and σ(i) for j ≤ i ≤ k are
exceptional permutations of the same type as π and size between |π| et |σ(j)|.

From Proposition 1.21 it is obvious that, conversely, all paths from σ to π are of this
form. �

Note that the paths in G between two simple permutations can be of different lengths.
As an example, with σ = 5263714 and π = 3142, we have a path of length 2 (by 415263,
exceptional, see Figure 1.7) and a path of length 3 (by 526314 and 42613, non-exceptional,
see Figure 1.8).

Figure 1.7: Path of length 2 from σ = 5263714 to π = 3142.

Figure 1.8: Path of length 3 from σ = 5263714 to π = 3142.

However if σ and π are both non-exceptional, all paths from σ to π have length |σ|−|π|,
and if σ and π are both exceptional, all paths from σ to π have length (|σ| − |π|)/2.

The last case is σ not exceptional and π exceptional. Then Theorem 1.29 below shows
that we can always choose a path with only one exceptional permutation: π. The proof of
Theorem 1.29 relies on the two following propositions:

Proposition 1.27. Let π be an exceptional permutation of size 2(n + 1) where n ≥ 2, P
be a set of n points of π and π′ the exceptional permutation of size 2n of the same type as
π. Then there exists a pattern π′ in π which contains all points of P .

Proof. We have only to prove the result for exceptional permutations of type 3; the result
for the other types follows by symmetry. Suppose that π is of type 3. Then by deleting two
points of π of consecutive indices, we obtain a pattern π′. So we have only to prove that
there exist two points of consecutive indices neither of which is in P . If two such points do
not exist, then P contains at least half of points of π i.e. n+ 1 points, a contradiction. �

Proposition 1.28. Let π′ < π be exceptional permutations with |π′| = |π| − 2 and σ a
non-exceptional simple permutation such that π < σ and |σ| = |π|+ 1. Then there exists a
simple permutation τ such that π′ < τ < σ and |τ | = |π′|+ 1.

Notice that Figures 1.7 and 1.8 provide an example of this proposition: with π′ = 3142,
π = 415263 and σ = 5263714, we can take τ = 42513.

Proof. Let n = |σ| = |π|+ 1, as π < σ there exists an index k ∈ [1..n] such that we obtain
π from σ by deleting σk. As σ is simple, we cannot have both k ∈ {1, n} and σk ∈ {1, n}.
So there exist i and j in [1..n] such that i = k − 1 and j = k + 1, or σi = σk − 1 and
σj = σk +1. As σ is simple, there exists a point σi′ which separates σi from σk and a point
σj′ which separates σj from σk.

1.4 Simple permutations as a poset 45

If |π| ≥ 10, from Proposition 1.27 there exists a pattern π′ in π (thus in σ) which
contains σi, σj , σi′ and σj′ . Let τ be the permutation obtained from this pattern π′ in
σ and point σk. Then π′ < τ < σ and |τ | = |π′| + 1. Moreover if τ were not simple,
as π′ = τ \ {σk} is simple, from Proposition 1.23 σk belongs to an interval I of size 2 of
τ . Indeed σk is not in a corner of the diagram of τ because i < k < j or σi < σk < σj .
Set I = {σ`, σk}, then ` = i or ` = j, excluded because σi′ separates σi from σk and σj′
separate σj from σk. Thus τ is simple and we have the result expected.

As π′ is exceptional, |π′| ≥ 4 so it remains only to prove the result when |π| = 6 or
|π| = 8. We can prove by exhaustive verification that in this case there also exists a set P
of points of π building a pattern π′ such that τ = P ∪ σk fulfills our proposition. �

Theorem 1.29. Let π < σ be two simple permutations with σ non-exceptional and ` =
|σ|−|π|. Then there exists a chain of simple permutations σ(0) = σ, σ(1), . . . , σ(`−1), σ(`) = π
such that for all i ∈ [1..`], σ(i) < σ(i−1) and |σ(i−1)| − |σ(i)| = 1.

Proof. Let (σ(i))0≤i≤k be a chain of simple permutations given by Theorem 1.26 with m
maximum. If m < k then σ(m) and σ(m+1) are exceptional, and σ(m−1) is not exceptional
(m > 0 because σ is not exceptional). We can apply Proposition 1.28, and we have a simple
permutation τ such that σ(m+1) ≤ τ ≤ σ(m−1) and |τ | = |σ(m+1)|+1. By Proposition 1.24,
we have a simple permutation ρ such that τ ≤ ρ ≤ σ(m−1) and |ρ| = |σ(m−1)| − 1.
Then we set π(i) = σ(i) if 1 ≤ i ≤ m − 1, π(m) = ρ, π(m+1) = τ and π(i) = σ(i−1) if
m + 2 ≤ i ≤ k + 1. Then we have |π(i−1)| − |π(i)| = 1 if 1 ≤ i ≤ m + 1, which give us a
chain of simple permutations verifying conditions of Theorem 1.26 so m is not maximum,
a contradiction. Thus m = k and we have the result expected. �

1.4.2 Degree of vertices in the poset

The preceding section proves that if we omit exceptional permutations the poset is ranked,
meaning that each level of the poset corresponds to simple permutations of given size
and there exist only edges between permutations of contiguous levels. In this section, we
study the possible edges between two contiguous levels, which provide statistics on simple
permutations. More precisely, Proposition 1.22 states that if σ is a non-exceptional simple
permutation, then there exists a simple permutation σ′ of size |σ| − 1 such that σ′ < σ. In
other words, there exists a point σi of σ such that the permutation obtained when deleting
σi and renormalizing is simple. But how many points of σ have this property? To answer
this question, we look at the multigraph where vertices are simple permutations and there
are as many edges between σ and σ′ as the number of possible ways to insert an element
in σ′ to obtain σ. Proving that this indeed is a graph (instead of a multigraph) shows that
our question is equivalent to counting the number of edges between two consecutive levels
in the original poset.

Proposition 1.30. Let σ < τ be simple permutations such that |τ | = |σ|+ 1. Then there
exists only one way to obtain τ by adding a point in σ.

Proof. Suppose that there exist at least 2 ways to do it. Then with σ = σ1σ2 . . . σn there
are integers a 6= b and i < k such that:
τ = σ′1 . . . σ

′
i−1 a σ

′
i . . . σ

′
k−1 σ

′
k . . . σ

′
n and

τ = σ′′1 . . . σ
′′
i−1 σ

′′
i . . . σ

′′
k−1 b σ

′′
k . . . σ

′′
n

where σ′j =

{
σj if σj < a
σj + 1 otherwise

and σ′′j =

{
σj if σj < b
σj + 1 otherwise.

In particular the equality between these two ways to write τ implies that if i < k − 1,
then σ′i = τi+1 = σ′′i+1, but σi 6= σi+1 thus |σi − σi+1| = 1 which is impossible because

46 Chapter 1. Simple permutations as a poset

σ is simple. Therefore i = k − 1, but then the equality implies that a = τi = σ′′i and
b = τi+1 = σ′i, so {a, b} = {σi, σi+1}, which is impossible because τ is simple. Consequently
there is only one way to write τ from σ. �

Recalling that G is the graph representing the poset of simple permutations defined
at the beginning of Section 1.4, we consider the graph G1 obtained from G by deleting
edges between exceptional permutations. Notice that there is an edge in G1 from a simple
permutation σ to a simple permutation π if and only if we can obtain π from σ by deleting
one point. Then from Proposition 1.30, the number of points we can delete (resp. insert)
in σ in order to obtain a simple permutation is the outdegree (resp. indegree) of σ in G1.

Definition 1.31. Let π be a simple permutation. We denote by Sπ+ (resp. Sπ−) the set
of parents (resp. children) of π in G1:
Sπ+ = {σ | σ is simple, π < σ and |σ| = |π|+ 1} and
Sπ− = {σ | σ is simple, σ < π and |σ| = |π| − 1}

Proposition 1.32. Let π be a simple permutation of size n, then |Sπ+| = (n+ 1)(n− 3).
Moreover we obtain these (n+1)(n−3) simple permutations from π by adding a point of the
grid of the diagram of π which is neither a corner of the diagram nor of a cell containing
a point of π.

×

××
××

×
××
××
×

××
××

×
××
××

× ××
××

×

××
××

×

×

×

×

Figure 1.9: (n + 1)2 ways to add a point in a simple permutation of size n, among them
4n lead to a permutation with an interval of size 2 and 4 lead to a permutation with an
interval of size n.

Proof. Permutations of Sπ+ are simple permutations obtained from π by adding one point.
There are (n+1)2 ways to insert a point in π (giving permutations not necessarily different):
if we consider the diagram of π in a grid, adding one point to π corresponds to choosing
one point in the grid, which is of size (n + 1)2. But we want only simple permutations,
which excludes 4(n + 1) points in the grid: for one given point πi of π, we cannot take
any of the 4 corners of the cell where it is, this excludes 4n points, which are all different
because π is simple so there are no points in contiguous cells. And we cannot take any
of the 4 corners of the grid, and these 4 points have not been excluded yet because π is
simple so there is no point in a corner. There are 4(n+ 1) points excluded among (n+ 1)2

possibilities and Proposition 1.23 ensures that they are the only points to exclude, so we
have (n + 1)(n − 3) points left which give simple permutations. We have now to ensure
that we cannot have the same simple permutation from two different points, which is given
by Proposition 1.30. �

So |Sπ+|, which is the indegree of π in the graph G1, is independent of π. We are now
interested in |Sπ−|, the outdegree of π in G1. We know that it depends on π, and especially
that |Sπ−| = 0 if and only if π is exceptional. We know also that |Sπ−| ≤ |π|. We consider
the average outdegree in G1.

Proposition 1.33. Let Dn be the average outdegree of simple permutations of size n in
G1. Then Dn = n− 4− 4

n +O(1
n2).

1.4 Simple permutations as a poset 47

Proof. In G1, there is an edge from a simple permutation σ to a simple permutation π
if and only if we can obtain π from σ by deleting one point. So edges that come from
permutations of size n are those which go to permutations of size n − 1. Let sn be the
number of simple permutations of size n. From Proposition 1.32 we know that there are

sn−1 × n(n− 4) such edges. So Dn =
sn−1 × n(n− 4)

sn
. But from Theorem 5 of [AAK03]

(Theorem 0.23) we know that sn =
n!

e2

(
1− 4

n
+

2

n(n− 1)
+O(n−3)

)
and a straightforward

computation allows us to conclude. �

Thus in general in a simple permutation, almost every point gives another simple per-
mutation when deleting it. We are now interested in the number Skn of simple permutations
of size n and of outdegree k fixed. For example we know that S0

n = 4 for every even n and
S0
n = 0 for every odd n (number of exceptional permutations). Figure 1.10 shows the per-

centage of simple permutations which have outdegree k. Each plot shows this distribution
for a given size of permutations as indicated in the caption. Notice that Figure 1.10 also
illustrates the result of Proposition 1.33.

10 20 30 40 50

0

10

20

30

k : Outdegree of Node

S
k n
/s
n

n = 5 10

15 20

25 30

35 40

45 50

Figure 1.10: Proportion Skn/sn (in percentage) of simple permutations with outdegree k in
G1 among simple permutations of size n

Proposition 1.34. Let Skn = |{π : |Sπ−| = k}| be the number of simple permutations

of size n and of outdegree k in G1. Then for every fixed k, the proportion
Skn
sn

of simple

permutations of outdegree k among simple permutations of size n tends to zero when n
tends to infinity.

Proof. By definition sn × Dn =
∑n

i=0 i × Sin. Suppose that there exists k such that
Skn
sn

does not tend to zero, then there exists ε > 0 such that ∀n0, ∃n ≥ n0 such that
Skn
sn

> ε.

But then

Dn =

n∑
i=0

i×S
i
n

sn
= k×S

k
n

sn
+

n∑
i 6=k,i=0

i×S
i
n

sn
≤ k+

n∑
i 6=k,i=0

n×S
i
n

sn
= k+n

(
1−S

k
n

sn

)
≤ k+n(1−ε)

but from Proposition 1.33, for n0 large enough Dn ≥ n− 5, a contradiction. �

48 Chapter 1. Simple permutations as a poset

1.5 Generating simple permutations in a permutation class

1.5.1 An algorithm for substitution-closed classes

Recall that from Proposition 0.41, a permutation class Av(B) is substitution-closed if and
only if B contains only simple permutations (and maybe 1, 12 or 21, however when B
contains 1, 12 or 21, there is no simple permutation in Av(B), and we exclude this to
avoid trivial cases).

Theorem 1.25 ensures that if σ is a non-exceptional simple permutation and Av(B) a
substitution-closed class of permutations, then σ does not belong to Av(B) if and only if
it is equal to a permutation of B or contains as a pattern a simple permutation of size
|σ| − 1 which does not belong to Av(B). Indeed by definition σ does not belong to Av(B)
if and only if it contains a permutation of B as a pattern, and elements of B are simple.

This leads to an efficient iterative algorithm to generate simple permutations in a
finitely based substitution-closed class (see Algorithm 1 whose validity is proved in Propo-
sition 1.35).

Algorithm 1: Generating simple permutations in a finitely based substitution-closed
class of permutations
Data: B a finite set of simple permutations
Result: Si ou Si ou Si ou Si ou Si the set of simple permutations in Av(B)

1 Si3 ← ∅, Si4 ← {2413, 3142} \B;
2 n← 5;
3 while Sin−1 6= ∅ or Sin−2 6= ∅ do
4 Sin ou Sin ou Sin ou Sin ou Sin ← ∅;
5 for π ∈ Sin−1 do
6 for each admissible way to insert a point into π and obtain a simple

permutation σ do
7 if σ 6∈ B then
8 inS = true;
9 for each of the n ways to delete a point of σ do

10 Compute the obtained permutation τ ;
11 if τ is simple then
12 if τ 6∈ Sin−1 then
13 inS = false ;

14 if inS = true then
15 Sin ← Sin

⋃
σ

16 for π exceptional of type i ∈ Sin−2 do
17 if σ exceptional of type i and of size n 6∈ B then
18 Sin ← Sin

⋃
σ

19 n← n+ 1;

Proposition 1.35. For all n ≥ 3, the set Sin computed by Algorithm 1 is the set of simple
permutations of size n contained in Av(B).

Proof. The result holds for n = 3 and n = 4. For n ≥ 5, we show it by induction assuming
it holds for n− 1 and n− 2.

1.5 Generating simple permutations in a permutation class 49

We have to prove that every simple permutation σ of size n in Av(B) belongs to Sin.
Let σ be a simple permutation of size n in Av(B). If σ is not exceptional, there exists π
simple such that π ≤ σ and |π| = |σ| − 1 (Proposition 1.22). By the induction hypothesis,
π ∈ Sin−1 so that σ is considered at line 6 of our algorithm. As σ ∈ Av(B), σ 6∈ B and
every simple pattern τ of σ of length n−1 is in Av(B) and by the induction hypothesis lies
in Sin−1. Thus line 15 is reached and σ is added to Sin. If σ is exceptional, σ is considered
at line 17 of our algorithm and is added to Sin by the induction hypothesis.

Conversely, let us prove that every permutation σ ∈ Sin is a simple permutation of
size n of Av(B). If σ ∈ Sin, notice first that σ is simple and of size n. Suppose now
that σ 6∈ Av(B); then there exists π ∈ B (π simple) such that π ≤ σ. We have σ 6= π;
otherwise σ ∈ B, but there is no permutation of B in Sin (because of lines 7 and 17 of the
algorithm). If σ is not exceptional, using Theorem 1.25, we can find τ simple of size n− 1
such that π ≤ τ ≤ σ, thus τ 6∈ Av(B) and by the induction hypothesis τ 6∈ Sin−1. But
our algorithm tests every pattern of σ of size n − 1 in line 9 so σ is not added to Sin. If
σ is exceptional, then |π| is even (Proposition 1.21) so π ≤ σ′ where σ′ is the exceptional
permutation of the same type as σ of size |σ| − 2. By induction hypothesis σ′ /∈ Sin−2 so
σ is not added to Sin and we have the result. �

Proposition 1.36. Algorithm 1 terminates if and only if Av(B) contains only a finite
number of simple permutations. In this case it gives all simple permutations in Av(B).

Proof. If Algorithm 1 terminates, there exists n ≥ 5 such that Av(B) contains no simple
permutation of size n− 1 or n− 2. Suppose that Av(B) contains a simple permutation σ
of size k ≥ n, then from Proposition 1.19 and Proposition 1.20 σ has a simple pattern of
size n − 1 or n − 2 in Av(B), a contradiction. So Av(B) contains no simple permutation
of size greater than n− 2 and Proposition 1.35 ensures that the algorithm gives all simple
permutations in Av(B).

Conversely if Av(B) contains only a finite number of simple permutations, let k be the
size of the greater simple permutation in Av(B). From Proposition 1.35, the algorithm
computes Sik+1 = Sik+2 = ∅ and the algorithm terminates. �

Before running Algorithm 1 we can test whether Av(B) contains a finite number of
simple permutations in time O(n log n) where n =

∑
π∈B |π| thanks to the algorithm

given in the next chapter. If Av(B) contains a finite number of simple permutations,
Algorithm 1 gives all simple permutations in Av(B). If Av(B) contains an infinite number
of simple permutations, we can use a modified version of the algorithm to obtain all simple
permutations in Av(B) of size less than a fixed integer k: it is sufficient to replace in the
algorithm “while Sin−1 6= ∅ or Sin−2 6= ∅” by “for n ≤ k”. Notice that this modified version
of the algorithm can be used even if the basis B is infinite to obtain all simple permutations
in Av(B) up to size k, by taking in input the subset of permutations of size at most k of
B, which is necessarily finite.

Let us now evaluate the complexity of our algorithm.

Proposition 1.37. The complexity of Algorithm 1 is O
(∑k+1

n=5 n
4|Sin−1|

)
where k is the

size of the longest simple permutation in Av(B).

Proof. First, we encode every set of permutations as a trie, allowing a linear algorithm to
check if a permutation is in the set. The while loop beginning at line 3 is done for n from
5 to k+ 2. The inner loop beginning at line 5 is repeated |Sin−1| times (with |Sik+1| = 0).
The loop of line 6 is repeated n(n − 4) times (see Proposition 1.32; notice that we don’t
have to check whether σ is simple because we know where to insert the points to obtain a
simple permutation). This loop performs the following tests:

50 Chapter 1. Simple permutations as a poset

• Compute σ → O(n)

• Test whether σ is in B → O(n) using tries.

• Loop at line 9 is performed n times and performs each time the following operations:

• Compute τ → O(n)

• Test whether τ is simple → O(n) (consequence of Theorem 0.35)
• Test whether τ ∈ Sin−1 → O(n) using tries.

• Add if necessary σ into Sin → O(n) as we use tries.

Thus the inner part of loop in line 3 has a complexity of order (n(n− 4)(n+n+n(n+
n+n)+n)) that is O(n4) leading to the claimed result. Indeed, the loop for the exceptional
case is easy to implement in O(n) time as there are at most 4 exceptional permutations of
a given size. �

1.5.2 An algorithm for not substitution-closed classes

Algorithm 1 cannot be applied directly to general permutation classes. However we can
adapt it by replacing the part from line 7 to line 15 by testing if σ ∈ Av(B) and in that
case adding it to Sin, leading to Algorithm 2 whose validity is proved by adapting the
proofs of the previous section.
Algorithm 2: Generating simple permutations in a finitely based permutation class
Data: B a finite set of permutations
Result: Si the set of simple permutations in Av(B)
Si3 ← ∅, Si4 ← {2413, 3142} \B;
n← 5;
while Sin−1 6= ∅ or Sin−2 6= ∅ do

Sin ← ∅;
for π ∈ Sin−1 do

for each admissible way to insert a point into π and obtain a simple
permutation σ do

if σ ∈ Av(B) then
Sin ← Sin

⋃
σ

for π exceptional of type i ∈ Sin−2 do
if σ exceptional of type i and of size n ∈ Av(B) then

Sin ← Sin
⋃
σ

n← n+ 1;

Thus we have the following proposition, adapting the proof of Proposition 1.37:

Proposition 1.38. For every class Av(B) containing a finite number of simple permuta-
tions, Algorithm 2 computes the simple permutations in Av(B) in time

∑k+1
n=5 |Sin−1|n2fAv(B)(n)

where k is the size of the longest simple permutation in Av(B) and fAv(B)(n) the complexity
of testing if a permutation of size n belongs to Av(B).

Unfortunately, in general there is no efficient algorithm to test if a permutation is in a
class Av(B). The only known general algorithm is to test if σ avoids every permutation in
B. Then in the preceding proposition the function fAv(B)(n) is bounded by

∑
τ∈B n

|τ |+1. In
some particular cases, this test can be highly improved, see for example [AAAH01, BRV07].
Finding an efficient algorithm in the general case is a current research topic.Note that in

1.5 Generating simple permutations in a permutation class 51

our algorithm we test the membership of Av(B) only for permutations obtained from a
permutation of Av(B) by inserting a point. In this case the complexity is O

∑
τ∈B n

|τ |

since the point added has to belong to the pattern.
In any case, putting these results together we are now able to state our main result

about computing simple permutations in a permutation class:

Theorem 1.39. For every class Av(B) containing a finite number of simple permutations
and given by its basis, Algorithm 2 computes the set SiB of simple permutations in Av(B)
in time O

(
|B|.|SiB|.kp+2

)
, with p = max{|τ | : τ ∈ B} and k = max{|π| : π ∈ SiB}.

Moreover if Av(B) is substitution-closed, this can be done in time O
(
|SiB|.k4

)
using

Algorithm 1.

Indeed when a class contains a finite number of simple permutations, we know that its
basis is finite. Thus the need of a finite basis is not a restriction : the only restriction is
the finiteness of the number of simple permutations.

It is then interesting to be able to test algorithmically whether a permutation class
contains a finite number of simple permutations. This is the topic of the next chapter.

52 Chapter 1. Simple permutations as a poset

Chapter 2

Finitely many simple permutations?

In this chapter, we describe an algorithm to determine whether a permutation class C given
by a finite basis B of excluded patterns contains a finite number of simple permutations.
This is a continuation of the work initiated in [BRV08] (Brignall, Ruškuc, Vatter, Simple
permutations: decidability and unavoidable substructures, 2008), and shares several aspects
with it. As in this article, the main difficulty is to decide whether C contains a finite number
of proper pin-permutations, and this decision problem is solved using automata theory.
Moreover, we use an encoding of proper pin-permutations by words over a finite alphabet,
introduced by Brignall et al. However, unlike in their article, our construction of automata
is fully algorithmic and efficient. It is based on the study of pin-permutations in [BBR11]
(Bassino, Bouvel, Rossin, Enumeration of pin-permutations, 2011). The complexity of the
overall algorithm is O(n log n+ s2k) where n denotes the sum of the sizes of permutations
in the basis B, s is the maximal size of a pin-permutation in B and k is the number of
pin-permutations in B.

54 Chapter 2. Finitely many simple permutations?

2.1 Introduction

The work reported here follows the line opened by [AA05] and continued by [BRV08].
In [AA05], the main theorem provides (in particular) a sufficient condition for a permu-
tation class C to have an algebraic generating function: namely, that C contains a finite
number of simple permutations.

Then in [BRV08], Brignall, Ruškuc and Vatter introduce new objects (most impor-
tantly, pin-permutations) to provide a criterion deciding whether a permutation class con-
tains a finite number of simple permutations. To this criterion, [BRV08] associates a
decision procedure testing from a finite basis B whether C = Av(B) contains a finite num-
ber of simple permutations. Both in the criterion and in the procedure, the set of proper
pin-permutations introduced in [BRV08] plays a crucial part. The procedure is based on
the construction of automata that accept languages of words on a finite alphabet (that
are called pin words) that encode such permutations that do not belong to the class. This
procedure is however not fully algorithmic, and its complexity is a double exponential, as
we explain in Subsection 2.2.3.

Our goal is to solve the decision problem of [BRV08] with an actual algorithm, whose
complexity should be kept as low as possible. For this purpose, we heavily rely on [BBR11]
in which is performed a detailed study of the class of pin-permutations, which contains
the proper pin-permutations of [BRV08]. These results allow us to precisely characterize
the set of pin words corresponding to any given pin-permutation, and subsequently to
modify the automata construction of [BRV08], leading to our algorithm deciding whether a
permutation class given by a finite basis B contains a finite number of simple permutations.
The resulting algorithm is efficient: it is polynomial w.r.t. the sizes of the patterns in B
and simply exponential w.r.t. their number, which is a significant improvement to the first
decidability procedure of [BRV08]. More precisely we give a O(n log n+ s4k) algorithm to
decide if a finitely based permutation class Av(π1, π2, . . . , πk) contains a finite number of
simple permutations where n =

∑
|πi| and s ≤ max |πi|, and we describe a variant of our

algorithm, whose complexity is O(n log n+s2k). We also give an algorithm solving the same
problem on substitution-closed permutation classes (equivalently, classes of permutations
whose bases contain only simple permutations). The complexity of our algorithm in this
special framework is O(n log n) where n =

∑
|πi|.

The chapter is organized as follows. Section 2.2 is a reminder of previous definitions
and results: pin-permutations and their pin words, brief description of the characteriza-
tion and the procedure of [BRV08], and special families of pin-permutations playing an
important role in our work. Section 2.3 recalls and refines the interpretation of the pattern
containment relation between pin-permutations on their pin words. The main result of Sec-
tion 2.3 is Theorem 2.27, which is the basis of the automata construction of Section 2.5.
Section 2.4 focuses on the language of pin words encoding a given pin-permutation. The-
orems 2.48, 2.53, 2.60, 2.66 and 2.72 describe, for any pin-permutation π, the language
P (π) of pin words of π. These languages are described recursively following the recur-
sive characterization of the decomposition trees of pin-permutations obtained in [BBR11],
and refining the ideas used in its proof. Then, based on these results and following the
same recursive approach, Section 2.5 describes a recursive algorithm that builds, for any
pin-permutation π, an automaton accepting the language Lπ of pin words that encode
proper pin-permutations containing π as a pattern (or rather, for technical reasons that
will be explained later, a slight modification of this language). By Theorem 2.27, check-
ing whether C = Av(B) contains finitely many proper pin-permutations is equivalent to
checking whether the complement set of ∪π∈BLπ is finite. Finally, Section 2.6 explains

2.2 Preliminaries 55

how to decide this question using the automata of Section 2.5, and combines this proce-
dure with existing algorithms from [AAAH01, BBPR10, BCMR08, BRV08]: this provides
an algorithm of reasonable complexity to decide, given a finite basis B, whether the class
C = Av(B) contains a finite number of simple permutations. We also give a O(n log n)
algorithm solving the same problem on substitution-closed permutation classes.

2.2 Preliminaries

Our goal is to check whether a permutation class contains a finite number of simple per-
mutations, ensuring in this way that its generating function is algebraic [AA05]. In this
chapter, permutation classes are given by their bases. We are further interested in classes
having finite bases, since otherwise, from [AA05], they contain infinitely many simple per-
mutations. As we shall see in the following, a class of particular permutations, called
the pin-permutations, plays a central role in the decision procedure of this problem. For
this reason, we record in this section a few definitions and results related with these pin-
permutations. We also recall the main steps of the decision procedure of [BRV08]. More
details can be found in [BBR11, BHV08b, BRV08].

2.2.1 Pin-permutations and pin representations

A pin is a point in the plane. A pin p separates – horizontally or vertically – the set of
pins P from the set of pins Q if and only if a horizontal – resp. vertical – line drawn across
p separates the plane into two parts, one containing P and the other one containing Q.
Recall that the bounding box of a set of points P is the smallest axis-parallel rectangle
containing the set P . A pin sequence is a sequence (p1, . . . , pk) of pins in the plane such
that no two points are horizontally or vertically aligned and for all i ≥ 2, pi lies outside
the bounding box of {p1, . . . , pi−1} and satisfies one of the following conditions:

• separation condition: pi separates pi−1 from {p1, . . . , pi−2};

• independence condition: pi is independent from {p1, . . . , pi−1}, i.e., it does not sepa-
rate this set into two non-empty sets.

p1 p1
p2

p1
p2

p3

p1
p2

p3
p4

p1
p2

p3
p4

p5
p1

p2

p3
p4

p5
p6

p1
p2

p3
p4

p5
p6

p7

p1
p2

p3
p4

p5
p6

p7 p8

Figure 2.1: A pin representation of 1 8 3 6 4 2 5 7. In this pin representation, each pin
satisfies the separation condition, except p6 which satisfies the independence condition.

56 Chapter 2. Finitely many simple permutations?

A pin sequence represents a permutation σ if and only if it is order isomorphic to its
diagram. We say that a permutation σ is a pin-permutation if it can be represented by
a pin sequence, which is then called a pin representation of σ (see Figure 2.1). Not all
permutations are pin-permutations (see for example the permutation σ = 4 7 2 6 3 1 5 of
Figure 2.2: we can check that no ordering of its points gives a pin representation).

4 7 2 6 3 1 5 4 6 2 3 1 5

p1

p2

p3

p4

p5

p6

Figure 2.2: The permutation σ = 4 7 2 6 3 1 5, its pattern π = 4 6 2 3 1 5, a pin representation
p of π, and the bounding box of {p1, p2} with its sides shaded.

Lemma 2.17 of [BBR11] is used several times in our proofs, and we state it here:

Lemma 2.1. Let (p1, . . . , pn) be a pin representation of σ ∈ Sn. Then for each i ∈
{2, . . . , n−1}, if there exists a point x of σ on the sides of the bounding box of {p1, . . . , pi},
then it is unique and x = pi+1.

A proper pin representation is a pin representation in which every pin pi, for i ≥ 3,
separates pi−1 from {p1, . . . , pi−2}. A proper pin-permutation is a permutation that admits
a proper pin representation.

The set of pin-permutation is a permutation class, but it is not the case of the set of
proper pin-permutations. Indeed by deleting some points in a pin sequence and keeping
the remaining points in the same order, we still have a pin sequence, but some separating
pins become independent (see Figure 2.3 where the pattern 6 2 4 3 1 5 admits no proper pin
representation).

p1
p2

p3
p4

p5
p6

p7
p8

p1
p2

p3

p5

p7
p8

q5

q1

q3

q2

q4

q6

Figure 2.3: A pin representation of the pattern 6 2 4 3 1 5 obtained from a proper pin
representation of 2 8 3 6 4 1 5 7.

Remark 2.2. A pin representation of a simple pin-permutation is always proper as any
independent pin pi with i ≥ 3 creates a block corresponding to {p1, . . . , pi−1}.

2.2.2 Pin words

Pin representations can be encoded on the alphabet {1, 2, 3, 4, U,D,L,R} by words called
pin words. Consider a pin representation (p1, . . . , pn) and choose an origin p0 in the plane

2.2 Preliminaries 57

such that (p0, p1, . . . , pn) is a pin sequence. Then every pin p1, . . . , pn is encoded by a letter
according to the following rules:

• The letter associated with pi is U – resp.D,L,R – if pi separates pi−1 and {p0, p1, . . . , pi−2}
from the top – resp. bottom, left, right.

• The letter associated with pi is 1 – resp. 2, 3, 4 – if pi is independent from {p0, p1, . . . , pi−1}
and is located in the up-right – resp. up-left, bottom-left, bottom-right – corner of
the bounding box of {p0, p1, . . . , pi−1}.

This encoding is summarized by Figure 2.4. The region encoded by 1 is called the first
quadrant with respect to the box . The same goes for 2, 3, 4. The letters U,D,L,R are
called directions, while 1, 2, 3 and 4 are numerals.

3 D 4

R

1U2

L

Figure 2.4: Encoding of pins by letters.

Example 2.3. 14L2UR (if p0 is between p3 and p1) and 3DL2UR (if p0 is horizontally
between p1 and p4 and vertically between p2 and p6) are pin words corresponding to the
pin representation of π = 4 6 2 3 1 5 shown in Figure 2.2.

Example 2.3 shows in particular that several pin words encode the same pin represen-
tation, depending on the choice of the origin p0. We may actually describe the number of
these pin words:

Remark 2.4. Because of the choice of the origin p0, each pin-permutation of size greater
than 1 has at least 6 pin words. More precisely each pin representation p is encoded by 6
pin words if p3 is a separating pin and 8 pin words otherwise (see Figure 2.5). Indeed, once
a pin representation p is fixed, the letters encoding pi for i ≥ 3 in a pin word encoding p
are uniquely determined.

p1

p2

11

41

4R

21

31

3R

2U

3U

p2

p1

1D

4D

1L

13

43

2L

23

33
p1

p2
1R

14

44

2R

24

34

2D

3D p2

p1
1U

4U

12

42

4L

22

32

3L

Figure 2.5: The two letters in each cell indicate the first two letters of the pin word encoding
(p1, . . . , pn) when p0 is taken in this cell.

This remark has a direct algorithmic consequence:

Remark 2.5. Given a pin representation p, we can compute its set of corresponding pin
words in linear time w.r.t. |p|.

58 Chapter 2. Finitely many simple permutations?

Conversely, pin words indeed encode pin-permutations since to each pin word corre-
sponds a unique pin representation, hence a unique permutation.

From the definition of pin words we can deduce the following remarks that will be
useful in the following:

Remark 2.6. The definition of pin sequences implies that pin words do not contain any
of the factors UU,UD,DU,DD,LL,LR,RL and RR.

Remark 2.7. There are at most 8n and at least 6n pin words of size n. Indeed pin words
are words on a 8 letter alphabet, and taking the word from the beginning, for each letter
we have 8 or 6 choices depending whether the preceding letter is a direction.

Finally we end this section about pin words by defining strict and quasi-strict pin words
and by discussing their link with proper pin representations:

A strict (resp. quasi-strict) pin word is a pin word that begins with a numeral (resp.
two numerals) followed only by directions.

Remark 2.8 (Proper pin representations, strict and quasi-strict pin words). Every pin
word encoding a proper pin representation is either strict or quasi-strict. Conversely if a
pin word is strict or quasi-strict, then the pin representation it encodes is proper. Finally
a pin-permutation is proper if and only if it admits a strict pin word.

2.2.3 Decidability procedure

In [BRV08], Brignall et al. study conditions for a class to contain a finite number of simple
permutations. Introducing three new kinds of permutations they show that this problem
is equivalent to ensuring that the class contains a finite number of permutations of each of
these three simpler kinds.

Theorem 2.9. [BRV08] A permutation class Av(B) contains a finite number of simple
permutations if and only if it contains:

• a finite number of wedge simple permutations, and

• a finite number of parallel alternations, and

• a finite number of proper pin-permutations.

In Theorem 2.9 above, the proper pin sequences of [BRV08] have been replaced by
proper pin-permutations, which is equivalent. Indeed, containing a finite number of proper
pin-permutations is equivalent to containing a finite number of proper pin sequences, since
the encoding of proper pin-permutations by proper pin sequences provides a finite-to-one
correspondence. More precisely, each proper pin sequence corresponds to a unique proper
pin-permutation. Conversely every proper pin-permutation of size n is associated with at
least one and very loosely at most 8n pin sequences, since pin sequences are encoded by
pin words on an 8-letter alphabet.

The definition of the wedge simple permutations and the parallel alternations are not
crucial to our work. Let us only mention that parallel alternations are defined in the
previous chapter and that wedge simple permutations are obtained from wedge alternations
by adding an extremal point which split their interval of size 2. (see Figure 1.3 p.37). Wedge
simple permutations can be of type 1 or 2 since there are two different ways to add a single
point to a wedge alternation to form a simple permutation. We refer the reader to [BRV08]

2.2 Preliminaries 59

for more details. What is however important for our purpose is to be able to test whether
a class given by a finite basis contains a finite number of parallel alternations and wedge
simple permutations.

Parallel alternations and wedge simple permutations are well characterized in [BRV08].
This characterization leads to the following lemmas:

Lemma 2.10. [BRV08] The permutation class Av(B) contains only finitely many par-
allel alternations if and only if B contains an element of every symmetry of the class
Av(123, 2413, 3412).

Lemma 2.11. [BRV08] The permutation class Av(B) contains only finitely many wedge
simple permutations of type 1 if and only if B contains an element of every symmetry of
the class Av(1243, 1324, 1423, 1432, 2431, 3124, 4123, 4132, 4231, 4312).

Lemma 2.12. [BRV08] The permutation class Av(B) contains only finitely many wedge
simple permutations of type 2 if and only if B contains an element of every symmetry of
the class Av(2134, 2143, 3124, 3142, 3241, 3412, 4123, 4132, 4231, 4312).

Using these lemmas together with a result of [AAAH01] we have:

Lemma 2.13. Testing whether a finitely based class Av(B) contains a finite number of
wedge simple permutations and parallel alternations can be done in O(n log n) time, where
n =

∑
π∈B |π|.

Proof. From Lemmas 2.10 to 2.12, deciding if Av(B) contains a infinite number of wedge
simple permutations and parallel alternations is equivalent to checking if elements of its
basis B involve patterns of size at most 4. From [AAAH01] checking whether a permutation
π involves a fixed set of patterns of length at most 4 can be done in O(|π| log |π|). As we
have to check for each permutation of B the involvement of fixed sets of permutations of
size at most 4, this leads to a O(n log n) algorithm for deciding whether the number of
parallel alternations and of wedge simple permutations in the class is finite. �

In [BRV08] Brignall et al. also proved that it is decidable to know if C = Av(B)
contains a finite number of proper pin-permutations using language-theoretic arguments.
More precisely they define an order relation 4 on pin words, and denoting by SP the set
of all strict pin words, and by P (B) the set of pin words encoding a permutation of B,
they prove that C contains a finite number of proper pin-permutations if and only if the
set L is finite, where

L = SP \
⋃

u∈P (B)

{w | u 4 w}

.
They also notice that using automata theory (see [HU79] among other references), given

a finite automaton recognizing L, it can be decided whether L is finite.
Then given a pin word u, they explain how to build a finite automaton A(u) recognizing

a language L(u) such that SP ∩ L(u) = SP ∩ {w | u 4 w}, and how to build a finite
automaton recognizing SP, and they conclude by referring to automata theory.

The proof of the decidability in [BRV08] is constructive and establishes that this can be
done algorithmically. However the authors don’t give an actual algorithm since many steps
are not given explicitly. In particular, the computation of the set P (B) is not addressed.
Moreover, they don’t bother about the complexity of their procedure.

Analyzing the procedure of [BRV08], we can prove that it has a doubly exponential
complexity due to the resolution of a co-finiteness problem for a regular language given by
a non-deterministic automaton.

60 Chapter 2. Finitely many simple permutations?

More precisely, if we turn into an actual algorithm the procedure of [BRV08] deciding
whether C = Av(B) contains a finite number of proper pin-permutations, the main steps
are:

1. Compute the set P (B) of pin words encoding permutations of B.

2. For each u ∈ P (B), build the automaton A(u) recognizing L(u).

3. Build an automaton A recognizing SP \
⋃

u∈P (B)

L(u).

4. Test whether A contains a cycle that can be reached from an initial state and can
lead to a final state.

As already explained, the first step is not adressed in [BRV08]. However there is a
naive way to do it: for each permutation π in B, test each ordering of the points of π
and check whether it gives a pin representation of π. In this case, compute the set of pin
words encoding this pin representation. But this naive procedure leads to a complexity of
O(
∑

π∈B |π|!) which is a very high complexity since n! is roughly nn.
A more clever way to compute P (B) would be: for each permutation π in B, for

each pin word u of size |π|, check if the permutation encoded by u is π. Recalling that
there are at most 8n pin words of size n (and at least 6n of them, see Remark 2.7), this
yield a complexity of O(

∑
π∈B |π| · 8|π|) which is O(n · 8m) where n =

∑
π∈B |π| and

m = max{|π| : π ∈ B}. This complexity is better but still exponential. In our work we
explain how to replace this step by a step of complexity O(n).

Regarding the second step, it is explained in [BRV08] and produced non-deterministic
automata A(u) whose number of state is O(|u|), and is indeed at least |u|.

Concerning the third step, [BRV08] only refers to automata theory and doesn’t give
any detail. Without any further assumptions, the more effective way to do this step would
be to build by juxtaposition an intermediate automaton AU recognizing

⋃
u∈P (B)

L(u), to

determinize this automaton in order to complement it, and then to compute the intersection
with an automaton recognizing SP. But the determinization of an automaton with q states
has a complexity O(2q) and there are some automata for which this bound is reached. Since
the number of states of AU is O(

∑
u∈P (B) |u|), and is indeed at least

∑
u∈P (B) |u|, this leads

to a complexity of O(2
∑
u∈P (B) |u|) which may be reached for this third step.

Denoting k the number of pin-permutations in B and s the maximal size of a pin-
permutation of B,

∑
u∈P (B) |u| ≤ k · 8s · s. This bound is maybe not tight. However we

can notice that the number of pin words encoding the identity of size s is at least 2s, since
any word on the alphabet {1, 3} is a pin word of the identity. Finally the complexity of
this third step is of order at least O(2k·s·2

s
), which is doubly exponential w.r.t. s.

The goal of the present work is to give an actual algorithm of complexity as low as
possible to determine whether a permutation class C given by a finite basis B contains a
finite number of simple permutations. To do so, we complete and modify the procedure
of [BRV08] and obtain an algorithm whose total complexity is O(n log n + s2k), where as
above n denotes the sum of the sizes of permutations in the basis B, s is the maximal size
of a pin-permutation in B and k is the number of pin-permutations in B.

As in [BRV08], the main difficulty is to decide whether C contains a finite number of
proper pin-permutations, and this decision problem is solved using automata theory, by
first computing a description of the set P (B) and then building an automaton depending
on P (B) in which we look for a cycle. Thanks to a detailled study of pin-permutations

2.3 Characterization of classes with finitely many proper pin-permutations 61

in [BBR11] and in Section 2.4, the decription of P (B) we need can be computed in time
O(n) and then the automaton built in time O(s2k), which is to be compared with the
respective complexities O(n8m) and O(2k·s·2

s
) in the procedure of [BRV08]. Writing that

O(s2k) = O(2k·2 log s) enables us to measure the complexity improvement w.r.t. O(2k·s·2
s
):

this improvement is doubly exponential w.r.t. s.
Indeed we obtain an algorithm of total complexity O(n log n+s2k), which is reasonable

to use in practice, contrary to a doubly exponential algorithm.

2.3 Characterization of classes with finitely many proper pin-
permutations

First, following [BRV08], we interpret the pattern containment relation on pin-permutations
by a piecewise factor relation between their pin words. This interpretation then leads to
the characterization of the relation π ≤ σ, for σ a pin-permutation, by a set inclusion of
the form Lσ ⊆ Lπ for languages we introduce in the following. Subsequently, taking π ∈ B,
we show how these languages Lπ can be used to characterize permutation classes Av(B)
that contain finitely many proper pin-permutations.

2.3.1 Pattern containment and piecewise factor relation

Recall the definition of the partial order 4 on pin words introduced in [BRV08].

Definition 2.14. Let u and w be two pin words. We decompose u in terms of its
strong numeral-led factors as u = u(1) . . . u(j), a strong numeral-led factor being a strict
pin word. We then write u 4 w if w can be chopped into a sequence of factors w =
v(1)w(1) . . . v(j)w(j)v(j+1) such that for all i ∈ {1, . . . , j}:

• if w(i) begins with a numeral then w(i) = u(i), and

• if w(i) begins with a direction, then v(i) is nonempty, the first letter of w(i) cor-
responds to a point lying in the quadrant – w.r.t. the origin of the encoding w –
specified by the first letter of u(i), and all other letters in u(i) and w(i) agree.

Example 2.15. The strong numeral-led factor decomposition of u = 31U42R is u =
3 · 1U · 4 · 2R. Moreover, u 4 w = 31URDLUR, because w may be decomposed as
w = 3 · 1U ·RD ·LUR, where the factors w(i) satisfying the conditions of Definition 2.14
are emphasized by bold letters.

This order is closely related to the pattern containment order ≤ on permutations.

Lemma 2.16. [BRV08] If the pin word w encodes the permutation σ and π ≤ σ then
there is a pin word u encoding π with u 4 w. Conversely if u 4 w then the permutation
corresponding to u is contained in the one corresponding to w.

Example 2.17. Taking σ = 28364157 and π = 624315, then we have π ≤ σ as illustrated
in Figure 2.3. Moreover taking the origin p0 horizontally between p1 and p3 and vertically
between p1 and p2, the word w = 31URDLUR encodes the pin representation p1, . . . , p8

of σ and the word u = 31U42R encodes the pin representation q1, . . . , q6 of π given in
Figure 2.3, and we have u 4 w as explained in Example 2.15.

62 Chapter 2. Finitely many simple permutations?

We may notice that the number of letters of the words v(i) which appear in a decompo-
sition of w satisfying the conditions of Definition 2.14 corresponds to the number of points
we have to delete from σ (encoded by w) to obtain π (encoded by u).

In what follows, σ is a proper pin-permutation (recall that our goal is to test whether
there are finitely many proper pin-permutations in a class). So we can choose a strict pin
word wσ that encodes σ (see Remark 2.8 p.58). As a consequence of Lemma 2.16, checking
whether a permutation π is a pattern of σ is equivalent to checking whether there exists a
pin word u corresponding to π with u 4 wσ.

The relation u 4 w on pin words is nearly a piecewise factor relation, the factors
being determined by the strong numeral-led factors of u. We use an encoding of pin words
that we introduced in [BBPR10] and recall hereafter: it maps the relation 4 on an actual
piecewise factor relation. As explained above, for our purpose it will be enough to consider
in Lemma 2.26 the case where w is a strict pin word.

Denote by SP the language of strict pin words. Let SP≥2 = SP \{1, 2, 3, 4} be the set
of strict pin words of length at least 2. Denote byM (resp.M≥3) the set of words of length
at least 2 (resp. at least 3) over the alphabet L,R,U,D such that L,R is followed by U,D
and conversely. We define below a bijection that sends strict pin words to words ofM. It
consists of replacing the only numeral in a strict pin word by two directions. Intuitively,
given a numeral q and a box , inserting two pins in the two directions prescribed by the
bijection ends up in a pin lying in quadrant q with respect to the box .

Definition 2.18. We define a bijection φ from SP≥2 to M≥3 as follows. For any strict
pin word u ∈ SP≥2 such that u = u′u′′ with |u′| = 2, we set φ(u) = ϕ(u′)u′′ where ϕ is
given by:

1R 7→ RUR 2R 7→ LUR 3R 7→ LDR 4R 7→ RDR
1L 7→ RUL 2L 7→ LUL 3L 7→ LDL 4L 7→ RDL
1U 7→ URU 2U 7→ ULU 3U 7→ DLU 4U 7→ DRU
1D 7→ URD 2D 7→ ULD 3D 7→ DLD 4D 7→ DRD

For any n ≥ 2, the map φ is a bijection from the set SPn of strict pin words of length
n to the set Mn+1 of words of M of length n + 1. Furthermore, it satisfies, for any
u = u1u2 . . . ∈ SP≥2, ui = φ(u)i+1 for any i ≥ 2.

In the above table, we may notice that, for any u ∈ SP≥2, the first two letters of
φ(u) are sufficient to determine the first letter of u (which is a numeral). Thus it is
natural to extend the definition of φ to SP by setting for words of length 1: φ(1) =
{UR,RU}, φ(2) = {UL,LU}, φ(3) = {DL,LD} and φ(4) = {RD,DR}, and by defining
consistently φ−1(v) ∈ {1, 2, 3, 4} for any v in {LU,LD,RU,RD,UL,UR,DL,DR}.

Lemma 2.19 below shows that for each pin word w, we know in which quadrant (w.r.t.
the origin of the encoding) lies each pin of the pin representation p corresponding to w.
More precisely for each i ≤ |w|, knowing only wi and wi−1, we can determine in which
quadrant pi lies.

Lemma 2.19. Let w be a pin word and p be the pin representation corresponding to w.
For any i ≥ 2, set

q(wi−1, wi) =


wi if wi is a numeral
φ−1(wi−1wi) if wi−1 and wi are directions
φ−1(Bwi) otherwise, with φ(wi−1wi) = ABwi

Then for any i ≥ 2, q(wi−1, wi) is a numeral indicating the quadrant in which pi lies with
respect to {p0, . . . , pi−2}.

2.3 Characterization of classes with finitely many proper pin-permutations 63

Notice that in the third case wi−1 is a numeral and wi is a direction; consequently,
ABwi ∈M3 is given by the table of Definition 2.18.

Proof. It is obvious that q(wi−1, wi) is a numeral. Moreover as (p0, . . . , p|w|) is a pin
sequence, pi lies outside the bounding box of {p0, . . . , pi−2} and it does not lies on its sides
because it respects the separation or the independence condition, thus its lies on one corner.
The fact that q(wi−1, wi) indicates the claimed quadrant is proved by case examination.

If wi is a numeral, then by definition of the encoding, q(wi−1, wi) = wi indicates the
quadrant in which pi lies w.r.t. {p0, . . . , pi−1} and a fortiori w.r.t. {p0, . . . , pi−2}.

If wi−1 and wi are directions we can check by a comprehensive study that given a
numeral ` and a bounding box B, inserting two pins in the directions given by the two
letters of φ(`) ends up in a pin lying in quadrant ` w.r.t. B. Thus the quadrant in which pi
lies with respect to {p0, . . . , pi−2} is φ−1(wi−1wi). For example if wi−1 = L and wi = U ,
then pi lies in the quadrant 2 and φ−1(LU) = 2.

Otherwise wi−1 is a numeral, wi is a direction and φ(wi−1wi) ends with wi. We can
check by a comprehensive study that given a bounding box B, inserting two pins according
to wi−1 and wi ends up in a pin lying in quadrant φ−1(BC) with φ(wi−1wi) = ABC
w.r.t. B. For example if wi−1 = 1 and wi = L, then pi lies in the quadrant 2 and we have
φ(1L) = RUL and φ−1(UL) = 2. �

Lemma 2.19 is used in the proofs of Lemma 2.21 and Theorem 2.22. Their statement
also requires that we extend some definitions from SP toM.

Remark 2.20. Words of M may also be seen as encodings of pin sequences (as in Sub-
section 2.2.2), taking the origin p0 to be a box instead of a point. Moreover, the relation
u 4 w can be extended to w ∈ M, and the map φ can be defined on words ofM as the
identity map.

By definition, strong numeral-led factors of any pin word u are strict pin words. There-
fore we first study how the relation u 4 w is mapped on φ(u), φ(w) when u is a strict pin
word.

Lemma 2.21. Let u be a strict pin word and w be a word of SP ∪M. If |u| ≥ 2 then
u 4 w if and only if φ(u) is a factor of φ(w). If |u| = 1 then u 4 w if and only φ(w) has
a factor in φ(u).

Proof. If u � w, as u is a strict pin word, writing u in terms of its strong numeral-led factors
leads to u = u(1); thus w can be decomposed into a sequence of factors w = v(1)w(1)v(2) as
in Definition 2.14.

If v(1) is empty then w(1) begins with a numeral, w(1) = u(1) and u is a prefix of w.
Consequently φ(u) is a prefix of φ(w).

Otherwise i = |v(1)| ≥ 1 and w(1) begins with a direction. By Definition 2.14, the
first letter wi+1 of w(1) corresponds to a point pi+1 lying in the quadrant specified by u1

(the first letter of u(1)), and all other letters (which are directions) in u(1) and w(1) agree:
u2 . . . u|u| = wi+2 . . . wi+|u|.

By Lemma 2.19, q(wi, wi+1) is the quadrant in which pi+1 lies, i.e. u1 = q(wi, wi+1).
If |u| ≥ 2, φ(u) = φ(q(wi, wi+1)wi+2 . . . wi+|u|) is a factor of φ(w) by definition of q. If
|u| = 1, φ(w) has a factor in φ(u) = φ(q(wi, wi+1)) by definition of q.

Conversely if |u| ≥ 2 and φ(u) is a factor of φ(w) or if |u| = 1 and φ(w) has a factor
in φ(u), then φ(w) = v u′ v′ with u = φ−1(u′). Let i = |v|, we set w = v(1)w(1)v(2) with
|v(1)| = i if w ∈ SP, |v(1)| = i+ 1 if w ∈M and |w(1)| = |u|. Let ` = |v(1)|+ 1.

64 Chapter 2. Finitely many simple permutations?

If ` = 1 then v is empty and w ∈ SP. Thus u′ is a prefix of φ(w) and u = φ−1(u′) is a
prefix of w. Hence u � w.

Otherwise ` ≥ 2. Then w` is a direction and we prove that the point p` corresponding
to w` lies in the quadrant indicated by u1. By Lemma 2.19, p` lies in quadrant q(w`−1, w`).

But φ(w`−1, w`) =


φ(w)`−1φ(w)`φ(w)`+1 if w ∈ SP and l = 2

φ(w)`φ(w)`+1 if w ∈ SP and l 6= 2

φ(w)`−1φ(w)` if w ∈M

Thus φ(w`−1, w`) =

{
φ(w)iφ(w)i+1φ(w)i+2 if w ∈ SP and l = 2

φ(w)i+1φ(w)i+2 otherwise.
But φ(w)i+1φ(w)i+2 = u′1u

′
2 hence q(w`−1, w`) = φ−1(u′1u

′
2) = u1. If |u| = 1 this proves

u � w. Otherwise as u = φ−1(u′), u2 . . . u|u| = u′3 . . . u
′
|u|+1 = φ(w)i+3 . . . φ(w)i+|u|+1 =

w`+1 . . . w`+|u|−1 = w
(1)
2 . . . w

(1)
|u| . Hence u � w. �

In the statement of Lemma 2.21, we have distinguished the cases |u| ≥ 2 and |u| = 1
since φ(u) is a word or a set of two words in these respective cases. However, to avoid
such uselessly heavy statements, we do not make this distinction in the sequel, and we
write indifferently “φ(u) is a factor of w” or “w has a factor in φ(u)” meaning that{
if |u| = 1, w has a factor in φ(u)

if |u| ≥ 2, φ(u) is a factor of w.
When the pin word u is not strict, Lemma 2.21 can be extended formalizing the idea

of piecewise factors mentioned at the beginning of this section.

Theorem 2.22. Let u and w be two pin words and u = u(1) . . . u(j) be the strong numeral-
led factors decomposition of u. Then u 4 w if and only if w can be chopped into a sequence
of factors w = v(1)w(1) . . . v(j)w(j)v(j+1) such that for all i ∈ {1, . . . , j}, w(i) ∈ SP ∪M
and φ(w(i)) has a factor in φ(u(i)).

Proof. We prove that u 4 w if and only if w can be chopped into a sequence of factors
w = v(1)w(1) . . . v(j)w(j)v(j+1) such that for all i ∈ {1, . . . , j}, w(i) ∈ SP ∪M and u(i) 4
w(i). Then the result follows using Lemma 2.21.

If u 4 w, then w can be chopped into w = v̄(1)w̄(1) . . . v̄(j)w̄(j)v̄(j+1) as in Defini-
tion 2.14. We set w(i) = w̄(i) if w̄(i) begins with a numeral, and we take w(i) to be the
suffix of v̄(i)w̄(i) of length |w̄(i)|+ 1 otherwise. Then for all i ∈ {1, . . . , j}, w(i) ∈ SP ∪M
and we have u(i) 4 w(i). Indeed, if w̄(i) begins with a direction, by Lemma 2.19 the point
corresponding to the first letter of w̄(i) lies in the quadrant determined by the last letter
of v̄(i) and the first letter of w̄(i) (w.r.t. the origin of the encoding w and also w.r.t. the
origin of the encoding w(i)).

Conversely if w can be chopped into w = v(1)w(1) . . . v(j)w(j)v(j+1) such that for all i ∈
{1, . . . , j}, u(i) 4 w(i) then from Definition 2.14 we can decompose w(i) as y(i)w̄(i)z(i) and
thanks to Lemma 2.19 it is sufficient to set v̄(i) = z(i−1)v(i)y(i) to have w = v̄(1)w̄(1) . . . v̄(j)w̄(j)v̄(j+1)

as in Definition 2.14. �

2.3.2 Pattern containment and set inclusion

Definition 2.23. Let u be a pin word and u = u(1) . . . u(j) be its strong numeral-led factor
decomposition. We set

L(u) = A?φ(u(1))A?φ(u(2)) . . . A?φ(u(j))A?

where A = {U,D,L,R} (or A = {U,D,L,R,]} in Theorem 2.24(i)).

2.3 Characterization of classes with finitely many proper pin-permutations 65

Let π be a permutation, and P (π) be the set of pin words that encode π. We set
Lπ = ∪u∈P (π)L(u)

Note that Lπ is nonempty if and only if P (π) is nonempty or equivalently π is a
pin-permutation. When π is not a pin-permutation, the results of Theorem 2.24 and
Lemma 2.26 follow easily from the following statement (see for instance Lemma 3.3 of [BBR11]):
if π ≤ σ and σ is a pin-permutation, then π is a pin-permutation.

In the following, we write m = v(1)φ(u(1))v(2)φ(u(2)) . . . v(j)φ(u(j))v(j+1) for m ∈ A?,
meaning that m = v(1)w(1)v(2)w(2) . . . v(j)w(j)v(j+1) with w(i) ∈ φ(u(i)) if u(i) has length 1
and w(i) = φ(u(i)) otherwise.

The languages Lπ have been introduced in Definition 2.23 because they describe the
proper pin-permutations that contain π. Indeed Lπ ∩M is in one-to-one correspondence
with pin words encoding proper pin-permutations that contain π, via φ−1. Moreover the
languages Lπ somehow translate the pattern involvement between pin-permutations into
set inclusion:

Theorem 2.24. Let π and σ be permutations, σ being a pin-permutation. Then

(i) for A = {U,D,L,R,]}, π ≤ σ if and only if Lσ ⊆ Lπ;
(ii) for A = {U,D,L,R}, if π ≤ σ then Lσ ⊆ Lπ.

Remark 2.25. In the sequel, we always take A = {U,D,L,R}, and use only the second
statement of Theorem 2.24. However, we find it interesting to have an equivalence between
pattern containment of pin-permutations and set inclusion in the first statement of this
theorem with A = {U,D,L,R,]}. We do not know if the equivalence still holds when
A = {U,D,L,R}.

Proof. Suppose that π ≤ σ. Let m ∈ Lσ, we want to show that m ∈ Lπ. By definition
of Lσ, there exists w ∈ P (σ) such that m = v(1)φ(w(1))v(2) . . . φ(w(i))v(i+1) where w =
w(1)w(2) . . . w(i) is the strong numeral-led factor decomposition of w. From Lemma 2.16
there is u ∈ P (π) such that u 4 w. Let u = u(1) . . . u(j) be the strong numeral-led fac-
tor decomposition of u. From Theorem 2.22, w = v̄(1)w̄(1) . . . v̄(j)w̄(j)v̄(j+1) where for all
k ∈ {1, . . . , j}, w̄(k) ∈ SP ∪M and φ(w̄(k)) has a factor in φ(u(k)). But w(1)w(2) . . . w(i)

is the strong numeral-led factor decomposition of w = v̄(1)w̄(1) . . . v̄(j)w̄(j)v̄(j+1). There-
fore the factors w̄(1), w̄(2), . . . w̄(j) appear in this order in w(1)w(2) . . . w(i), being non-
overlapping and each inside one w(`), since each w(`) begins with a numeral and each w̄(k)

is in SP ∪M. Thus by definition of φ, the factors φ(w̄(1)), φ(w̄(2)), . . ., φ(w̄(j)) appear in
this order in φ(w(1))φ(w(2)) . . . φ(w(i)), being non-overlapping and each inside one φ(w(`)).
So m = v(1)φ(w(1))v(2)φ(w(2)) . . . v(i)φ(w(i))v(i+1) ∈ A?φ(w̄(1))A?φ(w̄(2)) . . . A?φ(w̄(j))A?.
But for all k ∈ {1, . . . , j}, φ(w̄(k)) has a factor in φ(u(k)), thus m ∈ L(u) = A?φ(u(1))A?

φ(u(2)) . . . A?φ(u(j))A? and so m ∈ Lπ.
Conversely, in the case A = {U,D,L,R,]}, if Lσ ⊆ Lπ, let us show that π ≤ σ.

From Lemma 2.16 it is sufficient to show that there is some u ∈ P (π) and some w ∈
P (σ) such that u 4 w. As σ is a pin-permutation, P (σ) is not empty. Let w be a
word of P (σ) and w(1)w(2) . . . w(i) its strong numeral-led factor decomposition. Let m =
φ(w(1))] φ(w(2)) . . .] φ(w(i)). Obviously, m ∈ L(w) so that m ∈ Lσ and m ∈ Lπ. By defi-
nition of Lπ there is some u ∈ P (π) such that m = v(1)φ(u(1))v(2)φ(u(2)) . . . φ(u(j))v(j+1)

where u(1)u(2) . . . u(j) is the strong numeral-led factor decomposition of u. But m =
φ(w(1))] φ(w(2)) . . .] φ(w(i)) and there is no letter] in the φ(u(k)). So the factors φ(u(1)),
φ(u(2)), . . . φ(u(j)) appear in this order in φ(w(1))φ(w(2)) . . . φ(w(i)), being non-overlapping
and each inside one φ(w(k)). Therefore w can be chopped into a sequence of factors

66 Chapter 2. Finitely many simple permutations?

w = v̄(1)w̄(1) . . . v̄(j)w̄(j)v̄(j+1) such that for all k ∈ {1, . . . , j}, w̄(k) ∈ SP ∪M and φ(w̄(k))
has a factor in φ(u(k)). Thus from Theorem 2.22 u 4 w, concluding the proof. �

2.3.3 Characterizing when a class has a finite number of
proper pin-permutations

We conclude Section 2.3 by explaining how the above definitions and results are related to
our original problem: testing whether a permutation class contains finitely many proper
pin-permutations.

Lemma 2.26. Let σ be a proper pin-permutation, π be a permutation and w be a strict
pin word encoding σ. Then π ≤ σ if and only if φ(w) ∈ Lπ.

Proof. Assume that π ≤ σ, then from Theorem 2.24(ii) Lσ ⊆ Lπ. As w is a strict pin
word, φ(w) ∈ L(w) thus φ(w) ∈ Lσ and so φ(w) ∈ Lπ.

Conversely, assume that φ(w) ∈ Lπ. Then there exists a pin word u encoding π
such that φ(w) ∈ L(u). Let us denote by u = u(1) . . . u(j) the strong numeral-led factor
decomposition of u. By definition of L(u), φ(w) can be decomposed into t(1) . . . t(j+1), with
t(i) ∈ A?φ(u(i))∩M for i ∈ {1, . . . , j}. By definition of φ and since w is a strict pin word,
there exists a strict pin word t such that w = t t(2) . . . t(j+1). Then φ(t) = t(1) and φ(u(1))
is a factor of φ(t). Furthermore, for i ∈ {2, . . . , j}, φ(u(i)) is a factor of φ(t(i)) = t(i) (this
equality holds because t(i) ∈ M). Consequently, from Theorem 2.22, u 4 w. Finally from
Lemma 2.16, we conclude that π ≤ σ. �

By φ−1, each word of M is turned into a strict pin word and hence into a proper
pin-permutation. As a consequence of Lemma 2.26, Lπ ∩ M is the image by φ of the
language of strict pin words encoding proper pin-permutations σ that contain π as a
pattern: Lπ ∩M = {φ(w) | ∃σ such that π ≤ σ and w ∈ SP ∩P (σ)}. With the same idea
we have the following theorem:

Theorem 2.27. A permutation class Av(B) contains a finite number of proper pin-
permutations if and only if the setM\∪π∈BLπ is finite.

Proof. Let SB be the set of strict pin words encoding permutations of size at least 2 of
Av(B). Then φ is a bijection from SB toM≥3 \ ∪π∈BLπ. Indeed for any strict pin word
w of size at least 2, let σ be the permutation encoded by w. Then σ is a proper pin-
permutation and Lemma 2.26 implies that σ ∈ Av(B) if and only if φ(w) /∈ ∪π∈BLπ. We
conclude the proof observing that every proper pin-permutation σ of size n is associated
to at least 1 and at most 8n strict pin words, as any pin word encoding σ is a word of
length n over an 8-letter alphabet. �

From Theorem 2.27, our goal is now to find an algorithm checking if M\ ∪π∈BLπ is
finite, given a finite basis B. To do this, in Section 2.5 we construct automata recognizing
Lπ for any pin-permutation π. As the language Lπ is defined from the set P (π) of pin
words of π, we first need to explicitly describe P (π) for any pin-permutation π. This is
done in Section 2.4.

2.4 Pin words of pin-permutations

In this section, our goal is to describe the set P (π) of pin words that encode a pin-
permutation π. In [BBR11], a recursive characterization of the decomposition trees of
pin-permutations is provided, and we follow it to recursively describe P (π).

2.4 Pin words of pin-permutations 67

2.4.1 Characterization of pin-permutations

In this chapter, we use the characterization of pin-permutations obtained by Bassino,
Bouvel and Rossin in [BBR11].

Some special permutations, called oscillations and quasi-oscillations, play a key role in
the characterization of substitution decomposition trees associated with pin-permutations.
Therefore, we start by defining these permutations.

Following [BRV08], let us consider the infinite oscillating sequence defined (on N\{0, 2}
for regularity of the diagram) by ω = 4 1 6 3 8 5 . . . (2k+2) (2k−1) Figure 2.6 shows
the diagram of a prefix of ω.

Definition 2.28 (oscillation). An increasing oscillation of size n ≥ 4 is a simple per-
mutation of size n that is contained as a pattern in ω. For smaller sizes the increasing
oscillations are 1, 21, 231 and 312. A decreasing oscillation is the reverse1 of an increasing
oscillation.

. . .

2 4 1 6 3 8 5 9 7 8106 9 4 7 2 5 1 3 4 1 6 3 8 5 9 7102

M A

Figure 2.6: The infinite oscillating sequence ω, an increasing oscillation ξ of size 9, a
decreasing oscillation of size 10, and the increasing quasi-oscillation of size 10 obtained
from ξ by addition of a maximal element, with a pin representation for each.

As noticed in [BBR11] there are two increasing (resp. decreasing) oscillations of size
n for any n ≥ 3. Permutations 1, 2 4 1 3 and 3 1 4 2 are both increasing and decreasing
oscillations, and are the only ones with this property.

Definition 2.29 (quasi-oscillations [BBR11]). An increasing quasi-oscillation of size n ≥ 6
is obtained from an increasing oscillation ξ of size n−1 by the addition of either a minimal
element at the beginning of ξ or a maximal element at the end of ξ, followed by a flip of
an element of ξ according to the rules of Table 2.12. We define the auxiliary point (A) to
be the point added to ξ, and the main substitution point (M) to be an extremal point of
ξ according to Table 2.1.

Furthermore, for n = 4 or 5, there are two increasing quasi-oscillations of size n: 2 4 1 3,
3 1 4 2, 2 5 3 1 4 and 4 1 3 5 2. Each of them has two possible choices for its pair of auxiliary
and main substitution points. See Figure 2.7 for more details. Finally, a decreasing quasi-
oscillation is the reverse of an increasing quasi-oscillation.

As noticed in [BBR11] there are four increasing (resp. decreasing) quasi-oscillations
of size n for any n ≥ 6, two of size 4 (2 4 1 3 and 3 1 4 2) and two of size 5 (2 5 3 1 4 and
4 1 3 5 2). It should be noticed that each quasi-oscillation of size 4 or 5 is both increasing

1The reverse of σ = σ1σ2 . . . σn is ←−σ = σn . . . σ2σ1
2The first row of Table 2.1 reads as follows: If a maximal element is added to ξ, with ξ ∈ Sn−1 starting

(resp. ending) with a pattern 231 (resp. 132), then the corresponding increasing quasi-oscillation β is
obtained by flipping the left-most point of ξ to the right-most (in β), and the main substitution point is
the largest point of ξ (see Figure 2.6).

68 Chapter 2. Finitely many simple permutations?

Element Pattern Pattern Flipped . . . which Main subs-
inserted ξ1ξ2ξ3 ξn−3ξn−2ξn−1 element . . . becomes titution point

max 231 132 left-most right-most largest
max 231 312 left-most right-most right-most
max 213 132 smallest largest largest
max 213 312 smallest largest right-most
min 231 132 largest smallest left-most
min 231 312 right-most left-most left-most
min 213 132 largest smallest smallest
min 213 312 right-most left-most smallest

Table 2.1: Flips and main substitution points in increasing quasi-oscillations.

and decreasing. However, once its auxiliary point is chosen among the four possibilities,
then its nature (increasing or decreasing) is determined without ambiguity, and so is its
main substitution point. Moreover, knowing the (unordered) pair of points which are the
auxiliary and main substitution points, we can deduce which one is the auxiliary point
without ambiguity. These remarks will be useful in the following.

2 4 1 3

M

A

2 4 1 3

A

M
3 1 4 2

M

A

3 1 4 2

M

A
2 5 3 1 4

M
A

2 5 3 1 4

M
A

4 1 3 5 2

M

A

4 1 3 5 2

M

A

Figure 2.7: The diagrams of the increasing quasi-oscillations of size 4 and 5.

Remark 2.30. Oscillations of size at least 4 and quasi-oscillations are simple pin-permutations.

We refer the reader to [BBR11] for further properties of oscillations and quasi-oscillations.

We now have all the notions we need to state the characterization of pin-permutations
obtained by Bassino, Bouvel and Rossin in [BBR11].

Recalling that we say “a child of a node V ” instead of “the permutation corresponding
to the subtree rooted at a child of node V ”, the characterization of [BBR11] is as follows:

Theorem 2.31 (Theorem 3.1 of [BBR11]). A permutation σ is a pin-permutation if and
only if its substitution decomposition tree Tσ satisfies the following conditions:

(C1) any linear node labeled by ⊕ (resp.) in Tσ has at most one child that is not an
increasing (resp. decreasing) oscillation.

(C2) any prime node in Tσ is labeled by a simple pin-permutation α and satisfies one of
the following properties:

– it has at most one child that is not a singleton; moreover the point of α cor-
responding to the non-trivial child (if it exists) is an active point of α, i.e., a
point that can be the first point of a pin representation of α.

– α is an increasing (resp.decreasing) quasi-oscillation, and the node has exactly
two children that are not singletons: one of them expands the main substitution
point of α and the other one is the permutation 12 (resp. 21), expanding the
auxiliary substitution point of α.

2.4 Pin words of pin-permutations 69

As stated in [BBR11], using Theorem 2.31 the set T of substitution decomposition
trees of pin-permutations is recursively characterized by the following equation:

T = + ⊕
E+E+ E+

+ ⊕
E+

N+
E+

+ 	
E− E− E−

+ 	
E−

N−
E−

+ α + α

T \ { }

+ β+

T \ { }
12

+ β−

T \ { }
21

(?)

where E+ (resp. E−) is the set of decomposition trees of increasing (resp. decreasing)
oscillations, N+ (resp. N−) is the set of decomposition trees of pin-permutations that
are not increasing (resp. decreasing) oscillations and whose root is not ⊕ (resp.), α is
any simple pin-permutation and β+ (resp. β−) is any increasing (resp. decreasing) quasi-
oscillation. Edges written (resp. ,) correspond to an active point of α (resp. to
a pair formed by an auxiliary point and a main substitution point of β). In this definition
the only terms that are recursive are those containing a subtree labeled by N+,N− or
T \ { }.

In [BBR11], the authors also compute the generating function of the class of pin-
permutations, proving the rationality of this generating function. Moreover, they show
that the basis of the pin-permutation class is infinite.

To prove Theorem 2.31, they established several lemmas. We record here the ones that
we use in this section, recalling first a useful definition:

Definition 2.32. Let π be a pin-permutation and p = (p1, . . . , pn) be a pin representation
of π. For any set D of points of π, if k is the number of maximal factors pi, pi+1, . . . , pi+j
of p that contain only points of D, we say that D is read in k pieces by p. If C is a set
of points of π disjoint from D, we say that D is read before (resp. read entirely before)
C if the first pin in D (resp. every pin belonging to D) appears in p before the first pin
belonging to C.

Lemma 2.33 (Lemma 3.7 of [BBR11]). Let σ be a pin-permutation whose substitution
decomposition tree has a root that is a linear node V labeled by ⊕ (resp. by). Then
at most one child of V is not an ascending (resp. descending) oscillation, this child (if
it exists) is the first child of V that is read by any pin representation of σ, and all other
children are read in one piece.

Lemma 2.34 (Lemma 3.11 of [BBR11]). Let σ be a pin-permutation whose substitution
decomposition tree has a prime node V as root and let p = (p1, . . . , pn) be a pin represen-
tation of σ.

(i) If some child B of V is read in more than one piece by p, then it is read in exactly
two pieces, the second part being the last point pn of p.

(ii) At most one of the children of V can be read in two pieces by p and this child (if it
exists) is the first or the second child of V to be read by p.

Lemma 2.35 (Lemma 3.12 of [BBR11]). Let σ be a pin-permutation whose substitution
decomposition tree has a prime root V and p = (p1, . . . , pn) be a pin representation of σ.

(i) V has at most two children that are not singletons.

(ii) If there exists a child B of V that is not a singleton and that is not the first child of
V to be read by p then B contains exactly two points, the first point of B read by p

70 Chapter 2. Finitely many simple permutations?

is an independent pin, the second one is pn. Moreover the first child of V read by p
in read in one piece and B is the second child read by p.

The characterization of P (π) we provide in this section is naturally divided into several
cases, depending on which term of Equation (?) π belongs to. First, we study the non-
recursive cases, then the recursive cases with a linear root and finally the recursive cases
with a prime root. We start with a preliminary study of the ways children of decomposition
trees with linear root can be read in a pin representation. These first results will be useful
both in the non-recursive and the recursive cases.

Remark 2.36. In the study that follows, we never examine the case of decomposition
trees with a linear root labeled by 	. Indeed, permutations with decomposition trees of
this form are the reverse of permutations whose decomposition trees have a linear root
labeled by ⊕, and every argument and result on the ⊕ case can therefore be transposed to
the 	 case.

2.4.2 Reading of children of a linear node

Let π be a pin-permutation whose decomposition tree T has a linear root. W.l.o.g., assume
that T = ⊕

T1 T2 . . . Tr
and let p = (p1, . . . , pn) be one of its pin representations. In

the sequel, we denote by i0 the index of the child which contains p1.

Lemma 2.37. Let 1 ≤ i, j ≤ r such that either i < j < i0 or i0 < j < i. Then Tj is read
by p entirely before Ti.

Proof. By definition of pin representations, for all k ≥ 2, pk lies outside the bounding box
of {p1, . . . , pk−1}. More generally for all m ≥ 0, pk+m lies outside the bounding box of
{p1, . . . , pk−1}. This observation is used many times in the following, sometimes implicitly,
and is the funtamental argument of this proof. Indeed let ` = min{`′, p`′ ∈ Ti} and let
Bp1,...,p` be the bounding box of {p1, . . . , p`}. As p1 ∈ Ti0 and p` ∈ Ti, Tj ⊆ Bp1,...,p` (see
Figure 2.8), hence it is entirely read before p` in p. �

The previous lemma gives the possible orders in which children are read. Now we
characterize the children Ti which may be read in several pieces. When this is the case, we
will prove that the decomposition tree is of a specific shape. This can indeed be deduced
from the two following lemmas.

Lemma 2.38. For every k ∈ {1, . . . , n} there is at most one child whose reading has
started and is not finished after (p1, p2, . . . , pk).

Proof. Suppose that pins p1, . . . , pk have already been read and that there are two children
Ti and Tm with i < m whose readings have started and are not finished. By Lemma 2.37
there exists at most one child Tj with j < i0 and at most one child Tj with j > i0 whose
readings have started and are not finished. Therefore i ≤ i0 and m ≥ i0. Note that
i = min{` | ∃h ∈ {1, . . . , k}, ph ∈ T`}. The same goes for m changing the minimum into
a maximum. If the reading of Ti is not finished, since Ti is ⊕-indecomposable, there must
exist a pin pq in zone (see Figure 2.9). Such a pin is on the side of the bounding box
Bp1,...,pk of {p1, . . . , pk}, and the same remark goes for Tm. But from Lemma 2.1 (p.56)
there is at most one pin lying on the sides of a bounding box, and this contradiction
concludes the proof. �

2.4 Pin words of pin-permutations 71

Ti

Tj

Ti0

Bp1,...,p`

p`

p1

Figure 2.8: Proof of
Lemma 2.37.

Ti

Tm

Bp1,...,pk

Figure 2.9: Proof of
Lemmas 2.38 and 2.39.

Ti0

p1, . . . , p`

p`+1, . . . , pm−1

13

2

4

pm

Figure 2.10: Ti0 is read in
two pieces (Lemma 2.40).

Lemma 2.39. Every child Ti is read in one piece by p, except perhaps Ti0.

Proof. Consider a child Ti with i 6= i0 which is read in more than one piece by p. Consider
the pin pk+1 which is the first pin outside Ti after p has started reading Ti. As p1 is in
Ti0 , p1 is outside Ti and the bounding box of {p1, p2, . . . , pk−1, pk} allows to define a zone

in Ti as shown in Figure 2.9. Since Ti is ⊕-indecomposable, there is at least one pin in
this zone. This pin is on the side of the bounding box of {p1, p2, . . . , pk} so it is pk+1 by
Lemma 2.1 (p.56). Thus pk+1 ∈ Ti which provides the desired contradiction. �

When a child may be read in several pieces, the decomposition tree of the whole per-
mutation π has a special shape given in the following lemma.

Lemma 2.40. The only permutations π whose decomposition trees have a root ⊕ in which
a child may be read in several pieces are those whose decomposition trees have one of the
shapes given in Figure 2.11 where ξ+ is an increasing oscillation of size at least 4.

A given permutation π may match several shapes of Figure 2.11. However if a child is
read in more than one piece, then it is necessarily the first child to be read (denoted Ti0)
and it is read in two pieces; in addition, there is exactly one shape of Figure 2.11 such that
the first part of Ti0 to be read is S and the second part is the remaining leaves of Ti0 with
only the point x read in between.

F1 F2 F3 F4 F3+ F4+

⊕
	
S
x

Ti0

⊕
	
S
x

Ti0

⊕
	
⊕
S

x
Ti0

⊕
	
⊕
S

xTi0

⊕
ξ+

S

x

Ti0

⊕
ξ+

S

x

Ti0

G1 G2 G3 G4 G3+ G4+

⊕
	
S

x

Ti0

⊕
	
S

x

Ti0

⊕
	
⊕
S

x Ti0

⊕
	
⊕
S

x
Ti0

⊕
ξ+

S

x

Ti0

⊕
ξ+

S

x

Ti0

Figure 2.11: Decomposition tree of π when Ti0 may be read in several pieces.

72 Chapter 2. Finitely many simple permutations?

In Figure 2.11 and in the sequel, we draw the attention of the reader to the difference

between trees of the shape
r

T
and

r
T : in the first case the root r has exactly 2

children, in the second one it has at least two children, T being a forest.

Proof. Let π be a pin-permutation whose decomposition tree has a root ⊕. Let p =
(p1, p2, . . . , pn) be a pin representation of π that reads one child in several pieces. Lemma 2.39
ensures that there is only one such child, which is necessarily Ti0 . Denote p1, . . . , p` the first
part of the reading of Ti0 . Then p`+1, . . . , pm−1 belong to other children until pm ∈ Ti0 .

As Ti0 is a child of the root ⊕, each pin pi with i ∈ {`+ 1, `+ 2, . . . ,m− 1} lies in one
of the zones as shown in Figure 2.10. But if both zones contain at least one pin pi with
i ∈ {`+ 1, `+ 2, . . . ,m− 1}, the bounding box of {p1, . . . , pm−1} contains Ti0 and thus pm
cannot respect the externality condition. Hence all pins pi with i ∈ {`+1, `+2, . . . ,m−1}
are in the same zone.

Assume w.l.o.g. that {p`+1, . . . , pm−1} are in the upper right zone of Figure 2.10 (oth-
erwise, in the proof that follows, cases F1, . . . , F4+ of Figure 2.12 are replaced by cases
G1, . . . , G4+). If pm respects the independence condition, it must lie in the lower left cor-
ner of the bounding box of {p1, . . . , p`} and every future pin of Ti0 lies in the same corner
leading to a ⊕-decomposable child Ti0 which contradicts our hypothesis. Thus pm must
be a separating pin and m = `+ 2.

As only one point can lie on the sides of a bounding box, there are only four pos-
sible positions for pm as depicted in Figure 2.10. If there is no pin separating pm from
{p1, . . . , pm−1} then pm is either in position 1 (case F1 on Figure 2.12) or 2 (case F2);
moreover pins {p1, p2, . . . , p`, pm} form a block and thus represent Ti0 (because Ti0 is ⊕-
indecomposable). Otherwise there is exactly one pin pm+1 separating pm from the bounding
box of {p1, . . . , p`}, thus pm is either in position 3 (cases F3 and F3+) or 4 (cases F4
and F4+). Suppose that it is in position 4 then pm+1 is a left pin separating pm from
the preceding ones. There are again two different cases: if pm+2 respects the independence
condition (case F4), then pm+1 ends Ti0 (since Ti0 is ⊕-indecomposable). If pm+2 respects
the separation condition then it can only separate pm+1 and {p1, . . . , pm} from below (case
F4+). This process can be repeated alternating between left and down pins until the
following pin pm+k+1 is an independent pin, ending the child Ti0 .

Thus we have proved that Ti0 is read in exactly two pieces, p1, . . . p` for the first part
and pm, . . . , pm+k with m = `+ 2 for the second part. And from Lemma 2.39 the pin p`+1

is by itself a child Ti of the root. It is then straightforward to check from Figure 2.12 that
π has a decomposition tree of one shape given in Figure 2.11 with S = {p1, . . . , p`} and
x = p`+1. �

Note that in the proof of Lemma 2.40, the order in which the points corresponding to
the leaves of Ti0 \ S are read is uniquely determined, leading to the following remark:

Remark 2.41. If a child Ti0 is read in two pieces with the first part fixed, then the second
part consists of all remaining points of Ti0 and the order in which they are read is uniquely
determined.

We now start the description of the set of pin words encoding any pin-permutation, by
case study on Equation (?) (p.69).

2.4.3 Non-recursive case: size 1 and simple pin-permutations

Permutation of size 1. Notice first that the permutation π = 1 = (whose decompo-
sition tree is a leaf) has exactly four pin words – namely, P (π) = {1, 2, 3, 4}.

2.4 Pin words of pin-permutations 73

F1 F2 F3 F4 F3+ F4+

S

x

S

x

S

x

S

x

S

x

S

x

G1 G2 G3 G4 G3+ G4+

S

x

S

x

S

x

S

x

S

x

S

x

Figure 2.12: Diagram of Ti0 and x if Ti0 is read in two pieces, the first part being S.

Simple permutations. The only pin-permutations whose decomposition trees have a
prime root and are non-recursive are those whose decomposition trees are of the form

π

, i.e., the simple pin-permutations. Theorem 2.48 describes properties of their
pin words. We need a few lemmas and definitions to state it.

Lemma 2.42. Let π be a simple permutation. There is at most one pin representation of
π beginning with a given ordered pair of points. Moreover such a pin representation (if it
exists) can be computed in linear time w.r.t. |π|.

Proof. Because π is simple, its pin representations are always proper (see Remark 2.2
p.56). The pin representation starting with a given ordered pair of points (p1, p2) is then
obtained as follows (if it exists). If (p1, . . . , pi) has already been computed then, since
the pin representation we look for is proper, pi+1 separates pi = πk from previous points.
Moreover by Lemma 2.1 it is the only point separating them. It means that either it
separates them vertically, and then pi+1 = πk+1 or pi+1 = πk−1, or it separates them
horizontally and then its value must be πk ± 1. Therefore, if we compute π−1 in advance
(which is easily done by a linear-time precomputation) we can find the next point in a
proper pin representation in constant time. If at one step of this procedure we have no
possible next point or two possible next points, it means that there is no pin representation
of π beginning with (p1, p2). �

Definition 2.43. Consider a permutation π given by its diagram. We say that two points
x and y of π are (or that the pair of points (x, y) is) in knight position when the distance
between the points x and y is exactly 3 cells and the two points are neither on the same
row nor on the same column (see Figure 2.13).

Figure 2.13: Two points in knight position.

Lemma 2.44. [BBR11] Let p = (p1, p2, . . . , pn) denote a proper pin representation of some
permutation π. If |π| > 2 the first two pins p1, p2 are in knight position.

74 Chapter 2. Finitely many simple permutations?

Lemma 2.45. [BBR11] Let π be a simple pin-permutation and p = (p1, p2, . . . , pn) be one
of its pin representations. If two points pi and pj of π are in knight position then i or j is
equal to 1, 2 or n.

Definition 2.46. An active pair in a pin-permutation π is an unordered pair of points
(x, y) that can be the first two points of a pin representation of π. An active point is a
point belonging to an active pair. An active knight is an active pair in knight position.

Notice that from Lemma 2.44, an active pair of a simple permutation is necessarily an
active knight. As a consequence, using Lemma 2.42 the number of pin representations of
a simple permutation is twice the number of active knights, which is studied in the next
lemma.

Lemma 2.47. [BBR11] In any simple pin-permutation π, there are at most two active
knights except for the four permutations: 3 1 4 2, 2 4 1 3, 2 5 3 1 4 and 4 1 3 5 2 which have
four active knights. The simple pin-permutations of size at most 6 and their active knights
are represented on Table 2.2.

n 1 active knight 2 active knights 4 active knights

4 2 4 1 3 3 1 4 2

5 2 4 1 5 3 3 1 5 2 4 3 5 1 4 2 4 2 5 1 3 2 5 3 1 4 4 1 3 5 2

6 2 5 1 4 6 3 2 5 3 1 6 4 2 5 3 6 1 4

2 6 4 1 5 3 3 1 6 4 2 5 3 5 1 4 6 2

3 6 1 4 2 5 3 6 4 1 5 2 4 1 3 6 2 5

4 1 6 3 5 2 4 2 6 3 1 5 4 6 1 3 5 2

5 1 3 6 2 4 5 2 4 1 6 3 5 2 4 6 1 3

5 2 6 3 1 4

2 4 1 6 3 5 2 4 6 3 1 5 2 5 1 3 6 4

2 6 3 5 1 4 2 6 4 1 3 5 3 1 4 6 2 5

3 1 5 2 6 4 3 6 2 4 1 5 4 1 5 3 6 2

4 6 2 5 1 3 4 6 3 1 5 2 5 1 3 6 4 2

5 1 4 2 6 3 5 2 6 4 1 3 5 3 1 4 6 2

5 3 6 1 4 2

Table 2.2: The simple pin-permutations of size n ≤ 6 and their active knights.

2.4 Pin words of pin-permutations 75

For each n > 6, all simple pin-permutations of size n have exactly only one active
knight, except twelve of them that have two active knights, and that are:

• the four oscillations of size n,

• the eight quasi-oscillations of size n.

We are now able to state Theorem 2.48 about pin words of simple permutations:

Theorem 2.48. A simple permutation has at most 48 pin words, which are all strict or
quasi-strict.

Proof. Let π be a simple permutation. Then |π| ≥ 3 and any pin representation p of π is
proper (see Remark 2.2 p.56), so p3 is a separating pin and p is associated to 6 pin words
by Remark 2.4 (p.57).

Moreover by Lemma 2.47 π has at most 4 active knights, thus by Lemma 2.44 there are
at most 8 possible ordered pairs (p1, p2) beginning a pin representation of π. Furthermore
from Lemma 2.42, each of these beginnings gives at most one pin representation p of
π. So π has at most 8 pin representations and at most 48 pin words. Finally the first
statement of Remark 2.8 (p.58) ensures that they are all strict or quasi-strict, since the
pin representations they encode are proper. �

Theorem 2.48 of course does not describe the set P (π) of pin words encoding a simple
pin-permutation π explicitly, but Algorithm 3 explains how to compute P (π) in this case.

Algorithm 3: Pinwords function

input : a simple permutation π
output: The set P of pin words encoding π

// Count the number of ordered pairs of points in knight position
E ← ∅;
foreach πi do

E ← E
⋃
{(πi, πj) in knight position}

// If more than 48 pairs are found, π is not a pin-permutation
if |E| > 48 then

return ∅
// Otherwise each knight may be the beginning of a pin representation

of π
P ← ∅;
foreach (πi, πj) ∈ E do

P ← P
⋃
{ pin words of the pin representation beginning with (πi, πj)}

return P

Lemma 2.49. Algorithm 3 computes the set of pin words encoding a simple permutation
π in linear time with respect to the length n of π.

Proof. Algorithm 3 can be decomposed into two parts. First, we count the number of
ordered pairs of points in knight position that should be smaller than 48. Indeed from
Lemma 2.45, if π is a simple pin-permutation of length n, in any of its pin representations
(p1, . . . , pn), every unordered pair of points {pi, pj} that is a knight contains at least one
of the points p1, p2 or pn. As only 8 points can be in knight position with a given point

76 Chapter 2. Finitely many simple permutations?

(see Figure 2.14), the permutation π has at most 24 unordered pairs of points in knight
position, hence at most 48 ordered pairs (pi, pj) that are knights.

Therefore given a simple permutation π, we count the number of ordered pairs of points
in knight position. To do this, we take each point p of the permutation and we check if
another point is in knight position with p. As at most 8 cells can contain a point in knight
position with p, this counting part runs in time 8n.

If this number is greater than 48, π is not a pin-permutation. Otherwise, the second
part of the algorithm computes, for each ordered pair of points in knight position, the pin
representation beginning with it (if it exists) and its associated pin words. This can also
be done in linear time from Lemma 2.42.

Finally by Remark 2.5 (p.57), computing all pin words can easily be done in linear time
from the pin representation. �

pi8

2

4

1

7

3

56

Figure 2.14: At most 8 points in knight position with a given point pi.

2.4.4 Non-recursive case: decomposition trees with a linear root

W.l.o.g., since we focus on the non-recursive case, π =

⊕
ξ1 ξ2 ξr where ξi are increasing

oscillations (see Remark 2.36 p.70). Lemma 2.50 is a direct consequence of Lemma 2.40.

Lemma 2.50. Let p = (p1, p2, . . . , pn) be a pin representation of π. The only child ξi
which may be read in several pieces is the child ξi0 to which p1 belongs. Moreover if p reads
ξi0 in several pieces, it is read in two pieces, the second child ξi read by p is either ξi0−1 or
ξi0+1 and is a leaf, denoted x. Finally, the set E = ξi0 ∪ {x} is read in one piece by p.

Lemma 2.50 together with Lemma 2.37 leads to the following.

Consequence 2.51. Every pin representation p of π begins by entirely reading two con-
secutive children of the root, say ξi and ξi+1, then p reads in one piece each of the others
ξj. Moreover the children ξj for j < i are read in decreasing order (ξi−1, ξi−2, . . . , ξ1) and
the children ξj for j > i+ 1 are read in increasing order (ξi+2, ξi+3, . . . , ξr).

Consequence 2.51 implies that the restriction of p to each child ξj where j < i (resp.
j > i+1) is a pin representation of ξj whose origin lies in quadrant 1 (resp. 3) with respect
to the bounding box of the set of points of ξj . Indeed p1 and p2 are in ξi or ξi+1 thus they
lie in quadrant 1 (resp. 3) with respect to ξj . Since only p2 may separate p0 from p1, p0 is
also in quadrant 1 (resp. 3). Therefore we introduce the following functions P (`): for any
increasing oscillation ξ, we denote by P (`)(ξ) the set of pin words that encode ξ and whose
origin lies in quadrant h = 1 or 3 with respect to the points of ξ.

To characterize the pin words that encode a permutation π = ⊕[ξ1, ξ2, . . . , ξr] where
every ξi is an increasing oscillation, Consequence 2.51 leads us naturally to introduce
the shuffle product of sequences. From the above discussion, Theorem 2.53 then follows,
providing the desired characterization.

2.4 Pin words of pin-permutations 77

Definition 2.52. Let A = (A1,A2, . . . ,Aq) and B = (B1,B2, . . . ,Bs) be two sequences of
sets of words. The shuffle product A � B of A and B is defined as

A� B =
{
c = c1 · . . . · cq+s | ∃ I = {i1, . . . , iq}, J = {j1, . . . , js}, I ∩ J = ∅

with i1 < . . . < iq, j1 < . . . < js, (ci1 , . . . , ciq) ∈ A, (cj1 , . . . , cjs) ∈ B
}
.

Theorem 2.53. The set P (π) of pin words of a permutation π = ⊕[ξ1, . . . , ξj] where every
ξi is an increasing oscillation is:

P (π) =
⋃

1≤i≤r−1

P (⊕[ξi, ξi+1]) ·
(

(P (1)(ξi−1), . . . , P (1)(ξ1))� (P (3)(ξi+2), . . . , P (3)(ξj))
)
.

Lemmas 2.54 and 2.59 below give explicit expressions for P (1)(ξ), P (3)(ξ) and P (⊕[ξi, ξj])
for every increasing oscillations ξ, ξi and ξj , hence with Theorem 2.53 an explicit expres-
sion for P (π). Note that similar results can be obtained for permutations with root 	 and
decreasing oscillations using Remark 2.36 (p.70).

We first recall a few definitions and facts about increasing oscillations.
Lemma 2.47 (p.74) describes the active pairs of simple pin-permutations (that are

necessarily in knight position). In particular, an increasing oscillation of size at least 5
has exactly two active knights. They are located at both ends of the main diagonal and
they consist of two points in relative order 21 (see Figure 2.15). These active knights are
either in horizontal (H) position or in vertical (V) position . Therefore there are
four types of increasing oscillations: (x, y) with x, y ∈ {H,V }, where x is the type of
the lower left active knight and y for the upper right. This definition can be extended
to increasing oscillations of size 4, considering their two active knights in relative order
21 (see Figure 2.15). Note that an even size oscillation has type (H,H) or (V, V) and an
odd size one (H,V) or (V,H). An comprehensive study of the different cases illustrated
in Figure 2.15 leads to the following statement.

Lemma 2.54. Let ξ be an increasing oscillation of size n ≥ 5.
If n is even, let n = 2p+ 2, then

P (1)(ξ) =

{
3L(DL)p if ξ has type (H,H)

3D(LD)p if ξ has type (V, V)
P (3)(ξ) =

{
1R(UR)p if ξ has type (H,H)

1U(RU)p if ξ has type (V, V).

If n is odd, let n = 2p+ 1, then

P (1)(ξ) =

{
3(DL)p if ξ has type (H,V)

3(LD)p if ξ has type (V,H)
P (3)(ξ) =

{
1(RU)p if ξ has type (H,V)

1(UR)p if ξ has type (V,H).

For the increasing oscillations of size less than 4, the values of P (1) and P (3) are:

P (1)(1) = 3 P (3)(1) = 1 P (1)(21) = {3D, 3L} P (3)(21) = {1R, 1U}
P (1)(231) = 3DL P (3)(231) = 1RU P (1)(312) = 3LD P (3)(312) = 1UR

P (1)(2413) = 3LDL P (3)(2413) = 1RUR P (1)(3142) = 3DLD P (3)(3142) = 1URU

Remark 2.55. If the increasing oscillation ξ is of size 2 then P (`)(ξ) contains two words,
otherwise it is a singleton. Moreover, for the map φ studied in Section 2.3 (see Defini-
tion 2.18 p.62), and for any increasing oscillation ξ, we have φ(P (3)(ξ)) ⊆ {U,R}? and
φ(P (1)(ξ)) ⊆ {L,D}?.

We are further interested in describing the set of pin words of ⊕[ξi, ξj] for any increasing
oscillations ξi and ξj . This is achieved in Lemma 2.59. For this purpose, we first describe
the set P (ξ) of pin words of any increasing oscillation ξ, and the set Pmix(ξi, ξj) of pin
words of ⊕[ξi, ξj] such that one of the two oscillations is read in two pieces.

78 Chapter 2. Finitely many simple permutations?

1 2 1 2 3 1 3 1 2 2 4 1 3 3 1 4 2 3 1 5 2 7 4 8 6 3 1 5 2 7 4 9 6 8

Figure 2.15: The increasing oscillations of size less than 5 and two increasing oscillations
respectively of size 8 with type (V, V) and 9 with type (V,H). Active pairs are marked by
edges between their two active points.

Lemma 2.56. Let Q− (resp. S−H , resp. S
−
V) be the set of pin words of the permutation

21 that are quasi-strict (resp. that are strict and end with R or L, resp. with U or D):
Q− = {12, 14, 22, 24, 32, 34, 42, 44}, S−H = {1R, 2R, 3L, 4L} and S−V = {1U, 2D, 3D, 4U}.
Define similarly Q+ (resp. S+

H , resp. S
+
V) for the permutation 12.

Let ξ be an increasing oscillation of size n ≥ 5.
If n is even, let n = 2p+ 2, then

P (ξ) =

{
(Q− + S−H) · (DL)p + (Q− + S−H) · (UR)p if ξ has type (H,H)

(Q− + S−V) · (LD)p + (Q− + S−V) · (RU)p if ξ has type (V, V).
If n is odd, let n = 2p+ 1, then

P (ξ) =

{
(Q− + S−V) · L(DL)p−1 + (Q− + S−H) · U(RU)p−1 if ξ has type (H,V)

(Q− + S−H) ·D(LD)p−1 + (Q− + S−V) ·R(UR)p−1 if ξ has type (V,H).
For the increasing oscillations of size less than 5, we have:
P (1) = {1, 2, 3, 4} P (21) = Q− + S−H + S−V
P (231) = (Q− + S−H) · U + (Q− + S−V) · L+ (Q+ + S+

H + S+
V) · 4

P (312) = (Q− + S−H) ·D + (Q− + S−V) ·R+ (Q+ + S+
H + S+

V) · 2
P (2413) = (Q− + S−H) · (UR+DL) + (Q+ + S+

V) · (RD + LU)
P (3142) = (Q+ + S+

H) · (UL+DR) + (Q− + S−V) · (RU + LD)

In particular, |P (ξ)| ≤ 48 for any increasing oscillation ξ and if |ξ| 6= 3, P (ξ) contains
only strict and quasi-strict pin words.

Proof. By comprehensive examination of the cases illustrated in Figure 2.15. �

Definition 2.57. For any pair of increasing oscillations (ξi, ξj), we denote by Pmix(ξi, ξj)
the set of pin words encoding a pin representation of ⊕[ξi, ξj] that reads one of the two
oscillations in two pieces.

Lemma 2.58. Let ξi and ξj be two increasing oscillations.
If none of these two oscillations is of size 1, or if both of them are of size 1, then

Pmix(ξi, ξj) is empty.
Otherwise, assume w.l.o.g. that ξi = 1, and set |ξj | = 2p + q + 1 with q ∈ {0, 1}. If

|ξj | ≥ 4, then

Pmix(ξi, ξj) =

{
(13 + 23 + 33 + 43 + 1D + 4D) · (RU)pRq if ξ has type (H,H) or (H,V)

(13 + 23 + 33 + 43 + 1L+ 2L) · (UR)pUq if ξ has type (V, V) or (V,H).

If |ξj | = 3, i.e., ξj = 231 or 312, we have
Pmix(1, 231) = P (12) · 3R+ (13 + 23 + 33 + 43 + 1D + 4D) ·RU ,
Pmix(1, 312) = P (12) · 3U + (13 + 23 + 33 + 43 + 1L+ 2L) · UR.

2.4 Pin words of pin-permutations 79

If |ξj | = 2, i.e., ξj = 21, we have
Pmix(1, 21) = (13 + 23 + 33 + 43 + 1D + 4D) ·R+ (13 + 23 + 33 + 43 + 1L+ 2L) · U .

In particular, |Pmix(ξi, ξj)| ≤ 22 for any increasing oscillations ξi and ξj.

Proof. From Lemma 2.50 (p.76) when one of the oscillations ξi or ξj is read in two pieces,
then the other one has size 1. W.l.o.g. assume that |ξi| = 1. Then from Lemma 2.40 (p.71)
the decomposition tree of ⊕[ξi, ξj] has one of the shapes of Figure 2.11 (p.71), with Ti0
corresponding to ξj and x corresponding to ξi.

If ξj has size 2, then ξj = 21 and ⊕[ξi, ξj] maps only to configurations G1 and G2 (see
Figures 2.11 and 2.12). Therefore there are two pin representations of ⊕[ξi, ξj] where ξj is
read in two pieces. The twelve corresponding pin words (see Remark 2.4 p.57) are those
given in Lemma 2.58.

If ξj has size 3, then ξj = 231 (resp. 312) and ⊕[ξi, ξj] maps only to configurations G2
and G4 (resp. G1 and G3), and we conclude similarly.

Otherwise, |ξj | ≥ 4. Since ξj is an increasing oscillation, ⊕[ξi, ξj] maps only to config-
uration G3+ or to configuration G4+, with |S| = 1. These two cases are exclusive, and
the configuration (G3+ or G4+) to which ⊕[ξi, ξj] maps is determined by the type (V or
H) of the lower left active knight of ξj . Lemma 2.40 and Remark 2.41 (p.72) ensure that
there is exactly one pin representation for ⊕[ξi, ξj] that reads ξj in two pieces. The six
corresponding pin words are those given in Lemma 2.58. �

From the expressions of P, Pmix, P (1) and P (3) we can deduce the explicit expression
of P (⊕[ξi, ξj]) making use of the following result:

Lemma 2.59. For any pair of increasing oscillations (ξi, ξj):

• If |ξi| > 1 and |ξj | > 1, P (⊕[ξi, ξj]) =
(
P (ξj) · P (1)(ξi)

)⋃ (
P (ξi) · P (3)(ξj)

)
• If |ξi| = 1 and |ξj | = 1, P (⊕[ξi, ξj]) = P (12)

• Otherwise assume w.l.o.g. that |ξi| = 1 and |ξj | = 2p+ q with q ∈ {0, 1}:
P (⊕[ξi, ξj]) = Pmix(ξi, ξj)

⋃(
P (ξj) · 3

)⋃(
{1, 2, 3, 4} · P (3)(ξj)

)⋃
P sep(ξj)

with P sep(ξj) =

{
(2 + 3) · (UR)pU q if ξj has type (H,H) or (H,V)

(3 + 4) · (RU)pRq if ξj has type (V, V) or (V,H).

In particular, |P (⊕[ξi, ξj])| ≤ 192 for any oscillations ξi and ξj.

Proof. For the first item, Lemma 2.58 ensures that the pin words of ⊕[ξi, ξj] encode pin
representations reading both ξi and ξj in one piece. The two terms of the union are obtained
according to which oscillation (among ξi and ξj) is read first. The second statement follows
directly from the fact that ⊕[ξi, ξj] = 12 in this case. From Lemma 2.58, the situation
of the third statement is the one where there are pin words encoding pin representations
reading ξj in two pieces. The four terms of the union account for four different kinds of
pin words. Namely, Pmix(ξi, ξj) is the set of pin words reading ξj in two pieces, P (ξj) · 3
is the set of pin words reading first ξj and then ξi, {1, 2, 3, 4} · P (3)(ξj) is the set of pin
words reading first ξi and then ξj starting with an independent pin, and P sep(ξj) is the
set of pin words reading first ξi and then ξj starting with a separating pin. Notice that in
this last situation, the first pin of ξj may be separating only because |ξi| = 1, so that this
case does not need to appear in the first item. �

This completes the explicit description of all the sets of pin words appearing in Theo-
rem 2.53.

80 Chapter 2. Finitely many simple permutations?

2.4.5 Recursive case: decomposition trees with a linear root

In this section we focus on pin-permutations whose decomposition trees have a linear root
⊕ and a child Ti0 which is not an increasing oscillation. From Lemma 2.33, Ti0 is then the
first child read by any pin representation. Lemma 2.40 (p.71) gives a characterization of
permutations in which Ti0 may be read in several pieces. Moreover from Remark 2.41 if
Ti0 is read in two pieces, the first part S being fixed, then the order of the points of the
remaining part is uniquely determined. Nevertheless, since some permutations may satisfy
several conditions F1 to G4+ of Lemma 2.40, the first part S to be read is not uniquely
determined. For example every permutation satisfying F3 also satisfies F1, and some
permutations satisfy both F1 and G2 (see Figure 2.12 p.73). In Figure 2.16 we classify the
permutations according to the conditions they satisfy.

Let H be the set of permutations in which Ti0 may be read in several pieces. Then any
permutation of H satisfies exactly one of the conditions (iHj) of Figure 2.16. We say that
a permutation satisfies condition (iHj) when its diagram has the corresponding shape in
Figure 2.16 (up to symmetry) and does not satisfy any condition that appears above (iHj)
in Figure 2.16. For example a permutation in (1H2) cannot be in (2H2). One can check
by a comprehensive verification that there is no other combination (up to symmetry) of
the conditions F1 to G4+ of Lemma 2.40. Moreover as Ti0 is not an increasing oscillation,
the sets S and T that appear on Figure 2.16 are such that |S| ≥ 2 and |T | ≥ 1.

Recall that P (π) denotes the set of pin words encoding π. Let us also denote by P (T)
the set of pin words that encode the permutation whose decomposition tree is T .

Theorem 2.60. Let π =

⊕
ξ1 ξ`

Ti0

ξ`+2 ξr be a ⊕-decomposable permutation where

Ti0 is the only child that is not an increasing oscillation.
For every i such that 1 ≤ i ≤ ` and j such that `+ 2 ≤ j ≤ r, set

P
(1)
(i) =

(
P (1)(ξi), . . . , P

(1)(ξ1)
)
and P

(3)
(j) =

(
P (3)(ξj), . . . , P

(3)(ξr)
)
.

We describe below the set P (π) of pin words encoding π. When π ∈ H, these sets are
given when the diagram of π is one of those shown in Figure 2.16. When the diagram of π
is one of their symmetries, P (π) is modified accordingly.
• If π /∈ H (i.e., if π does not satisfy any condition shown up to symmetry on Fig-

ure 2.16) then P (π) = P0 = P (Ti0) · P(1)
(`) �P

(3)
(`+2).

• If π satisfies condition (1H1) then P (π) = P0 ∪ P1, with
P1 = P (S) · 1︸︷︷︸

x

· L︸︷︷︸
a︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3).

• If π satisfies condition (1H1+) then P (π) = P0 ∪ P1, with
P1 = P (S) · 1︸︷︷︸

x

· w︸ ︷︷ ︸
x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3),

where w is the unique word encoding the unique reading of the remaining leaves of Ti0.
Notice that w is obtained from the unique word of P (1)(ξ) (see Remark 2.55 p.77) by
deleting its first letter.
• If π satisfies condition (1H2?) then P (π) = P0 ∪ P1 ∪ P2, with

P1 = P (S) · 1︸︷︷︸
x

· D︸︷︷︸
b

· L︸︷︷︸
a︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3) and P2 = P (S′) · 1︸︷︷︸

x

· D︸︷︷︸
b︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3).

2.4 Pin words of pin-permutations 81

Diagram Decomposition tree Automaton (see Section 2.5)

2H3
(F4+G4)

y

T
a

b

c

x

S

⊕
	
⊕

a
T

b

c

xy

Aρ

qT∪b

LDRU

qT∪a

DRU

RDL

URDL

qS

2H2
(F1+G2)

y

T

a

b

x ⊕

y 	

a
T

b

x
Aρ

qT∪b

LUR

qT∪a

DRU

ULD

RDL

2H2?
(F4+G2)

y

S
a

b

x

S′

⊕

y 	
⊕

a
S

b

x

Aρ

qS
qS′

LDRU

DRU

RDL

2H1
(F1+G1)

y

S

a
x ⊕

y 	

a
S

x

Aρ

qS

LUR

ULD

1H2
(F1+F2) T

a

b

x
⊕
	

a
T

b

x Aρ

qT∪a

DRU

qT∪b

LUR

1H2?
(F4)

S
a

b

x

S′

⊕
	
⊕

a
S

b

x

Aρ

qS

LDRU

qS′

DRU

1H1
(F1) S

a
x

⊕
	

a
S

x Aρ

qS

LUR

1H1+
(F4+)

S
x

⊕
ξ+

S

x
Aρ

qS

LD..LDRU

Figure 2.16: The set H and conditions (iHj): π ∈ H if and only if π satisfies one of the
conditions (iHj) shown above up to symmetry, that form a partition of H.

82 Chapter 2. Finitely many simple permutations?

• If π satisfies condition (1H2) then P (π) = P0 ∪ P1 ∪ P2, with

P1 = P (T ∪ a) · 1︸︷︷︸
x

· D︸︷︷︸
b︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3) and P2 = P (T ∪ b) · 1︸︷︷︸

x

· L︸︷︷︸
a︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3).

• If π satisfies condition (2H1) then P (π) = P0 ∪ P1 ∪ P2, with

P1 = P (S) · 1︸︷︷︸
x

· L︸︷︷︸
a︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3) and P2 = P (S) · 3︸︷︷︸

y

· U︸︷︷︸
a︸ ︷︷ ︸

y
⋃
Ti0

· P(1)
(`−1) �P

(3)
(`+2).

• If π satisfies condition (2H2?) then P (π) = P0 ∪ P1 ∪ P2 ∪ P3, with

P1 = P (S) · 1︸︷︷︸
x

· D︸︷︷︸
b

· L︸︷︷︸
a︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3), P2 = P (S′) · 1︸︷︷︸

x

· D︸︷︷︸
b︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3)

and P3 = P (S′) · 3︸︷︷︸
y

· R︸︷︷︸
b︸ ︷︷ ︸

y
⋃
Ti0

· P(1)
(`−1) �P

(3)
(`+2).

• If π satisfies condition (2H2) then P (π) = P0 ∪ P1 ∪ P2 ∪ P3 ∪ P4, with

P1 = P (T ∪ a) · 1︸︷︷︸
x

· D︸︷︷︸
b︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3), P2 = P (T ∪ b) · 1︸︷︷︸

x

· L︸︷︷︸
a︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3),

P3 = P (T ∪ a) · 3︸︷︷︸
y

· R︸︷︷︸
b︸ ︷︷ ︸

y
⋃
Ti0

· P(1)
(`−1) �P

(3)
(`+2), P4 = P (T ∪ b) · 3︸︷︷︸

y

· U︸︷︷︸
a︸ ︷︷ ︸

y
⋃
Ti0

· P(1)
(`−1) �P

(3)
(`+2).

• If π satisfies condition (2H3) then P (π) = P0 ∪ P1 ∪ P2 ∪ P3 ∪ P4, with

P1 = P (S) · 1︸︷︷︸
x

· D︸︷︷︸
c︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3), P2 = P (T ∪ b) · 1︸︷︷︸

x

· D︸︷︷︸
c

· L︸︷︷︸
a︸ ︷︷ ︸

x
⋃
Ti0

· P(1)
(`) �P

(3)
(`+3),

P3 = P (T ∪ a) · 3︸︷︷︸
y

· R︸︷︷︸
c

· U︸︷︷︸
b︸ ︷︷ ︸

y
⋃
Ti0

· P(1)
(`−1) �P

(3)
(`+2), P4 = P (S) · 3︸︷︷︸

y

· R︸︷︷︸
c︸ ︷︷ ︸

y
⋃
Ti0

· P(1)
(`−1) �P

(3)
(`+2).

Proof. For each item, it is easy to check that the given pin words are pin words encoding
π. Conversely, we prove that a pin word encoding π is necessarily in the set claimed to be
P (π). First of all, by Lemma 2.33, every pin representation of π starts in the only child
that is not an increasing oscillation, i.e., with Ti0 .

Let us start with the first point of Theorem 2.60. In this case, by definition of H, we
know that Ti0 is read in one piece. By Lemma 2.39 (p.71), the other children are also read
in one piece, and Lemma 2.37 ensures that the children closest to Ti0 are read first. As
there is no relative order between children ξ`+2 to ξr and children ξ` to ξ1, this leads to the
shuffling operation between pin words corresponding to these children, with an external
origin placed in quadrant 3 (resp. 1) with respect to the block.

In the other cases of Theorem 2.60, by Lemma 2.40, every pin representation of π either
reads Ti0 in one piece or in two pieces. In case Ti0 is read in one piece, the pin representation

2.4 Pin words of pin-permutations 83

is as before encoded by pin words of P0. If it is read in two pieces, Lemma 2.40 and its
proof and Remark 2.41 ensure that the corresponding pin words are those described.

Consider for example π satisfying condition (1H1). Then π satisfies condition F1 of
Lemma 2.40, and only this one by definition of (1H1). If Ti0 is read in two pieces, then
Lemma 2.40 ensures that S is the first part of Ti0 ∪ {x} to be read, followed by x and
finally a. The corresponding pin words are indeed those described in P1.

Taking the other example of condition (2H3), P1 corresponds to condition F2 with
S = T ∪a∪ b, P2 corresponds to condition F4 with S = T ∪ b, P3 corresponds to condition
G4 with S = T ∪ a and P4 corresponds to condition G2 with S = T ∪ a ∪ b. �

Remark 2.61. If π is a 	-decomposable permutation, similar description of P (π) can be
obtained from Remark 2.36 (p.70).

2.4.6 Recursive case: decomposition trees with a prime root

We now turn to the study of the recursive case where the decomposition tree has a root

which is a simple permutation α. We start with the case where π =
α

T
for a

tree T that is not a leaf.
We begin with the characterization of the possible ways a pin representation of π may

read T , introducing first a condition that will be useful in the sequel.

Definition 2.62. For a permutation π = α[1, . . . , 1, T, 1, . . . , 1] with α = α1 . . . αk, we
define condition (C) as follows:

(C)



•α is an increasing – resp. decreasing – quasi-oscillation (see p.67);
•T expands an auxiliary point of α;

• the shape of T is
⊕
T ′

– resp.
	
T ′

– if the auxiliary point is αk

or αk−1 and
⊕
T ′

– resp.
	
T ′

– if the auxiliary point is α1 or α2.

Lemma 2.63. Let p = (p1, . . . , pn) be a pin representation associated to π = α[1, . . . , 1, T, 1, . . . , 1].
Then one of the following statements holds:

(1) p1 ∈ T and T is read in one piece by p;

(2) T = {p1, . . . , pi}
⋃
{pn} with i 6= n− 1, and π satisfies condition (C);

(3) p1 /∈ T , T = {p2, pn}, and π satisfies condition (C).

Moreover if (3) is satisfied then p is a proper pin representation uniquely determined by
α and its auxiliary point; it is up to symmetry the one depicted in the first diagram of
Figure 2.17. If (2) is satisfied, defining T ′ as in condition (C), then T ′ = {p1, . . . , pi} and
(pi+1, . . . , pn) is uniquely determined by α and its auxiliary point, as shown in the second
diagram of Figure 2.17 up to symmetry.

Proof. If p1 6∈ T , then by Lemma 2.35(ii), T = {p2, pn}. Up to symmetry assume that
{p1, p2} is an increasing subsequence of π. As {p2, pn} forms a block, pn is in one of the
4 positions shown in Figure 2.18. But position 3 is forbidden because it is inside of the
bounding box B of {p1, p2}. Positions 2 and 4 lie on the side of the bounding box B.
Thus, if pn lies in one of these positions, it must be read immediately after p1 and p2 and
thus must be p3 from Lemma 2.1 (p.56). But n > 3 (α is simple so |α| ≥ 4) so that these
positions are forbidden. Hence pn lies in position 1 and T = 12.

84 Chapter 2. Finitely many simple permutations?

Tp2

pn

p3

p1

···pn−2

pn−1

TT ′

B′

pn

pi+1

···pn−2

pn−1

Figure 2.17: Diagram of π when one child T is not a leaf,
is read in two pieces and p1 /∈ T or p1 ∈ T .

p1

p2

B

3 4

2 1

Figure 2.18: Possible
positions for pn.

As α is a simple pin-permutation, p3 respects the separability condition. But if p3 lies
above or on the right of the bounding box B then pn will be on the side of the bounding
box of {p1, p2, p3}, hence pn = p4. But in that case, α has only 3 children, hence |α| = 3,
contradicting the fact that α is simple.

By symmetry we can assume that p3 lies below B (see the first diagram of Figure 2.17).
The same argument goes for every pin pi with i = 3, . . . , n − 2 and these pins form an
alternating sequence of left and down pins. As pn separates pn−1 from all other pins, pn−1

must be an up or right pin (depending on the parity of n). Then α is a quasi-oscillation
in which the point expanded by T is an auxiliary point and T = 12 or T = 21 depending
on the nature of α – increasing or decreasing. Consequently, π satisfies condition (C).
Notice that given α and its auxiliary point, once we know that p1 /∈ T then p is uniquely
determined.

Suppose now that p1 ∈ T but T is not read in one piece. By Lemma 2.34(i), it is
read in two pieces, the second part being pn. Then T = {p1, . . . , pi}

⋃
{pn} with n 6=

i + 1. Thus pn does not lie on the sides of the bounding box B′ of {p1, . . . , pi}. Up to
symmetry, we can assume that pn lies in quadrant 1 with respect to B′ (see Figure 2.17).

Therefore, T =
⊕
T ′

, T ′ being the sub-forest of T whose leaves are the points in B′,
i.e., are p1, . . . , pi. As T is a block, no pin must lie on the sides of the bounding box of
{p1, . . . , pi, pn}. Moreover pi+1 does not lie in quadrant 1 with respect to T , otherwise pn
would lie inside the bounding box of {p1, . . . , pi+1}. If pi+1 lies in quadrant 2 or 4, pn
would lie on the side of the bounding box of {p1, . . . , pi+1} and thus must be pi+2. This
is in contradiction with α being simple. Thus pi+1 lies in quadrant 3 with respect to T .
The same goes for pj with j ∈ {i+ 1, . . . , n− 2}. Because α is simple, we therefore deduce
that all these pins form an alternating sequence of left and down pins until pn−1 which
must be an up or right pin depending on the parity of n. Thus α is a quasi-oscillation in
which the point expanded by T is an auxiliary point. Moreover, π satisfies condition (C)
with T ′ = {p1, . . . , pi}, as can be seen (up to symmetry) on the right part of Figure 2.17.
Notice that given α and its auxiliary point, once we know that T = {p1, . . . , pi}

⋃
{pn}

with i 6= n− 1 then (pi+1, . . . , pn) is uniquely determined.
Finally if we are not in one of the two cases discussed above, then p1 ∈ T and T is read

in one piece by p, concluding the proof. �

With the description of the pin representations of π in Lemma 2.63 and the definition
that follows, we are able to give in Theorem 2.66 below an explicit description of the set
P (π) of pin words that encode π.

Definition 2.64. For every simple pin-permutation α, with an active point x (see p.74)
marked, we define Qx(α) as the set of strict pin words obtained by deleting the first letter
of a quasi-strict pin word of α whose first point read in α is x.

2.4 Pin words of pin-permutations 85

Notice that |u| = |α| − 1 for all u ∈ Qx(α).

Remark 2.65. To each pin representation of α whose first point read is x corresponds
exactly one word of Qx(α). Indeed the quasi-strict pin words associated to a pin represen-
tation differ only in their first letter (see Figure 2.5 p.57 and Remark 2.4 p.57).

Theorem 2.66. Let π be a pin-permutation, whose decomposition tree has a prime root
α, with exactly one child T that is not a leaf. Then, denoting by x the point of α expanded
by T , the following holds:

• If π does not satisfy condition (C), then P (π) = P (T) ·Qx(α).

• If π satisfies condition (C), we define T ′ as in (C), and we distinguish two sub-cases
according to the number of leaves |T | of T :

(a) if |T | ≥ 3, let w be the unique word encoding the unique reading of the remaining
leaves in π after T ′ is read when T is read in two pieces. Then P (π) = P (T) ·
Qx(α) ∪ P (T ′) · w.

(b) if |T | = 2, let P{1,n}(π) be the set of pin words encoding the unique pin repre-
sentation p of π such that T = {p1, pn}. Define similarly P{2,n}(π) for the case
T = {p2, pn}. Then P (π) = P (T) ·Qx(α) ∪ P{1,n}(π) ∪ P{2,n}(π).

Proof. In each case, it is easy to check that the given pin words are pin words encoding
π. Conversely, we prove that a pin word encoding π is necessarily in the set claimed to be
P (π). Let u = u1 . . . un ∈ P (π) and p = (p1, . . . , pn) be the associated pin representation.
Then p satisfies one statement of Lemma 2.63.

If p satisfies statement (1) of Lemma 2.63 then, setting k = |T |, (pk, . . . , pn) is a pin
representation of α beginning with x. Moreover as T is a block of π, pk+1 is an independent
pin, so that uk+1 is a numeral. Thus for all h in {1, 2, 3, 4}, huk+1 . . . un is a pin word
encoding α and starting with two numerals. As α is simple, its pin words are strict or
quasi-strict, hence huk+1 . . . un is quasi-strict. Therefore uk+1 . . . un ∈ Qx(α). Moreover
(p1, . . . , pk) is a pin representation of T . Hence u ∈ P (T) ·Qx(α) which is included in the
set claimed to be P (π), regardless of whether π satisfies condition (C) or not.

If p satisfies statement (2) of Lemma 2.63 then π satisfies condition (C). If |T | = 2 then
T = {p1, pn} and u ∈ P{1,n}(π). Notice that the uniqueness of the pin representation such
that T = {p1, pn} follows from Lemma 2.63. Indeed in this case (pi+1, . . . , pn) is uniquely
determined, i = 1 and p1 is the only remaining point. If |T | ≥ 3 then from Lemma 2.63,
T ′ = {p1, . . . , pk−1} with k = |T | thus the prefix of length k − 1 of u is in P (T ′). From
Lemma 2.63, (pk, . . . , pn) is uniquely determined. Moreover, as k ≥ 3, Remark 2.4 (p.57)
ensures that the letters encoding these points are uniquely determined. This allows to
define uniquely the word w encoding (pk, . . . , pn), yielding u ∈ P (T ′) · w.

If p satisfies statement (3) of Lemma 2.63 then π satisfies condition (C), |T | = 2 and
u ∈ P{2,n}(π). Notice that the uniqueness of the pin representation such that T = {p2, pn}
follows from Lemma 2.63. �

To make the set P (π) of pin words in the statement of Theorem 2.66 explicit (up to the
recursive parts P (T) and P (T ′)), we conclude the study of the case π = α[1, . . . , 1, T, 1, . . . , 1]
by stating some properties of the (sets of) words Qx(α), w, P{1,n}(π) and P{2,n}(π) that
appear in Theorem 2.66.

Remark 2.67. The set Qx(α) ⊆ P (α) can be determined in linear time w.r.t. |α|. Indeed
as α is simple it is sufficient to examine the proper pin representations of α which start with
an active knight containing x. By Lemma 2.42 (p.73), these are entirely determined by their

86 Chapter 2. Finitely many simple permutations?

first two points. Since α is simple these two points are in knight position. Consequently,
there are at most 8 proper pin representations of α starting with x, and associated pin
words are obtained in linear time using Remark 2.4 (p.57).

Lemma 2.68. In Theorem 2.66, when π satisfies condition (C) and |T | ≥ 3, the word w is
a strict pin word of size at least 4 encoding α. Denoting by w′ the suffix of length 2 of w,
then P (T ′) ·φ−1(w′) ⊆ P (T). Moreover there exist a word w̄ of Qx(α) and a letter Z such
that w = w̄ · Z and no word of φ(Qx(α)) contains Z. Finally when |α| ≥ 5 then Qx(α)
contains only w̄. Otherwise |α| = 4 and Qx(α) contains two words.

Proof. Assume that π satisfies condition (C) and |T | ≥ 3. Define T ′ as in condition (C)
and let i = |T ′|. Notice that i ≥ 2. By definition of w there exists a pin representation
p = (p1, . . . , pn) of π such that T ′ = {p1, . . . , pi}, T is read in two pieces and any corre-
sponding pin word u = u1 . . . un satisfies ui+1 . . . un = w. Then p satisfies statement (2)
of Lemma 2.63, thus T = {p1, . . . , pi} ∪ {pn} as in the second diagram of Figure 2.17 and
{pi+2, . . . , pn} are separating pin. As i ≥ 2 and T ′ is a block of π, pi+1 is an independent
pin encoded with a numeral. So w = ui+1 . . . un is a strict pin word.

Moreover as T = {p1, . . . , pi} ∪ {pn}, (pi+1, . . . , pn) is a pin representation of α ending
with x thus w is a pin word encoding α and |w| = |α| ≥ 4. Likewise (pi, . . . , pn−1) is a pin
representation of α beginning with x.

Denoting by w′ the suffix of length 2 of w, then from Lemma 2.19 (p.62) φ−1(w′) is a
numeral indicating the quadrant in which pn lies with respect to T ′. And as T = T ′∪{pn},
for all u′ in P (T ′), u′ · φ−1(w′) belongs to P (T).

Moreover letting w̄ be the prefix of w of length |w| − 1, for all h in {1, 2, 3, 4}, h w̄ is
a quasi-strict pin word of α. Therefore w̄ ∈ Qx(α). Denoting by Z the last letter of w,
Z encodes pn. Moreover w̄ encodes pi+1, . . . , pn−1 and the position of pi+1, . . . , pn is the
same (up to symmetry) as the one shown on Figure 2.17. On this figure, it is immediate
to check that φ(w̄) does not contain Z. To prove that this holds not only for w̄ but also
for all words of Qx(α), we first study the cardinality of Qx(α).

From Remark 2.65 to each pin representation of α whose first point read is x corresponds
exactly one word of Qx(α). Recall from Remark 2.67 that a pin representation of α
is determined by its first two points, which form an active knight. So we just have to
compute the number of active knights of α to which x belongs, remembering that α is
an increasing oscillation and x is an auxiliary point of α. By definition, every increasing
oscillation has size at least 4, and we distinguish cases depending on whether it is of size
greater than or at most 5.

Every increasing oscillation of size greater than 5 has exactly two active knights, with
exactly one containing the auxiliary point (which is uniquely determined in this case).
Indeed, from Lemma 2.47 (p.74), the main substitution point belongs to exactly two active
knights – one formed with the auxiliary point and one formed with the point separating it
from the auxiliary point (see the last diagram of Figure 2.6 p.67)– and there are no other
active knights.

For increasing oscillations of size 4 or 5 (see Figure 2.7 p.68) we may also apply
Lemma 2.47 to count their active knights that involve the auxiliary point x. An increasing
oscillation of size 5 has exactly 4 active knights, all of them contain the main substitution
point, and exactly one of them contains the auxiliary point x. An increasing oscillation of
size 4 has exactly 4 active knights and each of its point (including the auxiliary point x)
belongs to exactly two active knights.

Consequently if α is an increasing quasi-oscillation of size greater than 4 and x is an
auxiliary point of α, then |Qx(α)| = 1 as x belongs to only one active knight; and when
|α| = 4, |Qx(α)| = 2 as x belongs to two active knights.

2.4 Pin words of pin-permutations 87

To conclude the proof, recall that the word w̄ defined earlier belongs to Qx(α) and
is such that φ(w̄) does not contain Z. When |α| 6= 4, we have |Qx(α)| = 1 so that
Qx(α) = {w̄} and we conclude that no word of φ(Qx(α)) contains Z. When |α| = 4,
|Qx(α)| = 2 and there is only one word w̄′ different from w̄ in Qx(α), which may be
computed from Figure 2.7 (p.68). We then check by comprehensive verification (of the
four cases of size 4 on Figure 2.7) that φ(w̄′) does not contain Z. Details are left to the
reader. �

We are furthermore able to describe w explicitly in Remark 2.70 below, and we record
its expression here for future use in our work.

Definition 2.69. To each quasi-oscillation α of which an auxiliary point A is marked,
we associate a word wAα defined below. Denoting by M the main substitution point of α
corresponding to A and by KA,M the active knight formed by A and M then:

When α is increasing and KA,M is of type H (resp. V),
if A is in the top right corner of α, we set

wAα = (DL)p−2DRU (resp. wAα = (LD)p−2LUR) if |α| = 2p
wAα = (DL)p−2UR (resp. wAα = (LD)p−2RU) if |α| = 2p− 1;

if A is in the bottom left corner of α, we set
wAα = (UR)p−2ULD (resp. wAα = (RU)p−2RDL) if |α| = 2p
wAα = (UR)p−2DL (resp. wAα = (RU)p−2LD) if |α| = 2p− 1;

When α is decreasing, wAα is obtained by symmetry exchanging left and right.

Notice that for quasi-oscillations that are both increasing and decreasing the choice of
A determines their nature, so that wAα is properly defined.

Remark 2.70. If A is in the top right corner of α (see Figure 2.17 p.84 or Figure 2.6
p.67), then w = 3 ·wAα . If A is in the bottom left (resp. top left, bottom right) corner of α
then w = 1 · wAα (resp. w = 4 · wAα , w = 2 · wAα).

Remark 2.71. In Theorem 2.66, if π satisfies condition (C) and |T | = 2, then P{1,n}(π)∪
P{2,n}(π) = {u ∈ P (π) | u strict or quasi-strict}, denoted Psqs(π). This set corresponds
to two proper pin representations, so it contains 12 pin words (see Remark 2.4 p.57).
Moreover, with the notations of Lemma 2.56 (p.78), and KA,M as in Definition 2.69, we
have an explicit description of Psqs(π):

When KA,M is of type H (resp. V),
if α is increasing (see Figure 2.17 p.84), then

Psqs(π) = (Q+ + S+
H) · wAα (resp. Psqs(π) = (Q+ + S+

V) · wAα)
and if α is decreasing, then

Psqs(π) = (Q− + S−H) · wAα (resp. Psqs(π) = (Q− + S−V) · wAα).

This concludes the study of the case π = α[1, . . . , 1, T, 1, . . . , 1]. It now remains to deal
with the case where more than one child of α is not a leaf. From Theorem 2.31, in this
case α is an increasing (resp. decreasing) quasi-oscillation having exactly two children that
are not leaves, and these are completely determined.

Theorem 2.72. Let π =
β+

T
12

where β+ is an increasing quasi-oscillation, the

permutation 12 expands an auxiliary point of β+ and T (of size at least 2) expands the
corresponding main substitution point of β+. Then P (π) = P (T) ·w where w is the unique
word encoding the unique reading of the remaining leaves in π after T is read.

88 Chapter 2. Finitely many simple permutations?

Proof. Let p = (p1, . . . , pn) be a pin representa-
tion associated to π. According to Section 3.4
of [BBR11], the configuration depicted on Figure 2.19
is the only possible configuration up to symmetry for
a pin-permutation whose root is a simple permuta-
tion with two non-trivial children. Thus the sequence
(pk+1, . . . , pn) is uniquely determined in π. Moreover
k+ 1 ≥ 3, so that the suffix encoding (pk+1, . . . , pn) in
a pin word of p is a word w uniquely determined from
Remark 2.4 (p.57). �

T

T ′
pn

pk+1

pk+2

···pn−2

pn−1

Figure 2.19: Diagram of π if two
children are not leaves

Remark 2.73. The word w in the statement of Theorem 2.72 is a strict pin word uniquely
determined by β+ and the two points expanded in β+.

More precisely, taking the notations of Definition 2.69 (with β+ instead of α), w =
1 ·wAβ+ (resp. w = 3 ·wAβ+) when A is in the top right (resp. bottom left) corner of β+ (see
Figure 2.19).

For decomposition trees whose root is a decreasing quasi-oscillation, we obtain a de-
scription of P (π) similar to the one of Theorem 2.72. This is derived in the fashion
explained in Remark 2.36 (p.70).

2.5 Building deterministic automata accepting the languages
Lπ

Recall that our goal is, using Theorem 2.27 (p.66) and given a finite basis B, to find
an algorithm checking if the language M \ ∪π∈BLπ is finite, M being the set of words
of length at least 2 over {U,D,L,R} such that L,R is followed by U,D and conversely
(see p.62). For algorithmic reasons to be detailed later, we rather consider the language
←−−−−−−−−−
M\ ∪π∈BLπ where for any language L we denote by

←−
L the language {←−v | v ∈ L} and for

any word v = v1 . . . vp we denote by ←−v = vp . . . v1 the reverse of v. By definition ofM, we
have

←−−−−−−−−−
M\ ∪π∈BLπ =

←−
M\∪π∈B

←−
Lπ =M\∪π∈B

←−
Lπ. With usual constructions of automata

theory (see [HU79] among other references), the construction of an automaton accepting
the languageM\∪π∈B

←−
Lπ is easily obtained from automata recognizing

←−
Lπ for π ∈ B.

From the definition of Lπ given p.64 we have:
←−
Lπ =

⋃
u∈P (π)

u=u(1)u(2)...u(j)

A?
←−−−−
φ(u(j))A? . . . A?

←−−−−
φ(u(2))A?

←−−−−
φ(u(1))A? (2.1)

where A = {U,D,L,R}, φ is the map introduced in Definition 2.18 (p.62) and for every pin
word u, by u = u(1)u(2) . . . u(j) we mean (here and everywhere after) that u(1)u(2) . . . u(j)

is the strong numeral-led factor decomposition of u.
In this section, we give for any pin-permutation π an explicit construction of a deter-

ministic automaton Aπ that recognizes the language
←−
Lπ. We also present an alternative

construction of Aπ whose complexity is optimized; but instead of
←−
Lπ, the automaton recog-

nizes a language L such that L∩M =
←−
Lπ∩M. Moreover, in addition to being deterministic,

both automata are complete, have a unique final state without outgoing transitions except
for a loop labeled by all letters of A, and are accessible (i.e., for any state q there is a path
from the initial state to q) and co-accessible (i.e., for any state q there is a path from q to
the final state). These properties of Aπ are inherited from the smaller automata used in
its construction.

2.5 Building deterministic automata accepting the languages Lπ 89

Our construction of automata accepting words v ∈
←−
Lπ relies on a greedy principle: at

each step we find the first occurrence of
←−−−−
φ(u(`)) that appears in the suffix of the word v

that has not yet been read by the automaton. This is facilitated by the fact that in Lπ the
factors

←−−−−
φ(u(`)) are separated by A?.

The reason why we consider reversed words is in order to preserve determinism. In-
deed intuitively the possible beginnings of pin words encoding a permutation may be
numerous, whereas all these words end with very similar shuffle products as it appears in
Theorems 2.53 and 2.60 (p.77 and 80).

To avoid exponential complexity it is important that the construction provides de-
terministic automata. From deterministic automata Aπ recognizing the languages

←−
Lπ,

we can obtain a deterministic automaton accepting words whose reverses encode proper
pin-permutations containing some pattern π ∈ B, for any finite set B of patterns. This
is achieved using the Cartesian product of the automata Aπ to compute a deterministic
automaton accepting the union ∪π∈B

←−
Lπ. This deterministic automaton can then be com-

plemented in linear time (in order to build an automaton recognizingM\∪π∈B
←−
Lπ), while

the same operation on non-deterministic automata is exponential in the worst case. This
last step will be detailed in Section 2.6.

For now, we focus on the construction of the automata Aπ. In Subsection 2.5.1, we
present generic constructions of automata that will be used several times. In Subsec-
tions 2.5.2 to 2.5.5, we construct recursively the automata Aπ that recognize the languages←−
Lπ for any pin-permutation π, distinguishing cases according to the decomposition tree
of π – see Equation (?) p.69. In these constructions, some states of the automata must
be marked, and this is detailed in Subsection 2.5.6. We conclude with Subsection 2.5.7
analysing the complexity of building Aπ.

2.5.1 Generic constructions of deterministic automata

We present some generic constructions that are used in the next subsections. We refer the
reader to [HU79] for more details about automata.

Aho-Corasick algorithm. Let X be a finite set of words over a finite alphabet A. The
Aho-Corasick algorithm [AC75] builds a deterministic automaton that recognizes A?X in
linear time and space w.r.t. the sum ‖X‖ of the lengths of the words of X. The first step
of the algorithm consists in constructing a tree-automaton whose states are labeled by the
prefixes of the words of X. The initial state is the empty word ε. For any word u and
any letter a there is a transition labeled by a from state u to state ua if ua is a prefix of
a word of X. At this step the final states are those labeled by the words of X. These
states are the leaves of the tree, and some internal nodes if some word of X is a prefix of
another one. The second step consists in adding transitions in the automaton according to
a breadth-first traversal of the tree-automaton to obtain a complete automaton. For any
state u and any letter a, the transition from u labeled by a goes to the state corresponding
to the longest suffix of ua that is also a prefix of a word of X. The set of final states is
the set of states corresponding to words having a suffix in X. These states correspond to
a leaf or an internal node – when there is a factor relation between two words of X – of
the original tree-automaton. The ones corresponding to words having a proper suffix in X
are marked on the fly during the construction of the missing transitions.

Remark 2.74. Notice that all transitions labeled with a letter of A that does not appear
in any word of X go to the initial state. Moreover the reading of any word u by the

90 Chapter 2. Finitely many simple permutations?

automaton leads to the state labeled with the longest suffix of u that is also a prefix of a
word of X.

ε

start

L
L

LU
U

LUL
L

LULU
U

LULUL
L

LULULU
U

LULULUR
R

LULD

D

LULDL
L

LULDLD
D

LUR

R

LURD
D

R,U

L L

U

R

L

U,D

Figure 2.20: Aho-Corasick automaton for X = {LULULUR,LULDLD,LURD} with the
tree-automaton obtained after the first step drawn in black with straight arrows, and with
transitions added in the second step drawn in green with bent arrows (for clarity reasons,
we have drawn only a few of these latter transitions).

A variant for first occurrences. An adaptation of the Aho-Corasick algorithm allows
us to build in linear time and space w.r.t. ‖X‖ a deterministic automaton, denoted AC(X),
recognizing the set of words ending with a first occurrence of a word of X (which is strictly
included in A?X). First we perform the first step of the Aho-Corasick algorithm on X,
obtaining a tree automaton. We modify the second step as follows: in the breadth-first
traversal, we stop the exploration of a branch and delete its descendants as soon as a final
state is reached. Moreover we do not build the outgoing transitions from the final states,
nor the loops on the final states. This ensures that the language recognized is the set of
words ending with a first occurrence of a word of X. Finally we merge the final states into
a unique final state f to obtain AC(X). Moreover if we add a loop labeled by all letters of
A on f we obtain an automaton AC	(X) that recognizes the set A?XA? of words having
a factor in X.

Remark 2.75. The main difference between our variant and the construction of Aho-
Corasick is that we stop as soon as a first occurrence of a word of X is read. This ensures
that AC(X) has a unique final state without any outgoing transition.

This variant for first occurrences satisfies properties analogous to Remark 2.74:

Lemma 2.76. In AC(X), all transitions labeled with a letter that does not appear in any
word of X go to the initial state. Moreover let u be a word without any factor in X except
maybe as a suffix. Then the reading of u by AC(X) leads to the state labeled with the
longest suffix of u that is also a prefix of a word of X.

Proof. Let A be the usual Aho-Corasick automaton on X. Then AC(X) (before the merge
of all final states in f) is a subautomaton of A, and therefore the first assertion is a direct
consequence of Remark 2.74. Let u be a word without any factor in X except maybe as a
suffix. Then the path of the reading of u by A does not visit any final state, except maybe
the last state reached. Thus all this path is included in AC(X) and we conclude using
Remark 2.74. �

2.5 Building deterministic automata accepting the languages Lπ 91

A variant for a partition X1, X2. When the set X is partitioned into two subsets X1

and X2 such that no word of X1 (resp. X2) is a factor of a word of X2 (resp. X1) 3, we
adapt the previous construction and build a deterministic automaton AC(X1, X2) which
recognizes the same language as AC(X). But instead of merging all final states into a
unique final state, we build two final states f1 and f2 corresponding to the first occurrence
of a word ofX1 (resp.X2). This construction is linear in time and space w.r.t. ‖X1‖+‖X2‖.
In what follows we will use this construction only whenX1 andX2 are languages on disjoint
alphabets, so that the factor independence condition is trivially satisfied.

Concatenation. Building an automaton A1 · A2 recognizing the concatenation L1 · L2

of two languages respectively recognized by the deterministic automata A1 and A2 is easy
when A1 has a unique final state without outgoing transitions. Indeed it is enough to
merge the final state of A1 with the initial state of A2 into a unique state that is not
initial (resp. not final), except when the initial state of A1 (resp. A2) is final. Note that
the resulting automaton is deterministic and of size at most |A1|+ |A2|, where the size |A|
is the number of states of any automaton A. This construction is done in constant time.

When the final state of A1 has no outgoing transitions except for a loop labeled by all
letters of A and when L2 is of type A? · L for an arbitrary language L, we can do the same
construction to obtain an automaton recognizing the concatenation L1 · L2 = L1 · A? · L.
We just have to delete the loop on the final state of A1 before merging states.

In particular, according to this construction, the automaton obtained concatenating
AC	(X) and A is AC(X) ·A. Therefore, even though AC(X) recognizes a language strictly
included in A?X, AC(X) ·A recognizes A?XA?L when A recognizes a language A?L. This
construction is often used in the sequel.

Union. We say that an automaton is almost complete if for any letter a, all non-final
states have an outgoing transition labeled by a (notice that the only difference with a
complete automaton is that final states are allowed to miss some transitions). Let A1 and
A2 be two deterministic automata that are accessible, co-accessible and almost complete4.
We define the automaton U(A1,A2) as follows. We perform the Cartesian product of A1

and A2 beginning from the pair of initial states (see [HU79]). However we stop exploring a
path when it enters a final state of A1 or A2. Therefore in U(A1,A2) there is no outgoing
transition from any state (q1, q2) such that q1 or q2 is final. Moreover these states are
merged into a unique final state of U(A1,A2). Let L1 (resp. L2, L) be the language
recognized by A1 (resp. A2, U(A1,A2)). Then L is the set of words of L1 ∪ L2 truncated
after their first factor in L1 ∪ L2. The language (L1 ∪ L2)A? = LA? is recognized by
the automaton U	(A1,A2) with an additional loop labeled by all letters of A on the final
state. Notice that U(A1,A2) (resp. U	(A1,A2)) is deterministic, accessible, co-accessible,
almost complete (resp. complete) and has a unique final state without outgoing transitions
(resp. with a loop labeled by all letters of A). The complexity in time and space of these
constructions is in O(|A1| · |A2|).

2.5.2 Pin-permutation of size 1 and simple pin-permutations

Pin-permutation of size 1. When π = 1, we have P (π) = {1, 2, 3, 4}. Then
←−
Lπ = {A?

←−−−
φ(w)A? | w ∈ P (π)} = A?M2A

?

3This is a simple condition that allows us to define without ambiguity words ending with a first occur-
rence either in X1 or in X2.

4Notice that the automata AC(X), AC	(X) and AC(X1, X2) satisfy these conditions.

92 Chapter 2. Finitely many simple permutations?

where
M2 =M∩A2 = {UR,UL,DR,DL,RU,RD,LU,LD}.

The language
←−
Lπ is recognized by the automaton Aπ of Figure 2.21.

U,
D

L
,R

L
,R

U,
D

A

R,L

U,D

Figure 2.21: The automaton Aπ when π = 1.

Simple pin-permutations. In this paragraph, for a simple permutation π whose set of
pin words P (π) is given, we build the automaton Aπ. The computation of P (π) from π is
done using Algorithm 3 (p.75). The study that follows is based on the upcoming lemma.

Lemma 2.77. For every permutation π (not necessarily simple), we have⋃
u∈P (π)

u strict or quasi-strict

L(u) = A? · Es
π ·A? ∪ A? · M2 ·A? · Eqs

π ·A?

where Es
π = {φ(u) | u ∈ P (π), u is strict} and Eqs

π = {φ(u(2)) | u = u(1)u(2) ∈ P (π), u is
quasi-strict}.

Proof. By definition of L(u) (see Definition 2.23 p.64),⋃
u∈P (π)

u strict or quasi-strict

L(u) =
(⋃
u∈P (π)
u strict

A?φ(u)A?
) ⋃ (⋃

u=u(1)u(2)∈P (π)
u quasi-strict

A?φ(u(1))A?φ(u(2))A?
)
.

Moreover, as can be seen on Figure 2.5 (p.57), for every quasi-strict pin word u =
u(1)u(2) ∈ P (π), the words hu(2) also belong to P (π) for all h ∈ {1, 2, 3, 4}. This allows to
write ⋃

u∈P (π)
u strict or quasi-strict

L(u) =
(⋃
u∈P (π)
u strict

A?φ(u)A?
) ⋃ (⋃

h∈{1,2,3,4}

A?φ(h) ·
⋃

u=u(1)u(2)∈P (π)
u quasi-strict

A?φ(u(2))A?
)
.

Hence ⋃
u∈P (π)

u strict or quasi-strict

L(u) = A? · Es
π ·A? ∪ A? · M2 ·A? · Eqs

π ·A?,

concluding the proof. �

Lemma 2.78. For every permutation π whose sets of strict and quasi-strict pin words (or
equivalently Es

π and Eqs
π) are given, one can build in time and space O

(
|Es

π| · |Eqs
π | · |π|2

)
an accessible and co-accessible deterministic complete automaton Asqs

π having a unique final
state without outgoing transitions except for a loop labeled by all letters of A that recognizes
the language

⋃
u∈P (π)

u strict or quasi-strict

←−−
L(u).

Proof. From Lemma 2.77, we have⋃
u∈P (π)

u strict or quasi-strict

←−−
L(u) =

←−−−−−
A?Es

πA
?
⋃←−−−−−−−−−−−
A?M2A

?Eqs
π A

? =
(
A?
←−
Es
π

⋃
(A?
←−−
Eqs
π ·A?M2)

)
A?.

2.5 Building deterministic automata accepting the languages Lπ 93

Recall that AC(
←−
Es
π), AC(

←−−
Eqs
π) and AC(M2) are automata recognizing respectively the

set of words ending with a first occurrence of a word of
←−
Es
π,
←−−
Eqs
π andM2 and obtained using

the construction given in Section 2.5.1. The sizes of the first two automata are respectively
O (|Es

π| · |π|) and O (|Eqs
π | · |π|), and the size of the third one is constant. Indeed for all w

in Es
π, |w| = |π| + 1 and for all w in Eqs

π , |w| = |π| so that ‖Es
π‖ = |Es

π| · (|π| + 1) and
‖Eqs

π ‖ = |Es
π| · |π|.

Then the deterministic automaton Asqs
π is obtained as the union

U	(AC(
←−
Es
π) , AC(

←−−
Eqs
π) · AC(M2)) in time and space O

(
|Es

π| · |Eqs
π | · |π|2

)
. �

Lemma 2.78 is used mostly in two special cases where all the pin words of π are strict
or quasi-strict, and that we identify explicitly in the following remark.

Remark 2.79. By Theorem 2.48 (p.75) the pin words encoding a simple permutation are
either strict or quasi-strict and there are at most 48 of them. Therefore when π is a simple
permutation, we take Aπ = Asqs

π (from Lemma 2.78) and the time and space complexity
of the construction of Aπ is quadratic w.r.t. |π|, as soon as the pin words of π are given.

Notice also that when π = 12, Aπ = Asqs
π and the time and space complexity of the

construction is O(1).

The above construction follows the general scheme announced at the beginning of the
section, but it is not optimized. We actually can provide a more specific construction of
Aπ whose complexity is linear when the permutation π is simple. This construction relies
on the same idea as the one we give in [BBPR10].

Definition 2.80. For any permutation π, we define Eπ = Es
π ∪ M2 · Eqs

π .

Lemma 2.81. For any permutation π, we have⋃
u∈P (π)

u strict or quasi-strict

L(u) ∩M =
(
A? · Eπ ·A?

)
∩M,

Proof. From Lemma 2.77, we have⋃
u∈P (π)

u strict or quasi-strict

L(u) = A? · Es
π ·A? ∪ A? · M2 ·A? · Eqs

π ·A?.

Since (A? ·M2 ·A? ·Eqs
π ·A?)∩M = (A? ·M2 ·Eqs

π ·A?)∩M and Eπ = Es
π ∪ M2 ·Eqs

π ,
we obtain ⋃

u∈P (π)
u strict or quasi-strict

L(u) ∩M =
(
A? · Eπ ·A?

)
∩M,

concluding the proof. �

Lemma 2.82. For every permutation π whose sets of strict and quasi-strict pin words (or
equivalently Es

π and Eqs
π) are given, one can build in time and space O ((|Es

π|+ |Eqs
π |) · |π|)

an accessible and co-accessible deterministic complete automaton Asqs
π having a unique final

state without outgoing transitions except for a loop labeled by all letters of A that recognizes
a language L such that

L ∩M =
⋃

u∈P (π)
u strict or quasi-strict

←−−
L(u) ∩M.

Proof. Setting Asqs
π = AC	(

←−
Eπ), the language recognized by A is L = A? ·

←−
Eπ · A?. We

conclude using Lemma 2.81. �

94 Chapter 2. Finitely many simple permutations?

Remark 2.83. When π is a simple permutation, the automaton Asqs
π of Lemma 2.82

recognizes a language L such that L ∩M =
←−
Lπ ∩M. In the optimized alternative con-

struction of Aπ mentioned at the beginning of Section 2.5, for a simple permutation π
we take Aπ = Asqs

π from Lemma 2.82 and the time and space complexity of building the
automaton Aπ is linear w.r.t. |π| as soon as P (π) is given.

2.5.3 Pin-permutations with a linear root: non-recursive case

w.l.o.g. (see Remark 2.36 p.70), the only non-recursive case with a linear root is the one
where π = ⊕[ξ1, . . . , ξr], every ξi being an increasing oscillation. Theorem 2.53 (p.77) gives
an explicit description of the elements of P (π). These words are the concatenation of a
pin word belonging to some P (⊕[ξi, ξi+1]) with a sequence of pin words belonging to the
shuffle product

(P (1)(ξi−1), . . . , P (1)(ξ1)) � (P (3)(ξi+2), . . . , P (3)(ξr)).
To shorten the notations in the following, let us define

χ
(h)
j =

←−−−−−−−
φ(P (h)(ξj)) for h = 1 or 3 and 1 ≤ j ≤ r.

From Lemma 2.54 (p.77), for all j, the pin words of P (1)(ξj) and P (3)(ξj) respectively
are strict. Hence, the decomposition of u ∈ P (π) into strong numeral-led factors that is
needed to describe

←−
Lπ (see p.88) is easily obtained and gives:

←−
Lπ =

⋃
1≤i≤r−1

((
A?χ

(1)
1 , . . . , A?χ

(1)
i−1

)
�

(
A?χ(3)

r , . . . , A?χ
(3)
i+2

))
·
←−−−−−−
L⊕[ξi,ξi+1]

In the above equation, we have
←−−−−−−
L⊕[ξi,ξi+1] where we might have expected to rather find

A?
←−−−−−−−−−−−−
φ(P (⊕[ξi, ξi+1]))A?. The reason is that the term A?

←−−−−−−−−−−−−
φ(P (⊕[ξi, ξi+1]))A? is not properly

defined, since P (⊕[ξi, ξi+1]) contains pin words that are not strict.
The automaton Aπ is then built by assembling smaller automata, whose construction

is explained below.

Initial state sij

Final state f (1)
ij

accepting χ(1)
i

Final state f (3)
ij

accepting χ(3)
j

{L,D}

{U,R}

Figure 2.22: Atomic automaton A(ξi, ξj)
used in the construction of Aπ.

Construction of A(ξi, ξj). Since for all i, j,
the languages χ(1)

i and χ
(3)
j – that contain at

most two words – are defined on disjoint alpha-
bets (see Remark 2.55 p.77), we can use the con-
struction given in Section 2.5.1 to build the de-
terministic automata A(ξi, ξj) = AC(χ(1)

i , χ
(3)
j).

Figure 2.22 shows a diagram of A(ξi, ξj) and
defines states sij , f

(1)
ij and f (3)

ij .

Lemma 2.84. For all i, j, the complexity in
time and space of the construction of A(ξi, ξj) is O(|ξi|+ |ξj |).

Construction of Aξi. By Lemma 2.56 (p.78), for any i, |P (ξi)| ≤ 48, the pin words in
P (ξi) are explicit and all of them are either strict or quasi-strict except when |ξi| = 3.

If |ξi| 6= 3, from Lemma 2.78 it is possible to build the deterministic automaton Aξi
in quadratic time and space w.r.t. |ξi|, and from Lemma 2.82 the construction can be
optimized to be linear in time and space w.r.t. |ξi|.

If |ξi| = 3, P (ξi) can be partitioned into two parts Psqs]P (12) ·h where h = 4 (resp. 2)
if ξi = 231 (resp. 312) and Psqs is the set of strict and quasi-strict pin words of P (ξi).
With Lemma 2.78 or 2.82 we build the automaton Asqs

ξi
corresponding to Psqs, and the

automaton corresponding to P (12)·h is the concatenation of two basic automata, AC(
←−−
φ(h))

2.5 Building deterministic automata accepting the languages Lπ 95

(where φ(h) for h = 2 or 4 is given p.62) and A12 (see Remark 2.79 p.93). Finally the
automaton Aξi is the union U	(Asqs

ξi
,AC(

←−−
φ(h)) · A12). As |ξi| = 3, Aξi is built in constant

time.

Lemma 2.85. For all i, building Aξi is done in time and space O(|ξi|2) with the classical
construction and O(|ξi|) in the optimized version.

Construction of A⊕(ξi, ξi+1). We now explain how to build a deterministic automa-
ton A⊕(ξi, ξi+1) recognizing

←−−−−−−
L⊕[ξi,ξi+1]. Lemma 2.59 (p.79) describes the pin words of

P (⊕[ξi, ξi+1]), proving the correctness of the following constructions:

A(ξi, ξi+1)

Aξi+1

Aξi
fi

A

Figure 2.23: Automaton
A⊕(ξi, ξi+1).

If |ξi| > 1 and |ξi+1| > 1, we obtain A⊕(ξi, ξi+1)
by gluing together automata A(ξi, ξi+1), Aξi and Aξi+1

as shown in Figure 2.23. More precisely f
(1)
i(i+1) (resp.

f
(3)
i(i+1)) and the initial state of Aξi+1

(resp. Aξi) are
merged into a unique state that is neither initial nor fi-
nal. The final states of Aξi and Aξi+1

are also merged
into a unique final state fi having a loop labeled by all
letters of A.

If |ξi| = 1 and |ξi+1| = 1 then A⊕(ξi, ξi+1) = A12 is
built using Remark 2.79.

Otherwise assume w.l.o.g. that |ξi| = 1 and |ξi+1| > 1. The set of pin words P (⊕[ξi, ξi+1])
can be partitioned into two parts Psqs and P ′, Psqs being the set of strict and quasi-strict
pin words. If |ξi+1| 6= 3, then P ′ = P (ξi+1)·3 andA⊕(ξi, ξi+1) = U	

(
Asqs
⊕[ξi,ξi+1],AC(

←−−
φ(3)) · Aξi+1

)
.

If |ξi+1| = 3, then P ′ = P (ξi+1) · 3
⋃
P (12) · 3X where X is a direction, and we use again

concatenation and union but performed on automata of constant size.
Note that in all cases A⊕(ξi, ξi+1) has a unique final state – that we denote fi – without

outgoing transitions except for the loop labeled by all letters of A.

Lemma 2.86. For all i, building the automaton A⊕(ξi, ξi+1) is done in time and space
O(|ξi|4 + |ξi+1|4) with the classical construction and O(|ξi|2 + |ξi+1|2) in the optimized
version.

Proof. The complexity of the construction of A(ξi, ξi+1) is linear w.r.t. |ξi| + |ξi+1| from
Lemma 2.84 and the one of Aξi is quadratic – or linear in the optimized version –
w.r.t. |ξi| (see Lemma 2.85). From Lemma 2.59 (p.79), we have an explicit description
of P (⊕[ξi, ξi+1]) and |P (⊕[ξi, ξi+1])| ≤ 192. Hence, the complexity of the construction of
Asqs
⊕[ξi,ξi+1] when |ξi| = 1 is quadratic – or linear in the optimized version – w.r.t. |ξi+1|,

using Lemmas 2.78 and 2.82. Then the result follows from the complexity of the union of
two automata, which is proportional to the product of the sizes of the automata. �

Assembling Aπ. According to the description of
←−
Lπ given p.94, the automata A(ξi, ξj)

and A⊕(ξi, ξi+1) can be glued together to finish the construction of Aπ, as shown in Fig-
ure 2.24. More precisely for any i, j such that 1 ≤ i < j ≤ r

• if i + 1 6= j, then sij , f
(1)
(i−1)j and f (3)

i(j+1) are merged into a unique state qij that is
neither initial (except when i = 1 and j = r) nor final,

• if i + 1 = j, f (1)
(i−1)j , f

(3)
i(j+1) and the initial state of A⊕(ξi, ξj) = A⊕(ξi, ξi+1) are

merged into a unique state qij that is neither initial nor final,

96 Chapter 2. Finitely many simple permutations?

and the final states fi of the automata A⊕(ξi, ξi+1) are merged into a unique final state f
having a loop labeled by all letters of A. The states qij defined above correspond to the
shuffle product construction. To be more precise, taking the final state to be the merged
state qij and adding a loop labeled by all letters of A on it, the accepted language would
be
(
A?χ

(1)
1 , . . . , A?χ

(1)
i−1

)
�

(
A?χ

(3)
r , . . . , A?χ

(3)
j+1

)
·A? as it will be proved in the following.

The automata A⊕(ξi, ξi+1) in the second item above correspond to the concatenation with
←−−−−−−
L⊕[ξi,ξi+1].

Note that if r = 2, Aπ is A⊕(ξ1, ξ2).

Lemma 2.87. For any permutation π such that π = ⊕[ξ1, . . . , ξr], every ξi being an
increasing oscillation, the construction of the automaton Aπ is done in time and space
O(|π|4) with the classical construction and O(|π|2) in the optimized version.

Proof. Denote by n the size of π, then n =
∑r

i=1 |ξi|. By construction, taking into account
the merging of states:

|Aπ| ≤
r−2∑
i=1

r∑
j=i+2

|A(ξi, ξj)|+
r−1∑
i=1

|A⊕(ξi, ξi+1)|

and from Lemmas 2.84 and 2.86, in the classical construction

|Aπ| = O

r−2∑
i=1

r∑
j=i+2

(|ξi|+ |ξj |) +
r−1∑
i=1

(|ξi|4 + |ξi+1|4)

 = O(n4).

and in the optimized version

|Aπ| = O

r−2∑
i=1

r∑
j=i+2

(|ξi|+ |ξj |) +
r−1∑
i=1

(|ξi|2 + |ξi+1|2)

 = O(n2)

We conclude the proof by noticing that all these automata are built in linear time w.r.t. their
size. �

Correctness of the construction. We now prove that the automaton Aπ given in
Figure 2.24 recognizes the language

←−
Lπ, for π = ⊕[ξ1, . . . , ξr], every ξi being an increasing

oscillation.

Definition 2.88. Let A be a deterministic complete automaton over the alphabet A whose
set of states is Q and let u be a word in A?. We define traceA(u) as the word of Q|u|+1 that
consists in the states of the automaton that are visited when reading u from the initial
state of A, and for all q ∈ Q we define q · u to be the state of A reached when reading u
from q.

Let u be a word in A?. We define two parameters on u:
i(u) = max{i ∈ {0, r} | u ∈ A? · χ(1)

1 ·A
? · χ(1)

2 . . . A? · χ(1)
i ·A

?} , and
j(u) = min{j ∈ {1, r + 1} | u ∈ A? · χ(3)

r ·A? · χ
(3)
r−1 . . . A

? · χ(3)
j ·A

?}.

Lemma 2.89. Every word u such that i(u) ≥ i and j(u) ≤ j belongs to(
(A?χ

(1)
1 , A?χ

(1)
2 , . . . , A?χ

(1)
i)� (A?χ

(3)
r , A?χ

(3)
r−1, . . . , A

?χ
(3)
j)
)
·A?.

Proof. By definition, u belongs to A? · χ(1)
1 ·A? · χ

(1)
2 . . . A? · χ(1)

i ·A? and to A? · χ(3)
r ·A? ·

χ
(3)
r−1 . . . A

? ·χ(3)
j ·A?. Moreover, by Remark 2.55 (p.77), all χ(1)

k are words on the alphabet

{L,D} while all χ(3)
k are words on {U,R}. These alphabets being disjoint, we conclude

that u belongs to
(

(A?χ
(1)
1 , A?χ

(1)
2 , . . . , A?χ

(1)
i)� (A?χ

(3)
r , A?χ

(3)
r−1, . . . , A

?χ
(3)
j)
)
·A?. �

2.5 Building deterministic automata accepting the languages Lπ 97

A(ξ1, ξr) A(ξ2, ξr) A(ξr−2, ξr)

A(ξ1, ξr−1) A(ξ2, ξr−1)

A(ξ1, ξ3)

f

A
⊕ (ξ2,

ξ3)

A
⊕
(ξ

r
−

2
,
ξ r
−

1
)

A
⊕
(ξ

r
−

1
,
ξ
r
)

A⊕(ξ1, ξ2)

A

q 1
(r
−1

)

q2rq1r

q12

q(r−1)r

Figure 2.24: Automaton Aπ for π = ⊕[ξ1, . . . , ξr] where every ξi is an increasing oscillation.

The following lemma characterizes the first visit of state qij in Aπ:

Lemma 2.90. Let Q be the set of states of Aπ (see Figure 2.24), (i, j) 6= (1, r) and u ∈ A?.
Then traceAπ(u) ∈ (Q \ qij)? · qij if and only if u = vw with either w ∈ χ(1)

i−1, i(v) = i− 2

and j(v) = j + 1; or w ∈ χ(3)
j+1, i(v) = i− 1 and j(v) = j + 2.

Proof. By induction on r−j+i−1, using A(ξi, ξj) = AC(χ(1)
i , χ

(3)
j). Notice that r−j+i−1

is the number of automata A(ξk, ξ`) that we need to go through before reaching qij . �

Theorem 2.91. If π = ⊕[ξ1, . . . , ξr] where every ξi is an increasing oscillation then au-
tomaton Aπ given in Figure 2.24 recognizes the language

←−
Lπ.

Proof. Assume that r ≥ 3 (otherwise r = 2, Aπ is A⊕(ξ1, ξ2) and the result trivially holds).
We first prove that every word recognized by Aπ is in

←−
Lπ. Let u be a word recognized

by Aπ. Then traceAπ(u) ends with the final state f of Aπ. As f is accessible only from
some A⊕(ξk, ξk+1), traceAπ(u) contains some qk(k+1). Moreover for all (i, j) 6= (1, r), every
path from the initial state q1r to qij contains q(i−1)j or qi(j+1). Therefore traceAπ(u) ∈
qi1j1Q

?qi2j2Q
? . . . qir−1jr−1Q

?f where (i1, j1) = (1, r), (ir−1, jr−1) = (k, k + 1) and for all
`, (i`+1, j`+1) ∈ {(i` + 1, j`), (i`, j` − 1)}. Hence by definition of A(ξi, ξj) and A⊕(ξk, ξk+1)

and by the expression of
←−
Lπ given p.94, u ∈

←−
Lπ.

Conversely, let u ∈
←−
Lπ. We want to prove that q1r · u = f , q1r being the initial state

of Aπ and f its final state. The expression of
←−
Lπ given p.94 ensures that there exists k

such that u = vw with i(v) ≥ k − 1, j(v) ≤ k + 2 and w ∈
←−−−−−−−
L⊕[ξk,ξk+1]. Let u = v′w′ with

v′ = v1 . . . vs the shortest prefix of u such that j(v′) − i(v′) ≤ 3, and set i = i(v′). Since

98 Chapter 2. Finitely many simple permutations?

v′ is of minimal length, j(v′) = i + 3 and there exists v′′ ∈ A? such that v = v′v′′. So
w′ = v′′w belongs to A? ·

←−−−−−−−
L⊕[ξk,ξk+1] =

←−−−−−−−
L⊕[ξk,ξk+1]. Thus, using also Lemma 2.89, we have:

u =

=

v

∈ (A?χ
(1)
1 , . . . , A?χ

(1)
k−1)� (A?χ

(3)
r , . . . , A?χ

(3)
k+2)

w

∈
←−−−−−−−
L⊕[ξk,ξk+1]

v′

∈ (A?χ
(1)
1 , . . . , A?χ

(1)
i)� (A?χ

(3)
r , . . . , A?χ

(3)
i+3)

w′

Since v′ is of minimal length, i(v1 . . . vs−1) < i(v′) or j(v1 . . . vs−1) > j(v′). Thus
v′ = v̄w̄ with either w̄ ∈ χ(1)

i(v′), i(v̄) = i(v′)− 1 and j(v̄) = j(v′); or w̄ ∈ χ(3)
j(v′), i(v̄) = i(v′)

and j(v̄) = j(v′) + 1. By Lemma 2.90, traceAπ(v′) ends with qi(v′)+1,j(v′)−1.

Therefore u = v′w′ with q1r · v′ = qi+1,i+2 and w′ ∈
←−−−−−−−
L⊕[ξk,ξk+1].

If i = k − 1 then q1r · u = (q1r · v′) · w′ = qk,k+1 · w′ = f as w′ belongs to the language
←−−−−−−−
L⊕[ξk,ξk+1] recognized by the automaton A⊕(ξk, ξk+1).

If i ≤ k − 3. By definition i(u) ≥ k − 1 and i(v′) = i, and as u = v′w′, w′ ∈
A? ·χ(1)

i+1 ·A? ·χ
(1)
i+2 ·A? . . . A? ·χ

(1)
k−1 ·A

?. Therefore as i ≤ k−3, w′ ∈ A? ·χ(1)
i+1 ·A? ·χ

(1)
i+2 ·A?

and w′ belongs to the language
←−−−−−−−−
L⊕[ξi+1,ξi+2] recognized by the automaton A⊕(ξi+1, ξi+2).

Finally as u = v′w′ and traceAπ(v′) ends with qi+1,i+2, traceAπ(u) ends with f .
If i ≥ k + 1 then j(v′) ≥ k + 4 and by symmetry of i(u) and j(u) the proof is similar

to the previous case.
If i = k−2. As v = v′v′′ and i(v) ≥ k−1 and i(v′) = i then v′′ ∈ A? ·χ(1)

i+1 ·A?. Moreover
w ∈
←−−−−−−−−
L⊕[ξi+2,ξi+3] so w′ = v′′w ∈ A? ·χ(1)

i+1 ·
←−−−−−−−−
L⊕[ξi+2,ξi+3]. Therefore w′ ∈

←−−−−−−−−−−−
L⊕[ξi+1,ξi+2,ξi+3] and

by Theorem 2.24(ii) (p.65), w′ ∈
←−−−−−−−
L⊕[ξi+1,ξi+2

]. Hence w′ is recognized by A⊕(ξi+1, ξi+2) so
q1r · u = f (since q1r · v′ = qi+1,i+2).

If i = k, by symmetry of i(u) and j(u) the proof is similar to the previous case,
concluding the proof of Theorem 2.91. �

Remark 2.92. With the optimized construction of Aπ, we prove similarly that Aπ recog-
nizes a language L such that L ∩M =

←−
Lπ ∩M.

We end this section with a remark which will be useful in Subsection 2.5.6.

Remark 2.93. Let π(1) = ⊕[ξ2, . . . , ξr] be the pattern of π obtained by deletion of the
elements of ξ1. If r ≥ 3 then Aπ(1) is obtained by taking q2r (see Figure 2.24) as initial
state and by considering only the states of Aπ that are accessible from q2r. Thus in Aπ
the language recognized from q2r is

←−−−
Lπ(1) . If r = 2 then π(1) = ξ2, Aπ(1) is also a part

of A⊕(ξ1, ξ2) = Aπ and
←−−−
Lπ(1) is the language recognized from the bottom right state of

Figure 2.23. The same property holds with the pattern π(r) = ⊕[ξ1, . . . , ξr−1], the state
q1(r−1) and the top left state of Figure 2.23.

2.5.4 Pin-permutations with a linear root: recursive case

Suppose w.l.o.g. that the decomposition tree of π is
⊕

ξ1 ξ`
Ti0

ξ`+2 ξr
, i.e., the root

has label ⊕ and all of its children but one – denoted Ti0 – are increasing oscillations. Then
the automaton A(Ti0) = Aρ associated to the permutation ρ whose decomposition tree is
Ti0 is recursively obtained. We explain how to build Aπ from Aρ.

2.5 Building deterministic automata accepting the languages Lπ 99

If π /∈ H, i.e. if π does not satisfy any condition of Figure 2.16 (p.81). Then
Theorem 2.60 (p.80) ensures that P (π) = P (ρ) ·P(1)

(`) �P
(3)
(`+2) with

P
(1)
(`) =

(
P (1)(ξ`), . . . , P

(1)(ξ1)
)
and P

(3)
(`+2) =

(
P (3)(ξ`+2), . . . , P (3)(ξr)

)
.

This characterization translates into the following expression for
←−
Lπ.←−

Lπ =
((
A?χ

(1)
1 , . . . , A?χ

(1)
`

)
�

(
A?χ(3)

r , . . . , A?χ
(3)
`+2

))
·
←−
Lρ

To deal with the shuffle product, we use again the automata A(ξi, ξj) whose initial and
final states are sij , f

(1)
ij and f

(3)
ij (see Figure 2.22 p.94). We furthermore introduce the

deterministic automata A(1)(ξi) = AC(χ(1)
i) for 1 ≤ i ≤ ` and A(3)(ξj) = AC(χ(3)

j) for

`+2 ≤ j ≤ r whose initial and final states are denoted respectively s(1)
i , f (1)

i , s(3)
j and f (3)

j .

The automaton A(1)(ξi) (resp. A(3)(ξj)) corresponds to the reading of parts of P(1)
(`)

(
resp.

P
(3)
(`+2)

)
in the shuffle product P(1)

(`) �P
(3)
(`+2) after all the parts of P(3)

(`+2)

(
resp. P(1)

(`)

)
are

read.
With these notations, the language

←−
Lπ associated to π is the one recognized by the

automaton Aπ given in Figure 2.25 where the following merges are performed:

• for any i, j such that 1 ≤ i ≤ ` and `+ 2 ≤ j ≤ r, sij , f (1)
(i−1)j and f

(3)
i(j+1) are merged

into a unique state qij that is neither initial (except when i = 1 and j = r) nor final,

• for 1 ≤ i ≤ `, s(1)
i , f (1)

(i−1) and f
(3)
i(`+2) are merged into a unique state qi that is neither

initial nor final,

• for `+ 2 ≤ j ≤ r, s(3)
j , f (3)

j+1 and f (1)
`j are merged into a unique state qj that is neither

initial nor final,

• f (3)
`+2, f

(1)
` and the initial state of Aρ are merged into a unique state qρ that is neither

initial nor final.

Note that if ` = 0 (resp. r = ` + 1) i.e., if Ti0 is the first (resp. last) child, then only
the automaton Aρ and the automata A(3)(ξj) (resp. A(1)(ξi)) appear in Aπ whose initial
state is then qr (resp. q1).

The proof that the automaton Aπ obtained by this construction recognizes
←−
Lπ is omit-

ted. However this construction is very similar to the non-recursive case of the previous
section where the proofs are detailed.

Lemma 2.94. For any pin-permutation π = ⊕[ξ1, . . . , ξ`, ρ, ξ`+2, . . . , ξr] such that every ξi
but ρ is an increasing oscillation and π /∈ H, the construction of the automaton Aπ (see
Figure 2.25) is done in time and space O

(
(|π| − |ρ|)2

)
plus the additional complexity due

to the construction of Aρ, both in the classical and the optimized construction.

Proof. First notice that |π| − |ρ| =
∑r

i=1,i 6=`+1 |ξi|. Moreover, taking into account the
merge of states:

|Aπ| ≤
∑̀
i=1

r∑
j=`+2

|A(ξi, ξj)|+
∑̀
i=1

|A(1)(ξi)|+
r∑

j=`+2

|A(3)(ξj)|+ |Aρ|.

From Lemma 2.84 (p.94) and the fact that |P (1)(ξi)| ≤ 2 and |P (3)(ξj)| ≤ 2 (see Re-
mark 2.55 p.77), it follows that

|Aπ| − |Aρ| = O

∑̀
i=1

r∑
j=`+2

(|ξi|+ |ξj |) +

r∑
i=1
i6=`+1

|ξi|

 = O((|π| − |ρ|)2),

100 Chapter 2. Finitely many simple permutations?

A(ξ1, ξr) A(ξ2, ξr) A(ξ`, ξr)

A(ξ1, ξr−1) A(ξ2, ξr−1) A(ξ`, ξr−1)

A(ξ1, ξ`+2) A(ξ2, ξ`+2) A(ξ`, ξ`+2)

A(1)(ξ1) A(1)(ξ2) A(1)(ξ`)
Aρ A

A(3)(ξr)

A(3)(ξr−1)

A(3)(ξ`+2)
q 1

(r
−1

)

q1r q2r

qr−1

qr

q1
q2 q` qρ

q +̀2

Figure 2.25: The automaton Aπ for π = ⊕[ξ1, . . . , ξ`, ρ, ξ`+2, . . . , ξr], where every ξi but ρ
is an increasing oscillation (in the case π /∈ H).

concluding the proof, since the time of the construction is linear w.r.t. the size of the
automaton. �

We end this paragraph with a remark which will be useful in Subsection 2.5.6.

Remark 2.95. If ` 6= 0, let π(1) be the pattern of π obtained by deletion of the elements of
ξ1. Then Aπ(1) is obtained by taking q2r (see Figure 2.25) as initial state and by considering
only the states of Aπ that are accessible from q2r. Thus in Aπ the language recognized
from q2r is

←−−−
Lπ(1) . If r 6= ` + 1 the same property holds with the pattern π(r) (obtained

by deletion of the elements of ξr) and the state q1(r−1). We take the convention that
q1(`+1) = q1, q(`+1)r = qr and q(`+1)(`+1) = qρ.

If π ∈ H, i.e. if one of the conditions given in Figure 2.16 (p.81) holds for π.
Then Theorem 2.60 (p.80) ensures that P (π) is the union of the set P0 = P (ρ)·P(1)

(`)�P
(3)
(`+2)

that we consider in the previous paragraph and some other sets that are very similar, all
ending with the same kind of shuffle product. As the automaton Aπ recognizes reversed
words, these similar ends lead to similar beginnings in the automaton. So the automaton
Aπ has the same general structure as automaton A of Figure 2.25 but some transitions are
added to account for the words in P (π) not belonging to P0.

More precisely Aπ is obtained by applying the following modifications to the automaton
A of Figure 2.25. First we add new paths as depicted in the last column of Figure 2.16
(p.81). These paths start in the shaded states q` or q`+2 of Figure 2.25 and arrive in
marked states of Aρ. If a path is labeled in Figure 2.16 by a word w with s letters we build
s− 1 new states and s transitions such that the reading of w from the shaded state leads
to the corresponding marked states of Aρ. These marked states may be seen as initial

2.5 Building deterministic automata accepting the languages Lπ 101

states of subautomata: in Figure 2.16, for all Y , qY is a state of Aρ such that the language
recognized from qY is

←−
Lσ, where σ is the permutation whose diagram is Y . The way such

states of Aρ are marked is explained in Section 2.5.6.

Moreover to keep the resulting automaton deterministic and complete when adding
these new paths we have to make some other changes. Notice that state q` (resp. q`+2) is
the initial state of A(1)(ξ`) = AC(χ(1)

`) (resp. A(3)(ξ`+2) = AC(χ(3)
`+2)). Remark 2.55 (p.77)

ensures that χ(1)
` =

←−−−−−−−
φ(P (1)(ξ`)) (resp. χ(3)

`+2 =
←−−−−−−−−−
φ(P (3)(ξ`+2))) is defined on the alphabet

{L,D} (resp. {U,R}). Therefore, from Lemma 2.76 (p.90), transitions labeled by U or R
(resp. L or D) leaving q` (resp. q`+2) are loops on the initial state q` (resp. q`+2) of A(1)(ξ`)
(resp. A(3)(ξ`+2)). Hence, as can be seen in Figure 2.16, the new transitions leaving shaded
states are labeled by directions that correspond to loops in A. So we just have to delete
the loops and replace them by the new transitions in order to preserve the determinism of
the automaton.

Now we make some other changes to preserve completeness and ensure that even though
we have deleted loops on shaded states, all words that were recognized by the automaton
A are still recognized by the modified automaton Aπ. As q` (resp. q`+2) is not reachable
from q`+2 (resp. q`) we can handle separately new states reachable from q` and new states
reachable from q`+2. Let q0 be q` (resp. q`+2). As in the Aho-Corasick algorithm we label
any new state q reachable from q0 by the shortest word labeling a path from q0 to q. So
these labels begin with U or R (resp. L or D) (see Figure 2.16). Notice that the states
in the part A(1)(ξ`) (resp. A(3)(ξ`+2)) of A are also labeled in such a way, but their labels
differ from the ones of the new states since they contain only letters L or D (resp. U or R).
By Lemma 2.76 (p.90), we know that in A(1)(ξ`) (resp. A(3)(ξ`+2)) all transitions labeled
by U or R (resp. L or D) go to q0, therefore we replace them by transitions going to the
new state labeled by U or R (resp. L or D) if such a new state exists (otherwise we keep
the transition going to q0). We complete the construction by adding missing transitions
from the states newly created: for any such state q, the transition from q labeled by Z
goes to the longest suffix of q · Z that is a state of the automaton – either a new state or
a state of A(1)(ξ`) (resp. A(3)(ξ`+2)).

The proof that the automaton Aπ obtained by this construction recognizes
←−
Lπ is omit-

ted to avoid the examination of the eight cases of Figure 2.16. However, it is similar to the
proof of Theorem 2.98 (p.103), with some of the difficulties released (since labels on the
new paths are explicit in Figure 2.16, while they are not in the proof of Theorem 2.98).

Lemma 2.96. The complexity of building Aπ given in Lemma 2.94 (p.99) still holds if
π ∈ H.

Proof. When π ∈ H, the construction of Aπ is the same as in the case π /∈ H, with some
new paths added. There are at most four new paths, O(|ρ|) new states in each path,
O(|ρ|) transitions from these new states, and the modification of transitions in A(1)(ξ`)
(resp.A(3)(ξ`+2)) is done inO(|ξ`|) (resp.O(|ξ`+2|)). So in the construction ofAπ described
above, we have to add a time and space complexity O(|ρ| + |ξ`| + |ξ`+2|) w.r.t. the case
π /∈ H. As |ξ`| + |ξ`+2| = O ((|π| − |ρ|)) and as the complexity of the construction of Aρ
is bigger than O(|ρ|), this does not change the overall estimation of the complexity of the
construction of Aπ given in Lemma 2.94. �

102 Chapter 2. Finitely many simple permutations?

2.5.5 Pin-permutations with a prime root: recursive case

Exactly one child of the root is not a leaf.

Let π =
α

T
where α is a simple permutation all of whose children but T are

leaves. Denote by ρ the permutation whose decomposition tree is T , and by x the point
of α expanded by T .

Recall that Qx(α) (see Definition 2.64 p.84) denotes the set of strict pin words obtained
by deleting the first letter of quasi-strict pin words of α whose first point read in α is x.

If π does not satisfy condition (C) (see Definition 2.62 p.83). Then from Theo-
rem 2.66 (p.85), P (π) = P (ρ) ·Qx(α). So

←−
Lπ = A? ·

←−−−−−−
φ(Qx(α)) ·

←−
Lρ and since

←−
Lρ = A? ·

←−
Lρ

the automaton Aπ recognizing
←−
Lπ is obtained by the concatenation of AC(

←−−−−−−
φ(Qx(α))) with

Aρ, which is recursively obtained.

If π satisfies condition (C) and |T | ≥ 3. Then by Theorem 2.66 (p.85) – and using the
notations of this theorem, P (π) contains P (ρ) ·Qx(α) and some other words. Defining T ′

as in condition (C), ρ′ the permutation whose decomposition tree is T ′, and w the unique
word encoding the unique reading of the remaining leaves in π after T ′ is read when T is
read in two pieces, these other words are P (ρ′) · w. Note that from Lemma 2.68 (p.86) w
is a strict pin word. So

←−
Lπ = A? ·

←−−−−−−
φ(Qx(α)) ·

←−
Lρ ∪A? ·

←−−−
φ(w) ·

←−
Lρ′ . The skeleton of Aπ is the

concatenation of the automaton AC(
←−−−−−−
φ(Qx(α))) with Aρ and then as in the recursive case

with a linear root, we add some new transitions to account for the words in P (ρ′) · w.
Denoting Z the last letter of w (i.e., the first letter of

←−−−
φ(w)), Lemma 2.68 ensures that

no word of
←−−−−−−
φ(Qx(α)) contains Z and therefore by Lemma 2.76 (p.90) all the transitions

labeled by Z in AC(
←−−−−−−
φ(Qx(α))) go to q0. We built an automaton A by performing the

following modifications on AC(
←−−−−−−
φ(Qx(α))): remove the loop labeled by Z on q0 and add a

path reading
←−−−
φ(w) from q0 to a new final state f ′. Label all states q of A by the shortest

word labeling a path from the initial state q0 to q. Replace any transition labeled by Z
from a state q of AC(

←−−−−−−
φ(Qx(α))) to q0 by a transition from q to the new state labeled by Z.

Finally complete the automaton with transitions from the states of the added path: for all
such states q but f ′, the transition from q labeled by a goes to the longest suffix of q · a
that is a state of the automaton – either a new state or a pre-existing state. Notice that
the automaton A we obtain is almost complete and has exactly two final states, without
outgoing transitions: f – the unique final state of AC(

←−−−−−−
φ(Qx(α))) – and f ′.

The automaton Aπ is then obtained from A and Aρ by merging f with the initial state
qT of Aρ and f ′ with a marked state qT ′ (see Section 2.5.6) of Aρ which is a state from
which the recognized language is

←−
Lρ′ . This construction is shown in Figure 2.26.

AC(
←−−−−−−
φ(Qx(α)))

q0

Aρ qT ′

←−−−
φ(w)

Z

qT

Figure 2.26: Automaton Aπ for π = α[1, . . . , 1, ρ, 1, . . . , 1].

2.5 Building deterministic automata accepting the languages Lπ 103

Notice that the automaton A obtained from AC(
←−−−−−−
φ(Qx(α))) is somehow very similar to

AC(
←−−−−−−
φ(Qx(α)), {

←−−−
φ(w)}) but because

←−−−
φ(w) has a suffix in

←−−−−−−
φ(Qx(α)) (from Lemma 2.68), the

sets of words X1 =
←−−−−−−
φ(Qx(α)) and X2 = {

←−−−
φ(w)} do not satisfy the independence condition

required in our construction of AC(X1, X2).

Lemma 2.97. The automaton A of the above construction recognizes the set of words
ending with a first occurrence of a word of

←−−−−−−
φ(Qx(α)). Moreover for any word u recognized

by A, q0 · u = f ′ if
←−−−
φ(w) is a suffix of u, and q0 · u = f otherwise.

Proof. From Lemma 2.68 (p.86), there exists a word w̄ ∈
←−−−−−−
φ(Qx(α)) and a letter Z ∈ A

such that
←−−−
φ(w) = Zw̄. Moreover no word of

←−−−−−−
φ(Qx(α)) contains Z.

Therefore by construction, merging states f and f ′ of A into a unique final state, we
would obtain the automaton AC(

←−−−−−−
φ(Qx(α))∪{

←−−−
φ(w)}). Consequently, since

←−−−
φ(w) has a suffix

in
←−−−−−−
φ(Qx(α)), the automaton A recognizes the set of words ending with a first occurrence

of a word of
←−−−−−−
φ(Qx(α)).

Let u be a word ending with its first occurrence of a word of
←−−−−−−
φ(Qx(α)), then u does

not have any factor in
←−−−−−−
φ(Qx(α)) ∪ {

←−−−
φ(w)} except as a suffix. Lemma 2.76 (p.90) ensures

that q0 · u is the state labeled with longest suffix of u that is also a prefix of a word of←−−−−−−
φ(Qx(α)) ∪ {

←−−−
φ(w)}, concluding the proof. �

Lemma 2.97 allows us to prove the correctness of the above construction of Aπ. The
idea is the following: if u ∈ A? ·

←−−−−−−
φ(Qx(α)) ·

←−
Lρ (resp. A? ·

←−−−
φ(w) ·

←−
Lρ′) and if traceAπ(u)

contains qT ′ (resp. qT) and not qT (resp. qT ′) before, then u is still accepted by Aπ since
←−
Lρ ⊆

←−
Lρ′ (resp.

←−−−
φ(w) ·

←−
Lρ′ ⊆

←−
Lρ). This is formalized in the following theorem.

Theorem 2.98. The automaton Aπ obtained by the above construction recognizes
←−
Lπ.

Proof. Recall that
←−
Lπ = A? ·

←−−−−−−
φ(Qx(α)) ·

←−
Lρ∪A? ·

←−−−
φ(w) ·

←−
Lρ′ . The above construction ensures

that every word accepted by Aπ belongs to the language
←−
Lπ. Conversely let us prove that

every word of
←−
Lπ is accepted by Aπ.

Let u be a word of
←−
Lπ. From Lemma 2.68 (p.86), there is a word w̄ ∈

←−−−−−−
φ(Qx(α)) and

a letter Z ∈ A such that
←−−−
φ(w) = Zw̄. Therefore u has a factor in

←−−−−−−
φ(Qx(α)). Hence we

can decompose u uniquely as u = u1u2 where u1 is the prefix of u ending with the first
occurrence of a factor in

←−−−−−−
φ(Qx(α)). Consequently from Lemma 2.97 q0 · u1 is either qT or

qT ′ , namely q0 · u1 = qT ′ if
←−−−
φ(w) is a suffix of u1 and q0 · u1 = qT otherwise.

Moreover, since u belongs to
←−
Lπ, and because by definition

←−
Lρ = A? ·

←−
Lρ (and similarly

for ρ′), we deduce that u2 belongs to
←−
Lρ or

←−
Lρ′ . Let us finally notice that, since ρ′ ≤ ρ,

Theorem 2.24 (p.65) ensures that
←−
Lρ ⊆

←−
Lρ′ thus u2 ∈

←−
Lρ′ .

If q0 · u1 = qT ′ then as u2 ∈
←−
Lρ′ , u is recognized by Aπ. Assume on the contrary that

q0 ·u1 = qT . Then q0 ·u = qT ·u2 and by definition of qT it is enough to prove that u2 ∈
←−
Lρ.

Assume first that u /∈ A? ·
←−−−
φ(w) ·

←−
Lρ′ . Then since u ∈

←−
Lπ, we have u ∈ A? ·

←−−−−−−
φ(Qx(α)) ·

←−
Lρ.

Because u1 ends with the first occurrence of a factor of
←−−−−−−
φ(Qx(α)), we deduce that u2 ∈

A? ·
←−
Lρ =

←−
Lρ.

Otherwise u ∈ A? ·
←−−−
φ(w) ·

←−
Lρ′ . Recall that u1 is the prefix of u ending with the first

occurrence of a factor of
←−−−−−−
φ(Qx(α)). First (using also Lemma 2.97 and q0 · u1 = qT), this

implies that
←−−−
φ(w) is not a suffix of u1. And second, this also implies that

←−−−
φ(w) is not a

104 Chapter 2. Finitely many simple permutations?

factor of u1. But by assumption
←−−−
φ(w) is a factor of u. We claim that the first occurrence

of
←−−−
φ(w) in u starts after the end of u1. We have just proved that

←−−−
φ(w) is not a factor of u1.

Moreover,
←−−−
φ(w) = Zw̄ starts with the letter Z, and from Lemma 2.68 (p.86) the |w̄| last

letters of u1 are different from Z (recall that all words of
←−−−−−−
φ(Qx(α)) have the same length

|α| = |w̄|). This proves our claim, and consequently, u2 ∈ A? ·
←−−−
φ(w) ·

←−
Lρ′ . Let v ∈ A? and

v′ ∈
←−
Lρ′ such that u2 = v ·

←−−−
φ(w) · v′. From Lemma 2.68 p.86, denoting by w′ the suffix

of length 2 of w, for all u′ in P (ρ′), u′ · φ−1(w′) belongs to P (ρ). Therefore
←−
w′
←−
Lρ′ ⊆

←−
Lρ.

But v′ ∈
←−
Lρ′ and

←−
w′ is a prefix of

←−−−
φ(w), thus u2 = v ·

←−−−
φ(w) · v′ ∈ A? ·

←−
w′ · A? ·

←−
Lρ′ ⊆

←−
Lρ,

concluding the proof. �

Remark 2.99. With the optimized construction of Aπ, we prove similarly that Aπ recog-
nize a language L such that L ∩M =

←−
Lπ ∩M.

If π satisfies condition (C) and |T | = 2. Then the construction is no longer recursive.
Permutation π and its pin words are explicit. More precisely from Theorem 2.66 (p.85),
P (π) = P{1,n}(π) ∪ P{2,n}(π) ∪ P (T) ·Qx(α). Thus from Remark 2.71 (p.87),

←−
Lπ =

(⋃
u∈P (π)

u strict or quasi-strict

←−−
L(u)

) ⋃
A? ·
←−−−−−−
φ(Qx(α)) ·

←−
Lρ.

Therefore Aπ is the automaton U	(Asqs
π , AC(

←−−−−−−
φ(Qx(α))) · Aρ).

Lemma 2.100. Let π = α[1, . . . , 1, ρ, 1, . . . , 1] where α is a simple permutation whose set
P (α) of pin words is given. Then the construction of the automaton Aπ is done in time
and space O (|π| − |ρ|) plus the additional time and space due to the construction of Aρ,
except when π satisfies condition (C) and |T | = 2. In this latter case, the complexity is
O
(
|π|3

)
with the classical construction and O

(
|π|2

)
in the optimized version.

Proof. Recall that Qx(α) contains words of size |α| − 1. Its cardinality is smaller than
the one of P (α), hence smaller than 48 (see Theorem 2.48 p.75). Moreover Qx(α) can
be determined in linear time w.r.t. |α| as described in Remark 2.67 (p.85). Consequently,
AC(
←−−−−−−
φ(Qx(α))) is built in time and space O (|α|) = O (|π| − |ρ|).
If π does not satisfy condition (C) then Aπ = AC(

←−−−−−−
φ(Qx(α))) · Aρ, so that |Aπ| =

|AC(
←−−−−−−
φ(Qx(α)))| + |Aρ| and the time complexity of this construction is O (|π| − |ρ|) plus

the additional time to build Aρ.
If π satisfies condition (C) and |T | ≥ 3, then |w| = |α| and by Remark 2.70 (p.87), w

is explicitly determined. Consequently, so is the additional path labeled by
←−−−
φ(w) added

to the automaton (see Figure 2.26). The modifications of the transitions between this
path and AC(

←−−−−−−
φ(Qx(α))) are performed in linear time w.r.t. the length of this path and

|AC(
←−−−−−−
φ(Qx(α)))|, i.e., in O(|φ(w)| + |α|) = O(|π| − |ρ|). We conclude that Aπ is built in

O (|π| − |ρ|) time and space plus the additional time and space to build Aρ.
If π satisfies condition (C) and |T | = 2, then Aπ = U	(Asqs

π ,AC(
←−−−−−−
φ(Qx(α))) · Aρ).

Recall that Psqs(π) is given in Remark 2.71 (p.87) and contains 12 pin words. Hence, with
the classical construction (resp. in the optimized version), from Lemma 2.78 (p.92) (resp.
Lemma 2.82 p.93) and Remark 2.71, we can build Asqs

π in time and space O
(
|π|2

)
(resp.

O (|π|)). Moreover since |ρ| = 2, Aρ is obtained in constant time, so that AC(
←−−−−−−
φ(Qx(α)))·Aρ

is obtained in time and space O(|π| − |ρ|) = O (|π|). Finally, Aπ is built in time and space
O
(
|π|3

)
(resp. O

(
|π|2

)
) with the classical (resp. optimized) construction. �

2.5 Building deterministic automata accepting the languages Lπ 105

Two children are not leaves.

Up to symmetry this means that π =
β+

T
12

, where β+ is an increasing quasi-

oscillation, the permutation 12 expands an auxiliary point of β+ and T expands the cor-
responding main substitution point of β+.

Theorem 2.72 (p.87) ensures that the pin words encoding π are of the form v.w where
v ∈ P (T) and w is a strict pin word of size |β+| uniquely determined by β+ and the two
points expanded in β+, and known explicitly from Remark 2.73 (p.88).

Therefore
←−
Lπ = A?

←−−−
φ(w)

←−
Lρ where ρ is the permutation whose decomposition tree is T .

The automaton Aπ recognizing
←−
Lπ is the concatenation of AC({

←−−−
φ(w)}) with Aρ, which is

recursively obtained.
This construction is done in O

(
|
←−−−
φ(w)|

)
= O

(
|π| − |ρ|

)
time and space in addition to

the time and space complexity of the construction of Aρ.

2.5.6 Marking states

In our constructions of Subsections 2.5.4 and 2.5.5 we need transitions going to initial
states of subautomata. We could duplicate the corresponding subautomata. But when
these are recursively obtained an exponential blow-up can occur. To keep a polynomial
complexity we replace duplication by the marking of these special states. The marking is
made on the fly during the construction and we explain how in this subsection.

The need of creating a transition going to a marked state (of a subautomaton) happens
only when building the automaton Aπ in Section 2.5.4 for a permutation π whose decom-
position tree has a linear root and satisfies a condition (iHj) of Figure 2.16 (p.81), or in
Section 2.5.5 for a permutation π whose decomposition tree has a prime root and satisfies
condition (C) (see Definition 2.62 p.83) with |T | ≥ 3.

In both cases we need to mark in the subautomaton Aρ with ρ ≤ π some states qY
such that the language recognized taking qY as initial state is

←−
Lσ, where σ ≤ ρ is the

permutation whose diagram (or decomposition tree) is Y .
As it appears in Figure 2.16 and in condition (C), in almost all such situations, the

marked state belongs to a subautomaton corresponding to a permutation ρ whose decom-
position tree R has a linear root. There is only one situation where this root is prime:
when π satisfies condition (1H1+). We first focus on this case.

Prime root. Let θ be a permutation with decomposition tree R =
ξ+

S
where

ξ+ is an increasing oscillation, and let γ be the permutation whose decomposition tree is
S. In the case where π satisfies condition (1H1+), we need to mark in the automaton Aθ
the state q such that when starting from q the language recognized is the one recognized
by Aγ (notice that w.r.t. the previous paragraph, we have changed the notations ρ to θ
and σ to γ to avoid confusions with the notations used in Subsection 2.5.5).

The automaton Aθ is obtained as described in Subsection 2.5.5, when exactly one child
of the root is not a leaf (indeed |S| ≥ 2). The marking of state q depends on how the
automaton Aθ is built and in particular on whether θ satisfies condition (C) or not.

Recall that ξ+ is an increasing oscillation. If ξ+ has a size at least 5, it is not a quasi-
oscillation, and θ does not satisfy condition (C). Therefore Aθ is the concatenation of two
automata, the second of which is Aγ , whose initial state can be readily marked.

106 Chapter 2. Finitely many simple permutations?

If ξ+ has size 4, then ξ+ = 2 4 1 3 or 3 1 4 2 is a quasi-oscillation and θ may satisfy
condition (C). If it is not the case, Aθ is obtained as above and so is the marking of state
q. If on the contrary θ satisfies condition (C), the construction of Aθ depends on |S|. If
|S| ≥ 3, Aθ is again the concatenation of two automata the second one being Aγ , but with
some states and transitions added. As these transitions are not reachable from the initial
state of Aγ , we mark it as above. If |S| = 2, then R has size 5 and the construction is
not recursive anymore. We want to mark in Aθ a state q corresponding to the initial state
of Aγ . But in the construction of Aθ in Subsection 2.5.5, we have built an automaton A′
such that Aθ = U	(Asqs

θ ,A′ ·Aγ). Therefore Aθ is a Cartesian product and the state q has
been replicated several times. As |S| = 2, Aγ has a constant size, hence in this particular
case we just duplicate it and mark its initial state instead of marking a state inside Aθ.

Linear root. Consider now the case where the decomposition tree R of the permutation
ρ has a linear root. The need of a marked state in Aρ happens only when the leftmost
(resp. rightmost) child of R is a leaf z.

In almost all cases, the marked state q is such that the language accepted starting
from q is the set of words encoding the readings of all nodes of R except the leaf z.
There are at most two such leaves and from Remarks 2.93 and 2.95 (p.98 and 100), the
corresponding marked states of Aρ (which is built as described in Section 2.5.3 or 2.5.4)
are q1(r−1) and q2r in Figure 2.24 (p.97) or 2.25 (p.100) – with ρ instead of π. There is
however one exception, corresponding to the special case described in Remark 2.93: when
R has exactly two children, which are z and an increasing oscillation ξ. In this special
case the construction of Aρ is not recursive anymore. Instead of marking in Aρ a state q
corresponding to the initial state of Aξ, we just duplicate Aξ and mark its initial state.
If |ξ| < 4 then |Aξ| = O(1). Otherwise ξ is a simple permutation and |Aξ| is quadratic
(or linear in the optimized complexity) w.r.t. |ξ|. In both cases |Aξ| + |Aρ| has the same
order as |Aρ| and since the construction is not recursive, this does not change the overall
complexity of the construction of Aπ.

The few cases where the marked state q is not as above (i.e., is not such that the
language accepted starting from q is the set of words encoding the readings of all nodes
of R except z) correspond to state qS of conditions (2H2?) and (1H2?) and states qT∪a
and qT∪b of condition (2H3). In these cases, R has exactly two children: z and a subtree
R′ whose root is linear. Then the leftmost (resp. rightmost) child of R′ is a leaf z′ and
the marked state q is such that the language accepted starting from q is the set of words
encoding the readings of all nodes of R′ except the leaf z′. We are in the same situation as
above except that we have to mark states in Aρ′ instead of Aρ, where ρ′ is the permutation
whose decomposition tree is R′ and Aρ′ is a subautomaton of Aρ built recursively.

Notice that we never create transitions going to marked states belonging to automata
built more than two levels of recursion deeper. Indeed in all conditions above the created
transitions go to the automaton built in the previous step of recursion, except for conditions
(2H3), (2H2?) and (1H2?) where two levels of recursion are involved.

2.5.7 Complexity analysis

Theorem 2.101. For every pin-permutation π of size n, Aπ is built in time and space
O(n2) in the optimized version and O(n4) in the classical version.

Proof. To build Aπ, we first need to decide which shape of Equation (?) is matched by the
decomposition tree of π, and whether π ∈ H or whether π satisfies condition C. The reader
familiar with matching problems will be convinced that this can be done in O(n) time. In

2.6 A polynomial algorithm deciding whether a class contains a finite number
of simple permutations 107

any case, a linear algorithm for this tree matching problem is detailed in Subsection 2.6.2
as a subprocedure of the global algorithm of Section 2.6.

Then Theorem 2.101 follows from the complexities of the previous constructions, which
are summarized in Table 2.3 in which we denote by ρ the permutation whose decomposition
tree is T .

pin-permutation of size n Complexity Optimized Lemma
size 1 O(1) O(1)

simple O(n2) O(n) 2.79, 2.83
root ⊕ non-recursive O(n4) O(n2) 2.87
root ⊕ recursive, one child T O((n− |ρ|)2) O((n− |ρ|)2) 2.94,
is not an increasing oscillation + time for Aρ + time for Aρ 2.96
root is prime recursive, O(n3) O(n2) 2.100
C is satisfied, and T has size 2

root is prime recursive O(n− |ρ|) O(n− |ρ|) 2.100,
(if not preceding case) + time for Aρ + time for Aρ § 2.5.5

Table 2.3: Complexities of the automata constructions, in all possible cases.

In the optimized version (resp. in the classical version) the complexity is at most of
O(n2) (resp. O(n4)) in the non-recursive cases and at most of O((n − |ρ|)2) plus the
additional complexity of the construction of Aρ in the recursive cases. Notice that no extra
time is needed to mark the states of the automaton, as they are marked when they are
built. Consequently in the optimized version (resp. in the classical version) the automaton
Aπ can be built in time O(n2) (resp. O(n4)), n being the size of |π|.

Indeed let K be the number of levels of recursion needed in the construction of Aπ.
Then we can set ρ1 = π and define recursively permutations ρi for 2 ≤ i ≤ K, ρi being the
permutation ρ that appears recursively when building Aρi−1 . From Table 2.3, we deduce
that, in the optimized version, the time and space complexity for building Aπ is:

O
(
(|ρ1| − |ρ2|)2

)
+ |Aρ2 | = . . . = O

(
K−1∑
i=1

(|ρi| − |ρi+1|)2 + |ρK |2
)
.

Since every ρi is a pattern of π, we have |ρi| − |ρi+1| ≤ n and |ρK | ≤ n. Hence, the time
and space complexity for building Aπ is:

O

(
n ·
(K−1∑
i=1

(|ρi| − |ρi+1|) + |ρK |
))

= O (n · |ρ1|) = O(n2).

In the same way we get the complexity O(n4) for the classical version. �

2.6 A polynomial algorithm deciding whether a class contains
a finite number of simple permutations

In this section, we put together the steps of the algorithm determining whether a per-
mutation class C = Av(B) contains a finite number of simple permutations, under the
condition that B is finite and given in input. Denoting k the number of pin-permutations
in B, s = max{|π| : π pin-permutation ∈ B}, and n =

∑
π∈B |π|, the complexity of the

algorithm is polynomial w.r.t. n and s and exponential w.r.t. k. The algorithm can be
decomposed into several steps.

108 Chapter 2. Finitely many simple permutations?

2.6.1 Finitely many parallel alternations and wedge simple permuta-
tions in C?

Following [BRV08] (see Theorem 2.9 p.58) we first check if C contains finitely many parallel
alternations and wedge simple permutations. From Lemmas 2.10, 2.11 and 2.12 (p.59) this
problem is equivalent to testing if the permutations in B contain some patterns of size at
most 4. Using a result of [AAAH01], this can be done in O(n log n) time (see Lemma 2.13
p.59).

2.6.2 Finding pin-permutations in the basis.

The next step is to determine the subset PB ⊆ B of pin-permutations of B. To do so
we use the characterization of the class of pin-permutations by their decomposition trees
established in [BBR11].

More precisely, for each π ∈ B, we proceed as follows.

• First we compute its decomposition tree Tπ.
This is achieved in linear time w.r.t. |π|, computing first the skeleton of Tπ follow-

ing [BCMR08] or [BXHP05], and next the labels of linear and prime nodes as explained
in [BCMR11, §2.2].

• Second we add some information on the decomposition tree.
This information will be useful in later steps of our algorithm to check whether π is

a pin-permutation, and next (in the affirmative) to determine which construction of the
automaton Aπ (see Section 2.5) applies to π.

- For each prime node N , we record whether the simple permutation α labeling N is
an increasing or decreasing oscillation or quasi-oscillation.

This may be recorded by performing a linear time depth-first traversal of Tπ, and
checking each node when it is reached. As there are 4 oscillations of each size that are
explicitly described as 2 4 1 6 3 8 5 . . . (see Figure 2.6 p.67) or one of its symmetries, checking
if a simple permutation α is of this form can be done in linear time w.r.t. |α|. The same
kind of explicit description also holds for quasi-oscillations, and in addition we can record
which children correspond to the auxiliary and main substitution points.

- For each node N , we record whether the subtree rooted at N encodes an increasing
or decreasing oscillation.

This may be recorded easily, along the same depth-first traversal of Tπ as above. Indeed
oscillations of size greater than 3 are simple permutations, and increasing (resp. decreasing)
oscillations of smaller sizes are 1, 21, 231 and 312 (resp. 1, 12, 132 and 213). So it is
sufficient to check whether N is a leaf, or a prime node labeled by an increasing (resp.
decreasing) oscillation all of whose children are leaves, or a linear node with exactly two
children satisfying extra constraints: they are either both leaves, or one is a leaf and the
second one is a linear node with exactly two children that are both leaves. In this later
case the oscillation is increasing (resp. decreasing) if N is labeled 	 (resp. ⊕).

These operations are preformed in linear time w.r.t. |α| for any prime node labeled by
|α|, and in constant time for any linear node. Hence, the overall complexity of this step
is linear w.r.t. |π|. Indeed |π| is the number of leaves in the decomposition tree of π, and
the overall complexity of this step is linear w.r.t. the sum of the sizes of the labels of all
internal nodes. Moreover the sum of the sizes of the labels of all internal nodes is at most
the number of leaves plus the number of internal nodes, and since each node is of arity at
least two, the number of internal nodes is at most the number of leaves.

2.6 A polynomial algorithm deciding whether a class contains a finite number
of simple permutations 109

• Finally we determine whether π is a pin-permutation or not.
To do so, we recursively check starting with the root whether its decomposition tree is

of the shape described in [BBR11] (see Equation (?) p.69).
- If the root is linear, with the additional information stored we can check whether all

its children are increasing (resp. decreasing) oscillations in linear time w.r.t. the number
of children. If exactly one child is not an increasing (resp. decreasing) oscillation, we
check recursively whether the subtree rooted at this child is the decomposition tree of a
pin-permutation.

- If the root is prime, we first check whether its label α is a pin-permutation. More
precisely, with Algorithm 3 (p.75) we compute the set of pin words of α and test its
emptiness. By Lemma 2.49, this is done in linear time w.r.t. |α|. Then we check whether
all the children of the root are leaves.

- If exactly one child is not a leaf, we furthermore have to check whether the point
x it expands is an active point of α. From Remark 2.65 (p.85) we just have to test the
emptiness of Qx(α), which is computed in linear time w.r.t. |α| (see Remark 2.67 p.85).
Then we check recursively whether the subtree rooted at x is the decomposition tree of a
pin-permutation.

- If exactly two children are not leaves, with the additional information stored we
can check in constant time whether α is an increasing (resp. decreasing) quasi-oscillation, if
the two children that are not leaves expand the auxiliary and main substitution points, and
if the one expanding the auxiliary point is the permutation 12 (resp. 21). Then we check
recursively whether the subtree rooted at the main substitution point is the decomposition
tree of a pin-permutation.

As the complexity of each step is linear w.r.t. the number of children (which is also the
size of the label for a prime node), deciding whether a permutation π is a pin-permutation
or not can be done in linear time w.r.t. |π|. The overall determination of PB is therefore
linear in n =

∑
π∈B |π|.

Moreover, in addition to computing PB, the above procedure produces additional re-
sults, that we also record as they are useful in the next step. Namely, for every permutation
π of PB, we record its decomposition tree Tπ, together with the additional information
computed on its nodes; and we also record the set of pin words that encode each simple
permutation α labeling a prime node N of Tπ and the set Qx(α) when N has exactly one
non-trivial child. Notice that the knowledge of these is sufficient to characterize the set of
pin words that encode π thanks to results of Section 2.4.

2.6.3 Finitely many proper pin-permutations in C?

From Theorem 2.27 (p.66) it is enough to check whetherM\ ∪π∈BLπ is finite. This can
be easily decided with a deterministic automaton AC recognizing

←−−−−−−−−−
M\ ∪π∈BLπ. From the

previous step of the procedure (which we assume has been performed), we know the set
PB of pin-permutations of B and some additional results described above. First notice
that ∪π∈BLπ = ∪π∈PBLπ as Lπ is empty when π is not a pin-permutation (see p.64). We
build the automaton AC as follows.
• First for each pin-permutation π ∈ PB, we construct Aπ – which is deterministic and

complete – recognizing a language L′π such that L′π ∩M =
←−
Lπ ∩M. This construction is

performed in time and space at most O(|π|2) as described in Section 2.5, with the optimized
construction (see Theorem 2.101 p.106). Notice that the construction of Aπ depends on the
shape of the decomposition tree Tπ of π. But thanks to the additional information stored

110 Chapter 2. Finitely many simple permutations?

in Tπ, we can determine which tree shape matches Tπ in linear time w.r.t. the number of
children of the root of Tπ, and the same holds at each recursive step of the construction.
• Then we build a deterministic automaton A1 recognizing

⋃
π∈PB L′π, where L′π is

defined as in the first item. The automaton A1 is obtained performing the deterministic
union (as a Cartesian product on the fly, see [HU79] for details) of all the automata Aπ.
This is done in time and space O(

∏
π∈PB

|Aπ|) = O(
∏

π∈PB
|π|2).

U,
D

L,R

U,D

L,R

L,R
U,D

L,R

U,D

Figure 2.27: A deterministic au-
tomaton A(M) recognizing the
set M of words of length at
least 2 without any factor in
{UU,UD,DU,DD,RR,RL,LR,LL}.

• Then we build the automaton A2 which is
the deterministic intersection (again as a Carte-
sian product) between A1 and the automaton
A(M) given in Figure 2.27 in time and space
O(|A1|.|A(M))|) = O(

∏
π∈PB

|π|2).

The automaton A2 recognizes
(⋃

π∈PB L′π
)
∩

M =
(⋃

π∈PB
←−
Lπ
)
∩ M. By Lemma 2.26 (p.66)

this is the language of words
←−−−
φ(w) for all strict pin

words w encoding permutations having a pattern in
PB, i.e. that are not in C. Notice that by Remark 2.8 (p.58) such permutations are
necessarily proper pin-permutations.
• Next we complement A2 to build a deterministic automaton A3 recognizing A? \((⋃
π∈PB

←−
Lπ
)
∩M

)
. As A2 is deterministic, its complement is obtained in linear time

w.r.t. its size, by completing it and then turning every final (resp. non-final) state into a
non-final (resp. final) state. Moreover the size of A3 is the one of A2, i.e., O(

∏
π∈PB

|π|2).

• Finally we compute the deterministic intersection between A3 and the automaton
A(M) to obtain the automaton AC . This is done in time and space O(|A3|.|A(M))|) =

O(
∏

π∈PB
|π|2). The automaton AC recognizesM\

(⋃
π∈PB

←−
Lπ
)
. This is the language of all

words
←−−−
φ(w) where w is a strict pin word encoding a permutation of C (that is necessarily

a proper pin-permutation, as above).
Then, by Theorem 2.27 (p.66), checking whether the permutation class C contains a

finite number of proper pin-permutations is equivalent to checking whether the language
recognized by AC is finite i.e., whether AC does not contain any cycle that is accessible and
co-accessible (i.e., a cycle that can be reached from an initial state and from which a final
state can be reached). The automaton AC is not necessarily accessible and co-accessible.
Its accessible part is made of all states that can be reached in a traversal of the automaton
from the initial state; its co-accessible part is obtained similarly by a traversal from the set
of final states taking the edges of the automaton backwards. Before looking for a cycle, we
make AC accessible and co-accessible by keeping only its accessible and co-accessible part,
yielding a smaller automaton A′C . The complexity of this double reduction of the size of
the automaton is linear in time w.r.t. the size of AC . Moreover the size of A′C is smaller
than or equal to the one of AC , i.e., O(

∏
π∈PB

|π|2). Finally we test whether A′C does not

contain any cycle. This can be done in O(|A′C |) time with a depth-first traversal of A′C .
Let s be the maximal size of a pin-permutation of B and k the number of pin-

permutations in B, then O(
∏

π∈PB
|π|2) = O(s2k). Hence putting all these steps together

leads to an algorithm whose complexity is O(s2k) to check whether there are finitely many
proper pin-permutations in C, when the set PB of pin-permutations of B, their decompo-
sition trees and the set of pin words of each simple permutation appearing in these trees

2.6 A polynomial algorithm deciding whether a class contains a finite number
of simple permutations 111

are given.

2.6.4 Main result

We are now able to state the main theorem of this chapter:

Theorem 2.102. Given a finite set of permutations B, we have described an algorithm
that determines whether the permutation class C = Av(B) contains a finite number of
simple permutations. Denoting n =

∑
π∈B |π|, p =

∏
|π| where the product is taken over

all pin-permutations in B, k the number of pin-permutations in B and s the maximal size
of a pin-permutation of B, the complexity of the algorithm is O(n log n + s2k) or more
precisely O(n log n+ p2).

Proof. We determine whether there are finitely many parallel alternations and wedge sim-
ple permutations in C in O(n log n) time. Then we compute the set PB of pin-permutations
of B and their decomposition trees with some additional information (like the set of pin
words that encode each simple permutation labeling a node) in O(n) time. Finally we
check whether there are finitely many proper pin-permutations in C as explained above
(i.e., by looking for a cycle in the automaton AC) in O(p2) time which is O(s2k). From
Theorem 2.9 (p.58) this concludes the proof. �

Moreover for the special case of a substitution-closed class of permutation, we have a
much better complexity:

Theorem 2.103. Given a finite set of simple permutations B, we have an algorithm that
determines whether the permutation class C = Av(B) contains a finite number of simple
permutations in time O(n log n) where n =

∑
π∈B |π|.

Proof. As in the general case, we determine whether there are finitely many parallel alter-
nations and wedge simple permutations in C in O(n log n) time. However in this special
case, we can check whether there are finitely many proper pin-permutations in C in linear
time w.r.t. n (see Lemma 2.105 below). �

Definition 2.104. For any set of permutations B, we set
EB = ∪π∈BEπ ∪ {UU,UD,DU,DD,RR,RL,LR,LL}.

Lemma 2.105. Algorithm 4 tests whether a substitution-closed permutation class given by
its finite basis B contains a finite number of proper pin-permutations in linear time with
respect to n =

∑
π∈B |π|.

Algorithm 4: Deciding the finiteness of the number of proper pin-permutations

input : a set B of simple permutations
output: boolean : true if and only if Av(B) contains only a finite number of proper

pin-permutations

PB ←PinWords(B) // Determine the set of pin words associated to the
elements of B using Algorithm 3 (p.75)

A ← AC	(EB) // Build a complete deterministic automaton recognizing
words having a factor in EB

if Ac contains an accessible and co-accessible cycle then
return false

else
return true

112 Chapter 2. Finitely many simple permutations?

Proof. From Theorem 2.27, we only have to prove that the language recognized by Ac is
M\∪π∈BLπ.
By definition, Ac recognizes A? \

(
A? ·EB ·A?

)
with EB = ∪π∈BEπ ∪ {UU,UD, . . . , LL}.

From Lemma 2.81, for any simple permutation π, we have Lπ ∩M =
(
A? ·Eπ ·A?

)
∩M.

SinceM = A? \A?{UU,UD, . . . , LL}A?, we have
M\∪π∈BLπ =M\

(
∪π∈B Lπ ∩M

)
=M\

(
∪π∈B (A? · Eπ ·A?) ∩M

)
=M\

(
∪π∈B (A? · Eπ ·A?)

)
=M ∩ A? \

(
A? · (∪π∈BEπ) ·A?

)
=
(
A? \A?{UU,UD, . . . , LL}A?

)
∩
(
A? \ (A? · ∪π∈BEπ ·A?)

)
= A? \

(
A? · EB ·A?

)
concluding the proof. �

We have described in the above an efficient algorithm that determines whether a per-
mutation class C contains a finite number of simple permutations.

As explained at the beginning of Part I, we may interpret our result as giving an
algorithm testing a sufficient condition for a permutation class to be well-structured. In
the next and last chapter of this part, we describe an algorithm that not only tests that
there is an underlying structure in a permutation class, but also computes this structure.

Chapter 3

Combinatorial specification of
permutation classes

This chapter presents a methodology that automatically derives a combinatorial specifica-
tion for the permutation class C = Av(B), given its basis B of excluded patterns and the
set of simple permutations in C, when these sets are both finite. This is achieved consid-
ering both pattern avoidance and pattern containment constraints in permutations. The
obtained specification yields a system of equations satisfied by the generating function of
C, this system being always positive and algebraic. It also yields a uniform random sampler
of permutations in C. The method presented is fully algorithmic.

114 Chapter 3. Combinatorial specification of permutation classes

3.1 Introduction

Despite the profusion of enumerative results on permutation classes, it is quite surprising
to notice the lack of studies on random generation of permutations in a class C. Let
us mention though that some results exist on the exhaustive generation of permutations
in a class [Bar09, DV, DFMV08]. A simple reason one may think of to explain this
absence of results is that there exists a naive algorithm to generate uniformly at random
a permutation in a class C = Av(B): generate a random permutation σ; test whether it
avoids every pattern in B; in this case return σ otherwise reject σ and try again. This
procedure is however very inefficient, and there are at least two reasons for it. First, there
are n! permutations of size n and only O(cn) in class C [MT04], for some constant c, so
the probability of rejection is close to 1 as n grows. Second, testing whether a permutation
σ contains a pattern π of B is an NP -hard problem for general π [BBL98] (and except
for some very special patterns π, the known algorithms are of exponential complexity
w.r.t. |π|).

In this chapter we focus on combinatorial specifications. By combinatorial specification
of a permutation class C (see [FS09]), we mean an unambiguous system of combinatorial
equations that describe recursively the permutations of C using only combinatorial con-
structors (disjoint union, cartesian product, sequence, . . .) and permutations of size 1.
Obtaining algorithmically combinatorial specifications of permutation classes is of interest
per se since they describe the structure of the class, but also because it then allows us
to obtain by routine algorithms a system of equations satisfied by the generating function
of C and a Boltzmann uniform random sampler of permutations in C, using the methods
of [FS09] and [DFLS04] respectively.

Our goal in this chapter is to provide a general algorithmic method to obtain a com-
binatorial specification for any permutation class C from its basis B and the set SC of
simple permutations in C, and assuming these two sets are finite. Notice that by previous
chapters, it is enough to know the finite basis B of the class to decide whether the set SC
is finite and (in the affirmative) to compute SC .

In the following, we only consider classes whose basis B is given explicitly, and is finite.
This does not cover the whole range of permutation classes, but it is a reasonable assump-
tion when dealing with algorithms on permutation classes, that take a finite description of
a permutation class in input. There are of course other ways of finitely describing some
permutation classes, even one of infinite basis (by a recognition procedure for example).
The assumption of the description by a finite basis has been preferred for two reasons:
first, it encompasses most of the permutation classes that have been studied in the litera-
ture [KM03]; and second, it is a necessary condition for a permutation class to contain a
finite number of simple permutations [AA05], which is an important condition in our work.

Moreover to avoid trivial cases, we assume in this chapter that the permutation class
studied C contains 12 and 21.

The chapter is organized as follows. Section 3.2 proceeds with some background on
combinatorial structures and random generation. Section 3.3 then explains how to obtain
a system of combinatorial equations describing C from the set of simple permutations in
C, that we assume to be finite. The system so obtained may be ambiguous and Section 3.4
describes a disambiguation algorithm to obtain a combinatorial specification for C. The
most important idea of this disambiguation procedure is to transform ambiguous unions
into disjoint unions of terms that involve both pattern avoidance and pattern containment
constraints. This somehow allows us to interpret on the combinatorial objects themselves
the result of applying the inclusion-exclusion on their generating functions. Section 3.5

3.2 Combinatorial Structures and Random Generation 115

provides a complete example of the whole process applied to a specific class, and examples
of random permutations in this class. Finally, Section 3.6 concludes the whole algorithmic
process by explaining how this specification can be plugged into the general methodologies
of [FS09] and [DFLS04] to obtain a system of equations satisfied by the generating function
of C and a Boltzmann uniform random sampler of permutations in C. We also give a number
of perspectives opened by our algorithm.

3.2 Combinatorial Structures and Random Generation

Let us leave aside permutations for now, and explain general ideas on enumeration and
random generation of combinatorial objects, through their description as combinatorial
structures, their generating functions, and with Boltzmann random samplers. We will see
in Theorem 3.29 of Section 3.4 that the classes of permutations we are interested in fit in the
general framework constructible structures, that is structures which admit a combinatorial
specification.

3.2.1 Constructible combinatorial structures and generating functions

A class C of combinatorial structures is a set of discrete objects (also called structures)
equipped with a notion of size: the size is a function of C → N denoted | · | such that for
any n the number of objects of size n in C is finite. The subset of objects of size n in C is
then denoted Cn and cn denotes the cardinality of Cn.

Among the combinatorial structures, we focus on constructible ones, from the frame-
work introduced in [FS09]. Basically, a constructible combinatorial class is a set of struc-
tures that can be defined from atomic structures of size 1 (denoted by Z) and assembled by
means of admissible constructors. While a complete list of these combinatorial constructors
is given in [FS09], we only use a subset of them:

- the disjoint union, denoted by + (we may also use the notation
∑

), to choose between
structures,

- the cartesian product, denoted by ×, to form pairs of structures,

- the sequence, denoted by Seq; for any combinatorial class A that does not con-
tain structures of size 0, a sequence of structures of A is defined by Seq(A) =∑∞

i=0A× · · · × A︸ ︷︷ ︸
i

= E +A + (A ×A) + (A ×A ×A) + · · · , where E is an atom of

size 0.

A cardinality constraint can be applied to the sequence constructor; the notation Seq=k

stands for k-tuples and can be extended to sequences having at least k elements, which are
defined by Seq≥k =

∑∞
i=k Seq=i.

A specification for a combinatorial class is an equation or a set of equations of the form
C1 = H1(E ,Z, C1, C2, . . . , Cm),

C2 = H2(E ,Z, C1, C2, . . . , Cm),
...

Cm = Hm(E ,Z, C1, C2, . . . , Cm),

where eachHi denotes a term built from C1, . . . , Cm (and possibly Z and E) using admissible
constructors and atoms. For example, a sequence of atoms can be recursively defined by
the equation Seq(Z) = E +Z × Seq(Z). A class of combinatorial structures is said to be
constructible if and only if it admits such a specification.

116 Chapter 3. Combinatorial specification of permutation classes

Constructor Notation C(z) (o.g.f.) Boltzmann sampler ΓC(x)

Atom Z z return an atom

Disjoint Union A+ B A(z) +B(z) call ΓA(x) with proba. A(x)/C(x), else
ΓB(x)

Cartesian Product A× B A(z)B(z) call ΓA(x) and ΓB(x)

Sequence Seq(A) 1

1−A(z)
choose k according to a geometric law of pa-
rameter A(x) and call ΓA(x) k times

Restricted Seq. Seq=k(A) A(z)k call the sampler ΓA(x) k times

Table 3.1: Admissible constructors, the corresponding operators on ordinary generating functions
and the associated Boltzmann samplers. Atoms are usually not considered as constructors, but
they appear in this table for convenience.

In this framework, the size of a combinatorial structure is its number of atoms (Z)
and from there, combinatorial structures can be counted according to their size. The size
information for a whole combinatorial class, say C, is encoded by its ordinary generating
function, which is a formal power series C(z) =

∑
n≥0 cnz

n where the coefficient cn, also
denoted by [zn]C(z), is the number of structures of size n in C.

There exist two sorts of generating functions: ordinary and exponential (
∑ cn

n! z
n).

Ordinary generating functions are used for unlabelled enumeration while exponential ones
deal with labelled structures. In the present work we only need to consider unlabelled
structures, thus, in the sequel, generating functions are always ordinary ones.

To any admissible constructor, one can associate an operator on generating functions.
The complete dictionary of these operators is given in [FS09], together with the proof that
this translation from constructors of combinatorial classes to operators on their generating
functions is correct. The ones we need are summarized in Table 3.1. Any specification
for a combinatorial class can then turn automatically into a system of (possibly implicit)
equations defining the generating functions of this class. A lot of information can be
extracted from such functional systems; in particular, one can compute as many coefficients
of the series as required and [FS09] provides many tools to get asymptotic equivalents for
these same coefficients.

Example 3.1. Alternating unary-binary trees are planar rooted trees with internal nodes
having either one or two subtrees and such that the unary and binary nodes alternate
along each branch of the tree. They are defined by the following specification, which leads
to the corresponding system of generating functions:

T = U + B
U = Z + Z × B
B = Z + Z × Seq=2(U) = Z + Z × U2


T (z) = U(z) +B(z)

U(z) = z + zB(z)

B(z) = z + zU2(z).
The first combinatorial structures of the class T are listed in Figure 3.1, up to size 7.
White dots correspond to unary nodes while black ones stand for binary nodes.

. . .

Figure 3.1: Alternating unary-binary trees up to size 7.

3.2 Combinatorial Structures and Random Generation 117

The corresponding ordinary generating functions are
T (z) = 2 z + z2 + z3 + 3 z4 + 3 z5 + 3 z6 + 8 z7 + 12 z8 + 13 z9 +O(z10)

B(z) = z + z3 + 2 z4 + z5 + 2 z6 + 6 z7 + 6 z8 + 7 z9 +O(z10)

U(z) = z + z2 + z4 + 2 z5 + z6 + 2 z7 + 6 z8 + 6 z9 +O(z10).
In this particular case, there exists a closed form for the generating function:

T (z) = (z+1)(1−
√

1−4z3−4z4)
2z3

− 1.

3.2.2 Automatic methods for uniform random generation

Since we are interested in automatic treatments for a wide family of combinatorial classes,
we only discuss automatic methods for random generation in this section, leaving aside
ad hoc methods. Dealing with constructible structures, two main methods allow the
design of uniform random samplers: the recursive method [FZVC94] and Boltzmann
method [DFLS04]. Both methods heavily rely on the recursive description given by combi-
natorial specifications to produce combinatorial structures uniformly at random. Indeed,
a specification is in itself a procedure that allows us to derive combinatorial objects; ran-
domizing the choices made during this derivation makes it a random sampler. The main
difference between the two models lies in the way generating functions are used to reach
uniformity. In the recursive method, a random sampler outputs structures of a given size,
say n, and coefficients of the generating functions are used in the probabilistic choices to
ensure that all structures of size n are assigned the same probability. In the Boltzmann
model, the output size is not chosen a priori and samplers can draw structures in a whole
combinatorial class; but still, uniformity for any size is guaranteed, i.e. for any fixed size
n, the probability of outputting some object of size n is uniform among all objects of size
n. Enumeration sequences (cn)n are not involved in this process but values of generating
functions at a given point (the Boltzmann parameter) are needed to ensure uniformity.

The Boltzmann method is particularly well suited to compute very large structures, as
soon as a small tolerance (a few percents) is allowed on the size of the structures to be
sampled. This occurs in particular when random sampler are used to conjecture asymptotic
properties, which is why we choose to focus on Boltzmann samplers here. However, the
recursive method can be slightly more efficient when dealing with large samples of small
structures of exact size that can be used for statistical testing.

In the following, we recall some basic facts about the Boltzmann method; a complete
overview is given in [DFLS04].

Boltzmann model This is a probabilistic model that, given a combinatorial class, as-
sociates to any of its structures a probability that is proportional to an exponential of its
size.

Definition 3.2. The (ordinary) Boltzmann model of parameter x assigns to any object γ
in the combinatorial class C the following probability:

Px(γ) =
x|γ|

C(x)
with C(x) =

∑
δ∈C

x|δ|

A Boltzmann sampler ΓC(x) for C is a process that produces random objects according to
the Boltzmann model.

In this model, two structures of C having the same size are equally likely to be drawn
by ΓC(x), since their probability only depends on their size, for a fixed parameter x.
Boltzmann samplers that operate freely under the sole effect of this parameter are called
free samplers, to indicate that there is no restriction on the size of the output. However,

118 Chapter 3. Combinatorial specification of permutation classes

the value of x influences the probability distribution of the size: the probability of drawing
a structure of size n and the expected size of the structures drawn by ΓC(x) are respectively

Px(size = n) =
∑
γ∈Cn

x|γ|

C(x)
=
cnx

n

C(x)
and Ex(size) =

∑
γ∈C

|γ| · x|γ|

C(x)
= x

C ′(x)

C(x)
.

Design of Boltzmann samplers In [DFLS04], the authors describe a sampling algo-
rithm for each admissible constructor. Hence, starting from a combinatorial specification,
one can automatically derive a sampler that draws combinatorial structures according to
the Boltzmann model. We only recall in this section the Boltzmann samplers for unions,
products and sequences. This is summarized in the last column of Table 3.1. Assume
that ΓA(x) and ΓB(x) are Boltzmann samplers for A and B.

- The Boltzmann sampler ΓC(x) for the disjoint union C = A+B is an algorithm that
chooses to return a structure produced by ΓA(x) with probability A(x)/C(x) or a
structure produced by ΓB(x) with probability B(x)/C(x).

- The Boltzmann sampler for the cartesian product A×B returns a pair of structures
in A× B, performing independent calls to ΓA(x) and ΓB(x).
Similarly, the Boltzmann sampler for Seq=kA returns a k-tuple of structures of A,
performing k independent calls to ΓA(x), and for restricted sequences of the type
Seq≤kA, their Boltzmann samplers are obtained as finite unions of products.

- The Boltzmann sampler for the class C = Seq(A) chooses the cardinality k of the
sequence according to a geometric law of parameter p = A(x) (i.e. P(k = K) =
pK(1 − p)) and returns a sequence of k structures produced by k independent calls
to ΓA(x). One can also get a Boltzmann sampler for C using its recursive specifica-
tion C = E +A× C and combining the above algorithms together.
For restricted sequences of the type Seq≥kA, their Boltzmann samplers are obtained
by writing Seq≥kA = Seq=kA×SeqA and combining the two corresponding Boltz-
mann samplers.

In order to implement effective Boltzmann samplers, two technical points still have
to be considered. How to compute values of generating functions at a given point (the
Boltzmann parameter) and how to control the size of the sampled structures? The first
question is answered in [PSS08]. Any combinatorial specification only involving unions,
products and sequences can be automatically translated into a numerical Newton iteration
to compute the desired values, provided that the given parameter is chosen smaller than
the radius of convergence of the generating function. This brings us to the second point,
since the Boltzmann parameter influences the expected size of the structures to be drawn.
In order to sample structures (in C) of a target size n, the idea is to choose a parameter
x such that the expected size is n, i.e. such that xC ′(x)/C(x) = n and then to reject any
structure whose size does not fit in an interval [n(1−ε), (1+ε)]. This rejection process gives
a uniform approximate-size sampler and choosing ε = 0 leads to an exact size sampler.

Proposition 3.3. The time complexity of a Boltzmann sampler is always linear in the
size of the structure produced. In the case of tree-like structures, the complexity of the
approximate-size sampler remains in O(n), where n is the target size and the exact size
sampler has a quadratic complexity1.

1For tree-like structures, the Boltzmann distribution is concentrated on small structures. Thus, in order
to get these complexities in practice, one may use special techniques such as pointing or singular samplers
(see §6.3 and §7 of [DFLS04]).

3.3 Combinatorial system describing C 119

Example 3.4. Coming back to our example of alternating unary-binary trees, we can
compute the following Boltzmann samplers for U and B and combine them get a sampler
for T .

Algorithm 5: ΓU(x)

Data: x, U(x)
Result: a random structure in U
begin

Choose r uniformly at random
on [0, 1]
If x/U(x) < r then return ◦

Else return
◦
|

ΓB(x)

Algorithm 6: ΓB(x)

Data: x, B(x)
Result: a random structure in B
begin

Choose r uniformly at random
on [0, 1]
If x/B(x) < r then return •

Else return
•
/\

ΓU(x) ΓU(x)

The values U(x) and B(x) are easily computed from the closed forms of the generating
functions. As for the choice of the parameter, the equation for the expected size gives us
x1000 = 0.5449326566, for instance.

The description of permutations in the framework of constructible structures that will
be used in this chapter relies on substitution decomposition of permutations.

3.3 Combinatorial system describing C

In this section, we follow the path used in [AA05] in the proof that a permutation class
with finitely many simple permutations has an algebraic generating function.

Consider a class C, which is assumed to have finite basis B and to contain a finite
number of simple permutations, whose set is denoted SC . In [AA05] the substitution
decomposition of permutations (under the form of Theorem 0.29) is used to deduce from
SC a specification that describes the permutations of C as constructible objects in the sense
of Section 3.2. As explained earlier, this specification translates into a system of equations
for the generating function C(z) of C. In this case, every equation is polynomial in C. This
not only ensures that C(z) is algebraic, but also, as is underlined in [AA05], it provides a
method to compute C (or at least to render the system of equations satisfied by C explicit).
Our purpose is to go through the details of this method, to complete its analysis, and to
adapt it into an actual algorithm. Indeed unlike [AA05], we make the whole process fully
algorithmic.

Let us now turn to explaining how to provide a recursive description of the permutations
in C = Av(B) in terms of the set SC of simple permutations in C, when they are finite in
number. We begin with the case where C is substitution-closed.

3.3.1 The simple case of substitution-closed classes

Recall that we denote by Ĉ the substitution closure of the permutation class C, and that C
is a substitution-closed class when C = Ĉ, or equivalently when the permutations in C are
exactly the ones whose decomposition trees have internal nodes labeled by 12, 21 or any
simple permutation of C.2

For the purpose of this chapter, we additionally introduce the following notations:

2Recall that we assume in this chapter that C contains permutations 12 and 21.

120 Chapter 3. Combinatorial specification of permutation classes

Definition 3.5. For any set A of permutations, A+ (resp. A−) denotes the set of permu-
tations of A that are ⊕-indecomposable (resp. 	-indecomposable) and SA denotes the set
of simple permutations of A.

Then Theorem 0.29 directly yields the following proposition:

Proposition 3.6 (Lemma 11 of [AA05]). Let Ĉ be a substitution-closed class (that contains
12 and 21).3 Then Ĉ satisfies the following system of equations, denoted EĈ:

Ĉ = 1] 12[Ĉ+, Ĉ]] 21[Ĉ−, Ĉ]]
⊎
π∈SĈ

π[Ĉ, . . . , Ĉ] (3.1)

Ĉ+ = 1] 21[Ĉ−, Ĉ]]
⊎
π∈SĈ

π[Ĉ, . . . , Ĉ] (3.2)

Ĉ− = 1] 12[Ĉ+, Ĉ]]
⊎
π∈SĈ

π[Ĉ, . . . , Ĉ]. (3.3)

By uniqueness of substitution decomposition, unions are disjoint and so Equations (3.1)
to (3.3) describe unambiguously the substitution-closed class Ĉ.

Hence, Proposition 3.10 can be transposed in the framework of constructible structures
as follows:

Theorem 3.7. Let C be a substitution-closed class. Then C can be described as a con-
structible combinatorial class in the sense of Section 3.2 with the specification:

C = Z + C+ × C + C− × C +
∑

π∈SC Seq=|π|(C)
C+ = Z + C− × C +

∑
π∈SC Seq=|π|(C)

C− = Z + C+ × C +
∑

π∈SC Seq=|π|(C)

Moreover this system can be translated into an equation for the generating function C:

Proposition 3.8 (Theorem 12 of [AA05]). Let C be a substitution-closed class, with gen-
erating function C. Then

C2 + (P (C)− 1 + z)C + P (C) + z = 0
with P denoting the generating function that enumerate simple permutations in C, i.e.
P (z) =

∑
π∈SC z

|π|.

Hence, in the case of a substitution-closed class C (and for the substitution closure of any
class), the system EC that recursively describes the permutations in C can be immediately
deduced from the set SC of simple permutations in C.

As soon as SC is finite, this system is explicit and gives a combinatorial specification.
Hence, it provides an efficient way to compute the generating function of the class, and to
generate uniformly at random a permutation of a given size in the class.

3.3.2 Adding constraints for classes that are not substitution-closed

The goal here is to describe an algorithm that computes a combinatorial system of equations
for a general permutation class C from the simple permutations in C, like for the case of
substitution-closed classes. However, when the class is not substitution-closed, this is not
as straightforward as in the previous case, and we provide details below on how to solve
this general case.

We follow the guideline of [AA05], where the authors describe a method to derive the
system of equations for a general class C with finite number of simple permutations from
the specification of its substitution closure. The key idea is to compute the embeddings
of non-simple permutations γ of the basis B of C into simple permutations π belonging

3To lighten the statements, we will not recall this in the remainder of this chapter.

3.3 Combinatorial system describing C 121

to the class C (and into 12 and 21). These embeddings are block decompositions of the
permutations γ, each block being translated into a new constraint in the decomposition
tree, and creating a new equation in the specification for C. The obtained combinatorial
system may be ambiguous since the obtained sets are not always disjoint.

A first system of equations

When C is not substitution-closed, we compute a new system by adding constraints to the
system obtained for Ĉ, as in [AA05].

Definition 3.9. For any set A of permutations and any set E of patterns, we denote by
A〈E〉 the set of permutations of A that avoid every pattern in E.

Moreover we denote by B? the subset of non-simple permutations of B.

Notice that given a set of permutations A and a set of patterns E, we have (A〈E〉)+ =
A+〈E〉: both notations correspond to permutations of A that avoid E and that are ⊕-
indecomposable. The same goes for A−.

Proposition 3.10. Let C be a permutation class, that contains 12 and 21. We have that
Cε = Ĉε〈B?〉 for ε ∈ {∅,+,−}. Moreover,

Ĉ〈B?〉 = 1] 12[Ĉ+, Ĉ]〈B?〉] 21[Ĉ−, Ĉ]〈B?〉]
⊎
π∈SC π[Ĉ, . . . , Ĉ]〈B?〉 (3.4)

Ĉ+〈B?〉 = 1] 21[Ĉ−, Ĉ]〈B?〉]
⊎
π∈SC π[Ĉ, . . . , Ĉ]〈B?〉 (3.5)

Ĉ−〈B?〉 = 1] 12[Ĉ+, Ĉ]〈B?〉]
⊎
π∈SC π[Ĉ, . . . , Ĉ]〈B?〉, (3.6)

all these unions being disjoint.

Proof. Let σ ∈ Cε, then σ ∈ Ĉε and σ avoids B?, thus σ ∈ Ĉε〈B?〉. Conversely, let
σ ∈ Ĉε〈B?〉 and let π ∈ B. If π ∈ B? then σ avoids π. Otherwise, π is simple and π /∈ Cε,
hence π /∈ Ĉε. Indeed by definition of Ĉ, SĈ = SC (see Proposition 0.38). Since σ ∈ Ĉε, σ
avoids π. Hence σ ∈ Cε. Finally Ĉε(B?) = Cε. Then the result follows from Proposition 3.6
recalling that SĈ = SC . �

This description is not complete, since sets of the form π[Ĉ, . . . , Ĉ]〈B?〉 are not immedi-
ately described from Ĉ〈B?〉. Lemma 18 of [AA05] states that sets such as π[Ĉ, . . . , Ĉ]〈B?〉
can be expressed as union of smaller sets:

π[Ĉ, . . . , Ĉ]〈B?〉 =
⋃k
i=1 π[Ĉ〈Ei,1〉, Ĉ〈Ei,2〉, . . . , Ĉ〈Ei,k〉]

where the Ei,j are sets of permutations which are patterns of some permutations of B?.
This introduces sets of the form Ĉ〈Ei,j〉 on the right-hand side of an equation of the system
that do not appear on the left-hand side of any equation. We will call such sets right-only
sets. Taking Ei,j instead of B? in Equations (3.4) to (3.6), we can recursively compute
these right-only sets by introducing new equations in the system. This process terminates
since there exists only a finite number of sets of patterns of elements of B? (as B is finite).
This will be explained in details in the following of this section. In the next subsection we
describe formally the sets Ei,j .

Propagating constraints

Let us introduce some definitions useful to describe these sets Ei,j .

Definition 3.11. We denote 0 the empty permutation, which has size zero, and we take
the convention A〈0〉 = ∅.

122 Chapter 3. Combinatorial specification of permutation classes

A generalized substitution σ{π1, π2, . . . , πn} is defined as a substitution (see Defini-
tion 0.25) with the particularity that any πi may be the empty permutation. More for-
mally:

Definition 3.12. Let σ be a permutation of size n and let π1, . . . , πn be n permutations
of size p1, . . . , pn respectively, which may be empty, then the generalized substitution τ =
σ{π1, π2, . . . , πn} of π1, π2, . . . , πn in σ is

σ{π1, π2, . . . , πn} = S1 . . . Sn where Si = Si1 . . . S
i
pi and

Six = (πix + pσ−1(1) + . . .+ pσ−1(σi−1)) for any x between 1 and pi.

Notice that σ[π1, π2, . . . , πn] necessarily contains σ whereas σ{π1, π2, . . . , πn} may
avoid σ. For instance, the generalized substitution 1 3 2{2 1, 0, 1} gives the permutation
2 1 3 which avoids 1 3 2.

Thanks to generalized substitutions, we define the notion of embedding, which express
how a pattern γ can be involved in a permutation whose decomposition tree has a root π:

Definition 3.13. Let π = π1 . . . πn ∈ Sn and γ ∈ Sp be two permutations and Pγ the set
of intervals of γ, including 0 and γ. An embedding of γ in π = π1 . . . πn is a map α from
{1, . . . , n} to the set of (possibly empty) intervals4 of γ such that:

• if the intervals α(i) and α(j) are not empty, and i < j, then α(i) consists of smaller
indices than α(j);

• as a word, α(1) . . . α(n) is a factorization of the word 1 . . . |γ| (which may include
empty factors).

• denoting γI the pattern corresponding to γi1 . . . γi` for any interval I of indices from
i1 to i` in increasing order, we have π{γα(1), . . . , γα(n)} = γ.

Example 3.14. For any permutations γ and π, α :

{
1 7→ [1..|γ|]
k > 1 7→ ∅

is an embedding

of γ in π. Indeed γ[1..|γ|] = γ and π{γ, 0, . . . , 0} = γ.

Note that if we denote the non-empty images of α by α1, . . . , αk and if we remove from
π the πi such that α(i) = 0, we obtain a pattern σ of π such that γ = σ[γα1 , . . . , γαk]. But
this pattern σ may occur at several places in π so a block-decomposition γ = σ[γα1 , . . . , γαk]
may correspond to several embeddings of γ in π.

Example 3.15. There are 11 embeddings of γ = 5 4 6 3 1 2 into π = 3 1 4 2, which cor-
respond for instance to the generalized substitutions π{3241, 12, 0, 0}, π{3241, 0, 0, 12}
and π{0, 0, 3241, 12} for the same expression of γ as the substitution 21[3241, 12], or
π{3241, 1, 0, 1} which is the only one corresponding to 312[3241, 1, 1].

These 11 embeddings are:

4Recall that here an interval of a permutation is a set of indices corresponding to a block of the
permutation.

3.3 Combinatorial system describing C 123

γα(1) γα(2) γα(3) γα(4)

γ = 1[546312] = π{546312, 0, 0, 0} 546312 0 0 0

= π{0, 546312, 0, 0} 0 546312 0 0

= π{0, 0, 546312, 0} 0 0 546312 0

= π{0, 0, 0, 546312} 0 0 0 546312

γ = 21[213, 312] = π{213, 312, 0, 0} 213 312 0 0

= π{213, 0, 0, 312} 213 0 0 312

= π{0, 0, 213, 312} 0 0 213 312

γ = 21[3241, 12] = π{3241, 12, 0, 0} 3241 12 0 0

= π{3241, 0, 0, 12} 3241 0 0 12

= π{0, 0, 3241, 12} 0 0 3241 12

γ = 312[3241, 1, 1] = π{3241, 1, 0, 1} 3241 1 0 1

Notice that this definition of embeddings conveys the same notion as in [AA05], but it
is formally different and it will turn out to be more adapted to the definition of the sets
Ei,j .

Equations (3.4) to (3.6) can be viewed as Equations (3.1) to (3.3) “decorated” with
pattern avoidance constraints. These constraints apply to every set π[Ĉ1, . . . , Ĉn] that
appears in a disjoint union on the right-hand side of an equation. For each such set, the
pattern avoidance constraints can be expressed by pushing constraints into the subtrees,
using embeddings of excluded patterns in the root π. For instance, assume that γ =
5 4 6 3 1 2 ∈ B? and SC = {3142}, and consider 3142[Ĉ, Ĉ, Ĉ, Ĉ]〈γ〉. The embeddings of γ
in 3142 indicates how the pattern γ can be found in the subtrees in 3142[Ĉ, Ĉ, Ĉ, Ĉ]. For
instance, the first embedding of Example 3.15 indicates that the full pattern γ can appear
all included in the first subtree. On the other hand, the last embedding of the same
example tells us that γ can spread over all the subtrees of 3142 except the third. In order
to avoid this particular embedding of γ, it is enough to avoid one of the induced pattern
γI on one of the subtrees. However, in order to ensure that γ is avoided, the constraints
resulting from all the embeddings must be considered and merged. This is formalized in
Proposition 3.16.

Proposition 3.16. Let π be a simple permutation of size n and C1, . . . , Cn be sets of
permutations. For any permutation γ, the set π[C1, . . . , Cn]〈γ〉 rewrites as a union of sets
of the form π[D1, . . . ,Dn] where, for all i, Di = Ci〈γ, . . . 〉 and the restrictions appearing
after γ (if there are any) are patterns of γ corresponding to a block of γ.

More precisely, let {α1, . . . , α`} be the set of embeddings of γ in π, each αi being asso-
ciated to the generalized substitution γ = π{γαi(1), . . . , γαi(n)} where γαi(k) is embedded in
πk. Then

π[C1, . . . , Cn]〈γ〉 =
⋃

(k1,...,k`)∈Kπ
γ

π[C1〈E1,k1...k`〉, . . . , Cn〈En,k1...k`〉] (3.7)

where Kπ
γ = {(k1, . . . , k`) ∈ [1..n]` | ∀i, γαi(ki) 6= 0 and γαi(ki) 6= 1} and Em,k1...k` =

{γαi(ki) | i ∈ [1..`] and ki = m} is a set containing at least γ for (k1, . . . , k`) ∈ Kπ
γ .

In a tuple (k1, . . . , k`) of Kπ
γ , ki indicates a subtree of π where the pattern avoidance

constraint (γαi(ki) excluded) forbids any occurrence of γ that could result from the em-
bedding αi. The set Em,k1...k` represents the pattern-avoidance constraints that have been

124 Chapter 3. Combinatorial specification of permutation classes

pushed into the m-th subtree of π by embedding αi of γ in π (for some values of i between
1 and `) where the interval αi(ki) of γ is embedded into πm (for some values of ki between
1 and n).

Proof. Let σ ∈ π[C1, . . . , Cn]; then σ = π[σ(1), . . . , σ(n)] where each σ(k) ∈ Ck. Then σ
contains γ if and only if there exists an embedding αi of γ in π such that each γαi(k) of
the associated decomposition is a pattern of σ(k). Using contraposition, σ avoids γ if and
only if for every embedding αi, there exists a γαi(k) which is not a pattern of σ(k), i.e. such
that σ(k) avoids γαi(k). Thus,

π[C1, . . . , Cn]〈γ〉 =
⋂̀
i=1

n⋃
k=1

π[C1, . . . , Ck〈γαi(k)〉, . . . , Cn].

Intersection being distributive over union, we have:

π[C1, . . . , Cn]〈γ〉 =
⋃

(k1,...,k`)∈[1..n]`

⋂̀
i=1

π[C1, . . . , Cki〈γαi(ki)〉, . . . , Cn].

But, denoting 0 the empty permutation, for any set A of permutations we have A〈0〉 = ∅.
So if for some i ∈ [1..`], γαi(ki) = 0, then

⋂`
i=1 π[C1, . . . , Cki〈γαi(ki)〉, . . . , Cn] = ∅. The same

goes for the trivial permutation 1 since any permutation contains 1.
Therefore with Kπ

γ = {(k1, . . . , k`) ∈ [1..n]` | ∀i, γαi(ki) 6= 0 and γαi(ki) 6= 1}, we have:

π[C1, . . . , Cn]〈γ〉 =
⋃

(k1,...,k`)∈Kπ
γ

⋂̀
i=1

π[C1, . . . , Cki〈γαi(ki)〉, . . . , Cn].

Moreover, as π is simple, by uniqueness of the substitution decomposition we have for any
sets of permutations E1, . . . , En, F1, . . . , Fn:

π[C1〈E1〉, . . . , Cn〈En〉] ∩ π[C1〈F1〉, . . . , Cn〈Fn〉] = π[C1〈E1 ∪ F1〉, . . . , Cn〈En ∪ Fn〉].
Thus,

π[C1, . . . , Cn]〈γ〉 =
⋃

(k1,...,k`)∈[1..n]`

π[C1〈E1,k1...k`〉, . . . , Cn〈En,k1...k`〉].

where Em,k1...k` = {γαi(ki) | i ∈ [1..`] and ki = m}. For a given m, there always exists an
embedding αjm of γ in π that maps the whole permutation γ to πm. Indeed take jm the
index such that γαjm (m) = γ and γαjm (q) = 0 for q 6= m. If kjm 6= m then γαjm (kjm) = 0 and
(k1, . . . , k`) /∈ Kπ

γ . Therefore when (k1, . . . , k`) ∈ Kπ
γ then kjm = m and the set Em,k1...k`

contain at least γ, and by definition its other elements are patterns of γ corresponding to
blocks of γ. �

For an example, see section 3.5 (p.132).
Notice that Proposition 3.16 is directly inspired from the proof of Lemma 18 of [AA05].

We recall this lemma here:

Proposition 3.17 (Lemma 18 of [AA05]). Suppose that π ∈ Sn is simple, C1, . . . , Cn are
classes of permutations and γ1, . . . , γk is a sequence of permutations.
Then π[C1, . . . , Cn]〈γ1, . . . , γk〉 can be represented as a union of sets of the form π[D1, . . . ,Dn]
where for 1 ≤ i ≤ k, Di is Ci〈γ1, . . . , γk〉 or a strong subclass of this class (a strong subclass
D of C being a proper subclass of C which has the property that every basis element of D
is involved in some basis element of C).

The main difference is that Proposition 3.16 is explicit and can be directly used for
algorithmic purpose. Notice also that the cited lemma, as stated, is not correct, even if
this does not affect the correctness of the result it is used for. Here is a counter example:
take π = 2413, Ci = Av(12) for all i, k = 1 and γ = 213. Then, considering the embedding

3.3 Combinatorial system describing C 125

of γ in π that maps 21 in π1 and 3 in π2, we have D1 = Av(12, 21), which is not a strong
subclass of C1〈γ〉 = Av(12).

We can extend Proposition 3.16 to the case of a set P of excluded patterns, instead of
a single permutation γ:

Proposition 3.18. For any simple permutation π of size n and for any set of permutations
P , the set π[C1, . . . , Cn]〈P 〉 rewrites as a union of sets π[D1, . . . ,Dn] where for all i, Di =
Ci〈P ∪ Pi〉 with Pi containing only permutations corresponding to blocks of elements of P .

This proposition is proved by induction on the size of P , using Proposition 3.16.
We show in the same way that 12[C+

1 , C2]〈P 〉 (resp. 21[C−1 , C2]〈P 〉) rewrites as a union of
sets 12[D+

1 ,D2] (resp. 21[D−1 ,D2]) where for i = 1 or 2, Di = Ci〈P ∪Pi〉 with Pi containing
only permutations corresponding to blocks of elements of P . Indeed we need π to be simple
in the proof of Proposition 3.16 only because we use the uniqueness of the substitution
decomposition. In the case π = 12 (resp. 21), the uniqueness is ensured by taking the
set C+

1 of ⊕-indecomposable permutations of C1 (resp. the set C−1 of 	-indecomposable
permutations).

Now we have all the results we need to describe an algorithm computing a (possibly
ambiguous) combinatorial system describing C.

An algorithm computing a combinatorial system describing C

We describe here an algorithm that takes as input the set SC of simple permutations in a
class C and the basis B of C, and that produces in output a (possibly ambiguous) system
of combinatorial equations describing the permutations of C through their decomposition
trees. As a consequence of Proposition 3.10 and Proposition 3.18, using the fact that the
set of blocks of elements of B? is finite, we have the following proposition:

Proposition 3.19. For any permutation class C with a finite number of simple per-
mutations, we can derive a finite combinatorial system of equations for C of the form
D1 = 1∪

⋃
π[D2, . . . ,Dn], where Di = Ĉε〈B?∪Bi〉 with ε ∈ {∅,+,−} and Bi contains only

permutations corresponding to blocks of elements of B?, and every Di that appears in the
system is the left part of one equation of the system. This can be done using Algorithm 7.

Starting from a finite basis of patterns B, Algorithm 7 describes the whole process
to compute an ambiguous system defining the class C = Av(B) knowing its set of sim-
ple permutations SC . The propagation of the constraints expressed by Equation (3.7)
is performed by the procedure AddConstraints. It is applied to every set of the form
π[C1, . . . , Cn]〈B′〉 that appears in the equation defining some Ĉε〈B′〉 by the procedure Com-
puteEqn. Finally, Algorithm 7 computes an ambiguous system for a permutation class
Av(B) containing a finite number of simple permutations: it starts from Equations (3.4)
to (3.6), and adds new equations to this system calling procedure ComputeEqn, until
every π[C1, . . . , Cn]〈B′〉 is replaced by some π[C′1, . . . , C′n] and until every C′i = Ĉε〈B′i〉 is
defined by an equation of the system. All the sets B′ are sets of patterns of some per-
mutations in B. Since there is only a finite number of patterns of elements of B, there
is a finite number of possible B′, and Algorithm 7 terminates. This produces a system of
equations, that may be ambiguous: the unions may not be disjoint. The disambiguation
of this system will be examined in Section 3.4.

Consider for instance the class C = Av(B) for B = {1243, 2413, 531642, 41352}: C con-
tains only one simple permutation (namely 3142), and B? = {1243}. Applying Algorithm 7

126 Chapter 3. Combinatorial specification of permutation classes

Algorithm 7: AmbiguousSystem(B)
Data: B is a finite basis of patterns defining C = Av(B) such that SC is known

and finite.
Result: A system of equations of the form D =

⋃
π[D1, . . . ,Dn] defining C.

begin
E ← ComputeEqn((Ĉ, B?)) ∪ ComputeEqn((Ĉ+, B?)) ∪
ComputeEqn((Ĉ−, B?))
while there is a right-only Ĉε〈B′〉 in some equation of E do
E ← E ∪ ComputeEqn(Ĉε, B′)

/* Returns an equation defining Ĉε〈B′〉 as a union of π[C1, . . . , Cn] */
/* B′ is a set of permutations, Ĉε is given by SĈ and ε ∈ {∅,+,−} */
ComputeEqn (Ĉε, B′ (

E ← Equation (3.4) or (3.5) or (3.6) (depending on ε) written with B′ instead of
B?

foreach t = π[C1, . . . , Cn]〈B′〉 that appears in E do
t← AddConstraints(π[C1, . . . , Cn], B′)

return E

/* Returns a rewriting of π[C1 . . . Cn]〈E〉 as a union
⋃
π[D1, . . .Dn] */

AddConstraints ((π[C1 . . . Cn], E) (

if E = ∅ then return π[C1 . . . Cn];
;
else

choose γ ∈ E and compute all the embeddings of γ in π
compute Kπ

γ and sets Em,k1...k` defined in Equation (3.7)
return⋃

(k1,...,k`)∈Kπ
γ
AddConstraints(π[C1〈E1,k1...k`〉, . . . , Cn〈En,k1...k`〉], E \ γ).

to this class C gives the following system of equations:

Ĉ〈1243〉 = 1 ∪ 12[Ĉ+〈12〉, Ĉ〈132〉] ∪ 12[Ĉ+〈1243〉, Ĉ〈21〉] ∪ 21[Ĉ−〈1243〉, Ĉ〈1243〉]
∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] (3.8)

Ĉ〈12〉 = 1 ∪ 21[Ĉ−〈12〉, Ĉ〈12〉] (3.9)
Ĉ〈132〉 = 1 ∪ 12[Ĉ+〈132〉, Ĉ〈21〉] ∪ 21[Ĉ−〈132〉, Ĉ〈132〉] (3.10)
Ĉ〈21〉 = 1 ∪ 12[Ĉ+〈21〉, Ĉ〈21〉]. (3.11)

3.4 Disambiguation of the system

In the above, Equation (3.8) gives an ambiguous description of the class Ĉ〈1243〉. As
noticed in [AA05], we can derive an unambiguous equation using the inclusion-exclusion
principle: Ĉ〈1243〉 = 1 ∪ 12[Ĉ+〈12〉, Ĉ〈132〉] ∪ 12[Ĉ+〈1243〉, Ĉ〈21〉] \ 12[Ĉ+〈12〉, Ĉ〈21〉] ∪
21[Ĉ−〈1243〉, Ĉ〈1243〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] ∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] \
3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉]. The system so obtained contains negative terms in general.
This still gives a system of equations allowing the computation of the generating function

3.4 Disambiguation of the system 127

of the class. However, this cannot easily be used for random generation, as the subtraction
of combinatorial objects is not handled by random samplers. In this section we disam-
biguate this system to obtain a new positive one: the key idea is to replace the negative
terms by complement sets, thereby transforming pattern avoidance constraints into pattern
containment constraints.

3.4.1 General framework

The starting point of the disambiguation is to rewrite ambiguous terms like A ∪ B ∪ C
as a disjoint union (A ∩ B ∩ C)] (Ā ∩ B ∩ C)] (Ā ∩ B̄ ∩ C)] (Ā ∩ B ∩ C̄)] (A ∩ B̄ ∩
C)] (A ∩ B̄ ∩ C̄)] (A ∩B ∩ C̄)(see Figure 3.2). By disambiguating the union A ∪B ∪C
using complement sets instead of negative terms, we obtain an unambiguous description of
the union with only positive terms. But when taking the complement of a set defined by
pattern avoidance constraints, these are transformed into pattern containment constraints.

Therefore, for any set P of permutations, we define P〈E〉(A) of P as the set of permu-
tations that belong to P and that avoid every pattern of E and contain every pattern of
A. More formally:

Definition 3.20. For any set P of permutations, we set
P〈E〉(A) = {σ ∈ P | ∀π ∈ E, π � σ and ∀π ∈ A, π ≤ σ}.

When P = Ĉε for ε ∈ {∅,+,−} and C a permutation class, such a set is called a restriction.

With this notation, notice also that for A = ∅, C〈E〉 = C〈E〉(∅) is a standard permu-
tation class. For the empty permutation 0, we take the convention P〈0〉(A) = ∅ for any
A, and P〈E〉(0) = P〈E〉 for any E. Moreover we assume that A ∩ E is empty, other-
wise P〈E〉(A) = ∅ = P〈0〉(A \ {0}). Restrictions have the nice feature of being stable by
intersection as P〈E〉(A) ∩ P〈E′〉(A′) = P〈E ∪ E′〉(A ∪A′).

We also define a restriction term to be a set of permutations π[D1,D2, . . . ,Dn] where
π is a simple permutation or 12 or 21 and the Di are restrictions. More precisely:

Definition 3.21. A restriction term is a set of permutations described as π[D1,D2, . . . ,Dn]
such that for i ≥ 2 the Di are restrictions of the form Ĉ〈E〉(A) and moreover, either π is a
simple permutation and D1 is a restriction of the form Ĉ〈E〉(A), or π is 12 (resp. 21) and
D1 is a restrictions of the form Ĉ+〈E〉(A) (resp. Ĉ−〈E〉(A)).

By uniqueness of the substitution decomposition of a permutation (Theorem 0.29), re-
striction terms are stable by intersection as well and the intersection is performed component-
wise for terms sharing the same root: π[D1,D2, . . . ,Dn]∩π[T1, T2, . . . , Tn] = π[D1∩T1,D2∩
T2, . . . ,Dn ∩ Tn].

3.4.2 Disambiguation

The disambiguation of the system obtained by Algorithm 7 is performed by Algorithm 8.
It consists in two main operations. One is the disambiguation of an equation according to
the root of the terms that induce ambiguity, which may introduce right-only restrictions.
This leads to the second procedure which computes new equations (that are added to the

128 Chapter 3. Combinatorial specification of permutation classes

system) to describe these new restrictions (Algorithm 9).

Algorithm 8: DisambiguateSystem(E)
Data: A ambiguous system E of combinatorial equations /* obtained by Algo. 7 */
Result: An unambiguous system of combinatorial equations equivalent to E
begin

while there is an ambiguous equation F in E do
Take π a root that appears several times in F in an ambiguous way
Replace the restriction terms of F whose root is π by a disjoint union using
Equations (3.12), (3.13) and (3.14)
while there exists a right-only restriction Ĉε〈E〉(A) in some equation of E
do
E ←− E

⋃
ComputeEqnForRestriction(Ĉε,E,A). /* See Algo. 9 */

return E

As stated in Section 3.3, every equation F of our system can be written as t = 1 ∪
t1 ∪ t2 ∪ t3 . . . ∪ tk where the ti are restriction terms (some π[D1,D2, . . . ,Dn]) and t is a
restriction (some Ĉε〈E〉(A), with A = ∅ at the beginning of the disambiguation process).
By uniqueness of the substitution decomposition of a permutation, restriction terms of
this union which have different roots π are disjoint. Thus for an equation we only need to
disambiguate unions of terms with same root.

For example in Equation (3.8), there are two pairs of ambiguous terms which are terms
with root 3142 and terms with root 12. Every ambiguous union can be written in an
unambiguous way:

Proposition 3.22. A union of n sets
⋃n
i=1Ai rewrites as the disjoint union of the 2n− 1

sets of the form
⋂n
i=1Xi with Xi ∈ {Ai, Ai} where Ai is the complement of Ai in any set

containing
⋃n
i=1Ai, and not every Xi is equal to Ai:

This proposition is the starting point of the disambiguation. See Figure 3.2 for an
example.

A B

C

1 2

3

4

5 6
7

A ∪B ∪ C = 1] 2] 3] 4] 5] 6] 7

= (A ∩B ∩ C)] (A ∩B ∩ C)] (A ∩B ∩ C)

] (A ∩B ∩ C)] (A ∩B ∩ C)] (A ∩B ∩ C)
] (A ∩B ∩ C)

Figure 3.2: Rewriting unions as disjoint unions.

In order to use Proposition 3.22, we have to choose in which set we take complements.

Definition 3.23. For any restriction term t = π[D1, . . . ,Dn] with π simple and such that
for all i, Di ⊂ Ĉ, we set t = π[Ĉ, . . . , Ĉ] \ t.
If t = 12[D+

1 ,D2] with Di ⊂ Ĉ, we set t = π[Ĉ+, Ĉ] \ t.
If t = 21[D−1 ,D2] with Di ⊂ Ĉ, we set t = π[Ĉ−, Ĉ] \ t.
Moreover for any restriction D of Ĉε with ε ∈ {∅,+,−}, we set D = Ĉε \ D.

Thus every ambiguous union of restriction terms sharing the same root in an equation
of our system can be written in the following unambiguous way:⋃k

i=1 ti =
⊎
X⊆[1...k],X 6=∅

⋂
i∈X ti ∩

⋂
i∈X ti, (3.12)

3.4 Disambiguation of the system 129

where the complement ti of a restriction term ti is the set of permutations of Ĉ whose
decomposition tree has the same root than ti but that do not belong to ti.

For instance, consider terms with root 3142 in Equation (3.8):
t1 = 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] and t2 = 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉]. Equa-
tion (3.12) applied to t1 and t2 gives an expression of the form Ĉ〈1243〉 = 1 ∪ 12[. . .] ∪
12[. . .] ∪ 21[. . .] ∪ (t1 ∩ t2)] (t1 ∩ t2)] (t1 ∩ t2).

We now explain how to compute the complement t of a restriction term t.

Proposition 3.24. Let t = π[D1, . . . ,Dn] be a restriction term. Then t is the disjoint
union of the 2n − 1 sets of the form π[X1, . . . , Xn] with Xi ∈ {Di,Di}, and not all Xi are
equal to Di. More formally:
t =

⊎
X⊆{1,...,n},X 6=∅

π[D′1, . . . ,D′n] where D′i = Di if i ∈ X and D′i = Di otherwise, (3.13)

For example, 21[D1,D2] = 21[D1,D2]] 21[D1,D2]] 21[D1,D2].

Proof. By uniqueness of substitution decomposition, the set of permutations of Ĉ that do
not belong to t but whose decomposition tree has root π can be written as the union of
terms u = π[D′1,D′2, . . . ,D′n] where D′i = Di or D′i = Di and at least one restriction Di
must be complemented.

More precisely, suppose that π is simple, then t = π[Ĉ, . . . , Ĉ] \ t.
Let σ ∈ t = π[Ĉ, . . . , Ĉ] \ t; then σ = π[σ1, . . . , σn] where each σi ∈ Ĉ. So σ ∈

π[X1, . . . , Xn] with Xi = Di if σi ∈ Di and Xi = Di = Ĉ \Di otherwise. But σ /∈ t so there
is at least one index i such that σi /∈ Di and Xi 6= Di.

Conversely if σ ∈ π[X1, . . . , Xn] with Xi ∈ {Di,Di} and at least one Xi is equal to Di,
then σ ∈ π[Ĉ, . . . , Ĉ] and σ /∈ t.

Finally for such sets Xi that are distinct, the sets π[X1, . . . , Xn] are disjoints. Indeed
Di ∩ Di is empty and the writing as π[σ1, . . . , σn] is unique. So the union describing t is
disjoint. The proof is similar when π = 12 or π = 21. �

Proposition 3.24 shows that ti is not a restriction term in general. However it can be
expressed as a disjoint union of some π[D′1, . . . ,D′n], where the D′i are either restrictions
or complements of restrictions. The complement operation being pushed from restriction
terms down to restrictions, we now compute D, for a given restriction D = Ĉε〈E〉(A), D
denoting the set of permutations of Ĉε that are not in D. Notice that given a permutation σ
of A, then any permutation τ of Ĉε〈σ〉 is in D because τ avoids σ whereas permutations of D
must contain σ. Symmetrically, if a permutation σ is in E then permutations of Ĉε〈∅〉(σ) are
in D. It is straightforward to check that Ĉε〈E〉(A) =

[⋃
σ∈E Ĉε〈∅〉(σ)

]⋃ [⋃
σ∈A Ĉε〈σ〉(∅)

]
.

Unfortunately this expression is ambiguous. As before, we can rewrite it as an unambiguous
union:

Proposition 3.25. Let D = Ĉε〈E〉(A) be a restriction with ε ∈ {∅,+,−}, k = |E| and
` = |A|. Then D is the disjoint union of the 2k+` − 1 restrictions Ĉε〈E′〉(A′) with (E′, A′)
a partition of E]A such that (E′, A′) 6= (E,A). More formally:
Ĉε〈E〉(A) =

⊎
X⊆A,Y⊆E
X×Y 6=∅×∅

Ĉε〈X ∪ Y 〉(Y ∪X), where X = A \X and Y = E \ Y . (3.14)

Proof. Let τ ∈ D = Ĉε \ D. Then τ ∈ Ĉε〈E′〉(A′) with E′ = {π ∈ E ∪ A | π � τ} and
A′ = {π ∈ E ∪ A | π ≤ τ}. Moreover E′ ∩ A′ = ∅, E′ ∪ A′ = E ∪ A and (E′, A′) 6= (E,A)
otherwise τ would be in D.

130 Chapter 3. Combinatorial specification of permutation classes

Conversely let τ ∈ Ĉε〈E′〉(A′) with (E′, A′) a partition of E] A such that (E′, A′) 6=
(E,A), then τ ∈ Ĉε. As (E′, A′) 6= (E,A), either there is some σ in E that τ contains, or
there is some σ in A that τ contains. In both cases, τ /∈ D thus τ ∈ Ĉε \ D = D.

Finally for distinct partitions (E′, A′) of E ∪ A, the sets Ĉε〈E′〉(A′) are disjoints. In-
deed a permutation in two sets of this form would have to both avoid and contain some
permutation of E ∪A, which is impossible. �

In our example (Equations (3.8) to (3.11)), only trivial complements appear, since
every restriction is of the form Ĉ〈σ〉(∅) or Ĉ〈∅〉(σ) for which complements are respectively
Ĉ〈∅〉(σ) and Ĉ〈σ〉(∅).

Proposition 3.25 shows that D is not a restriction in general but can be expressed as a
disjoint union of restrictions. Moreover by uniqueness of the substitution decomposition,
π[D1, . . . ,Dk] D′k, . . . ,Dn] = π[D1, . . . ,Dk, . . . ,Dn]] π[D1, . . . ,D′k, . . . ,Dn]. Therefore
using Equation (3.13) we have that for any restriction term ti, its complement ti can be
expressed as a disjoint union of terms:

Proposition 3.26. For any restriction term t, its complement t can be written as a disjoint
union of restriction terms. More precisely if t = π[D1, . . . ,Dn] with Di = Ĉεi〈Ei〉(Ai)
and m =

∑n
i=1 |Ei| + |Ai|, then t is the disjoint union of the 2m − 1 restriction terms

t = π[D′1, . . . ,D′n] such that for all i, D′i = Ĉεi〈E′i〉(A′i) with (E′i, A
′
i) a partition of Ei]Ai,

and there exists i such that (E′i, A
′
i) 6= (Ei, Ai).

By distributivity of ∩ over], Equation (3.12) above can therefore be rewritten as a
disjoint union of intersection of terms. Because terms are stable by intersection, the right-
hand side of Equation (3.12) is hereby written as a disjoint union of terms. This leads to
the following result:

Proposition 3.27. Any union of restriction terms can be written as a disjoint union of
restriction terms, and this can be done algorithmically using Equations (3.12), (3.13) and
(3.14).

All together, for any equation of our system, we are able to rewrite it unambiguously as
a disjoint union of restriction terms. As noted previously, some new right-only restrictions
may appear during this process, for example as the result of the intersection of several
restrictions or when complementing restrictions. To obtain a complete system we must
compute iteratively equations defining these new restrictions using Algorithm 9 described
below.

Finally, the termination of Algorithm 8 is easily proved. Indeed, for all the restrictions
Ĉε〈E〉(A) that are considered in the inner loop of Algorithm 8, every permutation in the
sets E and A is a pattern of some element of the basis B of C. And since B is finite, there
is a finite number of such restrictions.

3.4.3 Compute an equation for a restriction

Let Ĉε〈E〉(A) be a restriction. Our goal here is to find a combinatorial specification of this
restriction in terms of smaller restriction terms (smaller w.r.t. inclusion).

If A = ∅, this is exactly the problem addressed in Section 3.3.2 and solved by push-
ing down the pattern avoidance constraints in the procedure AddConstraints of Al-
gorithm 7. Algorithm 9 below shows how to propagate also the pattern containment

3.4 Disambiguation of the system 131

constraints induced by A 6= ∅.

Algorithm 9: ComputeEqnForRestriction(Ĉε, E,A)

Data: Ĉε, E,A with E,A sets of permutations, Ĉε given by SĈ and ε ∈ {∅,+,−}.
Result: An equation defining Ĉε〈E〉(A) as a union of restriction terms.
begin

F ← Equation (3.1) or (3.2) or (3.3) (depending on ε)
foreach σ ∈ E do

/* This step modifies F ! */
Replace any restriction term t in F by AddConstraints(t, {σ}) /* See
Algo. 7 */

foreach σ ∈ A do
/* This step modifies F ! */
Replace any restriction term t in F by AddMandatory(t, σ)

return F

AddMandatory (π[D1, . . . ,Dn], γ (

return a rewriting of π[D1, . . . ,Dn](γ) as a union of restriction terms using
Equation (3.15).

The pattern containment constraints are propagated by AddMandatory, in a very
similar fashion to the pattern avoidance constraints propagated by AddConstraints.
To compute t(γ) for γ a permutation and t = π[D1, . . . ,Dn] a restriction term, we first
compute all embeddings of γ into π. In this case, a permutation belongs to t(γ) if and only
if at least one embedding is satisfied. Then π[D1, . . . ,Dn](γ) rewrites as a union of sets of
the form π[D1(γ1), . . . ,Dn(γn)] where, for all i, γi is a block of γ which may be empty or
γ itself (recall that if γi is empty, then Dj(γi) = Dj). More precisely:

Proposition 3.28. Let π be a permutation of size n and D1, . . . ,Dn be sets of permu-
tations. For any permutation γ, let α1, . . . , α` be the set of embeddings of γ in π, then

π[D1, . . . ,Dn](γ) =
⋃̀
i=1

π[D1(γαi(1)),D2(γαi(2)), . . . ,Dn(γαi(n))]. (3.15)

For instance, for t = 2413[D1,D2,D3,D4] and γ = 3214, there are 9 embeddings of γ
into 2413, and the embedding 2413{321, 1, 0, 0} contributes to the above union with the
term 2413[D1(321),D2(1),D3,D4].

Proof. Let σ ∈ π[D1, . . . ,Dn]; then σ = π[σ1, . . . , σn] where each σk ∈ Dk. Then σ contains
γ, if and only if there exists an embedding αi of γ = π[αi(1) . . . αi(n)] such that αi(j) is a
pattern of σj for all j. �

Hence, any restriction term t = π[D1, . . . ,Dn](γ) rewrites as a (possibly ambiguous)
union of restriction terms.

Notice that although the unions of Equation (3.15) may be ambiguous, they will be
transformed into disjoint unions by the outer loop of Algorithm 8. Finally, the algorithm
produces an unambiguous system which is the result of a finite number of iterations of
computing equations followed by their disambiguation.

We are now able to state the main theorem of this chapter:

Theorem 3.29. For any permutation class C whose set SC of simple permutations is
finite, given its basis B and the set SC, Algorithm 7 followed by Algorithm 8 derive a finite

132 Chapter 3. Combinatorial specification of permutation classes

combinatorial system of equations of the form D1 = 1]
⊎
π[D2, . . . ,Dn], where each Di is

a restriction Ĉε〈E〉(A) with ε ∈ {∅,+,−}, E and A contains only blocks of elements of B,
and every Di that appears in the system is the left part of one equation of the system. In
particular this provides a combinatorial specification of C.

3.5 Case study of C = Av(2413, 1243, 2341, 531642, 41352)

In this section, we apply the method described in this chapter to find a combinatorial speci-
fication for the permutation class C = Av(B) where B = {2413, 1243, 2341, 531642, 41352}.
From this description we derive its generating function and furthermore generate at ran-
dom large permutations of the class. We follow the different steps described in the diagram
of Figure 3.4.

First, notice that Av(B) is not substitution-closed as 1243 and 2341 are non-simple
permutations and belong to the basis of the class. Then we test whether the class contains
a finite number of simple permutations. In our case, the only simple permutation of the
class is 3142.

3.5.1 Ambiguous system for C

The first step of our algorithm deals with the substitution-closure of our class, that is, the
substitution-closed class Ĉ which contains only 3142 as simple permutation. Recall that a
substitution-closed class can be either given by its basis or by the simple permutations it
contains.

Substitution-closure Ĉ of C

From the simple permutations contained in a substitution-closed class, it is easy to give a
combinatorial description of the class. Equations (3.1), (3.2) and (3.3) of Proposition 3.6
(p.120) translate into the following system:

Ĉ = 1] 12[Ĉ+, Ĉ]] 21[Ĉ−, Ĉ]] 3142[Ĉ, Ĉ, Ĉ, Ĉ] (3.16)
Ĉ+ = 1] 21[Ĉ−, Ĉ]] 3142[Ĉ, Ĉ, Ĉ, Ĉ] (3.17)
Ĉ− = 1] 12[Ĉ+, Ĉ]] 3142[Ĉ, Ĉ, Ĉ, Ĉ] (3.18)

From Ĉ to C = Av(B)

From the combinatorial specification for the substitution closure of Av(B), using Algo-
rithm 7 described in Section 3.3.2, it is possible to derive an ambiguous system describing
Av(B). Note that the non-simple permutations in B are 1243 and 2341. So we compute
this system for C = Ĉ〈1243, 2341〉 by adding these two constraints one by one.

Constraint 1243. Three different terms appear in the equations, 12[Ĉ+, Ĉ], 21[Ĉ−, Ĉ] and
3142[Ĉ, Ĉ, Ĉ, Ĉ]. To compute Ĉ〈1243〉, we propagate the constraint 〈1243〉 into each of these
3 different terms using embeddings.

• First consider 21[Ĉ−, Ĉ]〈1243〉. The different embeddings of γ = 1243 into π = 21
are:

3.5 Case study of C = Av(2413, 1243, 2341, 531642, 41352) 133

γα(1) γα(2)

γ = 1[1243] = π{1243, 0} 1243 0

= π{0, 1243} 0 1243

Thus, using Equation (3.7) of Proposition 3.16 (p.123) we have:
21[Ĉ−, Ĉ]〈1243〉 = 21[Ĉ−〈1243〉, Ĉ〈1243〉]

Here |Kπ
γ | = 1 because γαi(ki) 6= 0 implies ki = i for all i ∈ {1, `} (here ` = 2).

• Second consider 3142[Ĉ, Ĉ, Ĉ, Ĉ]〈1243〉. The different embeddings of γ = 1243 into
π = 3142 are:

γα(1) γα(2) γα(3) γα(4)

γ = 1[1243] = π{1243, 0, 0, 0} 1243 0 0 0

= π{0, 1243, 0, 0} 0 1243 0 0

= π{0, 0, 1243, 0} 0 0 1243 0

= π{0, 0, 0, 1243} 0 0 0 1243

γ = 12[12, 21] = π{12, 0, 21, 0} 12 0 21 0

= π{0, 12, 21, 0} 0 12 21 0

= π{0, 12, 0, 21} 0 12 0 21

γ = 12[1, 132] = π{1, 0, 132, 0} 1 0 132 0

= π{0, 1, 132, 0} 0 1 132 0

= π{0, 1, 0, 132} 0 1 0 132

γ = 132[12, 1, 1] = π{0, 12, 1, 1} 0 12 1 1

In order to avoid pattern 1243, a permutation that decomposes as 3142[C, C, C, C]
must invalidate each embedding, i.e. each line of the above array. Thus following
Equation (3.7), we obtain (after simplifications such as Ĉ〈1243, 12〉 = Ĉ〈12〉):
3142[C, C, C, C]〈1243〉 = 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈21〉]

∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈21〉]
∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] ∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈21〉]
∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] ∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈21〉]

Here |Kπ
γ | = 8: there are 2 choices for ki for i = 5, 6, 7 and no choice for the other ki

since we want γαi(ki) 6= 0 and γαi(ki) 6= 1.
After deleting redundant constraints, i.e. those that describe a set strictly included
in another one, the remaining terms are:
3142[C, C, C, C]〈1243〉 = 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉]

• Finally consider 12[Ĉ+, Ĉ]〈1243〉. The embeddings of γ = 1243 into π = 12 are:

γα(1) γα(2)

γ = 1[1243] = π{1243, 0} 1243 0

= π{0, 1243} 0 1243

γ = 12[12, 21] = π{12, 21} 12 21

γ = 12[1, 132] = π{1, 132} 1 132

134 Chapter 3. Combinatorial specification of permutation classes

Hence, Equation (3.7) gives after simplifications:
12[Ĉ+, Ĉ]〈1243〉 = 12[Ĉ+〈12〉, Ĉ〈132〉] ∪ 12[Ĉ+〈1243〉, Ĉ〈21〉]

At last the system of Equations (3.16), (3.17) and (3.18) becomes:
Ĉ〈1243〉 = 1 ∪ 12[Ĉ+〈12〉, Ĉ〈132〉] ∪ 12[Ĉ+〈1243〉, Ĉ〈21〉] ∪ 21[Ĉ−〈1243〉, Ĉ〈1243〉]

∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] (3.19)

Ĉ+〈1243〉 = 1 ∪ 21[Ĉ−〈1243〉, Ĉ〈1243〉] ∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉]
∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] (3.20)

Ĉ−〈1243〉 = 1 ∪ 12[Ĉ+〈12〉, Ĉ〈132〉] ∪ 12[Ĉ+〈1243〉, Ĉ〈21〉]
∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] (3.21)

Constraint 2341. Then we add the next constraint, that is 2341, in the above system
as Ĉ〈1243〉〈2341〉 = Ĉ〈1243, 2341〉. We propagate the constraint 2341 into the 5 different
terms that appear in Equations (3.19) to (3.21).

• Adding constraint 2341 to term 21[Ĉ−〈1243〉, Ĉ〈1243〉].

The different embeddings of γ = 2341 into π = 21 are:

γα(1) γα(2)

γ = 1[2341] = π{2341, 0} 2341 0

= π{0, 2341} 0 2341

γ = 21[123, 1] = π{123, 1} 123 1

Then Equation (3.7) gives after simplifications:
21[Ĉ−〈1243〉, Ĉ〈1243〉]〈2341〉 = 21[Ĉ−〈123〉, Ĉ〈1243, 2341〉]

• Adding constraint 2341 to term 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉].

The different embeddings of γ = 2341 into π = 3142 are:

γα(1) γα(2) γα(3) γα(4)

γ = 1[2341] = π{2341, 0, 0, 0} 2341 0 0 0

= π{0, 2341, 0, 0} 0 2341 0 0

= π{0, 0, 2341, 0} 0 0 2341 0

= π{0, 0, 0, 2341} 0 0 0 2341

γ = 21[123, 1] = π{123, 1, 0, 0} 123 1 0 0

= π{123, 0, 0, 1} 123 0 0 1

= π{0, 0, 123, 1} 0 0 123 1

γ = 231[1, 12, 1] = π{1, 0, 12, 1} 1 0 12 1

γ = 231[12, 1, 1] = π{12, 0, 1, 1} 12 0 1 1

Equation (3.7) gives after simplifications:
3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉]〈2341〉 = 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]

3.5 Case study of C = Av(2413, 1243, 2341, 531642, 41352) 135

• Adding constraint 2341 to term 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉].
The possible embeddings of 2341 into 3142 have already been computed in the pre-
vious item and Equation (3.7) gives:
3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉]〈2341〉 = 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈21, 12〉, Ĉ〈132, 2341〉]

• Adding constraint 2341 to term 12[Ĉ+〈12〉, Ĉ〈132〉].
The different embeddings of γ = 2341 into π = 12 are:

γα(1) γα(2)

γ = 1[2341] = π{2341, 0} 2341 0

= π{0, 2341} 0 2341

Equation (3.7) gives after simplifications:
12[Ĉ+〈12〉, Ĉ〈132〉]〈2341〉 = 12[Ĉ+〈12〉, Ĉ〈132, 2341〉]

• Adding constraint 2341 to term 12[Ĉ+〈1243〉, Ĉ〈21〉].
The different embeddings have already been computed and Equation (3.7) gives:

12[Ĉ+〈1243〉, Ĉ〈21〉]〈2341〉 = 12[Ĉ+〈1243, 2341〉, Ĉ〈21〉]

At last after deleting redundant constraints, Equations (3.19) becomes:

Ĉ〈1243, 2341〉 = 1 ∪ 21[Ĉ−〈123〉, Ĉ〈1243, 2341〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]
∪ 12[Ĉ+〈1243, 2341〉, Ĉ〈21〉] ∪ 12[Ĉ+〈12〉, Ĉ〈132, 2341〉]

Iterating this process for new classes Ĉ〈E〉 of the right side of the above equation leads
to the following ambiguous system:

Ĉ〈1243, 2341〉 = 1 ∪ 21[Ĉ−〈123〉, Ĉ〈1243, 2341〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]
∪ 12[Ĉ+〈1243, 2341〉, Ĉ〈21〉] ∪ 12[Ĉ+〈12〉, Ĉ〈132, 2341〉]

Ĉ〈123〉 = 1 ∪ 21[Ĉ−〈123〉, Ĉ〈123〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉] ∪ 12[Ĉ+〈12〉, Ĉ〈12〉]
Ĉ〈12〉 = 1 ∪ 21[Ĉ−〈12〉, Ĉ〈12〉]

Ĉ〈132, 2341〉 = 1 ∪ 21[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉] ∪ 12[Ĉ+〈132, 2341〉, Ĉ〈21〉]
Ĉ〈132, 123〉 = 1 ∪ 21[Ĉ−〈132, 123〉, Ĉ〈132, 123〉] ∪ 12[Ĉ+〈12〉, Ĉ〈21, 12〉]

Ĉ〈21〉 = 1 ∪ 12[Ĉ+〈21〉, Ĉ〈21〉]
Ĉ〈21, 12〉 = 1

The corresponding equations for Ĉ+〈E〉 (resp. Ĉ−〈E〉) follows from the one of Ĉ〈E〉 by
deleting terms of the form 12[. . .] (resp. 21[. . .]).

3.5.2 Disambiguation

The preceding equations are unambiguous except equation

Ĉ〈1243, 2341〉 = 1 ∪ 21[Ĉ−〈123〉, Ĉ〈1243, 2341〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]
∪ 12[Ĉ+〈1243, 2341〉, Ĉ〈21〉] ∪ 12[Ĉ+〈12〉, Ĉ〈132, 2341〉]

for which there exists an ambiguity for the terms whose root is 12, i.e. for the terms
12[Ĉ+〈1243, 2341〉, Ĉ〈21〉] and 12[Ĉ+〈12〉, Ĉ〈132, 2341〉]. Indeed 12[Ĉ+〈12〉, Ĉ〈132, 2341〉] ∩
12[Ĉ+〈1243, 2341〉, Ĉ〈21〉] = 12[Ĉ+〈12〉, Ĉ〈21〉] which is not empty.

136 Chapter 3. Combinatorial specification of permutation classes

To disambiguate those terms we use the techniques explained in Section 3.4.2 and more
precisely in Algorithm DisambiguateSystem (Algorithm 8). As we only have to deal with 2
terms, using Equations (3.12) this algorithm rewrite our terms t1 = 12[Ĉ+〈12〉, Ĉ〈132, 2341〉]
and t2 = 12[Ĉ+〈1243, 2341〉, Ĉ〈21〉] as (t1 ∩ t̄2)] (t̄1 ∩ t2)] (t1 ∩ t2).

Thus we compute the complement of the involved terms using Equation (3.13).

• For 12[Ĉ+〈1243, 2341〉, Ĉ〈21〉] Equation (3.13) gives:
12[Ĉ+〈2341〉(1243), Ĉ(21)]] 12[Ĉ+(1243, 2341), Ĉ(21)]] 12[Ĉ+〈1243〉(2341), Ĉ(21)]]
12[Ĉ+〈1243, 2341〉, Ĉ(21)]] 12[Ĉ+〈2341〉(1243), Ĉ〈21〉]] 12[Ĉ+(1243, 2341), Ĉ〈21〉]]
12[Ĉ+〈1243〉(2341), Ĉ〈21〉]

• For the other term 12[Ĉ+〈12〉, Ĉ〈132, 2341〉] Equation (3.13) gives:
12[Ĉ+(12), Ĉ〈2341〉(132)]] 12[Ĉ+(12), Ĉ〈132〉(2341)]] 12[Ĉ+(12), Ĉ(132, 2341)]]
12[Ĉ+〈12〉, Ĉ〈2341〉(132)]] 12[Ĉ+〈12〉, Ĉ〈132〉(2341)]] 12[Ĉ+〈12〉, Ĉ(132, 2341)]]
12[Ĉ+(12), Ĉ〈132, 2341〉]

Thus we can write 12[Ĉ+〈1243, 2341〉, Ĉ〈21〉] ∪ 12[Ĉ+〈12〉, Ĉ〈132, 2341〉] as a disjoint
union of terms:
12[Ĉ+〈12〉, Ĉ〈21〉]] 12[Ĉ+〈1243, 2341〉(12), Ĉ〈21〉(132)]] 12[Ĉ+〈1243, 2341〉(12), Ĉ〈21〉(2341)]]
12[Ĉ+〈12〉, Ĉ〈21〉(132)]] 12[Ĉ+〈12〉, Ĉ〈21〉(2341)]] 12[Ĉ+〈1243, 2341〉(12), Ĉ〈21〉]]
12[Ĉ+〈12〉(1243), Ĉ〈132, 2341〉(21)]] 12[Ĉ+〈12〉(2341), Ĉ〈132, 2341〉(21)]]
12[Ĉ+〈12〉, Ĉ〈132, 2341〉(21)]] 12[Ĉ+〈12〉(1243), Ĉ〈21〉]] 12[Ĉ+〈12〉(2341), Ĉ〈21〉]

After eliminating terms that are empty or strictly included in another one, this leads
to the unambiguous following system:

Ĉ〈1243, 2341〉 = 1] 21[Ĉ−〈123〉, Ĉ〈1243, 2341〉]] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]
] 12[Ĉ+〈1243, 2341〉(12), Ĉ〈21〉]] 12[Ĉ+〈12〉, Ĉ〈132, 2341〉(21)]] 12[Ĉ+〈12〉, Ĉ〈21〉]

Ĉ〈123〉 = 1] 21[Ĉ−〈123〉, Ĉ〈123〉]] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉]] 12[Ĉ+〈12〉, Ĉ〈12〉]
Ĉ〈12〉 = 1] 21[Ĉ−〈12〉, Ĉ〈12〉]

Ĉ〈132, 2341〉 = 1] 21[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]] 12[Ĉ+〈132, 2341〉, Ĉ〈21〉]
Ĉ〈132, 123〉 = 1] 21[Ĉ−〈132, 123〉, Ĉ〈132, 123〉]] 12[Ĉ+〈12〉, Ĉ〈21, 12〉]

Ĉ〈21〉 = 1] 12[Ĉ+〈21〉, Ĉ〈21〉]
Ĉ〈21, 12〉 = 1

As noticed in Section 3.4.2, new terms appear on the right side of these equations like
Ĉ〈132, 2341〉(21). But these terms are not defined by our system, so we have to compute
a description for these new terms. This is done by iterating Algorithm ComputeEqnFor-
Restriction (Algorithm 9) which returns a combinatorial equation.

This algorithm is similar to previous examples except that we have to deal with pattern
containment constraints that is we must ensure that permutations contain given patterns.
In Ĉ〈132, 2341〉(21), the permutations must contain 21 as a pattern. We explain how the
algorithm ComputeEquationForRestriction computes an equation for Ĉ〈132, 2341〉(21):

First, we add constraints 132 and 2341 and compute an equation for Ĉ〈132, 2341〉 like
before. We obtain the following equation:

Ĉ〈132, 2341〉 = 1 ∪ 21[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉] ∪ 12[Ĉ+〈132, 2341〉, Ĉ〈21〉] (3.22)

We add the constraint 21 as a mandatory pattern to this equation to compute a recur-
sive description of Ĉ〈132, 2341〉(21). As usual we compute the embeddings of 21 into the

3.5 Case study of C = Av(2413, 1243, 2341, 531642, 41352) 137

different roots. Note that if a tree has root 21 then all permutations 21[X,Y] contains pat-
tern 21. So we only have to deal with term 12[Ĉ+〈132, 2341〉, Ĉ〈21〉](21) and we compute
the embeddings of γ = 21 into π = 12.

γα(1) γα(2)

γ = 1[21] = π{21, 0} 21 0

= π{0, 21} 0 21

Then, in order to contain 21, a term must satisfy at least one line in the above array.
Thus using Equation (3.15) we obtain:
12[Ĉ+〈132, 2341〉, Ĉ〈21〉](21) = 12[Ĉ+〈132, 2341〉(21), Ĉ〈21〉] ∪ 12[Ĉ+〈132, 2341〉, Ĉ〈21〉(21)]

Since Ĉ〈21〉(21) = ∅ we have 12[Ĉ+〈132, 2341〉, Ĉ〈21〉](21) = 12[Ĉ+〈132, 2341〉(21), Ĉ〈21〉].
Then Equation (3.22) gives
Ĉ〈132, 2341〉(21) = 21[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉] ∪ 12[Ĉ+〈132, 2341〉(21), Ĉ〈21〉].

We iterate the previous method until each term that appear in the equations is defined
by an unambiguous equation, which finally leads to the following unambiguous system:

Ĉ〈1243, 2341〉 = 1] 12[Ĉ+〈12〉, Ĉ〈132, 2341〉(21)]] 12[Ĉ+〈1243, 2341〉(12), Ĉ〈21〉]
]12[Ĉ+〈12〉, Ĉ〈21〉]] 21[Ĉ−〈123〉, Ĉ〈1243, 2341〉]] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]

Ĉ〈1243, 2341〉(12) = 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]] 12[Ĉ+〈12〉, Ĉ〈132, 2341〉(21)]

]12[Ĉ+〈12〉, Ĉ〈21〉]] 12[Ĉ+〈1243, 2341〉(12), Ĉ〈21〉]] 21[Ĉ−〈123〉(12), Ĉ〈12〉]
]21[Ĉ−〈12〉, Ĉ〈1243, 2341〉(12)]] 21[Ĉ−〈123〉(12), Ĉ〈1243, 2341〉(12)]

Ĉ+〈1243, 2341〉(12) = 21[Ĉ−〈123〉(12), Ĉ〈1243, 2341〉(12)]] 21[Ĉ−〈12〉, Ĉ〈1243, 2341〉(12)]

]21[Ĉ−〈123〉(12), Ĉ〈12〉]] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]
Ĉ−〈123〉 = 1] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉]] 12[Ĉ+〈12〉, Ĉ〈12〉]

Ĉ−〈123〉(12) = 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉]] 12[Ĉ+〈12〉, Ĉ〈12〉]
Ĉ〈12〉 = 1] 21[Ĉ−〈12〉, Ĉ〈12〉]
Ĉ+〈12〉 = 1] 21[Ĉ−〈12〉, Ĉ〈12〉]
Ĉ−〈12〉 = 1

Ĉ〈132, 2341〉 = 1] 21[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]] 12[Ĉ+〈132, 2341〉, Ĉ〈21〉]
Ĉ+〈132, 2341〉 = 1] 21[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]

Ĉ〈132, 2341〉(21) = 21[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]] 12[Ĉ+〈132, 2341〉(21), Ĉ〈21〉]
Ĉ+〈132, 2341〉(21) = 21[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]

Ĉ−〈132, 123〉 = 1] 12[Ĉ+〈12〉, Ĉ〈21, 12〉]
Ĉ〈21〉 = 1] 12[Ĉ+〈21〉, Ĉ〈21〉]
Ĉ+〈21〉 = 1

Ĉ〈21, 12〉 = 1

This system can be solved and provides the generating function for Ĉ〈1243, 2341〉 which is
Av(2413, 1243, 2341, 531642, 41352):

C(z) = − (z6 − 7z5 + 20z4 − 28z3 + 20z2 − 7z + 1)z

(2z7 − 13z6 + 37z5 − 62z4 + 59z3 − 32z2 + 9z − 1)

138 Chapter 3. Combinatorial specification of permutation classes

3.5.3 Experiments

The above system can be used to generate permutations at random using the recursive
method or a Boltzmann sampler. For generating random permutations of Figure 3.3, we
used the recursive method which can generate in linear time a random permutation of a
given size n modulo a preprocessing which roughly corresponds to the calculation of the
first n coefficients of the involved generating functions.

-

+

-

+ 3142 + + +

- - - -

+ 3142 + 3142 +

- - -

+ + +

- - - -

+

-

+ +

- -

+ +

- -

+ + +

- - -

3142 + +

- - - -

+ + + +

- - - -

+ +

- -

+ + +

- - -

+ + + + +

- -

+

-

3142 +

- - - -

3142 +

- -

+ 3142 + + +

- - - -

3142 +

- -

+

-

+ + +

- -

+ +

- -

3142 +

- -

+ + + + +

- - -

+ + +

- -

+ +

- -

+ +

-

3142 +

- - -

+

-

+ + + + + + +

- - - - - -

+

-

+ 3142 +

- - - -

+ + + +

- - - - -

3142 + +

- - - -

+ +

-

+

-

+ + +

- -

3142 +

- -

+ +

-

3142 + +

- - -

+

-

+ +

- -

+ + + +

- - -

+ + + +

- - -

+ +

-

+ +

-

+ +

- -

3142 +

- - -

+ +

-

+

-

+ + +

- -

3142 + 3142 +

- - - -

+ +

-

+

-

3142 +

- -

+

-

+

-

-

+ +

- -

+ 3142 + 3142 +

- - - - - -

+

-

3142 +

- - -

+

-

+ +

- -

+ 3142 + + +

- - - -

+ 3142 +

- - - -

+ + + 3142 +

- - - -

3142 +

-

+ +

- -

+ +

- -

+

-

3142 + + 3142 + + + 3142 + + +

- - - - - - - -

+ +

-

+

-

+ +

-

+ 3142 +

- -

+ +

- -

+ +

- -

+ + + + +

- - -

3142 + 3142 + +

- - - - - -

+

-

+ 3142 +

- -

+ 3142 + +

- - - -

+ + + +

-

+ + +

- - -

3142 +

- -

3142 + + +

- - - -

+

-

+

-

3142 +

- - - -

3142 + +

- - -

+ + +

- - -

+ +

- -

+ + +

- -

+ +

-

+ 3142 + +

- - - - -

+

-

3142 + +

- - - -

+ +

-

+ +

-

+

-

+ +

- - -

+ +

- -

+

-

+ +

- - -

3142 +

- -

+ +

-

+ + +

- -

3142 +

- -

+ +

- -

+ +

- -

+ 3142 + + + +

- -

3142 +

- - - -

+

-

+

-

+

-

+ + +

- -

+ 3142 +

- -

+ +

-

+

-

+ + +

-

+

-

+ +

-

+

-

3142 + + + +

- - - - -

3142 3142 + + +

- - - - - - -

+ + 3142 + +

- - -

3142 + + +

- -

+ + +

- -

+ + + + +

- - - - -

+ +

- -

+

-

+

-

+

-

3142 + +

- - -

+ + +

- - -

3142 +

-

3142 +

- -

3142 +

- -

+ + 3142 +

- - - - - -

+

-

+

-

+ +

- -

+ +

- -

3142 + +

- - - - - -

+ +

- - -

+ +

-

+ 3142 + +

- - -

3142 + +

- -

+ + +

-

+ +

- -

+ + + +

- - - -

+ + +

- - -

+ 3142 +

- - - -

+

-

+ + +

- - - - -

+ + + 3142

- - - -

Figure 3.3: Decomposition trees of random permutations of C of size 500 and 900

3.6 Conclusion and perspectives 139

3.6 Conclusion and perspectives

We provide an algorithm to compute a combinatorial specification for a permutation class
C = Av(B), when its basis B and the set of its simple permutations are finite and given
as input. The complexity of this algorithm is however still to analyze. In particular, we
observe a combinatorial explosion of the number of equations in the system obtained, that
needs to be quantified.

Combined with the results of the previous chapters, our procedure provides a full
algorithmic chain from the basis (when finite) of a permutation class C to a specification
for C (see Figure 3.4), as explained at the beginning of Part I. This procedure may fail
to compute its result, when C contains an infinite number of simple permutations, this
condition being tested algorithmically.

Is there a finite number of simple permutations in the class C=Av(B)?

O(n log n)

B: finite basis of excluded patterns

B contains only simple permutations
Av(B) is substitution-closed

B contains permutations that are not simple
Av(B) is not substitution-closed

NO

YES

Computation of the subset Sc of simple permutations in C

direct

STOP

O(N. l)4O(N. l . |B|)p+2

O(n log n+p)2k

Compute an ambiguous system
by propagation of pattern avoidance constraints

Constraints propagation

Compute an
unambiguous system
of equations
for generating
functions using the
inclusion-exclusion
principle

Disambiguation of the
combinatorial system

- transform intersecting
 unions into disjoint unions
 introducing complement sets
- express complement sets
 by means of pattern
 containment constraints

Generating functions
Boltzmann sampler

Specification for C

Figure 3.4: The full algorithmic chain starting from the basis B of a permutation class C,
with complexities given w.r.t. n =

∑
β∈B |β|, k =]B, p = max{|β| : β ∈ B}, N =]SC and

` = max{|π| : π ∈ SC} where SC is the set of simple permutations of C.

This procedure has two natural algorithmic continuations. First, with the dictionary
of [FS09], the constructors in the specification of C can be directly translated into op-
erators on the generating function C(z) of C, turning the specification into a system of
(possibly implicit) equations defining C(z). Notice that, using the inclusion-exclusion
principle as in [AA05], a system defining C(z) could also be obtained from an ambiguous
system describing C. Second, the specification can be translated directly into a Boltzmann
uniform random sampler of permutations in C, in the same fashion as the above dictionary
(see [DFLS04]). This second translation is possible only from an unambiguous system:
indeed, whereas adapted when considering enumeration sequences, the inclusion-exclusion
principle does not apply when working on the combinatorial objects themselves.

When generating permutations with a Boltzmann sampler, complexity is measured
w.r.t. the size of the permutation produced (and is linear if we allow a small variation on
the size of the output permutation; quadratic otherwise) and not at all w.r.t. the number
of equations in the specification. In our context, this dependency is of course relevant, and
opens a new direction in the study of Boltzmann random samplers.

With a complete implementation of the algorithmic chain from B to the specifica-
tion and of the Boltzmann sampler, one should be able to test conjectures on and study
permutation classes. One direction would be to somehow measure the randomness of per-
mutations in a given class, by comparing random permutations with random permutations
in a class, or random permutations in two different classes, w.r.t. well-known statistics on

140 Chapter 3. Combinatorial specification of permutation classes

permutations. Another perspective would be to use the specifications obtained to compute
or estimate the growth rates of permutation classes, to provide improvements on the known
bounds on these growth rates. We could also explore the possible use of the computed spec-
ifications to provide more efficient algorithms to test membership of a permutation to a
class.

However, a weakness of our procedure that we must acknowledge is that it fails to be
completely general. Although the method is generic and algorithmic, the classes that are
fully handled by the algorithmic process are those containing a finite number of simple
permutations. By [AA05], such classes have finite basis (which is a restriction we imposed
already), but they also have an algebraic generating function. Of course, this is not the case
for every permutation class. We may wonder how restrictive this framework is, depending
on which problems are studied. First, does it often happen that a permutation class
contains finitely many simple permutations? From the work of [Vat10] it seems that a
majority of permutations classes are not algebraic, thus do not contain finitely many simple
permutations. But to properly express what often means, a probability distribution on
permutation classes should be defined, which is a direction of research yet to be explored.
Second, we may want to describe some problems (maybe like the distribution of some
statistics) for which algebraic permutation classes are representative of all permutation
classes.

To enlarge the framework of application of our algorithm, we could explore the pos-
sibility of extending it to permutation classes that contain an infinite number of simple
permutations, but that are finitely described (like the family of oscillations of [BRV08] for
instance). With such an improvement, more classes would enter our framework, but it
would be hard to leave the algebraic case. This is however a promising direction for the
construction of Boltzmann random samplers for such permutation classes.

Part II

Sorting with two stacks in series

Foreword: Stack sorting

Sorting has a central place in computer science theory. It is known that to sort a sequence
of n elements in the comparison model, there is no general algorithm running in time less
than O(n log n). However, we can sort a sequence of n elements with a linear number of
comparison w.r.t. n with a single pass through a stack when it avoids the pattern 231.

A stack is a last-in first-out sorting device with push and pop operations (denoted by X
and S in Figure 3.5), introduced by Donald Knuth in the volume 1 of The Art of Computer
Programming [Knu68] in 1968. More precisely in Section 2.2.1 of [Knu68] entitled Stacks,
Queues and Deques we can find the following definitions:

A stack is a linear list for which all insertions and deletions (and usually all
accesses) are made at one end of the list.

A queue is a linear list for which all insertions are made at one end of the list;
all deletions (and usually all accesses) are made at the other end.

A deque (“double-ended queue”) is a linear list for which all insertions and
deletions (and usually all accesses) are made at the ends of the list.

We also distinguish output-restricted or input-restricted deques, in which dele-
tions or insertions, respectively, are allowed to take place at only one end.

Then in the exercises of this section, Knuth characterized and enumerated the permu-
tations that a stack could generate, taking the identity in input. By composition with the
inverse permutation, this is equivalent to characterizing and enumerating the permutations
that can be sorted with a stack: we say that a permutation σ is 1-stack-sortable if there is
a way to pass σ through a stack to produce the identity permutation 12 . . . n. More pre-
cisely, we consider σ as the sequence of integers σ1σ2 . . . σn (with σi = σ(i)) that we take
as input, and at each step two different operations are allowed, as depicted in Figure 3.5:

• either move X: take the next term of the input and push it on top of the stack

• or move S: pop the topmost element of the stack and write it in the output.

Then in volume 3 [Knu73a] Knuth introduced the problem of generating permutations
through serial compositions of stacks.

XS σ1 . . . σn
(input)

1 . . . n
(output)

Figure 3.5: Sorting with one stack

144

Following Knuth, Pratt [Pra73] studied the case of two stacks in parallel and general
deques and Tarjan generalized stack-sorting to sorting networks in the article Sorting Using
Networks of Queues and Stacks [Tar72] published in 1972. Tarjan’s model consists of an
acyclic directed graph with a designated input node s and output node t and additional
nodes representing sorting devices of type Q (queue) or S (stack).

For such a general model there are few results, but he studied particularly serial and
parallel compositions. For queues his results were quite complete but for stacks he ended
by commenting on the difficulty of these problems.

Since the 60’s, numerous variants appeared by either considering other types of com-
binatorial structures or by changing rules, and many cases were studied in the literature
(see [Bón02] for a survey).

In general a given sorting network does not allow one to sort all permutations. A
natural question is then which permutations can be sorted. This line of research has led
to the study of pattern involvement and permutation classes. Indeed Knuth [Knu68],
Tarjan [Tar72] and Pratt [Pra73] noted that the permutations sortable by the various
configurations could be described by forbidding certain patterns in the permutations.

For any sorting device, three natural questions among others arise:

1. Decision: what is the complexity of the problem consisting of deciding whether a
given permutation is sortable or not?

2. Characterization: can one characterize permutations that are sortable?

3. Counting: how many sortable permutations of size n?

For the one-stack case these three problems were solved by Knuth in [Knu68].
By encoding the push operation by the letter S and the pop operation by the letter X,

he showed that sorting processes are in bijection with well-parenthesized words. Then he
established that a given permutation cannot be sorted using two different words, showing
that the number of stack-sortable permutations of size n is the Catalan number 1

n+1

(
2n
n

)
.

Finally, he characterized sortable permutations as being permutations avoiding the
pattern 231, which is the earliest non-trivial example of a permutation class.

Notice that a greedy algorithm allows one to answer the decision problem in linear
time. Indeed given a permutation σ in input, if we want to sort σ we have to perform
move S if and only if the top of the stack is the next element to be output (i.e. the smallest
element not output yet). Otherwise we do move X. We stop once each element of σ is
passed through the stack. Then σ is 1-stack sortable if and only if the output obtained is
the identity.

There is another greedy algorithm allowing to answer the decision problem in linear
time. Indeed notice that if we want the output to be the identity, it is necessary that at
each step elements in the stack are decreasing from bottom to top (this condition is often
called Hanoi condition). Thus given a permutation σ in input, if we want to sort σ we have
to perform move X if and only if the top of the stack is greater than the next element in
the input. Otherwise we do move S. We stop once each element of σ is passed through the
stack. Then σ is 1-stack sortable if and only if the output obtained is the identity. This
algorithm is called right-greedy algorithm.

For a 1-stack sortable permutation σ, both greedy algorithms give the same result;
indeed they perform the only way to sort σ. For a permutation which is not 1-stack
sortable however these algorithms give different outputs. The result of the right-greedy
algorithm applied to σ is denoted S(σ) in the literature.

145

Since these seminal results for a single stack, the more general problem of sorting with
multiple stacks in series or in parallel has been widely studied.

σ1 . . . σn1 . . . n
(input)(output)

...

Figure 3.6: Sorting with stacks in parallel.

Regarding t parallel stacks, the decision problem can be answered in time O(n log n)
for t = 1, 2, 3, while for t > 3 it is NP-complete (this is proved by a reduction in [EI71] to a
problem solved in [Ung92]). The characterization problem is studied in [Pra73]: for t > 1,
the basis of the class of permutations sortable with t stacks in parallel is infinite. Finally,
about the counting problem, when t = 2 the generating function is described in [ABM] by
a system of equations with an extra variable.

σ1 . . . σn1 . . . n
(input)(output) · · ·

Figure 3.7: Sorting with stacks in series.

For stacks in series, it has been shown in Exercise 5.2.4.19 of [Knu73a] that every
permutation of size n can be sorted by log2(n) stacks in series. But none of the above
three questions has been answered for more than one stack in series. For two stacks,
Murphy [Mur02] proved that the basis of the class of sortable permutations is infinite,
but the actual set is unknown. In his PhD thesis, he also studies the problem of deciding
whether a given permutation is sortable with 2 stacks in series. He reduced this problem to
a 3-SAT problem; at the same time he reduced a 2-SAT instance to the decision problem,
and hoped than one of both reductions was actually an equivalence. But none of those
results has been proved or disproved. In [Bón02], Bóna gives an overview of advances in
sorting networks and mentions this problem as possibly NP-complete. More recently, this
problem is also mentioned as possibly NP-complete in [AAL10]. More surprising, both
conjectures exist: in [AMR02], the authors conjectured that the decision problem is NP-
complete, while Murphy in his PhD ([Mur02] Conjecture 260) conjectured that it is in the
complexity class P .

To make further progress on stacks in series, several weaker variants have been studied.
First, West considered permutations sortable with two consecutive right greedy passes
through a stack in [Wes90, Wes93]. Those permutations, called West-2-stack sortable, are
a strict subset of general 2-stack sortable permutations. However in the literature they are

146

often referred to simply as 2-stack sortable permutations. Be careful that this is not the
case in this thesis: we use 2-stack sortable only for the unrestricted case. West-2-stack
sortable permutations do not form a permutation class, since 35241 is West-2-stack sortable
whereas its pattern 3241 is not. However these permutations can be described using an
extended notion of pattern. West conjectured the enumeration formula which was proved
after by Zeilberger [Zei92]: there are 2(3n)!

(n+1)!(2n+1)! West-2-stack sortable permutations of
size n.

More generally for any integer t a permutation is West-t-stack sortable if St(σ) is the
identity, i.e. if σ is sorted after t right greedy passes through a stack. For t > 2, few results
are known [Úlf11].

Another variant studied in [AMR02] is to consider decreasing stacks instead of general
stacks: in this model the stacks have to respect the Hanoi condition (i.e. elements in the
stacks must be decreasing from bottom to top). This variant is less restricted than the one
of West but there are still some permutations sortable with general stacks in series that
cannot be sorted with this model.

For two decreasing stacks in series, the three above problems are solved in [AMR02]: a
left greedy algorithm allows one to decide in linear time whether a permutation is sortable
with two decreasing stacks in series. Moreover permutations sortable with this restriction
form a permutation class whose basis is infinite but explicit. Finally the generating function
of these permutations is known.

In this part of the thesis, we define a new restriction of 2-stack sorting, namely 2-
stacks pushall sorting, and prove that the decision problem in this case is polynomial.
Moreover we give a quadratic algorithm computing an encoding of all pushall sortings of
a given permutation taken in input. Finally we show that this variant is closely linked
with general 2-stack sorting and we deduce a polynomial algorithm deciding whether a
permutation given in input is sortable with two general stacks in series, settling a long-
standing open problem.

Chapter 4

Pushall sorting: a new notion closely
linked with general sorting

In this chapter we introduce 2-stack pushall permutations which form a subclass of 2-
stack sortable permutations and we show that these two classes are closely related. We
study the two corresponding bases, which are infinite, and characterize permutations of the
bases whose decomposition tree has a linear root. Moreover, we characterize every possible
pushall sorting of a permutation by means of a bicoloring of the permutation. Finally, we
give an optimal O(n2) algorithm which decides whether a given permutation of size n is
2-stack pushall sortable and which describes all its pushall sortings.

148 Chapter 4. Pushall sorting: a new notion linked with general sorting

4.1 Introduction

While the case of a single stack is fairly simple, once one uses many stacks, be they in
parallel or in series, studying stack sorting becomes very difficult.

Here we focus on sorting with two stacks in series. There are few general results: We
know that permutations sortable with two stacks in series form a class, that we call 2-stack
sortable permutations. Murphy [Mur02] proved that its basis is infinite. This basis is
still unknown. Albert, Atkinson and Linton worked on the growth rate of 2-stack sortable
permutations and bounded it between 8.156 and 13.374 (see [AAL10]).

Because general stack sorting has proven to be so complex to work with, a classical
strategy emerged over the last 40 years: define simplifications and restrictions of the prob-
lem, in the hope that they will evolve into insight of their own, or into attacks of the main
problem.

Here, we define a new restriction called pushall sorting which allows to prove that
deciding whether a permutation is 2-stack sortable is polynomial.

A permutation is 2-stack pushall sortable if it is sortable with two stacks in series by
a sorting process in two parts, the first part consisting only in putting all the elements in
the stacks (only operations ρ and λ defined p.149 are allowed: operation µ is forbidden),
and the second part consisting only in popping out the elements in increasing order (only
operations λ and µ are allowed: operation ρ is forbidden).

The origin of this idea and the reason why it is closely linked with general sorting with
two stacks in series is that a permutation that ends with 1 is 2-stack sortable if and only
if it is 2-stack pushall sortable. More precisely, a permutation σ is 2-stack pushall sortable
if and only if 	[σ, 1] is 2-stack sortable. Solving pushall sorting is thus a prerequisite for
solving general sorting.

The key idea to study this new kind of sorting is that a pushall sorting process can be
viewed as two steps of sorting with a single stack. Indeed the first part of the procedure
consists in doing only two operations (ρ and λ) thus it can be viewed as sorting with
one stack (the right one H) considering the left stack V as the output, and the second
part of the process consists in doing only two operations (λ and µ) to pop out elements in
increasing order thus it can be viewed as sorting with one stack (the left one V) considering
the right stack H as the input.

When sorting with a single stack with an input and an output fixed, all operations are
determined. Thus in a pushall sorting process of a given permutation, the stack configura-
tion at the end of the first part of the process encodes the whole process. We characterize
such stack configurations, which in particular contain all the elements of the input permu-
tation, and we show that they are in one-to-one correspondence with some bicolorings of
the diagram of the permutation that we call valid colorings and that are defined thanks to
forbidden colored patterns.

Then to obtain a O(n2) algorithm computing all the valid colorings for a permutation of
size n, we first show that we can test in linear time whether a given bicoloring is valid, and
then that it is sufficient to check a linear number of bicolorings among the 2n possibilities.
To restrict the number of bicolorings to test, we perform a detailed study of valid colorings,
showing that the color of some particular increasing sequences fixes the color of every other
point.

This chapter is organized as follows. In Section 4.2 we define 2-stack pushall sorting and
show the close correlation with general 2-stack sorting by studying stack words and stack
configurations in these two models. This combinatorial study concludes on some partial
characterization of both classes in terms of permutations they contain or permutations

4.2 Pushall sorting vs. 2-stack sorting 149

HV

ρ
INPUT

λµ
OUTPUT

Figure 4.1: Sorting with two stacks in series.

in the basis. The key idea is to use the block-decomposition of permutations given in
Theorem 0.27.

Then in Section 4.3 we prove that 2-stack pushall sorting can be expressed as a 2-color
problem on the diagram of permutations. Moreover we characterize valid colorings of dia-
grams of permutations by studying the color of increasing sequences. This characterization
leads to a polynomial algorithm to check whether a permutation is 2-stack pushall sortable
by finding all valid colorings for its diagram.

Section 4.4 refines the results of Section 4.3 by limiting the number of colorings to
test. This leads to an optimal algorithm computing in quadratic time an encoding of
all pushall sortings of a given permutation, which thus decides whether a permutation is
2-stack pushall sortable.

4.2 Pushall sorting vs. 2-stack sorting

In this section we define pushall sorting and point out the close link between 2-stack sorting
and 2-stack pushall sorting. Moreover, for each of these sorting problems we exhibit some
recursive necessary and sufficient conditions for a permutation σ to be sortable when σ is
	-decomposable and when σ is ⊕-decomposable (see Definition 0.26 p.25). We conclude
the section by studying the basis of 2-stack sortable permutations and the basis of pushall
sortable permutations.

4.2.1 A word approach

First recall formally the problem of sorting with two stacks in series. Given two stacks H
and V in series –as shown in Figure 4.1– and a permutation σ, we want to sort elements
of σ using the stacks. We consider σ as the sequence of integers σ = σ1σ2 . . . σn with
σi = σ(i) and take it as input.

Then at each step we have three possible operations as described in Figure 4.1:

ρ: Take the next element of σ still in the input and push its value on top of the first
stack denoted H.

λ: Pop the topmost element of stack H and push it on top of the second stack V .

µ: Pop the topmost element of stack V and write it to the output.

We iterate over these three possibilities until all elements have been output. If there
exists a sequence of operations that leads to the identity on the output, then we say that
the permutation is 2-stack sortable.

150 Chapter 4. Pushall sorting: a new notion linked with general sorting

Example 4.1. The permutation 2431 is sortable using the following process:

2 4 3 1 2
4

3 1 24 3 1 2
3

4 1 24
3

1 2
1

4
3

24
3
1

24
3

1 4
3
2

1 4
3

1 2 41 2 3 1 2 3 4

Not all permutations are 2-stack sortable: the smallest non-sortable ones are of size 7,
for instance σ = 2435761.

In a sorting process with two stacks in series, each operation performed can be encoded
with a letter. For example, whenever an element is popped from stack H and pushed in
stack V , we write λ (see Figure 4.1). Thus a sequence of operations is encoded by a word
on the alphabet {ρ, λ, µ} whose length is the number of operations performed. However
not all words on the alphabet {ρ, λ, µ} describe sorting processes. For example a word
encoding a sorting process has to begin with letter ρ. Moreover a word encoding a sorting
process of a permutation of size n has 3n letters: n times each letter ρ, λ, µ. Words on
the alphabet {ρ, λ, µ} encoding a sorting process are called stack words and are formally
defined below:

Definition 4.2. Let α ∈ {ρ, λ, µ} and w a word on the alphabet {ρ, λ, µ}. Then |w|α
denotes the number of letters α in w.

A stack word w is a word over the alphabet {ρ, λ, µ} such that |w|ρ = |w|λ = |w|µ and
for all prefix v of w, |w|ρ ≥ |w|λ ≥ |w|µ.

Intuitively a stack word is a word which describes a sequence of appropriate stack
operations which take a permutation through two stacks in series (without necessarily
sorting it).

Definition 4.3. A permutation σ is 2-stack sortable if there exists a stack word encoding
a sorting process which leads to the identity in the output with σ as input. Such a word
is called a sorting word for σ.

Example 4.4. The permutation 2431 is 2-stack sortable and ρρλρλρλµλµµµ is a sorting
word of 2431 encoding the sorting process given in Example 4.1.

In general there are several sorting words for a given permutation. For example, the
permutation 2431 admits either ρρλρλρλµλµµµ or ρλρρρλµµλµλµ as sorting words. Note
also that ρ and µ commute: if w is a sorting word for σ and w′ is obtained from w by
exchanging adjacent letters ρ and µ, then w′ is a sorting word for σ. In his PhD [Mur02],
Murphy studied 2-stack sorting by studying stack words. This presentation of 2-stack
sorting allows us to define formally 2-stack pushall sorting.

Definition 4.5. A pushall stack word is a stack word such that the first occurrence of µ
is after the last occurrence of ρ. A permutation σ of size n is 2-stack pushall sortable if
and only it admits a pushall sorting word.

More informally, 2-stack pushall sortable permutations are those which can be sorted
by pushing all elements in the stacks before writing any element to the output.

For example 2431 is 2-stack pushall sortable as the word ρρλρλρλµλµµµ respects the
required condition (as does ρλρρρλµµλµλµ).

Remark 4.6. A stack word w is a pushall stack word if and only if it can be written
as w = uv with u ∈ {ρ, λ}∗ and v ∈ {λ, µ}∗. This decomposition is not unique. In
the preceding example, the word w = ρρλρλρλµλµµµ admits two decompositions: w =
(ρρλρλρ)(λµλµµµ) and w = (ρρλρλρλ)(µλµµµ).

4.2 Pushall sorting vs. 2-stack sorting 151

The previous definition of 2-stack pushall sortable permutations implies that they form
a subset of 2-stack sortable permutations. Moreover it is easy to check that 2-stack pushall
sorting is stable by pattern relation: if σ is 2-stack pushall sortable then every pattern π
of σ is 2-stack pushall sortable. Indeed choose an occurrence of π in σ and a sorting word
w of σ. To obtain a pushall sorting word of π, delete the letters of w that correspond to
elements of σ not involved in the occurrence of π. The same reasoning holds for general
2-stack sorting.

Proposition 4.7. The set of 2-stack pushall permutations forms a subclass of the 2-stack
sortable permutation class.

We do not know how big this subclass is, nor whether or not it is negligible with respect
to the whole class. However there exists a close correlation between these two classes and
solving 2-stack pushall sorting is a prerequisite for the more general case. We first study
the possible configurations of the stacks during a sorting process. This will help us to
obtain properties of stack sortable permutations thanks to their decomposition. In a last
subsection, we study the basis of the 2-stack sortable permutation class and show how it
is correlated to the 2-stack pushall one.

4.2.2 Stack configurations

At each step of a sorting process, some elements of the permutation lie in the stacks (or
maybe none). We call a stack configuration the position of these elements in stacks H and
V . In this section, we exhibit in Theorem 4.13 a necessary condition on stack configurations
to be part of a sorting process. Then we give a one-to-one correspondence between pushall
sorting processes and some particular stack configurations in Theorem 4.19. First we define
formally stack configurations:

Definition 4.8. A stack configuration is a pair of two vectors of positive integers (
−→
V ,
−→
H)

of arbitrary (and maybe different) sizes, such that all coordinates are distinct. A stack
configuration may be empty (if both vectors are of size zero). Vector

−→
V (resp.

−→
H) represents

elements that are in stack V (resp. H) given from bottom to top, so we can apply to stack
configurations operations λ and µ, and also operation ρ if we know what is the next integer
in the input.

A stack configuration is poppable if all elements in stacks H and V can be popped out
in increasing order (using operations λ and µ).

Let σ be a permutation, a stack configuration of σ is a stack configuration in which
coordinates are bounded by |σ|.

Definition 4.9. To any stack word w of size 3n and permutation σ of size n we associate
the sequence of 3n + 1 stack configurations

(
ck(w, σ)

)
k≥0

describing how the sequence of
operations w = w1 . . . w3n takes σ through the stacks: c0(w, σ) is empty and we obtain
ck+1(w, σ) from ck(w, σ) by doing operation wk with σ as input at the beginning.

Definition 4.10. Let σ be a permutation. A stack configuration c is reachable for σ if
there exists a stack word w and an integer k such that c = ck(w, σ). A stack configuration
c is total for σ if all integers from 1 to |σ| appear in c (this notion depends only on |σ|, we
don’t need c to be reachable for σ).

Intuitively, a stack configuration is reachable for σ if taking σ as input, there exists
a sequence of operations ρ, λ, µ leading to this configuration. Note that in any reachable
configuration, elements of H are in increasing order of indices from bottom to top. Another
important remark is that:

152 Chapter 4. Pushall sorting: a new notion linked with general sorting

Remark 4.11. Let w be a stack word of size 3n and σ a permutation of size n. Then w
is a pushall stack word if and only if at least one of the stack configurations

(
ck(w, σ)

)
k≥0

is total.

During a sorting process, stack configurations must be poppable, which implies some
constraints. Recall that in one-stack sorting, the stack must be in decreasing order (from
bottom to top). For two-stack sorting, we have the same decreasing constraint on stack V
but other constraints appear that can be represented as stack patterns.

Definition 4.12. The unsortable stack-patterns are the following three patterns, denoted
respectively |12| |, | |132| and |2|13|:

HV

1
2

HV

1
3
2

HV

1
3

2

More precisely pattern |12| | means that there is in stack V one element which has a smaller
element below it. Pattern | |132| means that there is in stack H one element which has a
greater element below it and a smaller element further below. Pattern |2|13| is somehow
special as the pattern is divided in both stacks. It means that there are elements a, b, c
such that b ∈ V , a, c ∈ H, a < b < c and c is above a in stack H.

Theorem 4.13. A stack configuration is poppable if and only if it avoids each unsortable
stack-pattern.

Proof. Notice that if a stack configuration contains any of the 3 unsortable stack-patterns,
then elements involved in the pattern cannot be popped out in increasing order.

Conversely, we prove by induction on the number of elements in the stacks that a
configuration which avoids the 3 unsortable stack-patterns is poppable. Suppose that the
result has been proved for all stack configurations with k elements. Note that the result
is trivially true for k ≤ 2. Let c be a stack configuration with k + 1 elements avoiding the
3 unsortable stack-patterns and m the smallest element of this configuration. We show
that m can be popped out so that the stack configuration of the k remaining elements still
avoids the 3 unsortable stack-patterns. Without loss of generality assume m = 1.

Suppose that 1 lies in stack V . As c avoids pattern |12| |, V is in decreasing order
so 1 is at the top of it. It can be popped out and there remain k elements still avoiding
the 3 unsortable stack-patterns. Thus they can be all popped out in increasing order by
induction.

Suppose now that 1 lies in stack H. As c avoids pattern | |132| and 1 is the smallest
element, all elements above 1 are in increasing order (from 1 to top). All these elements
can be pushed onto stack V so that stack V remains in decreasing order. Indeed as c
avoids pattern |2|13|, the top of stack V is greater than the top of stack H. When all
elements above 1 in stack H are transferred onto stack V , then 1 can be popped out
both stacks H and V and the remaining configuration still avoids the 3 unsortable stack-
patterns (as c avoids pattern | |132|, no pattern |2|13| has been created) and we can apply
the induction. �

Remark 4.14. There is at most one way to pop out in increasing order elements from a
stack configuration. Indeed to pop out we only use operations µ and λ, and if we want
to pop out in increasing order we have to perform operation µ if and only if the smallest
element lies in the top of V .

4.2 Pushall sorting vs. 2-stack sorting 153

Algorithm 10: Pop out in increasing order
Data: σ a permutation and c a total stack configuration of σ.
Result: True if c is poppable.

1 i←− 1;
2 while i ≤ |σ| do
3 if top(V) = i then
4 pop out top(V) from stack V and let i←− i+ 1
5 else
6 if H is non-empty then
7 pop top(H) from stack H and push it into V ;
8 else
9 Return false;

10 end
11 end
12 end
13 Return true;

Proposition 4.15. Let c be a total stack configuration of a permutation σ. Then Algo-
rithm 10 applied to c returns true if and only if c is poppable. Moreover Algorithm 10 runs
in linear time w.r.t. |σ|.

Proof: At each step, Algorithm 10 performs either an operation µ or an operation λ. As
at most |σ| operations µ and |σ| operations λ can be done, it runs in linear time w.r.t. |σ|.
We conclude using Remark 4.14. �

Theorem 4.13 gives conditions for a stack configuration to be poppable. Conditions of
this theorem must be verified at each step of a sorting process. This is formalized in the
following proposition:

Proposition 4.16. If w is a sorting word for the permutation σ, then each stack configu-
ration of

(
ck(w, σ)

)
k≥0

avoids the 3 unsortable stack-patterns.

The converse is not true: let w = (ρλµ)n then for any permutation σ of size n, each
stack configuration of

(
ck(w, σ)

)
k≥0

avoids the 3 unsortable stack-patterns (as there is at
most one element in the stacks); but if σ is not the identity, w is not a sorting word for σ.

For 2-stack pushall sorting, however, it is sufficient to check whether the stack configu-
ration obtained just after the last element of σ has been pushed onto H is total and avoids
the 3 unsortable stack-patterns.

Theorem 4.17. A permutation σ is 2-stack pushall sortable if and only if there exists a
poppable reachable total stack configuration of σ, i.e. if and only if there is a way to put
all its elements in the stacks so that the total stack configuration obtained avoids the three
unsortable stack-patterns.

Proof: If σ is 2-stack pushall sortable, consider a pushall sorting process of σ. Then the
stack configuration obtained just after the last element of σ has been pushed onto H is a
poppable reachable total stack configuration of σ.

Conversely let c be a poppable reachable total stack configuration of σ. Then by
definition there is a way to reach c starting with σ as input, and then elements of c can be
popped out in increasing order, leading to a pushall sorting process of σ.

We conclude using Theorem 4.13. �

Poppable reachable total stack configurations are not only a witness for a permutation
to be 2-stack pushall sortable, but they encode pushall sorting processes:

154 Chapter 4. Pushall sorting: a new notion linked with general sorting

Proposition 4.18. Let c be a poppable reachable total stack configuration of a permutation
σ. Then there exists a unique pushall stack word w and a unique integer k such that
c = ck(w, σ). Moreover c characterizes w : knowing only c and σ, we can compute w in
linear time.

Proof. Since c is poppable, from Remark 4.14, there is a unique way to pop out elements of
c in increasing order, which is computed in linear time by Algorithm 10. Similarly, starting
with σ as input there is a unique way to obtain configuration c, which can be computed in
linear time. Indeed as c is total we only use operations ρ and λ, and if we want to obtain
c we have to perform operation λ if and only if the the top of H is the next element that
is in V in configuration c. �

More informally, a pushall sorting process can be viewed as two steps of sorting with
only one stack. Indeed the first part of the procedure consists in doing only operations ρ
and λ thus it can be viewed as sorting with one stack (the right one H) considering the left
stack V as the output and the second part of the process consists in doing only operations
λ and µ to pop out elements in increasing order thus it can be viewed as sorting with one
stack (the left one V) considering the right stack H as the input.

Since when there is only one stack, knowing only the input and the output all opera-
tions are determined, then in pushall sorting, knowing the input and only one total stack
configuration of the pushall sorting process, all operations are determined.

This encoding of pushall sorting processes by poppable reachable total stack configu-
rations allows to build some bijections:

Theorem 4.19. Let σ be a permutation. Then there is a one-to-one correspondence be-
tween:

• Pushall sorting processes of σ

• Pushall stack words of σ

• Poppable reachable total stack configurations of σ where σn is at the top of stack H

• Poppable reachable total stack configurations of σ where 1 is at the top of stack V

Proof: The bijection between sorting processes and stack words is clear. We establish the
two bijections between sorting processes and stack configurations.

During a pushall sorting process of σ, there is a unique total stack configuration such
that σn is at the top of stack H: the one just after σn is pushed into H. Indeed if there
are two stack configurations at times t and t′ such that σn is at the top of stack H, then
since these configurations are different at least one operation is performed between time
t and time t′, but only operation µ can be done so that σn stays at the top of stack H.
Thus at least one operation µ is performed and one of these configurations is not total.

We show similarly with operation ρ instead of operation µ that during a pushall sorting
process of σ, there is a unique total stack configuration such that 1 is at the top of stack
V : the one just before 1 is popped out of V .

Conversely from Proposition 4.18, to any poppable reachable total stack configuration
of σ corresponds exactly one pushall sorting process of σ. �

4.2.3 Decomposition and stack sorting

In this subsection, we exhibit necessary and sufficient conditions for a permutation which
is 	 or ⊕-decomposable to be 2-stack sortable (resp. 2-stack pushall sortable).

4.2 Pushall sorting vs. 2-stack sorting 155

	-decomposable permutations:

Proposition 4.20. A permutation σ = 	[π(1), π(2), . . . , π(k)] is 2-stack sortable if and only
if every π(i) for i ∈ {1 . . . k − 1} is 2-stack pushall sortable and π(k) is 2-stack sortable.

Proof. Suppose that σ is 2-stack sortable. Let wσ be a sorting word of σ. For i ∈ {1 . . . k},
consider the subword wπ(i) of wσ by taking letters corresponding to an element of π(i). This
word is of size 3|π(i)| and has equal number of occurrences of the letters ρ, λ, µ. Moreover,
it is a sorting word for π(i) as the relative order of elements of π(i) under the action of wπ(i)

will be the same as the action of wσ on σ. Furthermore, as the element 1 in σ belongs to the
last block π(k), all elements of π(i) are pushed into the stacks before the first pop. Hence
π(i) is 2-stack pushall sortable. Finally, 2-stack sortable permutations form a permutation
class, so that π(k) must be 2-stack sortable.

Conversely, if every π(i) for i ∈ {1 . . . k − 1} is 2-stack pushall sortable and π(k) is
2-stack sortable, let wi (1 ≤ i ≤ k − 1) be a pushall stack word for π(i) and wk be a
stack word for π(k). Then each wi (1 ≤ i ≤ k − 1) can be written as w′iw

′′
i where w′i

contains no occurrence of µ and w′′i no occurrence of ρ. It is easy to check that the word
w′1w

′
2 . . . w

′
k−1wkw

′′
k−1w

′′
k−2 . . . w

′′
1 is a sorting word for σ, hence σ is 2-stack sortable. �

With a similar proof, we have the following result when restricting to 2-stack pushall
sortable permutations:

Proposition 4.21. A permutation σ = 	[π(1), π(2), . . . , π(k)] is 2-stack pushall sortable if
and only if every π(i) for i ∈ {1 . . . k} is 2-stack pushall sortable.

⊕-decomposable permutations: For general sorting, the case where σ is⊕-decomposable
is easy to deal with as each block of the decomposition can be popped out as soon as it is
pushed into the stacks. So the only condition is given in the following proposition:

Proposition 4.22. If σ = ⊕[π(1), . . . , π(k)] then σ is 2-stack sortable if and only if each
π(i) is 2-stack sortable.

For pushall sorting, ⊕-decomposable permutations are harder to handle. As no element
can be popped out before all elements have been pushed, the element 1 which belongs to
the first block must remain in the stacks until all elements are pushed. This induces several
constraints which are proved in the following propositions. All these propositions aim at
proving Theorem 4.23 which fully characterizes ⊕-decomposable 2-stack pushall sortable
permutations.

Theorem 4.23. Let σ be a ⊕-decomposable permutation. Then σ is 2-stack pushall sortable
if and only if σ avoids the set B+ of 37 patterns of size 6, 7 or 8, where
B+ = {132465, 135246, 142536, 142635, 143625, 153624, 213546, 214365, 214635, 215364,

241365, 314265, 315246, 315426, 351426, 1354627, 1365724, 1436527, 1473526, 1546273,

1573246, 1624357, 1627354, 1632547, 1632574, 1642573, 1657243, 2465137, 2631547,

2635147, 3541627, 4621357, 4652137, 5136427, 5162437, 21687435, 54613287}.

The proof proceeds step by step in Propositions 4.24 to 4.31.

Proposition 4.24. Let σ be a permutation such that either:

• σ ∈ Av(132)

• σ ∈ Av(213)

156 Chapter 4. Pushall sorting: a new notion linked with general sorting

• σ ∈ ⊕[Av(132), Av(213)]

• σ ∈ ⊕[Av(213), Av(132)]

Then σ is 2-stack pushall sortable.

Proof. Using Theorem 4.17, we only have to prove that we can put all elements of σ in
the stacks so that they avoid the three unsortable patterns (see Definition 4.12 (p.152).
In the first case, just push every element in stack H using only operations ρ. For the
second case, we know from Knuth [Knu73a] that each permutation avoiding 231 can be
sorted in increasing order with one stack. So each permutation avoiding 213 can be sorted
in decreasing order with one stack. Hence we can use stack H to push all elements of
σ in decreasing order onto stack V . For the last two cases, we push the elements of σ
corresponding to Av(132) in stack H and those corresponding to Av(213) in stack V . In
each case, the stack configuration avoids the three unsortable patterns. �

Note that Proposition 4.24 gives a sufficient condition which is not necessary: the
permutation 143652 is 2-stack pushall sortable using the word ρρλρλλρρρµλµµµλµλµ,
and 143652 is ⊕-decomposable but does not belong to one of the preceding cases. In this
proposition, an important role is given to classes Av(213) and Av(132). These indeed are
exactly the classes of permutations that can be pushall sorted with a stack configuration
where all elements lie in one single stack (V for Av(213) and H for Av(132)). Thus the
only difficult case is whenever a permutation contains both patterns 132 and 213. This is
characterized by the following proposition:

Proposition 4.25. A permutation σ contains both patterns 213 and 132 if and only if it
contains one of the following patterns: 1324, 2143, 2413, 3142, 465213 and 546132.

Figure 4.2: Minimal permutations containing patterns 132 and 213.

Proof. Minimal permutations that contain both 132 and 213 are exactly permutations of
the basis of Av(132)

⋃
Av(213). By minimality of the elements of the basis those permu-

tations are at most of size 6 and a comprehensive study ends the proof. �

To prove a complete characterization of ⊕-decomposable 2-stack pushall sortable per-
mutations, we first deal with the case where the first and the last block of the⊕-decomposition
are non-trivial –i.e. not reduced to a singleton.

Proposition 4.26. Suppose σ = ⊕[α1 . . . αr] with r ≥ 2, each αi ⊕-indecomposable and
blocks α1 and αr are non-trivial. Then σ is 2-stack pushall sortable if and only if σ avoids
every pattern of B1 = {132465, 213546, 214365, 214635, 215364, 241365, 314265, 1657243,
4652137, 21687435, 54613287}.

Proof. By checking each pushall stack word of the appropriate size we determine that the
permutations in B1 are not 2-stack 2-stack pushall sortable. Hence if σ is 2-stack pushall
sortable it avoids B1. Conversely, let σ be a permutation avoiding every pattern of B1.
As α1 and αr are non-trivial and ⊕-indecomposable, they contain 21 as a pattern. But σ

4.2 Pushall sorting vs. 2-stack sorting 157

avoids 214365 so that blocks αi with 2 ≤ i ≤ r − 1 are trivial. Let I = {i | αi contains
132} and J = {j | αj contains 213}. These sets are both included in {1, r} and no one is
equal to {1, r} as σ avoids 132465 and 213546.

• If I = J = ∅, then α1 ∈ Av(132) and ⊕[α2 . . . αr] ∈ Av(213)
so σ ∈ ⊕[Av(132), Av(213)] and σ is 2-stack pushall sortable by Proposition 4.24.

• If I = ∅ and J = {j0}, then j0 ∈ {1, r}. If j0 = 1 then α1 ∈ Av(132) and
⊕[α2 . . . αr] ∈ Av(213) hence σ ∈ ⊕[Av(132), Av(213)] and σ is 2-stack pushall
sortable by Proposition 4.24. If j0 = r, as σ avoids 213546 then r = 2, but α1 ∈
Av(213) and αr ∈ Av(132) hence σ ∈ ⊕[Av(213), Av(132)]. Thus σ is 2-stack pushall
sortable by Proposition 4.24.

• If I = {i0} and J = ∅, then i0 ∈ {1, r}. If i0 = 1, as σ avoids 132465 then
r = 2, but α1 ∈ Av(213) and αr ∈ Av(132) hence σ ∈ ⊕[Av(213), Av(132)]. So
σ is 2-stack pushall sortable by Proposition 4.24. If i0 = r then α1 ∈ Av(132)
and ⊕[α2 . . . αr] ∈ Av(213) hence σ ∈ ⊕[Av(132), Av(213)] and σ is 2-stack pushall
sortable by Proposition 4.24.

• If I = {i0} 6= J = {j0}. If i0 = 1 then j0 = r and r = 2 as σ avoids 132465.
But α1 ∈ Av(213) and αr ∈ Av(132) hence σ ∈ ⊕[Av(213), Av(132)] and σ is 2-
stack pushall sortable by Proposition 4.24. If i0 = r then j0 = 1, α1 ∈ Av(132)
and ⊕[α2 . . . αr] ∈ Av(213) hence σ ∈ ⊕[Av(132), Av(213)]. So σ is 2-stack pushall
sortable by Proposition 4.24.

• If I = J = {i0}, then by Proposition 4.25, αi0 contains either 1324, 2143, 2413, 3142,
465213 or 546132. Then we prove that σ contains a pattern of B1, proving that this
case is excluded. Indeed if αi0 contains 1324, either i0 = 1 and σ contains 132465, or
i0 = r and σ contains 213546. Similarly if αi0 contains 2143, then σ contains 214365.
With the same argument (noticing that either i0 = 1 or i0 = r),

if αi0 contains: 2413 3142 465213 546132

then σ contains: 241365 314265 46521387 54613287

(thus 4652137)

or 214635 or 215364 or 21687435 or 21768354

(thus 1657243)

Hence the case I = J = {i0} cannot occur. �

Now we deal with the case where the first block of the ⊕-decomposition is trivial. We
first need a few definitions.

Given two permutation classes C and C′, their horizontal juxtaposition [C C′] consists of
all permutations σ that can be written as a concatenation [π, τ] where π is order isomorphic
to a permutation in C and τ is order-isomorphic to a permutation in C′. In other words,
a diagram of a permutation σ ∈ [C C′] can be divided by a vertical line into two parts,
such that the left one is order-isomorphic to a permutation of C and the right one to a

permutation of C′. We can similarly define the vertical juxtaposition

 C
C′

 consisting of

permutations having a diagram cut by a horizontal line.

Proposition 4.27. A permutation ⊕[1, σ] is 2-stack pushall sortable if and only if
σ ∈

[
Av(213) Av(132)

]
and there exists an associated decomposition σ = [π, τ] such that

there is no pattern 213 in σ where 2 is in π and 13 is in τ .

158 Chapter 4. Pushall sorting: a new notion linked with general sorting

Proof. If σ = [π, τ] with this decomposition satisfying the hypothesis of the proposition,
then ⊕[1, σ] is 2-stack pushall sortable using the following algorithm. Put 1 in H. Then
push elements of π in stack V in decreasing order. Then put 1 at top of V and finally push
every element of τ onto H. As there is no pattern 213 in σ with 2 in π and 13 in τ , the
stack configuration obtained avoids the 3 unsortable stack-patterns hence can be popped
out from Theorem 4.13.

Conversely, suppose that ⊕[1, σ] is 2-stack pushall sortable and consider a pushall
sorting process for this permutation. As 1 is the first element, the first operation is to
push 1 to the bottom of H. Then maybe some elements are pushed onto 1 and into V
before 1 is popped out from stack H to stack V . The remaining elements are pushed into
H as they are greater than 1. We consider the stack configuration just before 1 is written
in the output. At this moment, all elements have been pushed and 1 is at the top of V .
This separates into two parts the elements of σ taking τ as the elements in H and π the
elements in V apart from 1. From Theorem 4.13 decomposition σ = [π, τ] satisfies the
conditions of the statement. �

Proposition 4.28. Let E = {σ | ⊕[1, σ] is 2-stack pushall sortable }. Then E is a
finitely based permutation class whose basis is B2 = {21354, 24135, 31425, 31524, 32514,
42513, 243516, 254613, 325416, 362415, 435162, 462135, 513246, 516243, 521436, 521463,
531462, 546132, 4652137}.

Proof. As 2-stack pushall sortable permutations form a permutation class, so does E. Let
B2 be the basis of E. To prove that B2 is finite, we prove that every permutation in B2

has size less than 9. Then a comprehensive computation gives the permutations in B2.
By Proposition 4.27, E = {σ = [π, τ] | π ∈ Av(213), τ ∈ Av(132) and there is no

pattern 213 in σ where 2 is in π and 13 is in τ}. Let σ ∈ B2.By definition σ 6∈ E so
σ 6∈ Av(213) and σ 6∈ Av(132). Let σiσjσk be a pattern 132 such that i is maximal and
σrσsσt be a pattern 213 such that t is minimal, then r minimal (for t fixed) and finally s
maximal (for t and r fixed).

• If t < i then θ = σrσsσtσiσjσk /∈ E, hence by minimality of the basis σ = θ so
|σ| = 6.

• If t = i then θ = σrσsσiσjσk /∈ E and by minimality σ = θ so |σ| = 5.

• If t > i, consider the pattern σrσsσt (shown in Figure 4.3). Minimality conditions
for t and r and the maximality condition for s imply that the gray zones in the
diagram of σ are empty. So s = t−1. As σ /∈ E, there is no possible cut σ = πτ such
that π ∈ Av(213), τ ∈ Av(132) and there is no pattern 213 in σ where 2 is in π and
13 is in τ . Hence, all cuts in σ are forbidden, either because they are to the left of a
132 pattern or to the right of a 213 pattern or between element 2 and 1 of a pattern
213. More specially the cut between t− 1 and t is forbidden. This cut cannot be to
the left of a pattern 132 by maximality of i (t > i) and cannot be to the right of a
pattern 213 by minimality of t. So this cut is between elements 2 and 1 of a pattern
213. We consider a pattern 213 denoted by σxσyσz such that x is minimal and y is
minimal for x fixed among patterns 213 such that x ≤ s = t− 1 and y ≥ t.

• If r ≤ i, then E does not contains the pattern θ of σ obtained by keeping
elements of {σrσsσtσiσjσkσxσyσz}. Indeed all cuts are forbidden: those before
r by σiσjσk, between r and s by σrσsσt, between s and t by σxσyσz and after
t by σrσsσt. So by minimality of the basis |σ| ≤ 9.

4.2 Pushall sorting vs. 2-stack sorting 159

σs

σt

σr

Figure 4.3: σrσsσt

σs

σtσr

A

B

C

D

Figure 4.4: Case r > i

σs

σt

σr

σx

σzγ

δ

Figure 4.5: σxσrσsσtσz

σs

σt

σr

σy

σzγ

δ

Figure 4.6: σrσsσtσyσz

• If r > i, we want to prove that x ≤ i. As before, θ = {σrσsσtσiσjσkσxσyσz} /∈ E
since all cuts are forbidden (those before x by σiσjσk, between x and t by σxσyσz
and after t by σrσsσt) thus |σ| ≤ 9.
As r > i and i maximal, the gray zones added in Figure 4.4 are empty. As
y ≥ t, σy and σz lie either both in A, or both in B, or σy lies in B and σz in A.
• If σy and σz lie both in B, then σx lies in D. Thus σxσtσz form the

permutation 132 and as i is maximal, x ≤ i.
• If σy and σz lie both in A, then σx lies in C and by minimality of y we have
y = t. Since x is minimal, the gray zones added in Figure 4.5 are empty.
Suppose that x > i. The cut between i and i + 1 is forbidden as σ /∈ E.
As i is maximal the cut cannot be to the left of a pattern 132, neither to
the right of a pattern 213 by minimality of t. Hence the cut lies between
element 2 and 1 of a pattern 213. Let σaσbσc be such a pattern 213 such
that a ≤ i and b > i. Then a < x and σa lies in area γ or δ and c ≥ t by
minimality of t. If σa lies in γ then σaσtσc form a pattern 213, which is
forbidden by minimality of x. Hence σa lies in δ and b ≥ t otherwise σaσbσt
is a pattern 213 with a ≤ i < r, which is also forbidden by minimality of
r. Hence σaσbσc is a pattern 213 with a ≤ i < x ≤ s and b ≥ t which is
impossible by minimality of x.
• If σy lies in B and σz in A, by minimality of x, either x = r, or σx lies

in C, or σx lies in D. If σx lies in C then σxσtσz is a pattern 213 which
contradicts the minimality of y. If σx lies in D, σxσrσs is a pattern 132
hence x ≤ i. If x = r, by minimality of x then y, the gray zones added in
Figure 4.6 are empty. The cut between i and i+1 is forbidden as σ /∈ E. As
before the cut lies between elements 2 and 1 of a pattern 213. Let σaσbσc
such a pattern 213 such that a ≤ i and b > i. Then a < r and σa lies in γ
or δ and c ≥ t by minimality of t. If σa lies in γ then σaσtσc is a pattern
213 and by minimality of x, x ≤ a ≤ i. If σa lies in δ then b ≥ t otherwise
σbσtσy is a pattern 132 with b > i, which is forbidden by maximality of i.
But σaσbσc is a pattern 213 with a ≤ i < r and b ≥ t, so by minimality of
x, x ≤ i. �

Now we turn to the study of the case where the last block of the ⊕-decomposition is trivial.

Proposition 4.29. A permutation ⊕[σ, 1] is 2-stack pushall sortable if and only if σ ∈ Av(132)

Av(213)

 and there exists an associated decomposition σ =

 π

τ

 such that there is

no pattern 132 in σ where element 3 is in π and elements 1 and 2 are in τ .

Proof. Let n = |σ| + 1. Assume that ⊕[σ, 1] is 2-stack pushall sortable. Consider a
pushall sorting of ⊕[σ, 1]. This permutation has n as last element. We consider the stack

160 Chapter 4. Pushall sorting: a new notion linked with general sorting

configuration just after n enters stack H. By Theorem 4.13, this configuration avoids the
pattern |2|13|, so that all elements in H –below n– are greater than those of V . Hence

we can write σ =

 π

τ

 where τ contains the elements of V and π those of H –except n.

Then from Theorem 4.13, π ∈ Av(132) and τ ∈ Av(213) since the elements of τ are sorted
in decreasing order in V using only the stack H. Moreover there is no pattern 132 in σ
where element 3 is in π and elements 1 and 2 are in τ otherwise element 3 by staying in
stack H would prevent elements 1 and 2 to be in the right order in V .

Conversely, suppose that there exists a decomposition σ =

 π

τ

 respecting the previ-

ous conditions; then we have a pushall sorting of the permutation ⊕[σ, 1] using the following
algorithm. While the input is not empty, if stack H is empty or if the top of H belongs to
π, we push the next element of the input onto H. If σi, the top of H, belongs to τ , and if
the next element of the input σj belongs to τ and is greater than σi, we push σj onto H,
otherwise we pop σi from H and push it onto V . At each step we verify the conditions of
Theorem 4.13 so that all elements can be popped out in increasing order at the end. �

Proposition 4.30. Let F = {σ | ⊕[σ, 1] is 2-stack pushall sortable }. Then F is a finitely
based permutation class whose basis is B3 = {13524, 14253, 21354, 31524, 31542, 35142,
135462, 143652, 162435, 163254, 246513, 263154, 263514, 354162, 462135, 465213, 513642,
516243, 1657243}.

Proof. As the set of 2-stack pushall sortable permutations is a permutation class, so is

F . By Proposition 4.29, F = {σ ∈

 Av(132)

Av(213)

 such that there exists an associated

decomposition σ =

 π

τ

 without pattern 132 in σ where element 3 is in π and elements

1 and 2 are in τ}. Hence E and F are in one-to-one correspondence by the map taking an
element of E, rotating its diagram by −π/2 and applying the symmetry with respect to
axis (Oy) (see Figure 4.7). When elements are in one-to-one correspondence by rotation
and symmetry so are the bases, which proves the result. �

2 1 3 1 3 2

2 1 3

1
3

2

1 3 2

2 1 3

−π
2 s/Oy

Figure 4.7: E and F are in one-to-one correspondence by symmetry.

4.2 Pushall sorting vs. 2-stack sorting 161

Proposition 4.31. A permutation ⊕[1, σ, 1] is 2-stack pushall sortable if and only if σ ∈
⊕[Av(213), Av(132)].

Proof. By Proposition 4.27, ⊕[1, σ, 1] is 2-stack pushall sortable if and only if ⊕[σ, 1] ∈[
Av(213), Av(132)

]
and there exists a corresponding decomposition σ = [π, τ] such that

there is no pattern 213 in σ where element 2 is in π and 13 are in τ , which is equivalent
to σ ∈

[
Av(213), Av(132)

]
and there exists a corresponding decomposition σ = [π, τ]

such that there is no pattern 21 in σ where element 2 is in π and element 1 is in τ , i.e.
σ ∈ ⊕[Av(213), Av(132)]. �

We are now able to prove Theorem 4.23 (p.155).

Proof. Permutations of B+ are not 2-stack pushall sortable (check each pushall stack word
of the right size), hence if σ is 2-stack pushall sortable it avoids B+. Conversely suppose
that σ avoids B+. Let σ = ⊕[α1 . . . αr] be the ⊕-decomposition of σ with r ≥ 2 and αi
⊕-indecomposable for all i.

• If α1 and αr are non-trivial then σ is 2-stack pushall sortable thanks to Propo-
sition 4.26. Indeed σ avoids B1 = {132465, 213546, 214365, 214635, 215364, 241365,
314265, 1657243,
4652137, 21687435, 54613287} as B1 ⊂ B+.

• If α1 is trivial then σ = ⊕[1, π] and π avoids B2 = {21354, 24135, 31425, 31524,
32514, 42513, 243516, 254613, 325416, 362415, 435162, 462135, 513246, 516243, 521436,
521463, 531462, 546132, 4652137} so that σ is 2-stack pushall sortable by Proposi-
tion 4.28.

• If αr is trivial then σ = ⊕[π, 1] and π avoids B3 = {13524, 14253, 21354, 31524,
31542, 35142, 135462, 143652, 162435, 163254, 246513, 263154, 263514, 354162,
462135, 465213, 513642, 516243, 1657243} hence σ is 2-stack pushall sortable by Propo-
sition 4.30. �

Permutations in the class Av(2413, 3142) are called separable permutations. There is no
simple permutation in this class (see Proposition 1.17 p.39; recall that we do not consider
12 and 21 as simple). For separable permutations we have:

Theorem 4.32. Let σ be a separable permutation. Then σ is 2-stack pushall sortable
if and only if σ avoids B = {132465, 213546, 214365, 1354627, 1436527, 1624357, 1632547,
1657243, 4652137, 21687435, 54613287}.

Proof. Notice that B is included in the set B+ defined in Theorem 4.23. As permutations
of B are not 2-stack pushall sortable, every 2-stack pushall sortable permutation avoids
B. Conversely, assume that σ avoids B. As σ is separable, σ has no simple pattern thus
σ is either ⊕-decomposable or 	-decomposable or trivial (i.e. of size 1), and σ avoids 2413
and 3142 which added to constraints of B gives that σ avoids B+. If σ is ⊕-decomposable,
then σ is 2-stack pushall sortable by Theorem 4.23. If σ is 	-decomposable, then σ =
	[π(1), π(2), . . . , π(k)] where each π(i) is either trivial or ⊕-decomposable. So σ is 2-stack
pushall sortable by Proposition 4.21 and Theorem 4.23. �

The results proved in this subsection allow to decide in polynomial time whether a
separable permutation is 2-stack pushall sortable, using the above theorem, and to de-
cide in polynomial time whether a separable permutation is 2-stack sortable, using also
Propositions 4.20 and 4.22.

They also have consequences on the basis of 2-stack pushall sortable permutations and
on the basis of 2-stack sortable permutations that are studied in the next subsection.

162 Chapter 4. Pushall sorting: a new notion linked with general sorting

4.2.4 Basis of stack sorting classes

In the previous section, we showed that 2-stack pushall sortable separable permutations
form a finitely based permutation class. This property does not hold for 2-stack pushall
sortable permutations and we exhibit an infinite antichain of the basis in the following
proposition:

Proposition 4.33. The basis of 2-stack pushall sortable permutation class is infinite. More
precisely the set of permutations depicted in Figure 4.8 is an infinite antichain of simple
permutations belonging to the basis of 2-stack pushall sortable permutations.

Proof. Consider permutations 2n−3 2n−1 2n−5 2n . . . p p+5 . . . 1 6 2 4 for n ≥ 3. The
first ones are depicted in Figure 4.8. These permutations are simple and incomparable. To
complete the proof, straightforward though technical, just check that those permutations
are not 2-stack pushall sortable and that every pattern of these permutations are 2-stack
pushall sortable. �

Figure 4.8: An antichain of the basis of 2-stack pushall sortable permutation class
2n−3 2n−1 2n−5 2n . . . p p+5 . . . 1 6 2 4 for n ≥ 3.

Note that the basis of 2-stack pushall sortable permutations is infinite and contains an
infinite number of simple permutations, and the 2-stack pushall sortable class also contains
an infinite number of simple permutations (otherwise its basis would be finite).

Recall that for the set of 2-stack sortable permutations, it has been proved by Murphy
in [Mur02] that basis is also infinite, by exhibiting two different sets of basis elements, one
of permutations that are essentially decreasing (see Figure 4.9), and one of permutations
that are essentially increasing (see Figure 4.10).

Figure 4.9: An antichain of the basis of 2-stack sortable permutation class
2 4 3 5 7 6 1, 6 8 7 2 9 3 5 4 1, 8 10 9 6 11 2 7 3 5 4 1, 10 12 11 8 13 6 9 2 7 3 5 4 1 and
2n+4 2n+6 2n+5 2n+2 2n+7 2n 2n+3 . . . p p+3 . . . 8 11 6 9 2 7 3 5 4 1 for n ≥ 4.

In the following, we study the elements of the basis of 2-stack sortable permutations
and of 2-stack pushall sortable permutations depending on the root of their decomposition
tree. We also study the link between these two bases.

Proposition 4.34. If σ is in the basis of 2-stack pushall sortable permutations, then σ is
2-stack sortable.

4.2 Pushall sorting vs. 2-stack sorting 163

Figure 4.10: An antichain of the basis of 2-stack sortable permutation class
3 2 4 7 6 1 10 9 5 . . . p+1 p p−4 . . . 6n+1 6n 6n−4 6n+2 6n+4 6n+3 6n−1 for n ≥ 1.

Proof. Let σ = σ1σ2 . . . σn be in the basis of 2-stack pushall sortable permutations. By
definition, σ1σ2 . . . σn−1 is 2-stack pushall sortable. We can sort σ (not pushall sort σ)
using the following algorithm. Push all elements σ1 to σn−1 in the stacks following the
2-stack pushall sortable operations of σ1 . . . σn−1. Then pop elements 1, 2, . . . , σn−1, then
push σn and pop it to the output and pop the remaining elements. It is easy to check that
these operations are allowed. �

Proposition 4.35. Let π be a 	-decomposable permutation. Then π belongs to the basis
of the 2-stack sortable permutations if and only if π = 	[σ, 1] where σ belongs to the basis
of the 2-stack pushall sortable permutations.

Proof. Let π = 	[σ, 1] with σ a permutation of the basis of 2-stack pushall sortable per-
mutations. Since σ is not 2-stack pushall sortable, Proposition 4.20 ensures that π is not
2-stack sortable. Moreover every proper pattern of π is 2-stack sortable. Indeed if we
delete element 1 then the obtained permutation is σ, hence it is 2-stack sortable by Propo-
sition 4.34. Otherwise we delete an element of σ leading to σ′ which is 2-stack pushall
sortable by the definition of a permutation class basis. Then, 	[σ′, 1] is 2-stack pushall
sortable using Proposition 4.20.

Conversely, if σ = 	[π(1), π(2), . . . , π(k)] with k ≥ 2 belongs to the basis of 2-stack
sortable permutations, then by Proposition 4.20, either π(k) is not 2-stack sortable which
contradicts the minimality of σ (σ is an element of the basis so that every pattern of
σ must belong to the class) or there exists 1 ≤ i ≤ k − 1 such that π(i) is not 2-stack
pushall sortable. But in that case, 	[π(i), 1] is not 2-stack sortable by Proposition 4.20;
hence σ = 	[π(i), 1] by minimality of basis elements. If π(i) has a proper pattern τ which
is not 2-stack pushall sortable then 	[τ, 1] is a proper pattern of σ which is not 2-stack
sortable. This is impossible as σ belongs to the basis of 2-stack sortable permutations.
So π(i) belongs to the basis of 2-stack pushall sortable permutations, which concludes the
proof. �

By putting together the results of this section we have the following theorem:

Theorem 4.36. For 2-stack sortable permutations we have:

• There are no ⊕-decomposable permutations in the basis of 2-stack sortable permu-
tations.

• The 	-decomposable permutations in the basis of 2-stack sortable permutations are
	[σ, 1] where σ is in the basis of pushall sortable permutations.

164 Chapter 4. Pushall sorting: a new notion linked with general sorting

• In the basis of 2-stack sortable permutations, there are an infinite number of per-
mutations whose root of the decomposition tree is prime.

And for 2-stack pushall sortable permutations we have:

• There are an infinite number of simple permutations in the basis of 2-stack pushall
sortable permutations.

• There are no 	-decomposable permutations in the basis of 2-stack pushall sortable
permutations.

• ⊕-decomposable permutations in the basis of 2-stack pushall sortable permutations
are 132465, 135246, 142536, 142635, 143625, 153624, 213546, 214365, 214635, 215364,
241365, 314265, 315246, 315426, 351426, 1354627, 1365724, 1436527, 1473526, 1546273,
1573246, 1624357, 1627354, 1632547, 1632574, 1642573, 1657243, 2465137, 2631547,
2635147, 3541627, 4621357, 4652137, 5136427, 5162437, 21687435 and 54613287.

Proof. The first item follows from Proposition 4.22 and the second one from Proposi-
tion 4.35. The third item is a consequence of the proof by Murphy that the antichain of
Figure 4.10 belongs to the basis of 2-stack sortable permutations. The three last items are
consequences of Propositions 4.33 and 4.21 and Theorem 4.23. �

We conclude this section by giving numerical results about 2-stack sortable permuta-
tions and 2-stack pushall sortable permutations:

pushall sorting general sorting

n sortable unsortable basis sortable unsortable basis

5 120 0 0 120 0 0

6 698 22 22 720 0 0

7 4393 647 38 5018 22 22

8 28551 11769 25 39374 946 51

9 187403 175477 22 336870 26010 146

10 1231517 2397283 29 3066695 562105 604

11 8080058 31836742 34

It seems that the basis of 2-stack sortable permutations is quickly growing, whereas
the one of 2-stack pushall sortable permutations seems to have about a constant number
of elements of each size.

4.3 Pushall sorting and bicoloring

4.3.1 A simple characterization

There is a natural relation between 2-stack pushall sorting and the coloring of permutation
diagrams into two colors. The key idea is to look at the stack configuration once all elements
of the permutation are pushed into the stacks. Then all elements of the permutation belong
either to stack H or to stack V . We assign a color to them depending in which stack they

lie at this particular step of the sorting. In this chapter we color like points that lie in

stack H and like points in stack V .

4.3 Pushall sorting and bicoloring 165

However by Remark 4.6, such a stack configuration is not unique, and neither is the
coloring.

Nevertheless properties of the stack configuration such as being poppable and reachable
can be checked on the corresponding coloring. This is explained in details in the following.

Definition 4.37. A bicoloring of a permutation σ is a coloring of the points of the diagram
of σ with two colors G and R.

A valid coloring is a bicoloring which avoids each of the four following colored patterns:

• pattern 132: there is a pattern 132 in R

• pattern 213: there is a pattern 213 in G

• pattern 1X2: there is a point of R lying vertically between a pattern 12 of G

• pattern 2/13: there is a point of G lying horizontally between a pattern 12 of R.

Figure 4.11: The four forbidden colored patterns for valid colorings.

Intuitively, the patterns avoided by a valid coloring correspond to the 3 unsortable
stack-patterns. More precisely the pattern 132 corresponds to | |132|, the pattern 2/13
corresponds to |2|13|, and the patterns 213 and 1X2 ensure that it is possible to put the
elements of G in stack V such that |12| | is avoided.

In the definition below, we explain how to associate a stack configuration to a bicoloring.

Definition 4.38. Let σ be a permutation. To each total stack configuration of σ the
map Bicol assigns the bicoloring of σ such that elements of H are in R and elements of
V are in G. To every bicoloring of a permutation σ the map Conf associates the total
stack configuration of σ such that elements of G lie in V in decreasing order of value from
bottom to top and elements of R lie in H in increasing order of indices from bottom to
top.

Remark 4.39. For any bicoloring b, Bicol(Conf(b)) = b. For any stack configuration c
such that elements of V are in decreasing order of value from bottom to top and elements
of H are in increasing order of indices from bottom to top, Conf(Bicol(c)) = c.

Proposition 4.40. Let b be a bicoloring of a permutation σ. Then Algorithm 11 applied
to b terminates in linear time w.r.t |σ| and returns true if and only if Conf(b) is reachable
for σ. In this case the stack configuration to which Algorithm 11 leads is Conf(b).

To prove this proposition we need the following lemma:

Lemma 4.41. At each step of Algorithm 11, the current stack configuration is reachable
for σ, elements of H are in increasing order of indices from bottom to top, elements of V
are in decreasing order of value from bottom to top, there is no element of R in V , there
is no element of R above an element of G in H and elements of G that lie in H are in
increasing order of value from bottom to top.

Moreover if the condition of line 2 (i ≤ |σ|) is verified then σi is the next element of
the input, otherwise there is no more element in the input.

166 Chapter 4. Pushall sorting: a new notion linked with general sorting

Algorithm 11: Algorithm deciding in linear time whether the configuration corre-
sponding to a bicoloring is reachable
Data: σ a permutation and b a bicoloring of σ.
Result: True if the stack configuration corresponding to b is reachable from σ.

1 Begin with the empty stack configuration and σ as input and i = 1;
2 while i ≤ |σ| do
3 if H is empty or top(H) ∈ R then
4 push σi into H;
5 i←− i+ 1;
6 else /* top(H) ∈ G */
7 if σi ∈ R or σi < top(H) then
8 if V is empty or top(H) < top(V) then
9 pop top(H) from stack H and push it into V ;

10 else
11 Return false;
12 end
13 else /* top(H) ∈ G, σi ∈ G and σi > top(H)*/
14 push σi into H;
15 i←− i+ 1;
16 end
17 end
18 end
19 while H is nonempty and top(H) ∈ G do
20 if top(H) < top(V) then
21 pop top(H) from stack H and push it into V ;
22 else
23 Return false;
24 end
25 end
26 Return true;

Proof: The proof is by induction on the number of stack operations performed by the
algorithm. Algorithm 11 begins with the empty stack configuration and σ as input and
i = 1 so the properties are true at the beginning. Algorithm 11 performs only appropriate
stack operations so at each step the configuration obtained is reachable for σ. Moreover
in a reachable configuration, elements of H are in increasing order of indices. When an
element is put in V (this happens at line 9 or 21) then this element is in G (checked at line
6 or 19) and is smaller than the top of V (checked at line 8 or 20) so that elements of V
remain in decreasing order of value from bottom to top and V contains no element of R.
When we put an element in H, it can be at line 4 or 14. In the first case, H is empty or
its top is in R (checked at line 3) so all its elements are in R by the induction hypothesis.
In the second case, the top of H is in G and the element we put in H is in G and greater
than the top of H. This ensures that there is no element of R above an element of G in
H and that elements of G that lie in H are in increasing order from bottom to top (using
induction hypothesis). Finally i is increased exactly when σi is put into H so the last
property remains true. �

We are now able to prove Proposition 4.40:

4.3 Pushall sorting and bicoloring 167

Proof: At each step, Algorithm 11 performs either a legal operation ρ, or a legal operation
λ, or returns false or true (and stops). As at most |σ| legal operations ρ and |σ| legal
operations λ can be done, Algorithm 11 terminates after at most 2|σ| + 1 steps. As each
step is done in constant time, Algorithm 11 terminates in linear time w.r.t |σ|.

Moreover if Algorithm 11 applied to b returns true, then it reaches line 26. In particular
the loop of line 19 stops so the top of H is not in G. Thus by Lemma 4.41 there is no
element of G in H. In addition by the same lemma elements of H are in increasing order
of indices from bottom to top, elements of V are in decreasing order of value from bottom
to top and there is no element of R in V . Therefore the stack configuration we have is
Conf(b). Moreover Lemma 4.41 states that the stack configuration we have is reachable
for σ, so Conf(b) is reachable for σ.

Conversely if Conf(b) is reachable for σ, then there is a sequence w of appropriate
stack operations so that the configuration obtained with σ as input is Conf(b). Let us
prove that the sequence of operations w′ performed by Algorithm 11 applied to b is w.
We prove by induction on k ≤ |w| (k ≥ 0) that w and w′ have the same prefix of length
k (obvious for k = 0). First notice that as Conf(b) is a total stack configuration, thus
w has no letter µ, and that Algorithm 11 performs only operations λ and ρ, so w′ has
no letter µ. Suppose that w and w′ have the same prefix v of length k with k < |w|, let
c′ be the stack configuration obtained after performing operations of v with σ as input.
We want to prove that w′k+1 exists and w′k+1 = wk+1. By definition of w′, w′k+1 is the
operation performed by Algorithm 11 in configuration c′ (setting by extension w′k+1 = α if
Algorithm 11 terminates in configuration c′, i.e. if |w′| = k), and by definition of w, wk+1

is an operation which allows to go from configuration c′ to configuration Conf(b) (maybe
with some additional operations).

We check the value of i after Algorithm 11 has performed operations v. We know that
at this step the stacks are in configuration c′.

If i > |σ|, then from Lemma 4.41 in configuration c′ all elements of σ lie already in the
stacks. As w is a sequence of appropriate stack operations, then wk+1 6= ρ so wk+1 = λ
(w has no letter µ). As wk+1 is an operation which allows moving from configuration c′ to
configuration Conf(b) in which there is no elements of R in V and V is decreasing, then
the top of H in c′ is in G and smaller than the top of V (or V is empty). As i > |σ| and as
the top of H in c′ is in G and smaller than the top of V (or V is empty) then Algorithm 11
performs line 21 so w′k+1 = λ = wk+1.

If i ≤ |σ| then we are in the loop beginning at line 2 of the algorithm and from
Lemma 4.41 σi is the next element of the input. Suppose that wk+1 = λ. As wk+1 is
a legal operation which allows moving from configuration c′ to configuration Conf(b) in
which there is no element of R in V and V is decreasing, then H is non-empty, and the
top of H is in G and smaller than the top of V (or V is empty). Suppose in addition that
σi ∈ G. As σi is still on the input after wk+1 and wk+1 is an operation which allows to
go to configuration Conf(b) in which V is decreasing, then σi is smaller than the top of
H in c′. So either σi < top(H) or σi ∈ R. Thus from c′ Algorithm 11 performs line 9 and
w′k+1 = λ = wk+1.

Suppose that wk+1 = ρ. If in configuration c′ stack H is empty or top(H) ∈ R then
Algorithm 11 performs line 4 so w′k+1 = ρ = wk+1. Otherwise let σh be the top of H in c′,
then σh ∈ G. So σh ∈ V in Conf(b). But once wk+1 = ρ is performed σi is above σh in H.
As wk+1 is an operation which allows to go from configuration c′ to configuration Conf(b)
then σi is below σh in V in Conf(b) (indeed it is impossible that σh goes to stack V and σi
remains in stack H). So σi ∈ G and as in Conf(b) elements of V are in decreasing order,
σi > σh. So the test of line 7 of the algorithm is false and Algorithm 11 performs line 14

168 Chapter 4. Pushall sorting: a new notion linked with general sorting

so w′k+1 = ρ = wk+1.
This ends the induction. We have proved that w is a prefix of w′, so Algorithm 11

reaches configuration Conf(b). We have now to prove that Algorithm 11 stops in this
configuration and returns true.

When Conf(b) is reached then there is no element in the input anymore, so from
Lemma 4.41 i > |σ|, and top(H) /∈ G in Conf(b). So both loops while of Algorithm 11 are
finished and the algorithm reaches line 27, returns true and terminates in configuration
Conf(b). �

Lemma 4.42. Let b be a bicoloring of a permutation σ. If Algorithm 11 applied to b
returns false then b has a pattern 1X2 or a pattern 213.

Proof: We consider the stack configuration reached when Algorithm 11 returns false. We
set σh = top(H) and σv = top(V). By Lemma 4.41, σv ∈ G. Algorithm 11 returns false
by reaching either line 11 or line 23. In both cases, σh ∈ G and σh > σv. Now we consider
the step of the algorithm where σv was put in V , the index i at this step of the algorithm,
and the corresponding configuration c just before the operation putting σv into V . At this
step σv is on the top of H, and i > v. If σh is in H in c, then it is below σv, contradicting
Lemma 4.41 (σh > σv and both are in G). As σh is in H when the algorithm ends, it
cannot be in V in c. So σh is still in the input and i ≤ h ≤ |σ|. Recall that we consider
the step of the algorithm where σv is put in V . This can happen at line 9 or 21 but i ≤ |σ|
so it is at line 9. So the test of line 7 is true, thus either σi ∈ R and then σv, σi, σh is a
pattern 1X2 of b, or σi ∈ G but σi < σv (since σv is top(H) of c) and then σv, σi, σh is a
pattern 213 of b. �

Theorem 4.43. The map Bicol is a bijection from the set of poppable reachable total stack
configurations of σ to the set of valid colorings of σ. Moreover the inverse of Bicol is the
map Conf .

Proof: Let c be a poppable reachable total stack configuration of σ. Then from Theo-
rem 4.13, σ avoids the three unsortable patterns. Set b = Bicol(c), we have to prove that
b is valid, i.e. avoids every forbidden colored pattern of Definition 4.37.

If b has a pattern 132 in R then there are three elements σi, σj and σk of R such that
i < j < k and σi < σk < σj . By definition of Bicol, in c elements σi, σj and σk lie in
H. As c is reachable and i < j < k, σi is below σj which is below σk. So we have a
stack-pattern | |132| in c which contradicts our hypothesis. So b has no pattern 132.

If b has a pattern 213 in G then there are three element σi, σj and σk of G such that
i < j < k and σj < σi < σk. By definition of Bicol, in c elements σi, σj and σk lie in
V . As c avoids stack-pattern |12| |, σk is below σi which is below σj . But then c is not
reachable: as σk is below σi and σj in V , σi and σj have to stay in stack H until σk enters
stack H. But as i < j, σi is below σj in stack H and cannot be below σj in stack V as
going from stack H to stack V reverse the order. So b has no pattern 213.

If b has a point of R lying vertically between the elements of a pattern 12 of G then there
are elements σi and σj of G and σk of R such that i < k < j and σi < σj . By definition
of Bicol, in c elements σi and σj lie in V and σk lies in H. Moreover configuration c is
reachable. We consider a sequence of stack operations leading to c. As i < k, σi is already
in the stacks when σk enters H. As σk remains in H in c but σi is in V in c, σi has to be
already in V when σk enters stack H. As k < j, at this moment σj is not already in stack
V , so σj will be above σi in V and they form a pattern |12| | in c, which is excluded. So b
has no pattern 1X2.

4.3 Pushall sorting and bicoloring 169

If b has a point of G lying horizontally between the elements of a pattern 12 of R
then in c these points form a pattern |2|13| which is excluded. So b has no pattern 2/13.
Therefore b is a valid coloring.

Conversely let b be a valid coloring of σ. By definition Conf(b) is a total stack con-
figuration of σ. We have to prove that Conf(b) is reachable for σ and avoids the three
unsortable stack patterns. As b is a valid coloring, it avoids patterns 1X2 and 213. So
from Lemma 4.42, Algorithm 11 started with input b returns true. Thus from Proposi-
tion 4.40, c is reachable for σ. Moreover by definition of Conf , Conf(b) avoids pattern
|12| |. Furthermore we know that in Conf(b), elements of H are in increasing order of
indices from bottom to top. So if Conf(b) has a pattern | |132|, then b has a pattern 132,
and if Conf(b) has a pattern |2|13| then b has a pattern 2/13. A b is a valid coloring, we
conclude that Conf(b) avoids the three unsortable stack patterns. Therefore Conf(b) is a
poppable reachable total stack configuration of σ.

Finally, using Remark 4.39 it’s clear that Conf is the inverse of Bicol. �

Theorem 4.43 has many consequences:

Theorem 4.44. Let σ be a permutation. Then there is a one-to-one correspondence be-
tween:

• Pushall sorting processes of σ

• Pushall stack words of σ

• Valid colorings of σ such that σn ∈ R

• Valid colorings of σ such that 1 ∈ G

Proof: This is a direct consequence of Theorems 4.19 and 4.43. �

Theorem 4.45. A permutation σ is 2-stack pushall sortable if and only if its diagram
admits a valid coloring.

Proof: This is a direct consequence of Theorems 4.17 and 4.43. �

Now thanks to Theorem 4.45 we have a naive algorithm to check if a permutation σ
is 2-stack pushall sortable: for all bicolorings b of σ, we can test whether b is valid by
checking if b avoids patterns 213, 1X2, 2/13 and 132 of Definition 4.37. But first notice
that we have a more efficient way to test if a bicoloring is valid:

Proposition 4.46. Let b be a bicoloring of a permutation σ. We can check in linear time
w.r.t. |σ| whether b is a valid coloring. More precisely, b is a valid coloring if and only if
Algorithm 11 applied to b returns true and Algorithm 10 applied to Conf(b) returns true.

Proof: From Theorem 4.43, b is valid if and only if Conf(b) is poppable and reachable for
σ. We conclude using Proposition 4.40 (which ensures that Algorithm 11 runs in linear
time and returns true if and only if Conf(b) is reachable) and Proposition 4.15 (which
ensures that Algorithm 10 runs in linear time and returns true if and only if Conf(b) is
poppable). �

However, even using this efficient way to test whether a bicoloring is valid, the naive
algorithm described above is inefficient. Indeed there are 2|σ| bicolorings of σ, leading to a
exponential algorithm. Yet we will find a way to restrict the number of colorings to test to
a polynomial number. The key idea is to look at increasing sequences in the permutation.

170 Chapter 4. Pushall sorting: a new notion linked with general sorting

4.3.2 Increasing sequences in a valid coloring

First we reformulate the notion of valid coloring thanks to increasing and decreasing se-
quences.

Proposition 4.47. Let c be a bicoloring of a permutation σ. Then c is a valid coloring if
and only if c respects the following set of rules denoted R8:

∅

(i) ∅(ii) (iii) (iv)

∅(v)

∅

(vi) (vii) (viii)

Figure 4.12: Coloring rules R8

Remark 4.48. Here and in all the following, when a zone of a diagram is colored with R
(resp. G), it means than if there are some points lying in this zone, they are in R (resp.
G). And when a zone of a diagram has an empty sign, it means than this zone is empty.

For example rule (i) means that if two points (i, σi) and (j, σj) are in increasing order
i < j and σi < σj and belong to G then every point (k, σk) of the permutation must satisfy:

• If i < k < j then σk > σi and (k, σk) belongs to G.

• If k < i and σi < σk < σj then (k, σk) belongs to R.

Proof. We prove that c is not valid if and only if c violates a rule of R8. Suppose that c is
not valid then c has one of the four colored patterns of Definition 4.37. If c has a pattern
132 then c violates rule (ii) applied to elements 1 and 3 of the pattern 132, as element 2 of
the pattern lies in a zone that should be empty. If c has a pattern 213 then c violates rule
(i) applied to elements 2 and 3 of the pattern 213, as element 1 of the pattern lies in a zone
that should be empty. If c has a pattern 1X2 then c violates rule (i) applied to elements of
G of the pattern 1X2. If c has a pattern 2/13 then c violates rule (ii) applied to elements
of R of the pattern 2/13. Conversely if c violates a rule of R8 then a comprehensive study
shows that c has one of the four colored patterns of Definition 4.37 and is not valid. �

We can use the implication rules of R8 given in Figure 4.12 to limit the number of
bicolorings to test, using the following idea: knowing the coloring of some points in the
permutation (either in R or in G), the deduction rules of R8 can be applied until we obtain
either a contradiction or no more rules can be applied. We can try the following algorithm:
Set the color of two increasing points of σ, use the implication rules to deduce the color
of the other points and test whether the coloring obtained is right. Unfortunately, the
implication rules are not sufficient to ensure that given the color of two points, the color
of all other points is set. We may have to choose arbitrarily the color of many points. To
ensure that the number of bicoloring to test is polynomial, we have to study more precisely
the properties of increasing sequences in a valid bicoloring.

Definition 4.49. Let c be a bicoloring of a permutation σ. We call increasing sequence
RG a pair of points (σi, σj) such that i < j, σi < σj , σi ∈ R and σj ∈ G. We define in the
same way increasing sequences GR, RR or GG.

4.3 Pushall sorting and bicoloring 171

Rule (iii) of R8 implies that every increasing sequence RG fixes the color of all points
to the left of σi below σj (which are in R) and to the right of σi above σj (which are in
G). Proposition 4.51 shows that when σ is 	-indecomposable, the color of the points to
the left of σi above σj is also fixed.

Definition 4.50. Let σ be a permutation. For any indices i and j we call zone ZRG (resp.
zone ZGR) the part of the diagram of σ to the left of σi or above σj (resp. below σi or to
the right of σj). More formally, ZRG(i, j) = {σ` | ` ≤ i or σ` ≥ σj} and ZGR(i, j) = {σ` |
σ` ≤ σi or ` ≥ j}.

Proposition 4.51. Consider a valid coloring of a 	-indecomposable permutation σ. If
there exists an increasing sequence RG (i.e. two points σi, σj such that σi < σj, i < j,
σi ∈ R and σj ∈ G), then the color of every point in ZRG(i, j) is determined and can
be represented as in Figure 4.13, the second diagram being a short representation of this
coloring which will be used in the sequel. Moreover, knowing σi and σj, Algorithm 12
decides the color of the points of zone ZRG(i, j) in linear time w.r.t. |σ|.

∅

∅

∅

σi

σj

∅

. . .

σi

σj

. . .
∅
∅

∅

∅

σi1σi2

σi3

σi4

σj1

σj2

σj3

σj4

`1`2`3

h1

h2

h3

Figure 4.13: An increasing sequence RG σiσj fixes the color of all points in zone ZRG(i, j).

Algorithm 12: Color zone ZRG.
Data: σ a permutation and i, j indices of an increasing sequence RG.
Result: The only coloring of zone ZRG(i, j) which may respect rules R8.
p←− i;
q ←− j;
while p 6= 1 or σq 6= n do

Color in R each point of H = {σ` | ` ≤ p and σ` ≤ σq};
Color in G each point of V = {σ` | ` ≥ p and σ` ≥ σq};
If H 6= ∅ then p←− min{` | σ` ∈ H};
If V 6= ∅ then q ←− k such that σk = max{σ` | σ` ∈ V };

end

Proof: Let ik and jk be the indices p and q considered by Algorithm 12 at step k and Hk

and Vk be the sets H and V considered by the algorithm at step k. We have i1 = i and
j1 = j. We prove that Algorithm 12 builds sequences (σik) and (σjk) such that σikσjk is
an increasing sequence RG and the color of all points lying in the set Ck = {σ` | ik ≤ ` ≤
i and σj ≤ σ` ≤ σjk} is uniquely determined by rules R8 and respects Figure 4.13.

We prove that if (ik 6= 1 or σjk 6= n) then we can build σik+1
and σjk+1

such that
σik+1

< σik or σjk+1
> σjk .

172 Chapter 4. Pushall sorting: a new notion linked with general sorting

We have Hk = {σ` | ` ≤ ik and σ` ≤ σjk} and Vk = {σ` | ` ≥ ik and σ` ≥ σjk} (see
Figure 4.14). By rule (iii) applied to σik and σjk , Hk ⊂ R and Vk ⊂ G. Then, different
situations may happen depending on whether areas Hk and Vk are empty:

Hk and Vk empty: Then σ is 	-decomposable which is in contradiction with our hy-
pothesis.

Hk and Vk both non-empty: If both of the colored zones Hk or Vk are non-empty, we
have ik+1 = min{` | σ` ∈ Hk} and σjk+1

= maxVk (see Figure 4.14). Then Ck+1 = Ck ∪
Hk ∪ Vk ∪Zk is a partition of Ck+1, where Zk = {σ` | ik+1 ≤ ` ≤ ik and σjk ≤ σ` ≤ σjk+1

}
(see Figure 4.14). The only points of Ck+1 whose color is not determined yet are those of
Zk. If Zk is not empty consider a point σ` of Zk. If σ` ∈ V then rule (i) applied to σ` and
σjk+1

is in contradiction with the existence of σik . Hence σ` ∈ H but then rule (ii) applied
to σik+1

and σ` is in contradiction with the existence of σjk . So Zk is empty and the color
of all points of Ck+1 is determined and respects Figure 4.13.

σik

σjk

Ck
Hk

Vk

(iii)
∅

∅
Zk

σik+1

σik

σjk

σjk+1

∅

∅
∅

σik+1

σik

σjk

σjk+1 Ck+1

σi

σik+1
σj

σjk+1

Figure 4.14: Step k of Algorithm 12 coloring zone ZRG whenHk and Vk are both nonempty.

Only one area in Hk and Vk is empty: With the same argument as in the preceding
case, we have a new point σjk+1

or σik+1
depending on which area is empty and the coloring

is computed as shown Figure 4.15 below.

σik

σjk

Ck
Hk

Vk

(iii)
∅

∅

σik = σik+1

σjk

σjk+1 Ck+1

σi

σik+1

σj

σjk+1

Figure 4.15: Step k of Algorithm 12 coloring zone ZRG when Hk is empty.

We conclude the proof by induction on n − σj + σi − 1. If n − σj + σi − 1 = 0, then
σj = n and i = 1, thus zone ZRG(i, j) is reduced to σi and σj , whose color is determined,
and Algorithm 12 never performs the while loop.

If n−σj+σi−1 > 0, then from the previous discussion we know that the colors assigned
at each step of Algorithm 12 are determined by rulesR8 and respects Figure 4.13. Moreover
ik+1 < ik or σjk+1

> σjk so that Algorithm 12 terminates.
Finally Algorithm 12 can be implemented to run in linear time w.r.t. |σ|, as shown in

its detailed version Algorithm 13 below. Indeed Algorithm 13 runs in time O(
∑
hk+

∑
`k)

where hk = σjk−σjk−1
and `k = ik−1−ik (see Figure 4.13) so that

∑
hk ≤ n and

∑
`k ≤ n.

�

4.3 Pushall sorting and bicoloring 173

Algorithm 13: Color zone ZRG: detailed version of Algorithm 12
Data: σ a permutation and i, j indices of an increasing sequence RG.
Result: The only coloring of zone ZRG(i, j) which may respect rules R8.
Compute σ−1;
ik−1 ←− n;
jk−1 ←− σ−1(1);
ik ←− i;
jk ←− j;
while ik 6= 1 or σjk 6= n do

M ←− σjk ;
for ` from ik to ik−1 do

If σ` > σjk then color σ` in G;
If σ` > M then M ←− σ`;

end
m←− ik;
for ` from σjk−1

to σjk do
If σ−1(`) < ik then color σ` in R;
If σ−1(`) < m then m←− σ−1(`);

end
ik ←− m;
jk ←− σ−1(M);

end

We also have a similar result for increasing sequence GR using rule (iv) instead of rule
(iii):

Proposition 4.52. Consider a valid coloring of a 	-indecomposable permutation σ. If
there exists an increasing sequence GR (i.e. two points σi < σj , i < j such that σi ∈ G and
σj ∈ R), then the color of every point in zone ZGR(i, j) is determined and can be computed

in linear time w.r.t. |σ|. Such a zone will be represented as

σj

σi

in the sequel.

Proof: By symmetry using a rotation of 180 degrees, the same proof as for Proposition 4.51
holds. �

Knowing Proposition 4.51 and Proposition 4.52, to set the color of as many points as
possible, we are best of choosing the lower right increasing sequence RG or the upper left
increasing sequence GR. Let us now define properly these particular increasing sequences.

We consider a valid bicoloring c of a permutation σ. We define ARG as the set of
increasing sequences RG of c.

Lemma 4.53. Among increasing sequences RG of a valid coloring c such that ARG 6= ∅,
the pair (σi, σj) which maximizes i first then minimizes σj (for i fixed) is the same as the
pair that minimizes σj first then maximizes i (for σj fixed).

Proof. Let (σi0 , σj0) be the pair that maximizes i0 first then minimizes σj0 and (σi1 , σj1)
be the pair that minimizes σj1 first then maximizes i1. Then by definition i0 ≥ i1 and
σj1 ≤ σj0 .

If j1 < i0 then (σj1 , σj0) is an increasing sequence GG and rule (i) is in contradiction
with σi0 ∈ H as j1 < i0 < j0. If σj1 < σi0 then (σi1 , σi0) is an increasing sequence RR

174 Chapter 4. Pushall sorting: a new notion linked with general sorting

and rule (ii) is in contradiction with σj1 ∈ V as σi1 < σj1 < σi0 . Hence (σi0 , σj1) is an
increasing sequence RG. Then by definition of j0, σj0 ≤ σj1 and by definition of i1, i1 ≥ i0.
So (σi0 , σj0) = (σi1 , σj1). �

By the preceding lemma, when ARG 6= ∅ we can define iRG, jRG as the lower right
increasing sequence RG. By symmetry, we can also define iGR, jGR the upper left increasing
sequence GR when AGR 6= ∅, where AGR is the set of increasing sequences GR.

Now we have all the tools to prove that there are only a polynomial number of bicol-
orings to test. We just have to do a case study depending on whether ARG or AGR is
empty.

4.3.3 Case study

Recall that from Proposition 4.21 (p.155), if σ is 	-decomposable then σ is 2-stack pushall
sortable if and only if each 	-indecomposable block of σ is 2-stack pushall sortable. Thus,
we can assume that σ is 	-indecomposable to decide whether σ is sortable since it is trivial
to find the 	-indecomposable blocks of σ in polynomial time.

In this section, we consider a valid coloring c of a 	-indecomposable permutation σ.
We prove that knowing if there are increasing sequences RG or GR in c and knowing iRG,
jRG, iGR and jGR (when they exist), we can deduce the color of every point of σ.

We prove this considering 4 cases depending on whether there are increasing sequences
RG or GR in c.

There is no bicolored increasing sequence

If ARG and AGR are both empty, then the coloring is monochromatic:

Proposition 4.54. Let σ be a 	-indecomposable permutation and c a valid coloring of
σ such that every pattern 12 of σ is monochromatic. Then all points of σ have the same
color.

Proof: Let σi and σj be two consecutive left-to-right minima of σ. By definition there is
no point below σi and to the left of σj as shown by the empty sign in the following figure

∅
σi

σj

σk

. As σ is 	-indecomposable, there exists a point σk above σi and to the right of σj .
As increasing subsequences are monochromatic, σi and σk have the same color. The same
goes for σj and σk. Thus σi and σj have the same color. So all left-to-right minima of σ
have the same color. By definition of left-to-right minima, for every non-minimal point σ`
there exists a left-to-right minimum σm such that (σm, σ`) is a pattern 12 of σ. Thus σ`
has the same color as σm. Hence all points of σ have the same color. �

There is no increasing sequence RG but some increasing sequences GR

We suppose in this section that there exists at least one increasing sequence GR but no
increasing sequence RG. As AGR is non-empty, iGR and jGR are defined. We prove that
once iGR and jGR are determined, then the color of every other point of the permutation
is fixed.

4.3 Pushall sorting and bicoloring 175

Proposition 4.55. Let σ be a 	-indecomposable permutation and c a valid coloring of σ
such that there is no increasing subsequence RG in c and there is an increasing sequence
GR in c. Then c has one of the following shapes (where maybe a = iGR or b = jGR):

∅

∅

jGR

iGR
a

b

x ∅ jGR

iGR
a

b

∅

∅ jGR

iGR
a

b

x

Proof: The color of every point σk such that k > jGR or σk < σiGR is determined by
Proposition 4.52, as shown in the first diagram of Figure 4.16 below. Note that we denote
by ∗ the zone where the color of the points is unknown. By maximality of σiGR , any point
above σiGR and lower left with respect to σjGR is in R. By minimality of jGR, any point to
the left of σjGR and top right with respect to σiGR is in G. As no point can be both in R
and in G, we know that the zone between σiGR and σjGR is empty, as shown in the second
diagram of Figure 4.16.

jGR

iGR

∗
∅ jGR

iGR

∗

∅∅
∅

jGR

iGR
a

∗ ∅
∅∅
∅∅

∅

jGR

iGR
a

b

∗ ∅

∅

∅

jGR

iGR
a

b

∗

1

2

Figure 4.16: Only bicolored increasing subsequences GR exist

Let a be the leftmost point among points below iGR (notice that a may be equal to
iGR). Applying rule (i) to a and iGR, we obtain the third diagram (note that if a = iGR
the column between iGR and a does not exist). Let b be the topmost point to the right
of jGR (b may be equal to jGR). Applying rule (ii) to jGR and b, we obtain the fourth
diagram of Figure 4.16 (if b = jGR the column between jGR and b does not exist).

At last, we number two different areas and discuss about the different cases whether
these zones are empty or not. These zones are pictured in the fifth diagram of Figure 4.16.

Zone 1 is not empty In this case, let x be the leftmost point inside zone 1. Note that
x may be above or below jGR. First diagram of Figure 4.17 illustrates the position of
point x. Applying rule (ii) to x and b we obtain the second diagram of Figure 4.17. By
hypothesis, there is no increasing sequence RG, thus there is no point in G in the up-right
quadrant of x. This leads to the third diagram. At last, if the zone ∗ is not empty, then
σ is 	-decomposable by cutting along the row of b and the column of x. Thus ∗ is empty
and all points have a determined color, as in the first diagram of Proposition 4.55.

176 Chapter 4. Pushall sorting: a new notion linked with general sorting

∅

∅

∅∅

∅ jGR

iGR
a

b

x

∗∗ ∅

∅

∅∅

∅ jGR

iGR
a

b

x

∗ ∅

∅

∅∅

∅

∅ ∅

jGR

iGR
a

b

x

∗

∅

∅

jGR

iGR
a

b

x

Figure 4.17: Zone 1 is not empty

Zone 1 is empty Assume that zone 1 is empty. If zone 2 is also empty then as σ is
	-indecomposable, zone ∗ is also empty and all points have a determined color, as in the
second diagram of Proposition 4.55.

∅

∅∅

∅

jGR

iGR
a

b

∗ 2 ∅

∅∅

∅

∅ ∅

jGR

iGR
a

b

x∗
∗

∅

∅∅

∅

∅ ∅

jGR

iGR
a

b

x

∗
∅

∅∅

∅

∅ ∅

jGR

iGR
a

b

x

∗
∅ ∅

∅ jGR

iGR
a

b

x

Figure 4.18: Zone 1 is empty

Otherwise, zone 2 is not empty and let x be the topmost point inside zone 2 (x may be
to the left or to the right of iGR). This is depicted in the second diagram of Figure 4.18. We
apply rule (i) to a and x to obtain the third diagram. As there is no increasing subsequence
RG, there is no point of R in the lower left quadrant of x as depicted in the fourth diagram.
Moreover, σ is 	-indecomposable, thus zone ∗ is empty and each point has a determined
color, as in the last diagram of Proposition 4.55. �

Definition 4.56. Let σ be a permutation and i and j two indices of σ such that σiσj
forms a pattern 12. Set a = min{k | σk ≤ σi} and b such that σb = max{σk | k ≥ j}. We
define CGR(σ, i, j) as the partial bicoloring of σ having the following shape:

j

i
a

b

Proposition 4.57. Let σ be a 	-indecomposable permutation and c a valid coloring of σ
such that there is no increasing subsequence RG in c and there is at least an increasing
sequence GR in c. Then c = CGR(σ, iGR, jGR).

Proof: This is a direct consequence of Proposition 4.55 and Definition 4.56. �

All bicolored increasing sequences are labeled RG

We suppose in this section that there exists at least one increasing sequence RG but no
increasing sequence GR. As ARG is non-empty, iRG and jRG are defined. We prove that

4.3 Pushall sorting and bicoloring 177

once iRG and jRG are determined, then the color of every other point of the permutation
is fixed.

Proposition 4.58. Let σ be a 	-indecomposable permutation and c a valid coloring of σ
such that there is no increasing subsequence GR in c and there is at least an increasing
sequence RG in c. Then c has one of the following shapes (where maybe a = jRG or
b = iRG):

∅
∅

∅ ∅
∅
∅

iRG

jRG a

b

x

∅
∅

∅ ∅
∅
∅

∅
∅
∅

iRG

jRG a

b

x

y

∅
∅∅

∅
iRG

jRG

∅
∅∅

∅
∅

∅

iRG

jRG a

b

x ∅
∅

∅ ∅ ∅
∅
∅

∅

∅

iRG

jRG a

b

x

y

Proof: The color of every point σk such that k < iRG or σk > σjRG is determined by
Proposition 4.51, as shown in the first diagram of Figure 4.19 below. We denote by ∗ the
zone where the color of the points is unknown. By maximality of iRG and minimality of
σjGR we know the color of some other points, and as no point can be both in R and in
G, we know that the zone between σiRG and σjRG must be empty, as shown in the second
diagram of Figure 4.19.

iRG

jRG

∗

∅
iRG

jRG

∗

∅ ∅

∅

∅

iRG

jRG a

∗

∅
∅

∅ ∅

∅
∅

∅

∅

iRG

jRG a

b

1

2

∗

Figure 4.19: All bicolored increasing sequences are labeled RG

Let a be the rightmost point among points above jRG (maybe a = jRG). Rule (i)
applied to points jRG and a gives the third diagram of Figure 4.19 (note that if a = jRG
the column between jRG and a does not exist). Similarly let b be the lowest point among
points to the left of iRG (b may be equal to iRG). Rule (ii) applied to b and iRG leads to
the fourth diagram of Figure 4.19. Note also that we numbered two specific zones in this
diagram and we study now the different cases where they are empty or not.

∅ ∅ ∅

∅
∅

∅ ∅
∅
∅

∅

∅

iRG

jRG a

b

x

1

2

∗
∗

∅ ∅ ∅

∅
∅

∅ ∅
∅
∅

∅

∅

iRG

jRG a

b

x

1

∅

3
∗ ∅ ∅ ∅

∅
∅

∅ ∅
∅
∅

∅
∅
∅

∅
∅
∅
∅

iRG

jRG a

b

x

y
1 3

∗ ∗ ∅ ∅

∅
∅

∅ ∅
∅
∅

∅
∅
∅

∅
∅
∅
∅

iRG

jRG a

b

x

y
1 3

∅∅ ∗

Figure 4.20: Zone 1 is non-empty

178 Chapter 4. Pushall sorting: a new notion linked with general sorting

Zone 1 is non-empty If zone 1 is non-empty, let x be the lowest point inside this
zone (see Figure 4.20). As there do not exist an increasing sequence GR, every point
to the top-right of x is in G as shown in the second diagram of Figure 4.20, where we
define a zone 3. If zone 3 is empty then zone ∗ is empty as σ is 	-indecomposable, hence
every point has a assigned color as in the first diagram of Proposition 4.58. If zone 3 is
non-empty, let y be the rightmost point inside this zone as shown in the third diagram.
Applying rule (i) to x and y add another empty zone, leading to the last diagram. As σ is
	-indecomposable, zone ∗ is empty and all points have an assigned color as in the second
diagram of Proposition 4.58.

Zone 1 is empty Assume that zone 1 is empty. If zone 2 is also empty then as σ is
	-indecomposable, zone ∗ is also empty and all points have a determined color, as in the
third diagram of Proposition 4.58.

If zone 2 is non-empty, let x be the rightmost point of zone 2 (see Figure 4.21 below).

∅
∅

∅ ∅ ∅

∅
∅

∅

∅

∅
∅
∅

iRG

jRG a

b

x
2

∗ ∗

∅
∅

∅ ∅ ∅

∅
∅

∅

∅

∅
∅
∅

iRG

jRG a

b

x
2

3 ∗

∅
∅

∅ ∅ ∅ ∅
∅ ∅ ∅
∅
∅

∅

∅

∅
∅
∅

iRG

jRG a

b

x

y

2

∗
∗

∅
∅

∅ ∅ ∅ ∅
∅ ∅ ∅
∅
∅

∅

∅

∅
∅
∅

iRG

jRG a

b

x

y

2

∗
∅

Figure 4.21: Zone 1 is empty

As there is no increasing subsequence GR, all points in the lower left quadrant of x lie
in R as shown in the second diagram of Figure 4.21 where we define a zone 3. If zone 3 is
empty then as σ is 	-indecomposable zone ∗ is also empty and all points have a determined
color, as in the fourth diagram of Proposition 4.58. Otherwise zone 3 is non-empty and let
y be the lowest point in zone 3 as depicted in the third diagram. We apply rule (ii) to x
and y leading to the fourth diagram. As σ is 	-indecomposable, zone ∗ is empty and all
points have a determined color, as in the last diagram of Proposition 4.58. �

Definition 4.59. Let σ be a permutation and i and j two indices of σ such that σiσj
forms a pattern 12. Set a = max{k | σk ≥ σj} and b such that σb = min{σk | k ≤ i}. We
define CRG(σ, i, j) as the partial bicoloring of σ having the following shape:

i

j a

b

1

2 3

where points of zone 3 are in G if zone 1 is empty and zone 2 is
nonempty, in R if zone 1 is nonempty and zone 2 is empty, and have no color otherwise.

Proposition 4.60. Let σ be a 	-indecomposable permutation and c a valid coloring of σ
such that there is no increasing subsequence GR in c and there is at least an increasing
sequence RG in c. Then c = CRG(σ, iRG, jRG).

Proof: This is a direct consequence of Proposition 4.58 and Definition 4.59. �

4.3 Pushall sorting and bicoloring 179

There exist increasing sequences labeled GR and RG

In this section we study the last case that remains to be dealt with, i.e. there is at least
one increasing sequence colored RG and at least one colored GR. As AGR and ARG are
non-empty, iGR, jGR, iRG and jRG are defined. We prove that once iGR, jGR, iRG and
jRG are determined, then the color of every other point of the permutation is fixed.

Proposition 4.61. Let σ be a permutation and c a valid coloring of σ such that there
exists an increasing sequence colored GR and an increasing sequence colored RG. Then c
has one of the following shapes:

∅

∅

∅

iRG

jRG

iGR

jGR ∅ ∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅
∅

∅

iRG

jRG

iGR

jGR ∅

∅ ∅

∅
∅
∅

∅ ∅

∅ ∅iRG

jRG

iGR

jGR

x

∅

∅ ∅

∅
∅
∅

∅ ∅

∅

∅
iRG

jRG

iGR

jGR

y

Proof: By maximality of iRG and minimality of σjRG we have:

∅
jRG

iRG

By Proposition 4.51 we obtain:

∅
iRG

jRG

1

2 3

Recall that there exists an increasing sequence GR. We know that iGR ∈ G. If iGR is
above jRG, then jGR ∈ G since jGR is on the top right of iGR, but by definition jGR ∈ R.
Thus iGR lies in quadrant 2 or 3 and jGR in quadrant 1 or 3. Hence the coloring c has one
of the 4 following shapes:

∅
iRG

jRG

iGR

jGR ∅
iRG

jRG

iGR

jGR

∅
iRG

jRG

iGR

jGR

∅
iRG

jRG

iGR

jGR

Applying Proposition 4.52 to iGR and jGR we obtain these new diagrams:

∅

∅

∅

iRG

jRG

iGR

jGR ∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅

∅

iRG

jRG

iGR

jGR

Finally, using maximality of σiGR and minimality of jGR, we obtain:

∅

∅

∅

iRG

jRG

iGR

jGR ∅ ∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅
∅

∅

iRG

jRG

iGR

jGR ∅

∅ ∅

∅
∅

∅

iRG

jRG

iGR

jGR

In the first 3 diagrams, the color of each point is determined as in the first 3 diagrams of

180 Chapter 4. Pushall sorting: a new notion linked with general sorting

the statement of Proposition 4.61.
This leaves us with the last diagram reproduced in Figure 4.22 below for which we have

again to consider several cases. Note that in this diagram we named several zones whose
emptiness is relevant and we denote once more the unknown zone by ∗.

∅

∅ ∅

∅
∅

∅

iRG

jRG

iGR

jGR

A

B

C

D

∗
∅

∅ ∅

∅
∅

∅

iRG

jRG

iGR

jGR

A

B

∅

∅

∗
∅

∅ ∅

∅
∅
∅

∅ ∅

∅ ∅iRG

jRG

iGR

jGR

x

∅

∅ ∅

∅
∅
∅

∅ ∅

∅

∅
iRG

jRG

iGR

jGR

y

Figure 4.22: There exist increasing sequences labeled RG and GR

Applying rule (vii) to iRG and jGR implies that zone C is empty. Similarly, rule (viii)
applied to jRG and iGR proves that zone D is empty. If there exists a point x in zone
A, then applying rule (ii) to jGR and x, all points in ∗ are determined –they lie in R– as
shown in the third diagram. Symmetrically, if there exists a point y in B then applying
rule (i) to y and iGR, all points in ∗ should be in G–see the last diagram. These cases
correspond to the 2 last diagrams of Proposition 4.61.

Thus this leaves us with the case where both A and B are empty. We show that this
case is not possible.

∅

∅ ∅

∅
∅

∅

iRG

jRG

iGR

jGR

∅

∅
∅

∅

∗

∅

∅ ∅

∅
∅

∅

iRG
a

jRG

iGR

jGR

∅

∅
∅

∅

∗
∅ ∅ ∅ ∅

∅
∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGR

jGR

∅

∅
∅

∅

∗
∅ ∅ ∅ ∅

∅

∅
∅
∅
∅
∅
∅

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

∅

∅ ∅
∅

∅

∗
∅ ∅ ∅ ∅

∅

∅
∅

∅
∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

1

2

3

4

Figure 4.23: A and B are empty

A and B are empty Then the permutation is colored as shown in the first diagram of
Figure 4.23. Let a be the lowest point among points to the left of iRG (a may be equal
to iRG). Rule (ii) applied to a and iRG implies the coloring shown in the second diagram
–notice that if a = iRG, the line between a and iGR does not exist. Similarly, define b as
the rightmost point among points above jRG (b may be equal to jRG). Rule (i) applied
to b and jRG leads to the third diagram. At last we consider the topmost point c among
points to the right of jGR (maybe c = jGR) and we apply rule (ii) to c and jGR. We also
introduce d as the leftmost point among points below iGR (maybe d = iGR). Rule (i)
applied to d and iGR leads to the last diagram where different zones are numbered. We
now study different cases according whether zone 1 is empty or not, and we prove that
both are excluded.

4.3 Pushall sorting and bicoloring 181

Zone 1 is empty Suppose that zone 1 is empty. As σ is 	-indecomposable then zone 2
must contain at least one point. Denote by x the rightmost point of this zone. Figure 4.24
illustrates the proof.

∅

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x ∅

∅ ∅
∅

∅

∗
∅ ∅ ∅ ∅

∅

∅
∅

∅
∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

∅

∗
∅

∅
∅2

3

4 ∅

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x ∅

∅ ∅
∅

∅

∗
∅ ∅ ∅ ∅

∅

∅
∅

∅
∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

∅

∗
∅

∅
∅

∅
∅

2

3

4 ∅

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x ∅

∅ ∅
∅

∅

A

∅ ∅ ∅ ∅
∅

∅
∅

∅
∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

∅

∗
∅

∅
∅

∅
∅

2

3

4

Figure 4.24: Zone 1 is empty.

Rule (vii) applied to x and c leads to the second diagram. Moreover as (iGR, jGR) is
the topmost and leftmost increasing sequence GR, all points to the lower left quadrant of
x lie in R, leading to the third diagram where we define a zone A.

Zone 4 is not empty We prove that this case is not possible. If zone 4 is not empty, let y
be its leftmost point (above or below jGR) as illustrated in the first diagram of Figure 4.25.

∅

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x

y

∅

∅ ∅
∅

∅

A

∅ ∅ ∅ ∅
∅

∅
∅

∅
∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

∅
∅
∅

∅
∅
∅

∅

∗ ∗
∅

∅
∅

∅
∅

2

3

4 ∅

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x

y

∅

∅ ∅
∅

∅

A

∅ ∅ ∅ ∅
∅

∅
∅

∅
∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

∅
∅
∅

∅
∅
∅

∅

∗
∅

∅
∅

∅
∅

2

3

4

Figure 4.25: Zone 1 is empty and zone 4 is not empty

We apply rule (ii) to y and c and obtain the second diagram. But (iRG, jRG) is lowest-
right increasing sequence RG, thus there is no point labeled G in the above-right quadrant
of y. Hence zone 3 is empty which is forbidden as σ is 	-indecomposable.

Zone 4 is empty We prove that this case is also not possible. Suppose that zone 4 is
empty as illustrated in the first diagram of Figure 4.26.

182 Chapter 4. Pushall sorting: a new notion linked with general sorting

∅

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x ∅

∅ ∅
∅

∅

A

∅ ∅ ∅ ∅
∅

∅
∅

∅
∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

∅

∗

∅
∅

∅

∅
∅

∅
∅

2

3

∅

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x

z

∅

∅ ∅
∅

∅

A

∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅

∅
∅

∅

∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

∅

∗

∅
∅

∅
∅
∅

∅
∅

2

3

∅

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x

z

∅

∅ ∅

∅ ∅

∅

∅

A

∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅

∅
∅

∅

∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

∅

∗

∅
∅

∅
∅
∅

∅
∅

2

3

Figure 4.26: Zone 1 is empty and zone 4 is empty.

As σ is 	-indecomposable, zone 3 is non-empty. Let z be the topmost point of zone 3
(it may be to the left or to the right of iGR). Applying rule (i) to z and d we obtain the
second diagram. But (iRG, jRG) is the lowest right increasing sequence labeled RG, hence
there is no point labeled R in the below-left quadrant of z –see diagram 3. But then σ is
	-decomposable which is forbidden.

Zone 1 is not empty Suppose that zone 1 of Figure 4.23 is non-empty. We prove that
this case is also not possible. Define x as the lowest point of this zone as shown in the first
diagram of Figure 4.27.

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x

∅

∅ ∅
∅

∅

∗
∗

∅
∅ ∅ ∅
∅ ∅ ∅ ∅

∅

∅
∅

∅

∅
∅

∅

∅

∅ ∅ ∅ ∅
∅
∅

∅
∅
∅

1

2

3

4 ∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x

∅

∅ ∅
∅

∅

∗
∗

∅
∅ ∅ ∅
∅ ∅ ∅ ∅

∅

∅
∅

∅

∅
∅

∅

∅

∅ ∅ ∅ ∅

∅∅

∅
∅

∅
∅
∅

1

2

3

4 ∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x

∅

∅ ∅
∅

∅

∗
A

∅
∅ ∅ ∅
∅ ∅ ∅ ∅

∅

∅
∅

∅

∅
∅

∅

∅
∅

∅ ∅ ∅ ∅

∅∅

∅
∅

∅
∅
∅

1

3

4

Figure 4.27: Zone 1 is not empty.

Rule (viii) applied to x and d implies the second diagram. Moreover, as (iGR, jGR) is
the leftmost-top increasing sequence labeled GR, all points to the top right of x are in G,
leading to the last diagram.

Zone 3 is not empty If zone 3 is not empty, let y be its topmost point (y may be to
the left or to the right of iGR) as pictured in Figure 4.28.

4.3 Pushall sorting and bicoloring 183

∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x

y

∅

∅ ∅
∅

∅

∗
∗
A

∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅
∅ ∅ ∅ ∅

∅

∅
∅

∅

∅
∅

∅

∅
∅

∅ ∅ ∅ ∅

∅∅

∅
∅

∅
∅
∅

1

3

4 ∅

∅ ∅

∅
∅

∅

iRG
a

jRG b

iGRd

jGR

c

x

y

∅

∅ ∅
∅

∅

∗
A

∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅
∅ ∅ ∅ ∅

∅

∅
∅

∅

∅
∅

∅

∅
∅

∅ ∅ ∅ ∅

∅∅

∅
∅

∅
∅
∅

1

3

4

Figure 4.28: Zone 1 is not empty and zone 3 is not empty.

Rule (i) applied to d and y gives the second diagram. But (iRG, jRG) is the bottom-
rightmost increasing sequence RG, hence no point in the lower left quadrant of y lies in
R. Thus zone 4 is empty and σ is 	-decomposable which is forbidden.

∅

∅ ∅

∅
∅

∅

iRG
a

jRGb

iGRd

jGR

c

x

∅

∅ ∅
∅

∅

∗
A

∅
∅ ∅ ∅
∅ ∅ ∅ ∅

∅

∅
∅

∅

∅
∅

∅

∅
∅

∅ ∅ ∅ ∅
∅
∅∅

∅
∅
∅

∅
∅
∅

1

4 ∅

∅ ∅

∅
∅

∅

iRG
a

jRGb

iGRd

jGR

c

x

y

∅

∅ ∅
∅

∅

∗
A

∅
∅ ∅ ∅
∅ ∅ ∅ ∅

∅

∅
∅

∅

∅
∅

∅

∅
∅

∅ ∅ ∅ ∅
∅
∅∅

∅
∅
∅

∅
∅
∅

∅
∅
∅
∗

∅
∅
∅

1

4 ∅

∅ ∅

∅
∅

∅

iRG
a

jRGb

iGRd

jGR

c

x

y

∅

∅ ∅
∅

∅

∗
A

∅
∅ ∅ ∅
∅ ∅ ∅ ∅

∅

∅
∅

∅

∅
∅

∅

∅
∅

∅ ∅ ∅ ∅
∅
∅∅

∅
∅
∅

∅
∅
∅

∅
∅
∅

∅
∅
∅

1

4 ∅

∅ ∅

∅
∅

∅

iRG
a

jRGb

iGRd

jGR

c

x

y

∅

∅ ∅
∅

∅

∗
A

∅
∅ ∅ ∅
∅ ∅ ∅ ∅

∅

∅
∅

∅

∅
∅

∅

∅
∅

∅ ∅ ∅ ∅
∅
∅∅

∅
∅
∅

∅
∅
∅

∅
∅
∅
∅
∅
∅
∅
∅

1

4

Figure 4.29: Zone 1 is not empty and zone 3 is empty

Zone 3 is empty Figure 4.29 illustrates the proof. As σ is 	-indecomposable, zone 4
is not empty. Let y be the leftmost point inside zone 4 – either above or below jGR – as
depicted in the second diagram. Rule (ii) applied to y and c leads to the third diagram.
But (iRG, jRG) is the bottom-rightmost increasing sequence RG, hence no point of G lies
in the top-right quadrant of y leading to the fourth diagram. So σ is 	-decomposable
which is forbidden.

This ends the cases study, proving that zone A and B cannot be both empty. �

Definition 4.62. Let σ be a permutation and i, j, k, ` four indices of σ such that σiσj and
σkσ` form patterns 12. We define the partial bicoloring C∗(σ, i, j, k, `) of σ as follows.

i

j

k

`

i

j

k

`
i

j

k

`

i

j

k

`

A

B

1

If σi, σ`, σk and σj have a relative position corresponding to one of the above diagrams,
then we define C∗(σ, i, j, k, `) as the partial bicoloring of σ having the corresponding shape,
where in the last diagram points of zone 1 are in R if zone A is nonempty, else in G if zone
B is nonempty, and have no color otherwise.

184 Chapter 4. Pushall sorting: a new notion linked with general sorting

Otherwise C∗(σ, i, j, k, `) is the partial coloring with no point colored.

Proposition 4.63. Let σ be a 	-indecomposable permutation and c a valid coloring of σ
such that there exist an increasing sequence RG and an increasing sequence GR in c. Then
c = C∗(σ, iRG, jRG, iGR, jGR).

Proof: This is a consequence of Proposition 4.61 and Definition 4.62, noticing that if there
exists a point x in zone A, then applying rule (ii) to ` and x, all points in zone 1 belong
to R, and if there exists a point y in zone B, then applying rule (i) to y and k, all points
in zone 1 belong to G. �

4.3.4 A first polynomial algorithm

Algorithm 14: ColoringIndecomposable1(σ)

Data: σ a 	-indecomposable permutation (whose size is denoted n).
Result: The set E of valid colorings of σ
for c bicoloring of σ being one of
c is monochromatic R
c is monochromatic G
c = CGR(σ, i, j) or CRG(σ, i, j) for i ∈ [1..n] and j ∈ [i..n] s.t. σj > σi
c = C∗(σ, i, j, k, `) for i ∈ [1..n] and j ∈ [i..n] s.t. σj > σi and

for k ∈ [1..n] and ` ∈ [k..n] s.t. σ` > σk
do

If all points of σ are colored and c is valid then add c to E;

Proposition 4.64. Algorithm 14 computes in time O(n5) the set of valid colorings of any
	-indecomposable permutation σ.

Proof: Let σ be a 	-indecomposable permutation of size n and c a valid coloring of σ. Then
from Propositions 4.54, 4.57, 4.60 and 4.63, c is either monochromatic, or CGR(σ, i, j) or
CRG(σ, i, j) for some i ∈ [1..n] and some j ∈ [i..n] such that σj > σi, or c = C∗(σ, i, j, k, `)
for some i ∈ [1..n], some j ∈ [i..n] such that σj > σi, some k ∈ [1..n] and some ` ∈ [k..n]
such that σ` > σk. Thus c is computed by Algorithm 14 and added to E as it is valid.
Conversely, each coloring added to E is a valid bicoloring of σ.

Now consider the complexity of Algorithm 14. There are O(n4) colorings computed.
Indeed there are two monochromatic colorings, O(n2) colorings CGR(σ, i, j) or CRG(σ, i, j)
and O(n4) colorings C∗(σ, i, j, k, `). Moreover each coloring is computed in linear time
using Propositions 4.51 and 4.52 and checking if the coloring is valid is done in linear time
using Proposition 4.46. Hence Algorithm 14 runs in time O(n5). �

4.4 An optimal algorithm

4.4.1 Rooting colorings

In this section we show how each diagram of Propositions 4.55, 4.58 and 4.61 can be rooted
in a given point such that each point iGR, iRG, jGR and jRG can be deduced from this one.
Moreover, given a diagram we show that we can assign colors to points of the permutations
lying in a colored zone of the diagram in linear time.

4.4 An optimal algorithm 185

Definition 4.65. Let σ be a permutation and s ∈ [1..|σ|]. We set

C1(σ, s) = CGR(σ, s, t) where t = min{k | k > s and σk > σs}
C2(σ, s) = CGR(σ, t, s) where t is such that σt = max{σk | k < s and σk < σs}
C3(σ, s) = CRG(σ, s, t) where t is such that σt = min{σk | k > s and σk > σs}
C4(σ, s) = CRG(σ, t, s) where t = max{k | k < s and σk < σs}

C5(σ, s) = C∗(σ, p, q, t, s) with
t = max{k | k < u and σk < σs}
with u = max{k | k < s and σk > σs},
p = max{k | k < t and σt < σk < σs} and
q such that σq = min{σk | t < k ≤ u}

∅

∅

∅

∅ ∅
∅

p

q u

t

s

C6(σ, s) = C∗(σ, p, q, s, t) with
t = min{k | k > s and σk > σs},
u = max{k | k < t and σk > σt},
p = max{k | k < u and σs < σk < σt} and
q such that σq = min{σk | σk > σt and p < k ≤ u}

∅

∅

∅

∅ ∅

p

q

s

t

u

C7(σ, s) = C∗(σ, q, p, t, s) with
t such that σt = max{σk | k < s and σk < σs},
u such that σu = min{σk | k < t and σk > σt},
p such that σp = min{σk | σk > σu and t < k < s} and
q = max{k | k < p and σu ≤ σk < σp}

u

∅
∅

∅ ∅

∅

q

p

t

s

C8(σ, s) = C∗(σ, p, q, s, t) with
t = min{k | k > s and σk > σs},
u such that σu = max{σk | σk > σt and k > t},
v = max{k | k < u and σk > σu},
p = max{k | k < v and σt < σk < σu} and
q such that σq = min{σk | σk > σu and p < k ≤ v}

∅

∅ ∅

∅

∅

∅ ∅

p

q

u

s

t

v

C9(σ, s) = C∗(σ, q, p, t, s) with
t such that σt = max{σk | k < s and σk < σs},
u = min{k | k < t and σk < σt},
v such that σv = min{σk | k < u and σk > σu},
p such that σp = min{σk | σk > σv and u < k < t} and
q = max{k | k < p and σv ≤ σk < σp} u∅

∅
∅

∅ ∅

∅ ∅

q

p

t

s

v

Note that if for some m ∈ [1..9], the index t does not exist, then we take Cm(σ, s) as the
empty partial coloring (no point has a color). The same goes for indices p and q and
m ∈ [5..9].

Proposition 4.66. Let σ be a 	-indecomposable permutation and c a valid coloring of
σ which is not monochromatic. Then there exists s ∈ [1..|σ|] and m ∈ [1..9] such that
c = Cm(σ, s).

Proof: As c is not monochromatic, then from Proposition 4.54 σ has at least a pattern 12
which is not monochromatic.

If there is no increasing subsequenceRG in c then there is at least an increasing sequence
GR in c. Thus from Proposition 4.57, c = CGR(σ, iGR, jGR). Moreover, c has one of the
three shapes described in Proposition 4.55. If the shape of c is one of the two first shapes,
then jGR is the leftmost point in the upper-right quadrant of iGR and c = C1(σ, iGR).

186 Chapter 4. Pushall sorting: a new notion linked with general sorting

Otherwise the shape of c is the third one and iGR is the topmost point in the bottom-left
quadrant of jGR thus c = C2(σ, jGR).

If there is an increasing subsequence RG in c but no increasing sequence GR, then
from Proposition 4.60 c = CRG(σ, iRG, jRG). Moreover c has one of the 5 shapes described
in Proposition 4.58. If the shape of c is one of the three first shapes, then jRG is the lowest
point in the upper-right quadrant of iRG and c = C3(σ, iRG). Otherwise the shape of c is
one of the two last shapes and iRG is the rightmost point in the bottom-left quadrant of
jRG thus c = C4(σ, jRG).

We are left with the case where there is an increasing subsequence RG and an increasing
sequence GR in c. Then from Proposition 4.63, c = C∗(σ, iRG, jRG, iGR, jGR). Moreover c
has one of the 5 shapes described in Proposition 4.61.

If the shape of c is the first one, let u be the rightmost point in the top left quadrant
of jGR (maybe u = jRG). Then applying rule (ii) to iGR and u, c has the following shape:

∅

∅ ∅

∅∅

iRG

jRG
u

iGR

jGR

Thus iGR is the rightmost point on the left of u below jGR. Moreover
iRG is the rightmost point on the top left quadrant of iGR below jGR.
Finally jRG is the lowest point on the right of iGR and on the left of
u. Hence c = C5(σ, jGR).

If the shape of c is the second one of Proposition 4.61, let u be the rightmost point in
the top right quadrant of jRG (maybe u = jRG). From rule (viii) applied to jRG and iGR,
u < iGR. Then applying rule (ii) to iRG and jGR and applying rule (i) to jRG and u if
u 6= jRG, c has the following shape:

∅ ∅

∅

∅

iRG

jRG

iGR

jGR

u Thus jGR is the leftmost point in the upper right quadrant of iGR and
u is the rightmost point in the upper left quadrant of jGR. Moreover
iRG is the rightmost point to the left of u, below jGR and above iGR.
Finally, jRG is the lowest point in the upper left quadrant of jGR and
to the right of iRG. Hence c = C6(σ, iGR).

If the shape of c is the third one of Proposition 4.61, let u be the lowest point in the
lower left quadrant of iRG (maybe u = iRG). From rule (vii) applied to iRG and jGR,
σu > σjGR . Then applying rule (i) to iGR and jRG and applying rule (ii) to u and iRG if
u 6= iRG, c has the following shape:

u

∅

∅
∅

∅
iRG

jRG

iGR

jGR

Thus iGR is the topmost point in the lower left quadrant of jGR and u is
the lowest point in the upper left quadrant of iGR. Moreover jRG is the
lowest point above u, to the right of iGR and to the left of jGR. Finally,
iRG is the rightmost point to the lower left of jRG and above u. Hence
c = C7(σ, jGR)

If the shape of c is the fourth one of Proposition 4.61, let u be the topmost point to
the upright quadrant of jGR and v be the rightmost point to the top-right quadrant of jRG
(maybe v = jRG). Note that u is above iRG as u is above x (u is the topmost point) which
is above iRG. Then applying rule (ii) to iRG and u and applying rule (iii) to jRG and v if
v 6= jRG, c has the following shape:

∅

∅ ∅∅
∅

∅

∅ ∅

∅ ∅

∅
∅

∅

∅iRG

jRG

u

iGR

jGR

v Thus jGR is the leftmost point in the up right quadrant of iGR. Point
u is the topmost point in the upper right quadrant of jGR. Point v is
the rightmost point in the upper left quadrant of u. Then iRG is the
rightmost point to the left of v, below u and above iGR. At last, jRG
is the lowest point above u, to the right of iRG and to the left of v.
Hence c = C8(σ, iGR)

4.4 An optimal algorithm 187

If the shape of c is the last one of Proposition 4.61, let u be the leftmost point in the
lower left quadrant of iGR and v be the lowest point in the lower left quadrant of iRG
(maybe v = iRG). Note that u is to the left of jRG as it is to the left of y (u is the leftmost
point) and y is to the left of jRG. Then applying rule (i) to u and jRG and applying rule
(ii) to v and iRG if v 6= iRG, c has the following shape:

∅
∅

∅ ∅

u

v

∅
∅

∅
∅

∅

iRG

jRG

iGR

jGR

Thus iGR is the topmost point in the lower left quadrant of jGR and u
is the leftmost point in the lower left quadrant of iGR. Moreover v is
the lowest point in the upper left quadrant of u and jRG is the lowest
point above v and to the right of u and to the left of iGR. Finally, iRG
is the rightmost point in the lower left quadrant of jRG and above v.
Hence c = C9(σ, jGR), concluding the proof. �

Proposition 4.67. Let σ be a permutation, s ∈ [1..|σ|] and m ∈ [1..9]. Then we can
compute Cm(σ, s), test whether all points of σ are colored and check whether Cm(σ, s) is
valid in linear time w.r.t. |σ|.

Proof: Knowing m and s, we can find in linear time the corresponding points t, p and q
of Definition 4.65. The result is then a consequence of Propositions 4.51, 4.52 and 4.46.

�

4.4.2 Algorithm for 	-indecomposable permutations

In this section, we give a quadratic algorithm computing the set of valid colorings of a
	-indecomposable permutation, and prove that this algorithm is optimal.

This algorithm relies on Proposition 4.66 which proves that any 	-indecomposable
permutation has at most a linear number of valid colorings, all of the kind Cm(σ, s). It
is then sufficient to check these colorings. By definitions, colorings Cm(σ, s) are partial
colorings. However if a point is uncolored, it means that it lies in a zone of the diagram
that should be empty (as depicted in Propositions 4.55,4.58 and 4.61) hence the coloring
has to be rejected. More precisely, the algorithm is the following:
Algorithm 15: ColoringIndecOptimal(σ)

Data: σ a 	-indecomposable permutation
Result: The set E of valid colorings of σ
for c bicoloring of σ monochromatic R or monochromatic G do

If c is valid then add c to E;

for s from 1 to |σ| do
for m from 1 to 9 do

c = Cm(σ, s);
If all points of σ are colored and c is valid then add c to E;

Theorem 4.68. A 	-indecomposable permutation of size n has at most 9n valid colorings.
Those colorings can be computed using Algorithm 15 in time O(n2) which is optimal.

Proof: This is a consequence of Propositions 4.66 and 4.67, except for the optimality (note
that we may expect 9n + 2 instead of 9n in the statement of the theorem, but if a valid
coloring c = Cm(σ, s) with m ∈ [5..9] then s 6= 1; and 2 + 4n + 5(n − 1) ≤ 9n). Finally
Proposition 4.69 below implies that the set of valid colorings of the identity of size n has
size 2n2 (it is a set of 2n coloring having each n colored points), proving the optimality.

�

188 Chapter 4. Pushall sorting: a new notion linked with general sorting

Proposition 4.69. For all n the identity of size n has exactly 2n valid colorings.

Proof: Let σ be the identity of size n. For all k between 1 and n let CkRG (resp. CkGR)
be the coloring of σ such that for all i, σ is in R (resp. G) if i ≤ k and in G (resp. R)
otherwise. Then it is straightforward to check that CkRG (resp. CkGR) is a valid coloring
of σ, i.e. has no pattern 132, 213, 1X2 or 2/13. Conversely if c is a valid coloring of the
identity, rules (iii) and (iv) of R8 imply that there are at most one pair of consecutive
points whose colors are different. So c is some CkRG or some CkGR. �

The property of having a linear number of colorings is not a special case of the identity.
Indeed there are some simple permutations that also have a linear number of colorings, as
shown in the next proposition.

Proposition 4.70. Permutations σ(n) = (2n−1)(2n−3)(2n)(2n−5)(2n−2)(2n−7)(2n−
4) . . . 5 8 3 6 1 4 2 of size 2n have at least 2n− 3 valid colorings.

Proof. To prove the result, we exhibit 2n− 3 colorings. We look at set of four points of σ
whose indices (resp. values) are consecutive and which form a pattern 2 4 1 3 (resp. 3 1 4 2).
Notice that they can be taken to be {iRG, iGR, jRG, jGR} in a valid coloring of σ respecting
to the third (resp. second) diagram of Proposition 4.61, as shown in the figure below. This
way we obtain 2n− 3 valid colorings of σ, since there are n− 2 (resp. n− 1) such patterns.

�

4.4.3 Final algorithm

In this section, we give a quadratic algorithm computing an encoding of the set of all
pushall sorting processes of a given permutation.

Recall first that if a permutation σ is	-decomposable, then it is 2-stack pushall sortable
if and only if each of the blocks of its decomposition is 2-stack pushall sortable. Moreover
to obtain a sorting process of σ we can just push elements of the first block according to any
pushall sorting process of it, then elements of the second and so on, before popping out all
the elements. This means that the set of valid colorings of a 	-decomposable permutation
is the product of valid colorings of each block, as stated in Proposition 4.71 below. When
π is a pattern of σ and c a coloring of σ, we denote by c|π the restriction of c to π.

Proposition 4.71. Let σ be a permutation and Col(σ) the set of valid colorings of σ.
If σ = 	[π1, . . . , πk] then the map c → (c|π1 , . . . , c|πk) is a bijection from Col(σ) into
Col(π1)× · · · × Col(πk).

Proof: Let c be a valid coloring of σ, then c avoids patterns 132, 213, 2/13 and 1X2.
Thus for all i, c|πi avoids patterns 132, 213, 2/13 and 1X2 hence is a valid coloring of πi.
Conversely let ci ∈ Col(πi) for all i. Then coloring points of σ according to (c1, . . . ck) (i.e.
according to c1 for the |π1| first points of σ, according to c2 for the |π2| following points
and so on) leads to a coloring c of σ which is valid. Indeed assume that c is not valid.
Then c has a pattern 132, 213, 2/13 or 1X2. Let p be such a pattern. Then p is not inside
a block πi as ci is a valid coloring for all i. If all points of p are in different blocks πi then
p is 321 which is excluded. Thus there are one point of p in a block πi and two points of p
in a block πj . If i < j then p begins with its greatest point, which is excluded as p is 132,

4.4 An optimal algorithm 189

213, 2/13 or 1X2. If i > j then p ends with its smallest point, which is excluded as p is
132, 213, 2/13 or 1X2. As a consequence such a pattern p does not exists and c ∈ Col(σ),
concluding the proof. �

Using Proposition 4.71, we can compute the set of valid colorings of any permuta-
tion using Algorithm 15 which computes the set of valid colorings of a 	-indecomposable
permutation.
Algorithm 16: Colorings(σ)

Data: σ a permutation
Result: A linear description of the set Col(σ) of valid colorings of σ
Compute the 	-decomposition of σ: σ = 	[π1, . . . , πk] with πi 	-indecomposable;
for i from 1 to k do

Compute Col(πi) thanks to Algorithm 15;

Return (Col(π1), . . . , Col(πk));

Proposition 4.72. Let σ be a permutation of size n. Then Algorithm 16 gives a description
of Col(σ) in time O(n2). More precisely, Algorithm 16 gives an integer k ≤ n and k sets
C1, . . . Ck such that Col(σ) = C1 × · · · ×Ck and the sum of the cardinals

∑k
i=1 |Ci| is less

than 9n.

Proof. The algorithm computes the 	-decomposition of σ: σ = 	[π1, . . . , πk] with πi
	-indecomposable. This is done in linear time. If k = 1 then σ is 	-indecomposable
and Col(σ) = Col(π1). We concludes thanks to Theorem 4.68. If k > 1 then from
Proposition 4.71, Col(σ) ≈ Col(π1) × · · · × Col(πk). From Theorem 4.68, Col(πi) has a
size is smaller than 9|πi| for all i and is computed in O(|πi|2). We concludes the proof
noticing that 9|π1|+ · · ·+ 9|πk| = 9|σ| and |π1|2 + · · ·+ |πk|2 ≤ |σ|2. �

Notice that Col(σ) may have a cardinality exponential w.r.t. |σ|. For instance with
σ = n(n − 1) . . . 21 (the reverse of the identity of size n), σ has 2n valid colorings but
Col(σ) can be represented in linear space since it is the Cartesian product of n sets of
size 2: each block of σ is the trivial permutation 1 which has 2 valid colorings, the two
monochromatic ones.

We are now able to state the main theorem of this chapter:

Theorem 4.73. Using Algorithm 16, we can decide in time O(n2) whether a permutation
σ of size n is 2-stack pushall sortable.

Moreover Algorithm 16 computes in time O(n2) an encoding of all pushall sorting pro-
cesses of σ.

Proof. By Theorem 4.45, a permutation σ is 2-stack pushall sortable if and only if it admits
a valid coloring. Thus using Proposition 4.72 all we need is to test whether each set Col(πi)
returned by Algorithm 16 is non-empty with σ = 	[π1, . . . , πk] being the 	-decomposition
of σ.

We conclude the proof using Proposition 4.72 and 4.18 and Theorem 4.43. �

We believe that pushall sorting defined in this chapter is of interest per se, but most
importantly, with the results on pushall sorting given in this chapter we are able to give
in the next chapter a polynomial algorithm deciding whether a permutation is sortable
with two stack in series, although this problem was conjectured to be NP-complete in the
literature.

190 Chapter 4. Pushall sorting: a new notion linked with general sorting

Chapter 5

A polynomial algorithm deciding if a
permutation is 2-stack sortable

This chapter deals with deciding whether a permutation is sortable with two stacks in
series. Whether this decision problem lies in P or is NP-complete is a longstanding open
problem since the introduction of serial compositions of stacks by Knuth in The Art of
Computer Programming [Knu73a] in 1973. We hereby prove that this decision problem lies
in P by giving a polynomial algorithm to solve it. This algorithm strongly relies on pushall
sorting which is defined and studied in the previous chapter.

192 Chapter 5. A polynomial algorithm deciding 2-stack sortability

5.1 Introduction

Lots of fascinating questions arose out of the seminal work of Knuth about sorting devices
such as stacks and queues; many are still unanswered more than 40 years later, despite a
considerable literature on the subject.

One of these still open problems is the following: How many permutations of length n
can be sorted by two stacks connected in series?

A classical strategy when trying to solve this kind of question is to study words en-
coding sorting processes. In general there are many words corresponding to a sortable
permutation, but we can try to find rules limiting the number of words associated to a
given permutation.

In the article Permutations generated by stacks and deques[AAL10], Albert, Atkinson
and Linton give lower and upper bounds for the the number of permutations of length n
generated by two stacks in series, two stacks in parallel, and a general deque (as already
mentioned, deciding whether a permutation can be generated by two stacks in series and
deciding whether a permutation is 2-stack sortable is equivalent up to composition with
the inverse permutation).

They use the theory of finite automata and regular languages applied to words encoding
sorting processes to obtain approximations of the growth rate of these classes.

Their lower and upper bounds for two stacks in parallel (7.535 and 8.3461) and for a
deque (7.890 and 8.352) are rather close, while for two stacks in series (8.156 and 13.374)
they are more distant.

This article ends by commenting on the difficulty of sorting with two stacks in series:

There is a great similarity between two stacks in parallel and a deque.[...] By
contrast we seem to understand two stacks in series rather less. It is possible
that this system is intrinsically more complex than either a deque or two parallel
stacks. One reason for believing this is that we have no efficient test for whether
a given permutation can be generated by two stacks in series, whereas the
membership problem for deques and two parallel stacks is in the complexity
class P (see [RT84, EI71]). It is possible that the problem of deciding whether
a given permutation is the product of two stack permutations (which is exactly
the same as being generated by two serial stacks) is NP-complete.

This chapter deals with deciding whether a permutation is sortable with two stacks in
series. We prove that this decision problem lies in P by giving a polynomial algorithm to
solve it. This algorithm is rather complicated, and we believe as the authors of [AAL10]
that sorting with two stacks in series is intrinsically complex.

When only one stack is considered, there exists a natural algorithm to decide whether
a permutation is sortable or not. Indeed, there is a unique way to sort a permutation using
only one stack, and a greedy algorithm gives a decision procedure. For two stacks in series,
a permutation can be sorted in numerous ways. Take for example the permutation 4321.
Each element can be pushed in either stacks H or V and output the identity at the end.
This way the decreasing permutation of size n has at least 2n−1 ways to be sorted i.e. at
least 2n−1 sorting words.

In fact, for two-stack sorting, finding a canonical sorting is hard. Thus many slightly
modified models appear: In the literature, several variants of the greedy algorithm for one
stack were introduced, but none allows to sort every 2-stack sortable permutation. For
example, in his PhD-thesis [Wes90] West introduced a right greedy model. Permutations

5.2 Definitions and notations 193

sortable with this model, called West-2-stack sortable permutations, are characterized and
enumerated. The left greedy algorithm introduced in [AMR02] sorts permutations sortable
with two decreasing stacks in series, which are also characterized and enumerated.

For our unrestricted case, sometimes called in the literature the general 2-stack sorting
problem, no characterization of sortable permutations and no polynomial algorithm to
decide if a permutation is sortable is known (except the one given in this chapter). A
common mistake when trying to sort a given permutation is to pop out the smallest
element not yet output, i, as soon as it lies in the stacks. This operation may indeed
move other elements if i is not the topmost element of H. The elements above it are then
transferred into V before i can be popped out. But sometimes, it can be necessary to take
some elements of σ from the input and push them onto H or V before this transfer. Take
for example the permutation 324617985. Trying to pop out the smallest element as soon
as it is in the stacks leads to a dead-end. However, this permutation can be sorted using
the word ρ3ρ2λ2ρ4ρ6ρ1λ1µ1µ2ρ7λ7λ6λ4λ3µ3µ4ρ9ρ8ρ5λ5µ5µ6µ7λ8µ8λ9µ9 (here for clarity
we indicate on which integer each operation is performed). But we prove that this natural
idea of popping out smallest elements as soon as possible can be adapted considering
right-to-left minima of the permutation.

We saw that a sorting process can be described as a word on the alphabet {ρ, λ, µ}.
In this chapter, we will also describe a sorting in a different way. Take the prefix of a
stack word: it corresponds to moving some elements from the permutation to the stacks or
outputting them. At the end of the prefix some elements may be in the stacks. We can take
a picture of the stacks (such a picture is called a stack configuration) and indeed, we will
show that considering such pictures for all the prefixes that correspond to the entry of a
right-to-left (RTL) minimum of the permutation in H is sufficient to decide the sortability.

Considering step by step the times ti where the i-th right-to-left minimum enters stack
H is one key of our algorithm. The second one is to encode sets of stack configurations by
a graph.

Before going into details, we set definitions and notations.

5.2 Definitions and notations

We defined permutations of the set [1..n] but we can define more generally permutations
of any set of integers: Let I be a set of integers. A permutation of I is a bijection from
I onto I. We write a permutation σ of I as the word σ = σ1σ2 . . . σn where σi = σ(i1)
with I = {i1 . . . in} and i1 < i2 < · · · < in. The size of the permutation is the integer
n and if not specified, I = [1..n]. Notice that given the word σ1σ2 . . . σn we can deduce
the set I and the map σ. With this definition, a permutation is a word whose letters are
distinct integers. For any subset J of I, σ|J denotes the permutation such that the word
corresponding to σ|J is the subword of the word corresponding to σ formed with the letters
of J . For instance with σ = 25413, σ|{2,3,5} = 253.

Recall that a permutation σ is sortable if, taking σ as input, there exists a sequence
of operations ρ, λ, µ as depicted in Figure 4.1 (p.149) that leads to writing as output the
elements of σ in increasing order.

Each sorting process is encoded by a unique word on the alphabet {ρ, λ, µ}. For exam-
ple, the sorting process of 2431 given in Example 4.1 (p.150) is encoded by the word w =
ρρλρλρλµλµµµ. We can also decorate the word to specify the element on which each oper-
ation is performed. The decorated word for w and 2431 is ŵ = ρ2ρ4λ4ρ3λ3ρ1λ1µ1λ2µ2µ3µ4.
Note that (σ,w) and ŵ give the same information. The decorated word associated to (σ,w)
is denoted ŵσ. Notice that in a decorated word each letter ρi, λi or µi appears only once.

194 Chapter 5. A polynomial algorithm deciding 2-stack sortability

In this chapter we often use the decomposition of permutations into blocks already seen
in the previous chapters, but it is more convenient here not to renormalize the elements.
That’s why we give an alternative definition of 	-decomposition without renormalization:

Recall that a block B of a permutation σ = σ1σ2 . . . σn is a factor σiσi+1 . . . σj of σ
such that the set of values {σi, . . . , σj} forms an interval. Notice that by definition of a
factor, the set of indices {i, . . . , j} also forms an interval. Given two blocks B and B′

of σ, we write B < B′ if and only if σi < σj for all σi ∈ B, σj ∈ B′. A permutation
σ is 	-decomposable if we can write it as σ = B1 . . . Bk such that k ≥ 2 and for all i,
Bi > Bi+1 in terms of blocks. Otherwise we say that σ is 	-indecomposable. When each
Bi is 	-indecomposable, we write σ = 	[B1, . . . , Bk] and call this the 	-decomposition
of σ. Notice that we do not renormalize the elements of Bi thus except Bk, the Bi are
permutations but not of the set [1..|Bi|]. Nevertheless, Bi can be seen as a permutation of
[1..|Bi|] by decreasing all its elements by |Bi+1|+ · · ·+ |Bk|.

The RTL (right-to-left) minima of a permutation are the elements σk such that there
do not exist j satisfying j > k and σj < σk. We denote by σki the i

th right-to-left (RTL)
minimum of σ. If σ has r RTL minima and |σ| = n, then σ = . . . σk1 . . . σk2 . . . σkr with
σk1 = 1 and kr = n.

Take for example the permutation σ = 6 5 8 7 4 1 3 2. The 	-decomposition of σ is
σ = 	[6 5 8 7, 4, 1 3 2]. Furthermore σ has 2 RTL-minima which are σ6 = 1 and σ8 = 2.

Definition 5.1. We denote σ(i) = {σj | j < ki and σj > σki} the restriction of σ to
the elements in the upper left quadrant of the ith right-to-left (RTL) minimum σki . The
	i-decomposition of σ is the 	-decomposition of σ(i) = 	[B

(i)
1 , . . . , B

(i)
si]. In the sequel, si

always denotes the number of blocks of σ(i) and B(i)
j the jth block in the 	i-decomposition.

There are two key ideas in this chapter. First, among all possible sorting words for
a 2-stack sortable permutation, we show that there exists a sorting word satisfying some
property denoted P. In particular we prove that if a permutation σ is sortable then there
exists a sorting process in which the elements that lie in the stacks just before a right-to-left
minimum ki enters the stacks are exactly the elements of σ(i). A formal definition is given
in Definition 5.15.

The second idea is to encode the different sortings of a permutation satisfying P by
a sequence of graphs G(i) in which each node represents a stack configuration of a block
B

(i)
j and edges give compatibility between these partial configurations to obtain a possible

total stack configuration for σ(i). The index i is taken from 1 to the number of right-to-left
minima of the permutation.

This chapter is organized as follows: Section 5.3 studies general properties of two-
stack sorting and describes which elements can move at each moment of a sorting process.
Section 5.4 introduces the sorting graph G(i) which encodes possible stack configuration
for σ(i) at a given time ti and gives an algorithm to compute this graph iteratively for all
i from 1 to the number of right-to-left minima, leading to an algorithm deciding whether
a permutation is 2-stack sortable. Then Section 5.5 focuses on complexity analysis. To
conclude, we give in Section 5.6 some natural continuations of our work.

5.3 Study of two-stack sorting processes

5.3.1 Stack configurations and accessibility

We begin with some definitions.

5.3 Study of two-stack sorting processes 195

Definition 5.2 (prefix stack word). A prefix stack word is a word w ∈ {ρ, λ, µ}∗ such that
for any prefix v of w, |v|ρ ≥ |v|λ ≥ |v|µ.

Intuitively, prefix stack words are words describing some operations ρ, λ, µ starting with
empty stacks and an arbitrarily long input and there may be some elements in the stacks
at the end of these operations, whereas stack words (defined p.150) are words encoding a
complete sorting process (stacks are empty at the beginning and at the end of the process).

Definition 5.3 (subword). Let I be a set of integers.
For any decorated word u we define u|I as the subword of u made of letters ρi, λi, µi

with i ∈ I. For example, if u = ρ3µ5λ3ρ6ρ7λ6 then u|{5,6} = µ5ρ6λ6.
We extend this definition to prefix stack words: given a permutation σ and a prefix

stack word w, w|I is the word of {ρ, λ, µ}∗ obtained from ŵσ|I by deleting indices from
letters ρi, λi, µi.

Intuitively, w|I is the subword of w made of the operations of w that act on integers
of I.

Lemma 5.4. For any stack word (resp. prefix stack word) w, w|I is also a stack word
(resp. prefix stack word).

Proof. Let σ be a permutation. As w is a prefix stack word, for all i from 1 to |σ|, ρi
appears before λi which itself appears before µi in ŵσ|I . Therefore for any prefix v of w|I ,
|v|ρ ≥ |v|λ ≥ |v|µ. If, moreover, w is a stack word, let α ∈ {ρ, λ, µ}; then for any letter αi
in ŵσ|I , ρi, λi and µi appear each exactly once in ŵσ|I , thus |w|I |ρ = |w|I |λ = |w|I |µ. �

Lemma 5.5. Let σ be a permutation and I a subset of [1..|σ|]. If w is a sorting word for
σ, then w|I is a sorting word for σ|I .

Now we turn to stack configurations, beginning with linking prefix stack words to stack
configurations.

Definition 5.6. Let w be a prefix stack word. Starting with a permutation σ as input,
the stack configuration reached after performing operations described by the word w is
denoted cσ(w).

With this definition, a stack configuration c is reachable for σ if there exists a prefix
stack word w such that c = cσ(w) (recall that a stack configuration is reachable for σ if,
taking σ as input, there exists a sequence of operations ρ, λ, µ leading to this configuration).

Recall also that a stack configuration is poppable if the elements in stacks H and V
can be output in increasing order using operations λ and µ. From Theorem 4.13, a stack
configuration is poppable if and only if it avoids the three unsortable stack-patterns | |132|,
|12| | and |2|13|. Moreover recall that there is a unique way to pop the elements out in
increasing order in terms of stack operations. We will denote by outc(I) the word that
consists of the operations that output in increasing order the elements of the set of values
I from a poppable stack configuration c.

Lemma 5.7. If σ = 	[B1, . . . Bk] then in any poppable stack configuration reachable for σ,
the elements of Bi are below the elements of Bj in the stacks for all i < j (see Figure 5.1).

Proof. Notice that by definition of a stack, in any stack configuration reachable for σ the
elements of H are in increasing order of indices from bottom to top. Moreover in any
poppable stack configuration the elements of V are in decreasing order of values from
bottom to top since from Theorem 4.13 the stack configuration avoids the pattern |12| |.
This leads to the claimed property. �

196 Chapter 5. A polynomial algorithm deciding 2-stack sortability

B1

B2

Bk

B1

B2

Bk

Figure 5.1: Poppable stack configuration reachable for 	[B1, . . . Bk].

Lemma 5.8. Let σ be a 2-stack sortable permutation and w = uv be a sorting word for σ.
Assume that after performing operations of u, the elements 1 . . . i−1 have been output and
the elements i . . . j are at the top of the stacks. Then there exists a sorting word w′ = uu′u′′

for σ such that u′ consists only of moving the elements i . . . j from the stacks to the output
in increasing order without moving any other elements.

I = [i . . . j]
i(i+ 1) . . . j

Proof. We claim that u′ = v|[i..j] and u′′ = v|![i..j] satisfy the desired property, where ![i..j] is
the set of integers [1..|σ|]\[i..j]. This can be checked using decorated words associated to w
and w′ and noticing that v|[i..j] = outcσ(u)([i..j]) and v|![i..j] = v|>j since by hypothesis after
performing operations of u, the elements 1, . . . , i − 1 have been output and the elements
i, . . . , j are at the top of the stacks. �

The stack configurations for a sorting process encode the elements that are currently in
the stacks. But some elements are still waiting in the input and some elements have been
output. To fully characterize a configuration, we define an extended stack configuration of
a permutation σ of size n to be a pair (c, i) where i ∈ {1, . . . n + 1} and c is a poppable
stack configuration made of all elements within σ1, σ2, . . . , σi−1 that are greater than a
value p. The elements σi, . . . , σn are still in the input and the elements σj < p, j < i have
already been output. Notice that we don’t need the configuration to be reachable.

Definition 5.9. Let σ be a permutation and (c, i) be an extended stack configuration of
σ. Then the extended stack configuration (c′, j) of σ is accessible from (c, i) if the stack
configuration (c′, j) can be reached starting from (c, i) and performing operations ρ, λ and
µ such that operations µ performed output the elements of c ∪ {σi . . . σn} in increasing
order.

For example, if σ = 2 3 1 6 5 8 4 7 then (6
5

8 , 7) is accessible from (3
2

, 4) by the

sequence of operations µ2µ3ρ6ρ5ρ8λ8. But (63
2

, 5) is not accessible from (32
1

, 4).
Notice that the question of whether a permutation is 2-stack sortable can be reformu-

lated as:
Is (, n+ 1) accessible from (, 1)?

To solve this problem is the main goal of this chapter and is somehow hard; however
some special cases are easier to deal with. The following Lemma gives conditions on the
involved configurations under which the accessibility decision problem is linear and can be

5.3 Study of two-stack sorting processes 197

solved by the isAccessible procedure given in Algorithm 17. In the last sections, we show
how more general cases can be solved using this Lemma.

Lemma 5.10. Let σ be a permutation of size n and (c, i), (c′, j) two extended stack con-
figurations of σ with i < j. Let E be the set of elements of c and F those of c′.

• If there exist k, ` ∈ {1 . . . n} such that E = {σm | m ≤ k} and F = {σm | σm ≥ `}
• If moreover E ∪ F = σ,

then we can decide in linear time whether (c′, j) is accessible from (c, i) using Algorithm 17.

∅E
`

F

k

σq · · ·σn
x
ρ

xλx
µ

1 · · · p− 1
σV...

σH...

Algorithm 17: isAccessible
(
(c, i), (c′, j), σ

)
Data: σ a permutation and (c, i), (c′, j) two stack configurations of σ satisfying

conditions of Lemma 5.10
Result: true or false depending on whether the configuration c′ is accessible from

c
begin

Put configuration c in the stacks H and V ;
p← the smallest element of c ∪ {σi . . . σn} (next element to be output);
q ← i (next index of σ that must enter the stacks);
We denote by V (c′) the set of elements of V in configuration c′ and by σV the
top of V in the current configuration (the same goes for H).
while q < j or p < ` or σH ∈ V (c′) do

if σV = p then
Perform µ; p← p+ 1;

else
if σH < ` then

Perform λ;
else

if H = ∅ or σH ∈ H(c′) then
Perform ρ; q ← q + 1;

else
if σq ∈ H(c′) or σH > σq then

Perform λ;
else

Perform ρ; q ← q + 1;

Return (H,V) == c′;

Proof. We prove by case study that there is no choice between operations ρ, λ, µ at each
time step. This is illustrated by Algorithm 17. We first prove its correctness before studying
its complexity.

We start with configuration curr = c. By studying specific elements of the current con-
figuration curr, we prove that we can always decide which operation should be performed
to transform curr into c′. If at any step this operation is forbidden then c′ is not accessible

198 Chapter 5. A polynomial algorithm deciding 2-stack sortability

from curr. Thus repeating the following process will eventually lead to deciding whether
c′ is accessible from c.

Notice that by definition, c and c′ are poppable thus curr has to be poppable, hence
must avoid the three unsortable patterns of Definition 4.12. Let p be the next element to
be output, i.e. the smallest element of c ∪ {σi . . . σn}. Let σH (resp. σV) be the topmost
element of H (resp. of V) and σq be the element waiting in the input to be pushed onto
H (σq may not exist and in that case σq = ∅; at the beginning σq = σi).

• If σV = p then we perform µ (from Lemma 5.8).

• Otherwise operation µ is forbidden. We have to choose between ρ and λ. Moreover
p /∈ V as V is in decreasing order from bottom to top.

1. Suppose that σH < `. This means that σH 6∈ F i.e. σH 6∈ c′. Notice that by
definition of p, p ≤ σH and thus p 6∈ c′. Moreover p /∈ V thus p ∈ H. If p = σH
then, by Lemma 5.8, we can pop out p. Thus we perform λ. If σH 6= p, then
we will prove that all elements x such that p ≤ x ≤ σH form an interval at the
top of the stacks. Those elements are all in the stacks by definition of ` and p.
As V is decreasing, the elements of [p . . . σH] belonging to V are at the top of
it. Consider now the position of those elements in H.
Suppose that it is not an interval. Then there exists an element x in H such
that x < σH and there is an element y > σH between x and σH . But in that
case, the elements xyσH form the pattern 1 3 2 and curr is not poppable so any
operation ρ, λ or µ is allowed here because we will never reach c′.
Suppose now that the elements [p . . . σH] form an interval in H and V . Then as
p ∈ H is the smallest element, by Lemma 5.8, we want to pop out the elements
[p . . . σH], hence we perform λ.
In conclusion, if σH < ` we perform λ.

2. If not, then σH ≥ ` and thus σH ∈ c′. Once again there are different cases:

(a) If H = ∅ then λ is forbidden, thus we perform ρ.
(b) If σH ∈ H(c′), it must stay in H thus λ is forbidden and we perform ρ.
(c) Else σH ∈ V (c′).

• If σq ∈ H(c′) then ρ is forbidden because σq would prevent σH from
moving. Thus we perform λ.
• Else σq ∈ V (c′). If σH > σq, as σH ∈ V (c′), ρ is forbidden otherwise

we cannot put σq above σH in V . Thus we perform λ.
• Otherwise σH , σq ∈ V (c′) and σH < σq. λ is forbidden otherwise we

cannot put σH above σq in V . Thus we perform ρ.

We have proved that at each step of the algorithm we know which operation we have to
do if we want to reach c′. Moreover while q < j or p < ` or σH ∈ V (c′), it is impossible
that curr = c′ so we have to continue. Conversely if q ≥ j and p ≥ ` and σH /∈ V (c′) then
ρ and µ and λ are forbidden and we have to stop. Then if curr = c′, c′ is accessible from
c, otherwise c′ is not accessible from c.

Finally there are at most 3n steps since at each step of the algorithm we perform an
operation ρ, λ or µ. Moreover each step takes a constant time, therefore the algorithm
runs in linear time. �

In the sequel of this chapter, we do not compute all possible stack configurations during
a sorting process of a given permutation σ but indeed focus on specific steps of the sorting.

5.3 Study of two-stack sorting processes 199

We study the possible stack configurations at each time step ti corresponding to the moment
just before the right-to-left minimum σki is pushed onto stack H. Those configurations are
configurations (c, ki) accessible from (, 1).

We will prove that we can add two different restrictions on these configurations. First,
(c, ki) must be a pushall stack configuration of σ(i) (see below). Second (c, ki) must be
accessible from some configuration (c′, ki−1) between time ti−1 and ti.

Definition 5.11 (pushall configuration). A stack configuration is a pushall stack configu-
ration of σ if it is poppable, total and reachable for σ.

We have seen in the previous chapter that pushall stack configurations characterize
pushall sorting processes since there is exactly one way to push the elements into the
stacks and then to pop them out in increasing order.

5.3.2 From time ti to time ti+1

Thanks to the previous decomposition into different time steps corresponding to each
moment a right-to-left minimum is pushed ontoH and thanks to the results of Chapter 4 on
2-stack pushall sortable permutations, we can give a polynomial algorithm deciding whether
a permutation is 2-stack sortable. Indeed, we will prove that it is enough to consider sorting
processes such that for each time ti the only elements in the stacks are exactly those of
σ(i). But the stack configuration at time ti is then a pushall stack configuration of σ(i);
moreover Proposition 4.72 states that we can compute all pushall stack configurations in
quadratic time. When a permutation is 	-indecomposable, Theorem 4.68 states that the
number of possible pushall stack configurations is linear in the size of the permutation.
This will ensure that our algorithm runs in polynomial time. Using this result, we now
have the possible total stack configurations at time t1.

The key idea for computing the set of possible stack configurations at time ti relies on
Lemma 5.14 below. Informally, it is possible to decide whether a configuration at time ti
can evolve into a given configuration at time ti+1. Moreover, during this transition, only
a few operations are undetermined. Indeed the largest elements won’t move, the smallest
ones will be output in increasing order and the remaining ones form a 	-indecomposable
permutation. This will allow us to exhibit a polynomial algorithm.

First of all we denote by A(i) the common part of the permutations σ(i) and σ(i+1),
that is, A(i) = σ(i)

⋂
σ(i+1) = {σj | j < ki and σj > σki+1

}. This sub-permutation
A(i) intersects 	-indecomposable blocks of σ(i) and σ(i+1). Let p(i) (resp. q(i+1)) be
the index such that B(i)

p(i)
(resp. B(i+1)

q(i+1)) contains the smallest value of A(i). Let D(i) =

(B
(i)

p(i)

⋃
B

(i+1)

q(i+1))
⋂
A(i) (see below for p(i) = q(i+1), p(i) < q(i+1) and p(i) > q(i+1).

A(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

D(i)

A(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

D(i)

A(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

D(i)

Lemma 5.12. For any j < min(p(i), q(i+1)), B(i)
j = B

(i+1)
j .

200 Chapter 5. A polynomial algorithm deciding 2-stack sortability

Lemma 5.13. Let σ` ∈ A(i). During a sorting process of σ, elements σm such that σm > σ`
and m < ` do not move between ti and ti+1.

Proof. Let σm be an element such that m < ` and σm > σ`. As σ` ∈ A(i), σ` > σki+1

and j < ki, so does σm > σki+1
and m < ki. Hence both elements σm, σ` lie in the stacks

between ti and ti+1 (they cannot be output as σki+1
must be output first). Suppose that

σm is in H at time ti. As m < `, element σ` is pushed after σm into the stacks, thus either
σ` is above σm in H or lies in V at time ti and ti+1. So, σm cannot move into V , otherwise
σ` would be under it in V and V would contain a pattern 12. So, σm stay in H.

Suppose now that σm is in V at time ti. As noticed previously, this element is not
output at time ti+1. So it also lies in stack V at time ti+1, proving the lemma. �

In the following we study conditions for two total pushall stack configurations c and c′

corresponding to stack configuration of σ(i) and σ(i+1) to be accessible one from the other,
that is, we can move elements starting from c at time ti to obtain c′ at time ti+1.

Lemma 5.14. Let (c, ki) (resp. (c′, ki+1)) be a total stack configuration of σ(i) (resp. σ(i+1)).
Let π = σ|B(i)

p(i)

⋃
B

(i+1)

q(i+1)

. Then (c′, ki+1) is accessible from (c, ki) for σ iff:

1. (c′|π, |π|+ 1) is accessible from (c|π,](D
(i)
⋃
B

(i)

p(i)
) + 1) for π.

2. ∀j < min(p(i), q(i+1)), c|B(i)
j

= c′
|B(i)
j

.

3. ∀j > q(i+1), c′
|B(i+1)
j

is a reachable configuration for σ|B(i+1)
j

.

Proof. Suppose first that (c′, ki+1) is accessible from (c, ki). This means that we can go
from c to c′ using operations represented by a decorated word ŵ. These operations are
stable, that is, for all I, c′|I is accessible from c|I . To do so, we just extract operations
corresponding to the elements of I. Indeed the decorated word ŵ|I allows us to transform
c into c′. This proves the first point of Lemma 5.14.

Let σ` ∈ B
(i)
p . Lemma 5.13 ensures that the elements of B(i)

j with j < p(i) do not move
between ti and ti+1 proving the second point of Lemma 5.14.

Finally, the elements of B(i+1)
j for j > q(i+1) are pushed iteratively when going from c

to c′. Those elements stay in the stacks as σki+1
, which is smaller, is pushed after them.

Thus they correspond to a pushall configuration.
Conversely, suppose that we have the 3 different points above, we must prove that

(c′, ki+1) is accessible from (c, ki) for σ. We start by taking the stack configuration c and
we will prove that we can obtain c′ by moving elements. First of all, as c is a pushall stack
configuration, and as the elements of B` for ` > p are the smallest ones and have been
pushed last into the stacks, they are at the top of the stacks (see Lemma 5.7). Thus we
can pop them and output them in increasing order using Lemma 5.8.

The remaining elements in the stacks don’t move in the preceding operation, thus stay
in the same position as in c. In that configuration, the elements of B(i)

p(i)
are the smallest

ones and have been pushed most recently into the stacks. Hence they lie at the top of the
stacks.

Then using point 1 of our hypothesis, we can move those elements together with pushing
the elements of B(i+1)

q(i+1) \ B
(i)

p(i)
so that all those elements (that is the elements of π) are in

the same position as in c′. Then, by hypothesis item 3, ∀j > q(i+1), c′
|B(i+1)
j

is a reachable

configuration. Thus we can push its elements into the stacks in the same relative order as

5.3 Study of two-stack sorting processes 201

in c′ (see Lemma 5.7). During these operations we ensure that the elements of B` with
` ≥ min(p(i), q(i+1)), c|B(i)

j

are in the same position in our configuration than in c′. Point

2 ensures that we indeed obtain c′. �

The preceding Lemma describes exactly which elements can move between ti and ti+1

and how they move. But the hypotheses of Lemma 5.14 are restrictive, that is, configu-
rations c and c′ must be two total stack configurations of σ(i) and σ(i+1). Thus, we first
prove that among all sortings of a 2-stack sortable permutation, there exists at least one
for which the stack configuration at time ti contains exactly the elements of σ(i) for all i.

Definition 5.15 (Properties (Pi) and (P)). Let σ be a permutation and w a sorting word
for σ. We say that w verifies (Pi) if and only if

(i) ρσkiλσkiµσki is a factor of w,

(ii) µσj appears before ρσki for all σj < σki ,

(iii) All operations µσ` with σ` ∈ B
(i)
j and j ∈ [p(i) + 1..si] appear before ρσki+1

in w,

where σki is the i
th right-to-left minima of the permutation and σ(i) = 	[B

(i)
1 , . . . , B

(i)
si].

If a word w verifies Property (Pi) for all i then we say that w verifies Property (P).

Lemma 5.16. If the sorting word encoding a sorting process of σ verifies Property (Pi),
then at time ti the elements currently in the stacks are exactly those of σ(i).

Proof. By definition of time ti (just before σki enters the stacks) each element in the stacks
has an index smaller than ki. Moreover among elements of index smaller than ki, those
of value greater than σki cannot have been output by definition of a sorting, and those
of value smaller than σki have already been output since w satisfies item (ii) of Property
(Pi). �

Lemma 5.17. Let w be a sorting word for a permutation σ, r be the number of RTL-
minima of σ and ` ∈ [1..r]. If w verifies (Pi) for i ∈ [1..` − 1] then there exists a sorting
word w′ for σ that verifies (Pi) for i ∈ [1..`].

Proof. Consider the sorting process of σ encoded by w. The key idea is to prove that the
smallest elements are at the top of the stacks so that we can transform the word w thanks
to Lemma 5.8.

Property (ii) for (P`) states that µσj should appear before ρσk` for all σj < σk` . Suppose
that there still exists an element σj with σj < σk` in the stacks just before σk` is pushed
into the stacks. We prove that this element can be popped out before σk` is pushed. Let
σj0 be the smallest element still in the stacks just before ρσki . By definition, the elements
smaller than σj0 have already been output. Consider interval I = [σj0 , σk` − 1]. Those
elements are still in the stacks. If they are at the top of the stacks they can be output using
Lemma 5.8. If not, there exists in the stacks an element x /∈ I above an element y ∈ I.
As V is decreasing, those elements are in H. Moreover x > σk` > y. Then σk` cannot be
pushed as it will create a pattern 132 in H with the elements x and y. Thus I is at the
top of the stacks and we can output it before σk` is pushed onto H: using Lemma 5.8, we
build from w a sorting word w(1) for σ satisfying (Pi) for i ∈ [1..` − 1] and Property (ii)
of (P`). This means that w(1) can be decomposed as w(1) = uρσk`v such that the stack
configuration cσ(u) respects the following constraint: the elements 1, . . . , σk` are not in the
stacks.

202 Chapter 5. A polynomial algorithm deciding 2-stack sortability

So if we consider the stack configuration cσ(uρσk`), element σk` is at the top of H and
since outcσ(uρσk`

)(σk`) = λσk`µσk` we can use Lemma 5.8 to change the sorting word w(1)

into a sorting word w(2) = uρσk`λσk`µσk`v
′, satisfying Property (i) for (P`).

Now we show considering the stack configuration c = cσ(uρσk`λσk`µσk`) how to trans-

form the word w(2) into a word w′ = uρσk`λσk`µσk`v
(1)v(2) with v(1) = outc(B

(`)

p(`)+1
∪ · · · ∪

B
(`)
s`). This will conclude the proof.
Notice that the elements of c are exactly those of σ(`) since the last operations per-

formed are ρσk`λσk`µσk` and elements are pushed into the stacks in increasing order

of indices and output in increasing order of values. Thus outc(B
(`)

p(`)+1
∪ · · · ∪ B(`)

s`) =

out(B
(`)
s`) . . . out(B

(`)

p(`)+1
) (see Lemma 5.7). We show by induction on j from s` to p(i) + 1

that we can build a sorting word for σ of the form uρσk`λσk`µσk`v
(1,j)v(2,j) with v(1,j) =

out(B
(`)
s`) . . . out(B

(`)
j). For j = s` that is a word in which the elements of block Bs` are

output immediately after σk` has been output. By definition of s` and because the elements
of c are exactly those of σ(`), all elements of Bs` lie in the stacks in configuration c, are
the smallest elements in this configuration and lie at the top of the stacks in configuration
c (see Lemma 5.7). Hence, using Lemma 5.8, there exists a sorting word w(3) for σ such
that w(3) = uρσk`λσk`µσk`out(Bs`)v

′′. Repeating this operation for all blocks Bj with j

from s` − 1 to p(i) + 1, we have Property (iii). �

Notice that Property (P0) is an empty property satisfied by any sorting word. Using
recursively Lemma 5.17 we can transform any sorting word into a sorting word satisfying
Property (P), leading with Lemma 5.16 to the following theorem:

Theorem 5.18. If σ is 2-stack sortable then there exists a sorting word of σ satisfying
Property (P). In particular, in the sorting process that this word encodes, the elements
currently in the stacks at time ti are exactly those of σ(i).

Theorem 5.18 ensures that if a permutation is sortable then there exists a sorting in
which at each time step ti, the elements in the stacks are exactly those of σ(i). Thus stack
configurations at time ti and ti+1 satisfy the hypotheses of Lemma 5.14 and we can apply
it to decide if a permutation is 2-stack sortable.

5.4 An iterative algorithm

5.4.1 A first naive algorithm

From Theorem 5.18 a permutation σ is 2-stack sortable if and only if it admits a sorting
process satisfying Property (P). The main idea is to compute the set of sorting processes
of σ satisfying Property (P) and then to decide whether σ is 2-stack sortable by testing
its emptiness.

Verifying (P) means verifying (Pj) for all j from 1 to r, r being the number of right-to-
left minima (whose indices are denoted kj). The algorithm proceeds in r steps: for i from
1 to r we iteratively compute the sorting processes of σ≤ki verifying (P`) for all ` from 1
to i. As σ≤kr = σ, the last step gives the sorting processes of σ satisfying Property (P).

By “compute the sorting processes of σ≤ki” we mean compute the stack configuration
just before σki enters the stacks in such a sorting process. Note that this is also the stack
configuration just after σki has been output since ρσkiλσkiµσki is a factor of any word
verifying (P).

5.4 An iterative algorithm 203

Definition 5.19. We call a Pi-stack configuration of σ a stack configuration cσ(w) for
which there exists u such that the first letter of u is ρσki and wu is a sorting word of σ≤ki
verifying (P) for σ≤ki (that is, verifying (P`) for all ` from 1 to i).

Lemma 5.20. For any i from 1 to r, σ≤ki is 2-stack sortable if and only if the set of
Pi-stack configurations of σ is nonempty. In particular, σ is 2-stack sortable if and only if
the set of Pr-stack configurations of σ is nonempty.

Proof. This is a direct consequence of Definition 5.19 and Theorem 5.18. �

Lemma 5.21. Any Pi-stack configuration of σ is a pushall stack configuration of σ(i)

accessible from some Pi−1-stack configurations of σ.

Proof. By definition of (P), each Pi-stack configuration of σ is accessible from some Pi−1-
stack configuration of σ (take the prefix of w that ends just before ρσki−1

). Moreover it is
a pushall stack configuration of σ(i) from Lemma 5.16. �

As explained above, the algorithm proceeds in r steps such that after step i we know
every Pi-stack configuration of σ and we want to compute the Pi+1-stack configurations of
σ at step i+ 1. As configurations for i+ 1 are a subset of pushall stack configurations of
σ(i+1), a possible algorithm is to take every pair of configurations (c, c′) with c being a Pi-
stack configuration of σ (computed at step i) and c′ being any pushall stack configuration
of σ(i+1) (given by Algorithm 16). Then we can use Algorithm 17 to decide whether
c′ is accessible from c for σ. This leads to the following algorithm deciding whether a
permutation σ is 2-stack sortable:
Algorithm 18: isSortableNaive
Data: σ a permutation
Result: true or false depending on whether σ is 2-stack sortable
begin

E,F two empty sets;
E ← PushallConfigs(σ(1));
for i from 2 to r do

F ← ∅;
for c in E do

for c′ in PushallConfigs(σ(i)) do
if isAccessible((c, ki), (c′, ki+1), σ) then

F ← F ∪ c′;

E ← F ;

if E is empty then
return false;

else
return true;

Notice that at step i, the set E computed contains all Pi-stack configurations of σ but
may contain some other configurations. However since each configuration of E is a pushall
configuration of σ(i) and is accessible for σ from some pushall configurations of σ(i−1),
each configuration of E indeed corresponds to some sorting procedure of σ≤ki , proving the
correctness of Algorithm 18.

But this algorithm is not polynomial. Indeed the number of Pi-stack configurations of σ
is possibly exponential. However this set can be described by a polynomial representation

204 Chapter 5. A polynomial algorithm deciding 2-stack sortability

as a graph G(i) and we can adapt Algorithm 18 to obtain a polynomial algorithm. In this
adapted algorithm, the set E computed at step i is exactly the set of Pi-stack configurations
of σ.

5.4.2 Towards the sorting graph

We now explain how to adapt Algorithm 18 to obtain a polynomial algorithm. Instead of
computing all Pi-stack configurations of σ (which are pushall stack configurations of σ(i)),
we compute the restriction of such configurations to blocks B(i)

j of the 	-decomposition
of σ(i). By Lemma 5.7, those configurations are stacked one upon the others. The stack
configurations of any block B(i)

j are labeled with an integer which is assigned when the
configuration is computed. Those pairs (configuration,integer) will be the vertices of the
graph G(i) which we call a sorting graph, the edges of which represent the configurations
that can be stacked one upon the other. Vertices of the graph G(i) are partitioned into levels
corresponding to blocks B(i)

j . To ensure the polynomiality of the representation, we will
prove that a given integer label could only appear once per level of the graph G(i). As those
numbers are assigned to configurations when they are created, each integer corresponding
to a pushall stack configuration, from Chapter 4 there exists only a polynomial number
of distinct integers thus of vertices. This will be explained in detail in the next section.
The integer indeed can be seen as the memory of the configuration that encodes its history
since it has been created: two configurations which have the same label come from the
same initial pushall configuration.

More precisely a sorting graph G(i) for a permutation σ of size n and an index i verifies
the following properties:

• Vertices of G(i) are partitioned into si subsets V
(i)
j with j ∈ [1 . . . si] called levels.

• For any j ∈ [1 . . . si], |V (i)
j | ≤ 9n+ 2.

• Each vertex v ∈ G(i) is a pair (c, `) with c a stack configuration and ` an index
called configuration index.

• All configuration indices are distinct inside a graph level V (i)
j

• (c, `) ∈ V (i)
j ⇒ c is a pushall stack configuration of B(i)

j accessible for σ.

• There are edges only between vertices of adjacent levels V (i)
j , V (i)

j+1.

• Paths between vertices of V (i)
1 and V

(i)
si correspond to stack configurations of σ(i).

More precisely such paths are in one-to-one correspondence with Pi-stack configura-
tions of σ (that is, stack configurations corresponding to a sorting of σ≤ki satisfying
(P) just before σki is pushed onto H).

• For any vertex v of G(i), there is a path between vertices of V (i)
1 and V

(i)
si going

through v.

Though the definition of sorting graph is complex, its use will be quite understandable
and easy. Look for example at the permutation σ = 4321. There is only one right-to-left
minimum which is 1. Compute all possible stack configurations just after 1 enters H. At
this time, all elements are in the stacks since the first element which must be output is 1.
More formally, we are looking at the pushall stack configurations of σ with 1 in H.

There are 8 different such configurations which are:

5.4 An iterative algorithm 205

4
3
2
1

4
3
1

2 4
2
1

3 3
2
1

4 2
1

4
3

3
1

4
2

4
1

3
2

14
3
2

The 	-decomposition of σ is σ = 	[4, 3, 2, 1]. We build a graph with 4 levels, each
level corresponding to pushall stack configurations of a block.

1 7 1 8

2 5 2 6

3 3 3 4

4 1 4 2

Stack configurations of B4 = 1

Stack configurations of B3 = 2

Stack configurations of B2 = 3

Stack configurations of B1 = 4

Figure 5.2: Graph encoding pushall stack configurations of σ = 4321.

Then the 8 configurations of σ are found taking each of the 8 different paths going
from any configuration of B1 to configuration 1 of B4. In Figure 5.2, the thick path

gives the stack configuration 3
1

4
2

by stacking the selected configuration of B4 above the
configuration of B3 and so on.

But in the last level B4 we only consider configuration 1 so this level is useless.
The sorting graph G(1) for σ = 4321 encodes pushall stack configurations of σ(1) = 432,
corresponding to stack configurations just before 1 enters H (and not after as above).

There are 8 different such configurations which are:

4
3
2

4
3

2 4
2

3 3
2

4 24
3

34
2

43
2

4
3
2

As the 	-decomposition of σ(1) is σ(1) = 	[4, 3, 2], the sorting graph G(1) has 3 levels.

2 5 2 6

3 3 3 4

4 1 4 2

Stack configurations of B3 = 2

Stack configurations of B2 = 3

Stack configurations of B1 = 4

Figure 5.3: The sorting graph G(1) of σ = 4321.

206 Chapter 5. A polynomial algorithm deciding 2-stack sortability

Then the 8 configurations of σ are found taking each of the 8 different paths going
from any configuration of B1 to any configuration of B3. In Figure 5.3, the thick path

gives the stack configuration 34
2

by stacking the selected configuration of B3 above the
configuration of B2 and so on.

We transform Algorithm 18 into a polynomial algorithm by computing at step i not all
Pi-stack configurations of σ, but instead the sorting graph G(i) encoding them. The graph
G(i) is computed iteratively from the graph G(i−1) for any i from 2 to r. The way G(i) is
computed from G(i−1) depends on the relative values of p(i) and q(i+1). By definition of a
sorting graph given p.204, if at any step G(i) is empty, it means that σ≤ki is not sortable
(from Theorem 5.18) and so is σ thus the algorithm returns false. This is summarized in
Algorithm 19.

Algorithm 19: isSortable
Data: σ a permutation
Result: true or false depending on whether σ is 2-stack sortable
begin
G ← ComputeG1;
for i from 2 to r do

if p(i) = q(i+1) then
G ← iteratepEqualsq(G) or return false

else
if p(i) < q(i+1) then
G ← iteratepLessThanq(G) or return false

else
G ← iteratepGreaterThanq(G) or return false

return true

In the next subsections we describe the sub-procedures used in our main algorithm
isSortable(σ).

5.4.3 First step: G(1)

In this subsection, we show how to compute the P1-stack configurations of σ, that is, the
stack configurations corresponding to time t1 for sorting words of σ≤k1 that satisfy (P) for
σ≤k1 .

From Lemma 5.21, such a stack configuration is a pushall stack configuration of σ(1).
Conversely since σk1 = 1, σ(1) = σ<k1 and each sorting word of σ≤k1 satisfies (P1) for σ≤k1 .
Thus the set of P1-stack configurations of σ is the set of pushall stack configurations of
σ(1).

By Proposition 4.71 of Chapter 4, these stack configurations are described by giving
the set of stack configurations for each block of the 	-decomposition of σ(1). More pre-
cisely, with σ(1) = 	[B

(1)
1 , . . . , B

(1)
s1] there is a bijection from pushallConfigs(B

(1)
1)×· · ·×

pushallConfigs(B
(1)
s1) onto pushallConfigs(σ(1)) by stacking configurations one upon the

other (as in Lemma 5.7). As a consequence, from Lemma 5.20 σ≤k1 is not sortable if and
only if a set pushallConfigs(B(1)

j) is empty.
Moreover it will be useful to label the configurations computed so that we attach a

distinct integer to each stack configuration when computed.
At this point, we have encoded all configurations corresponding to words satisfying P

up to the factor ρ1λ1µ1.

5.4 An iterative algorithm 207

The obtained graph is G(1). This step is summarized in Algorithm 20.
Algorithm 20: ComputeG1
Data: σ a permutation, num a global integer variable
Result: false if σ≤k1 is not sortable, the sorting graph G(1) otherwise.
begin

E = ∅;
Compute σ(1) and its 	-decomposition 	[B

(1)
1 , . . . , B

(1)
s1];

for j from 1 to s(1)
1 do

V
(1)
j ← ∅;
S = pushallConfigs(B

(1)
j);

if S = ∅ then
return false;

else
for s ∈ S do

V
(1)
j ← V

(1)
j

⋃
{(s, num)};

num← num+ 1;

if j > 1 then
E = E

⋃
{(s, s′), s ∈ V (1)

j , s′ ∈ V (1)
j−1}

return G(1) = (
⋃

j∈[1..s
(1)
1]

V
(1)
j , E)

5.4.4 From step i to step i+ 1

After step i we know the graph G(i) encoding every Pi-stack configuration of σ and we
want to compute the graph G(i+1) encoding Pi+1-stack configurations of σ at step i + 1.
From Lemma 5.21 we have to check the accessibility of pushall stack configuration of σ(i+1)

from Pi-stack configurations of σ. We want to avoid to check every pair of configurations
(c, c′) with c being a Pi-stack configuration and c′ be a pushall stack configuration of
σ(i+1) because the number of such pair of configurations is possibly exponential. Thus our
algorithm focuses not on stack configurations of some σ(`) but on sets of stack configurations
of blocks B(`)

j , making use of Lemma 5.14.
Using Lemma 5.21, Lemma 5.14 can be rephrased as:

Lemma 5.22. Let c′ be a total stack configuration of σ(i+1), p = p(i) and q = q(i+1). Then
c′ is a Pi+1-stack configuration of σ if and only if:

• For any j ≤ q, c′
|B(i+1)
j

is a pushall stack configuration of σ|B(i+1)
j

, and

• There exists a Pi-stack configuration c of σ such that:

• c′
|B(i)

min(p,q)
∪···∪B(i)

q

is accessible from c|B(i+1)
min(p,q)

∪···∪B(i+1)
p

for σ|B(i)
p

⋃
B

(i+1)
q

and

• c′
|B(i+1)

1 ∪···∪B(i+1)
min(p,q)−1

= c|B(i)
1 ∪···∪B

(i)
min(p,q)−1

Recall that a Pi-stack configuration of σ is encoded by a path in the sorting graph G(i),
corresponding to the 	-decomposition of the permutation σ(i) into blocks B(i)

j . The last
point of Lemma 5.22 ensures that the first levels (1 to min(p(i), q(i+1))−1) are the same in

208 Chapter 5. A polynomial algorithm deciding 2-stack sortability

G(i+1) than in G(i). The first point of Lemma 5.22 ensures that the last levels (> q(i+1)) of
G(i+1) form a complete graph whose vertices are all pushall stack configurations of corre-
sponding blocks. So the only unknown levels for G(i+1) are those between min(p(i), q(i+1))
and q(i+1) and we can compute them by testing accessibility.

There are distinct cases depending on the relative values of p(i) and q(i+1). To lighten
the notations in the following, we sometimes write p (resp. q) instead of p(i) (resp. q(i+1)).

Case p(i) = q(i+1)

If p(i) = q(i+1) then B(i+1)

q(i+1) ∩A(i) = B
(i)

p(i)
∩A(i) (see Figure 5.4).

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

Figure 5.4: Block decomposition of σ(i) and of σ(i+1) when p(i) = q(i+1)

We have the sorting graph G(i) encoding all Pi-stack configurations of σ and we want
to compute the sorting graph G(i+1) encoding all Pi+1-stack configurations of σ assuming
that p(i) = q(i+1) = min(p(i), q(i+1)).

In this case, from Lemma 5.22 we only have to check accessibility of pushall configu-
rations of B(i+1)

q from configurations of B(i)
p belonging to level p of G(i). Indeed from the

definition of a sorting graph given p.204, for any vertex v of G(i) there is a path between
vertices of V (i)

1 and V (i)
si going through v, and such a path corresponds to a Pi-stack con-

figurations of σ. Thus for any configurations x of B(i)
p belonging to a vertex v of level

p of G(i), there is at least one Pi-stack configurations c of σ such that c|B(i)
p

= x, and

c|B(i)
1 ∪···∪B

(i)
min(p,q)−1

is encoded by a path from v to level p of G(i) (which go through each

level < p).

If there is no pushall configuration of B(i+1)
q accessible from some configurations of

B
(i)
p belonging to level p of G(i), or if σ(i+1) has no pushall configuration, then σ has no

Pi+1-stack configuration and σ≤ki+1
is not sortable (from Lemma 5.20).

5.4 An iterative algorithm 209

This leads to the following algorithm:

Algorithm 21: iteratepEqualsq(G(i))

Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1

is not sortable, the sorting graph G(i+1) otherwise.
begin
G an empty sorting graph with si+1 levels;
G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false;
Copy levels q + 1 . . . si+1 of G′ into the same levels of G;
for (c, `) in level p of G(i) do
H the subgraph of G(i) induced by (c, `) in levels < p;
for (c′, `′) in level q of G′ do

if isAccessible(c, c′, σ|B(i)
p

⋃
B

(i+1)
q

) then

Add (c′, `′) in level q of G (if not already done);
Merge H in levels ≤ q of G with (c′, `′) as origin;

if level q of G is empty then
return false;

for (c′, `′) in level q of G do
Add all edges from (c′, `′) to each vertex of level q + 1 of G;

return G

Case p(i) < q(i+1)

If p(i) < q(i+1) then B(i+1)

q(i+1) ∩A(i) B
(i)

p(i)
∩A(i) (see Figure 5.5).

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

Figure 5.5: Block decomposition of σ(i) and of σ(i+1) when p(i) < q(i+1)

Again, Lemma 5.22 ensures that the first p− 1 levels of G(i+1) come from those of G(i)

and the levels > q are all pushall stack configurations of the blocks B(i+1)
>q of σ(i+1). The

difficult part is from level p to level q. As in the preceding case, by Lemma 5.22, we have to
select among pushall stack configurations of blocks p, p+ 1, . . . , q of σ(i+1) those accessible
from a configuration of B(i)

p that appears at level p in G(i). We can restrict the accessibility
test from configurations of B(i)

p appearing in graph G(i) to pushall stack configurations of
B

(i+1)
q . Indeed, Lemma 5.13 ensures that the elements of blocks B(i+1)

j for j from p to

q − 1 are in the same stack at time ti and at time ti+1. Thus configurations of B(i+1)
j

for j from p to q − 1 are restrictions of configurations of B(i)
p . We keep the same label in

210 Chapter 5. A polynomial algorithm deciding 2-stack sortability

the vertex to encode that those configurations of B(i+1)
p , B

(i+1)
p+1 , . . . , B

(i+1)
q−1 come from the

same configuration of B(i)
p and we build edges between vertices of B(i+1)

j+1 and B(i+1)
j that

come from the same configuration of B(i)
p . It is because of this case p = q that we have to

label configurations in our sorting graph. Indeed two different stack configurations c1 and
c2 of B(i)

p may have the same restriction to some block B(i+1)
j but not be compatible with

the same configurations, thus we want the corresponding vertices of level j of G(i+1) to be
distinct; that’s why we use labels.

More precisely we have the following algorithm.

Algorithm 22: iteratepLessThanq(G(i))

Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1

is not sortable, the sorting graph G(i+1) otherwise.
begin
G an empty sorting graph with si+1 levels;
G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false;
Copy levels q + 1, . . . , si+1 of G′ into the same levels of G;
for (c, `) in level p of G(i) do
H the subgraph of G(i) induced by (c, `) in levels < p;
for (c′, `′) in level q of G′ do

if isAccessible(c, c′, σ|B(i)
p

⋃
B

(i+1)
q

) then

Add (c′, `′) in level q of G (if not already done);
for j from q − 1 downto p do

Add (c|B(i+1)
j

, `) in level j of G;
Add an edge between (c|B(i+1)

j

, `) and (c|B(i+1)
j+1

, `) in G.

Merge H in levels ≤ p of G with (c|B(i+1)
p

, `) as origin;

if level q of G is empty then
return false;

for (c′, `′) in level q of G do
Add all edges from (c′, `′) to each vertex of level q + 1 of G;

return G;

Note that in Algorithm 22, before calling isAccessible(c, c′, σ|B(i)
p

⋃
B

(i+1)
q

) we extend

configuration c′ to D(i)
⋃
B

(i+1)
q by assigning the same stack than in c to points of D(i) \

B
(i+1)
q . This is justified by Lemma 5.13.

Case p(i) > q(i+1)

If p(i) > q(i+1) then B(i)

p(i)
∩A(i) B

(i+1)

q(i+1) ∩A(i) (see Figure 5.6).

This case is very similar to the preceding one except that B(i)
p is not cut into pieces but

glued together with preceding blocks. As a consequence, when testing accessibility of a
configuration of B(i+1)

q , we should consider every corresponding configuration in G(i), that
is every configuration obtained by stacking configurations at level q, q + 1, . . . , p in G(i).
Unfortunately this may give an exponential number of configurations, but noticing that
by Lemma 5.13 the elements of blocks B(i)

q , B
(i)
q+1 . . . B

(i)
p−1 are exactly in the same stack at

time ti and at time ti+1, it is sufficient to check the accessibility of a pushall configuration

5.4 An iterative algorithm 211

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

Figure 5.6: Block decomposition of σ(i) and of σ(i+1) when p(i) > q(i+1)

c′ of B(i+1)
q from a configuration c of B(i)

p and verify afterwards whether the configuration
c has ancestors in G(i) that match exactly the configuration c′. This leads to the following
algorithm.

Algorithm 23: iteratepGreaterThanq(G(i))

Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1

is not sortable, the sorting graph G(i+1) otherwise
begin
G an empty sorting graph with si+1 levels;
G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false;
Copy levels q + 1, . . . , si+1 of G′ into the same levels of G;
for (c, `) in level p of G(i) do

for (c′, `′) in level q of G′ do
if isAccessible(c, c′, σ|B(i)

p
⋃
B

(i+1)
q

) then

if there is a path (c, `)↔ (c′
|B(i)
p−1

, `1)↔ . . .↔ (c′
|B(i)
q

, `k) in G(i)

then
Add (c′, `′) in level q of G (if not already done);
H the subgraph of G(i) induced by (c′

|B(i)
q

, `k) in levels < q;

Merge H in levels ≤ q of G with (c′, `′) as origin;

if level q of G is empty then
return false;

for (c′, `′) in level q of G do
Add all edges from (c′, `′) to each vertex of level q + 1 of G;

return G;

Note that in Algorithm 23, before calling isAccessible(c, c′, σ|B(i)
p

⋃
B

(i+1)
q

) we extend

configuration c to D(i)
⋃
B

(i)
p by assigning the same stack as in c′ to points of D(i) \ B(i)

p .
This is justified by Lemma 5.13.

Now that we have described all steps of our algorithm, we turn to the study of its
complexity.

212 Chapter 5. A polynomial algorithm deciding 2-stack sortability

5.5 Complexity Analysis

In this section we study the complexity of our main algorithm: isSortable(σ) (Algo-
rithm 19). The key idea for the complexity study relies on a bound on the size of each
graph G(i), as described in the following lemma.

Lemma 5.23. For any i ∈ [1..r], the maximal number of vertices in a level of G(i) is 9n
where n is the size of the input permutation.

Proof. From Theorem 4.68 of Chapter 4, the maximal number of pushall stack configura-
tions of a 	-indecomposable permutation π is 9|π|.

By definition of G(1), the vertices of a level correspond to pushall stack configurations of
a given block of the ⊕1-decomposition of the input permutation σ (i.e. the ⊕-decomposition
of σ(1)). Thus the cardinality of a level is bounded by 9k where k is the size of the
corresponding block. As k ≤ n, the result holds for i = 1 .

Suppose now that the result is true for a given G(i); we show that it is then true for
G(i+1). The graph G(i+1) is build from G(i) using Algorithms 21, 22 or 23. In each case for
a level j of G(i+1) we have:

If j > q(i+1) then the vertices of the level j of G(i+1) are the pushall stack configurations
corresponding to the block B

(i+1)
j of the ⊕i+1-decomposition of σ. Thus Theorem 4.68

ensures that the cardinality of level j is bounded by 9n.
If j = q(i+1) then the vertices of the level j of G(i+1) are a subset of the pushall stack

configurations corresponding to the block B(i+1)
j of the ⊕i+1-decomposition of σ. Again

Theorem 4.68 ensures that the cardinality of level j is bounded by 9n.
If j < p(i) then the vertices of the level j of G(i+1) are a subset of vertices of the level

j of G(i). By induction hypothesis the cardinality of level j is bounded by 9n.
If p(i) ≤ j < q(i+1) then the vertices of the level j of G(i+1) are restrictions of a subset

of vertices of the level j of G(i). By the induction hypothesis the cardinality of level j is
bounded by 9n, concluding the proof. �

Lemma 5.24. For any i ∈ [1..r], the number of vertices of G(i) is O(n2) and the number
of edges of G(i) is O(n3), where n is the size of the input permutation.

Proof. The result follows from Lemma 5.23 as there are at most n levels and there are
edges only between consecutive levels. �

Theorem 5.25. Given a permutation σ, Algorithm 19 isSortable(σ) decides whether σ is
sortable with two stacks in series in polynomial time w.r.t. |σ|.

Proof. Algorithm 19 involves four other subroutines: ComputeG1 (Algorithm 20), iter-
atepEqualsq (Algorithm 21), iteratepLessThanq (Algorithm 22) and iteratepGreaterThanq
(Algorithm 23).

Each for-loop in these algorithms is executed at most a linear number of times by
Lemma 5.23.

Moreover each included operation is polynomial by Lemmas 5.24 and 5.10. �

A more precise analysis of complexity leads to an overall complexity of O(n5).

5.6 Conclusion and perspectives 213

5.6 Conclusion and perspectives

In the second part of this thesis, we have defined a new restriction of 2-stack sorting, namely
2-stack pushall sorting. We provide an O(n2) algorithm which computes an encoding of
all pushall sortings of a given permutation, which thus decides whether a permutation
is 2-stack pushall sortable. We proved that this complexity is optimal. Moreover we
characterize 2-stack pushall sortable permutations as permutations whose diagram admits
a valid coloring, which is a particular bicoloring defined by means of excluded colored
patterns.

More studies remain to be done on 2-stack pushall sorting. First, a simpler charac-
terization of 2-stack pushall sortable permutations would be interesting. Second, it would
be nice to enumerate 2-stack pushall sortable permutations by finding a closed formula
for the number of 2-stack pushall sortable permutations of size n or by finding their gen-
erating function. Our study of the precise form of valid bicolorings should help to find
an enumeration. However a 2-stack pushall sortable permutation may admit several valid
bicolorings. Nevertheless we strongly believe that our description of valid bicolorings will
help to find bounds or asymptotic formulas. In particular we have ideas to find the growth
rate of 2-stack pushall sortable permutations thanks to a bijection with ternary trees.

To find the enumeration or because of interest per se, it would be interesting to study
more deeply the number of valid colorings of a given permutation, the number of pushall
sortings of a given permutation, and the number of valid colorings corresponding to a
given pushall sorting process, and to find general bounds on these numbers. We already
know that each 2-stack pushall sortable permutation admits at least one valid coloring,
that each valid coloring corresponds to exactly one sorting process, and that the number
of valid colorings corresponding to a given sorting process is one plus the number of moves
λ between the last move ρ and the first move µ. We also know that a 	-decomposable
permutation of size n has at most 9n valid colorings (thus at most 9n pushall sorting
processes) but that the decreasing permutation of size n has 2n valid colorings and 2n−1

pushall sorting processes. It would also be nice to be able to define a canonical valid
coloring or a canonical pushall sorting for the 2-stack pushall sortable permutations.

We also showed that pushall sorting and general sorting are closely linked, and provide
characterizations of the elements of both bases whose node of the decomposition tree is
linear. It would be nice to have a complete characterization of both bases (which are
infinite).

Thanks to the link between pushall sorting and general sorting, we have provided a
polynomial algorithm deciding whether a permutation σ is 2-stack sortable, settling a long
standing open problem. Moreover this algorithm gives an encoding of all sorting processes
of σ satisfying a particular property (Property (P) of Definition 5.15). We first showed
that any 2-stack sortable permutation admits a sorting process satisfying Property (P).
Then the algorithm proceeds in r steps, r being the number of right-to-left minima of σ: At
step i the algorithm gives an encoding of all sorting processes of σ≤ki satisfying Property
(P), σ≤ki being the prefix of σ ending by the i-th right-to-left minimum of σ.

The exact complexity of this algorithm is still to be analyzed. In particular we do not
know if it is optimal.

We hope that this polynomial algorithm will allow a better understanding of 2-stack
sortable permutations. In particular, can one find a characterization of 2-stack sortable
permutations, for example by a property of their diagram (as for 2-stack pushall sortable

214 Chapter 5. A polynomial algorithm deciding 2-stack sortability

permutation)? Can one enumerate 2-stack sortable permutations, or at least find asymp-
totics? We know [AAL10] that the growth rate of 2-stack sortable permutations is between
8.156 and 13.374. Can we refine these bounds thanks to our work?

Another natural continuation of our work is to generalize it for t stacks in series with
t > 2. The notion of pushall sorting can be directly translated with t stacks in series: A
permutation is t-stack pushall sortable if it admits a sorting with t stacks in series in two
parts; in the first part we are not allowed to pop out from the last stack and in the second
part we are not allowed to push elements from the input. In other words, the first part
consists only of putting all the elements into the stacks while the second step consists only
of outputting all the elements in increasing order.

This notion of pushall sorting is still closely linked with general sorting even when
t > 2. Indeed we still have that σ is t-stack pushall sortable if and only if 	[σ, 1] is t-stack
sortable. In particular, most of the results of subsection 4.2.3 and some of the results of
subsection 4.2.3 still hold when t > 2.

However, it is not obvious that we can use pushall sorting to find a polynomial algorithm
deciding whether a permutation is t-stack sortable for t > 2.

Indeed, assume that we have a polynomial algorithm deciding whether a permutation
is t-stack pushall sortable. To use it for general sorting, we can as for t = 2 consider
time ti when the i-th right-to-left minimum enters the first stack, and we still have to
consider pushall sortings of the permutation σ(i) defined in Definition 5.1. But deciding
the accessibility between configurations at time ti and configurations at time ti+1 seems
difficult when t > 2.

Neither is it obvious that deciding whether a permutation is t-stack pushall sortable is
polynomial for t > 2.

Indeed for t = 2 the polynomial algorithm relies on the characterization of 2-stack
pushall sortable permutations by means of a bicoloring. We could imagine characterizing
t-stack pushall sortable permutations by means of a t-coloring. However the bijection with
bicoloring in the case t = 2 comes from the fact that the stacks are ordered during a
sorting procedure: the elements of the first stack H are in increasing order of indices from
bottom to top and the elements of the second stack V are in decreasing order of values
from bottom to top.

For t > 2 it is still true that the elements of the first stack are in increasing order of
indices from bottom to top and the elements of the last stack are in decreasing order of
values from bottom to top, but we do not know anything about the elements in the other
stacks.

Nevertheless it is still true that a t-stack pushall sorting process can be viewed as two
steps of a (t−1)-stack sorting process, considering first the last stack as the output and then
the first stack as the input. However generalizing (t−1)-stack sorting to t-stack sorting
may be very difficult, since generalizing 1-stack sorting to 2-stack sorting has proved to be
so complex.

For t parallel stacks, we know that the decision problem can be answered in time
O(n log n) for t ≤ 3, while for t > 3 it is NP-complete [EI71, Ung92]. We may wonder if
for t serial stacks there also exists an integer k such that the decision problem is polynomial
for t ≤ k and NP-complete for t > k.

More generally, given a permutation σ we may wonder how many stacks in series are
necessary to sort σ. There is a naive algorithm to answer this question: we know that σ
can be sorted by log2(n) stacks where n = |σ|. Thus we can test for each t from 1 to log2(n)

5.6 Conclusion and perspectives 215

whether σ is t-stack sortable by checking all stack words. However such an algorithm is
highly inefficient. Is there a polynomial algorithm answering this question?

List of Figures and Tables

Figure 1 Diagram of σ = 1 8 3 6 4 2 5 7 . 19
Figure 2 Diagram of σ = 12 13 11 3 1 7 10 2 9 8 5 6 4 and the bounding box of

{7, 2, 9, 5, 6}. 20
Figure 3 The permutation 3 5 1 4 2 contains 2 1 3 as a pattern. 21
Figure 4 The block 3 5 4 in the permutation 6 3 5 4 1 7 2. 22
Figure 5 The permutation 3 1 7 4 6 2 5 is simple: each non-trivial bounding box

has a point on its side. 23
Figure 6 The permutation 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3 24
Figure 7 The permutation 213[21, 312, 4123] = 5 4 3 1 2 9 6 7 8. 24
Figure 8 The substitution decomposition tree and the diagram of the permu-

tation σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7. 26
Figure 9 Decomposition tree of

σ = 10 12 14 11 13 1 21 19 16 18 20 17 15 4 8 3 2 9 5 6 7. 27
Figure 10 Automatic process from the basis of a permutation class to generat-

ing function and Boltzmann sampler. 34

Figure 1.1 Exceptional permutations of type 1, 2, 3 and 4 37
Figure 1.2 Parallel alternations . 37
Figure 1.3 Wedge alternations . 37
Figure 1.4 Diagram of σ in the second case of the proof of Proposition 1.24. . . 41
Figure 1.5 Diagram of σ in the third case of the proof of Proposition 1.24. . . . 42
Figure 1.6 The poset of simple permutations which are pattern of 2 7 4 8 1 6 3 5. 43
Figure 1.7 Path of length 2 from σ = 5263714 to π = 3142. 44
Figure 1.8 Path of length 3 from σ = 5263714 to π = 3142. 44
Figure 1.9 (n+1)2 ways to add a point in a simple permutation of size n, among

them 4n lead to a permutation with an interval of size 2 and 4 lead
to a permutation with an interval of size n. 46

Figure 1.10 Proportion Skn/sn (in percentage) of simple permutations with out-
degree k in G1 among simple permutations of size n 47

Figure 2.1 A pin representation of 1 8 3 6 4 2 5 7. 55
Figure 2.2 The permutation σ = 4 7 2 6 3 1 5, its pattern π = 4 6 2 3 1 5, a pin

representation p of π, and the bounding box of {p1, p2} with its sides
shaded. 56

Figure 2.3 A pin representation of the pattern 6 2 4 3 1 5 obtained from a proper
pin representation of 2 8 3 6 4 1 5 7. 56

Figure 2.4 Encoding of pins by letters. 57
Figure 2.5 Pin word encoding . 57

List of Figures and Tables 217

Figure 2.6 The infinite oscillating sequence ω, an increasing oscillation ξ of
size 9, a decreasing oscillation of size 10, and the increasing quasi-
oscillation of size 10 obtained from ξ by addition of a maximal ele-
ment, with a pin representation for each. 67

Table 2.1 Flips and main substitution points in increasing quasi-oscillations. . 68
Figure 2.7 The diagrams of the increasing quasi-oscillations of size 4 and 5. . . . 68
Figure 2.8 Proof of Lemma 2.37 . 71
Figure 2.9 Proof of Lemmas 2.38 and 2.39. 71
Figure 2.10 Ti0 is read in two pieces (Lemma 2.40) 71
Figure 2.11 Decomposition tree of π when Ti0 may be read in several pieces. . . 71
Figure 2.12 Diagram of Ti0 and x if Ti0 is read in two pieces, the first part being S. 73
Figure 2.13 Two points in knight position. 73
Table 2.2 The simple pin-permutations of size n ≤ 6 and their active knights. 74
Figure 2.14 At most 8 points in knight position with a given point pi. 76
Figure 2.15 The increasing oscillations of size less than 5 and two increasing

oscillations respectively of size 8 with type (V, V) and 9 with type
(V,H). 78

Figure 2.16 The set H and conditions (iHj): π ∈ H if and only if π satisfies one
of the conditions (iHj) shown above up to symmetry, that form a
partition of H. 81

Figure 2.17 Diagram of π when one child T is not a leaf, is read in two pieces
and p1 /∈ T or p1 ∈ T . 84

Figure 2.18 Possible positions for pn. 84
Figure 2.19 Diagram of π if two children are not leaves 88
Figure 2.20 Aho-Corasick automaton for X = {LULULUR,LULDLD,LURD} 90
Figure 2.21 The automaton Aπ when π = 1. 92
Figure 2.22 Atomic automaton A(ξi, ξj) used in the construction of Aπ. 94
Figure 2.23 Automaton A⊕(ξi, ξi+1). 95
Figure 2.24 Automaton Aπ for π = ⊕[ξ1, . . . , ξr] where every ξi is an increasing

oscillation. 97
Figure 2.25 The automaton Aπ for π = ⊕[ξ1, . . . , ξ`, ρ, ξ`+2, . . . , ξr], where every

ξi but ρ is an increasing oscillation (in the case π /∈ H). 100
Figure 2.26 Automaton Aπ for π = α[1, . . . , 1, ρ, 1, . . . , 1]. 102
Table 2.3 Complexities of the automata constructions, in all possible cases. . . 107
Figure 2.27 A deterministic automaton A(M) recognizing the setM of words of

length at least 2 without any factor in {UU,UD,DU,DD,RR,RL,LR,LL}.
. 110

Table 3.1 Admissible constructors, the corresponding operators on ordinary
generating functions and the associated Boltzmann samplers 116

Figure 3.1 Alternating unary-binary trees up to size 7. 116
Figure 3.2 Rewriting unions as disjoint unions. 128
Figure 3.3 Decomposition trees of random permutations of C of size 500 and 900 138
Figure 3.4 The full algorithmic chain starting from the basis B of a permutation

class C . 139
Figure 3.5 Sorting with one stack . 143
Figure 3.6 Sorting with stacks in parallel. 145
Figure 3.7 Sorting with stacks in series. 145

Figure 4.1 Sorting with two stacks in series. 149

218 List of Figures and Tables

Figure 4.2 Minimal permutations containing patterns 132 and 213. 156
Figure 4.3 σrσsσt . 159
Figure 4.4 Case r > i . 159
Figure 4.5 σxσrσsσtσz . 159
Figure 4.6 σrσsσtσyσz . 159
Figure 4.7 E and F are in one-to-one correspondence by symmetry. 160
Figure 4.8 An antichain of the basis of 2-stack pushall sortable permutation

class 2n−3 2n−1 2n−5 2n . . . p p+5 . . . 1 6 2 4 for n ≥ 3. 162
Figure 4.9 A first antichain of the basis of 2-stack sortable permutation class. . 162
Figure 4.10 A second antichain of the basis of 2-stack sortable permutation class 163
Figure 4.11 The four forbidden colored patterns for valid colorings. 165
Figure 4.12 Coloring rules R8 . 170
Figure 4.13 An increasing sequence RG σiσj fixes the color of all points in zone

ZRG(i, j). 171
Figure 4.14 Step k of Algorithm 12 coloring zone ZRG when Hk and Vk are both

nonempty. 172
Figure 4.15 Step k of Algorithm 12 coloring zone ZRG when Hk is empty. 172
Figure 4.16 Only bicolored increasing subsequences GR exist 175
Figure 4.17 Zone 1 is not empty . 176
Figure 4.18 Zone 1 is empty . 176
Figure 4.19 All bicolored increasing sequences are labeled RG 177
Figure 4.20 Zone 1 is non-empty . 177
Figure 4.21 Zone 1 is empty . 178
Figure 4.22 There exist increasing sequences labeled RG and GR 180
Figure 4.23 A and B are empty . 180
Figure 4.24 Zone 1 is empty. 181
Figure 4.25 Zone 1 is empty and zone 4 is not empty 181
Figure 4.26 Zone 1 is empty and zone 4 is empty. 182
Figure 4.27 Zone 1 is not empty. 182
Figure 4.28 Zone 1 is not empty and zone 3 is not empty. 183
Figure 4.29 Zone 1 is not empty and zone 3 is empty 183

Figure 5.1 Poppable stack configuration reachable for 	[B1, . . . Bk]. 196
Figure 5.2 Graph encoding pushall stack configurations of σ = 4321. 205
Figure 5.3 The sorting graph G(1) of σ = 4321. 205
Figure 5.4 Block decomposition of σ(i) and of σ(i+1) when p(i) = q(i+1) 208
Figure 5.5 Block decomposition of σ(i) and of σ(i+1) when p(i) < q(i+1) 209
Figure 5.6 Block decomposition of σ(i) and of σ(i+1) when p(i) > q(i+1) 211

List of Algorithms

1 Generating simple permutations in a finitely based substitution-closed class
of permutations . 48

2 Generating simple permutations in a finitely based permutation class 50

3 Pinwords function . 75
4 Deciding the finiteness of the number of proper pin-permutations 111

5 ΓU(x) . 119
6 ΓB(x) . 119
7 AmbiguousSystem(B) . 126
8 DisambiguateSystem(E) . 128
9 ComputeEqnForRestriction(Ĉε, E,A) 131

10 Pop out in increasing order . 153
11 Algorithm deciding in linear time whether the configuration corresponding

to a bicoloring is reachable . 166
12 Color zone ZRG. 171
13 Color zone ZRG: detailed version of Algorithm 12 173
14 ColoringIndecomposable1(σ) . 184
15 ColoringIndecOptimal(σ) . 187
16 Colorings(σ) . 189

17 isAccessible
(
(c, i), (c′, j), σ

)
. 197

18 isSortableNaive . 203
19 isSortable . 206
20 ComputeG1 . 207
21 iteratepEqualsq(G(i)) . 209
22 iteratepLessThanq(G(i)) . 210
23 iteratepGreaterThanq(G(i)) . 211

220 List of Algorithms

Bibliography

[AA05] Michael H. Albert and Mike D. Atkinson. Simple permutations and pattern
restricted permutations. Discrete Mathematics, 300(1–3):1–15, 2005. 12, 14,
15, 16, 23, 24, 25, 27, 28, 31, 32, 36, 39, 54, 55, 114, 119, 120, 121, 123, 124,
126, 139, 140

[AAAH01] Michael H. Albert, Robert E. L. Aldred, Mike D. Atkinson, and Derek A.
Holton. Algorithms for pattern involvement in permutations. In ISAAC ’01:
Proceedings of the 12th International Symposium on Algorithms and Compu-
tation, volume 2223 of Lecture Notes in Computer Science, pages 355–366,
London, UK, 2001. Springer-Verlag. 15, 50, 55, 59, 108

[AAB+10] Michael H. Albert, Mike D. Atkinson, Robert Brignall, Nik Ruškuc, Rebecca
Smith, and Julian West. Growth rates for subclasses of Av(321). Electronic
Journal of Combinatorics, 17:Paper R141, 2010. 31

[AAB+13] Michael H. Albert, Mike D. Atkinson, Mathilde Bouvel, Nik Ruškuc, and Vin-
cent Vatter. Geometric grid classes of permutations. Transactions of the Amer-
ican Mathematical Society, To appear, 2013. 31

[AAK03] Michael H. Albert, Mike D. Atkinson, and Martin Klazar. The enumeration of
simple permutations. Journal of Integer Sequences, 6, 2003. 23, 31, 47

[AAL10] Michael Albert, Mike D. Atkinson, and Steve Linton. Permutations generated
by stacks and deques. Annals of Combinatorics, 14:3–16, 2010. 145, 148, 192,
214

[ABM] Michael H. Albert and Mireille Bousquet-Mélou. Permutations sortable by two
stacks in parallel. In preparation. 145

[AC75] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to
bibliographic search. Communications of the ACM, 18(6), June 1975. 89

[ALR05] Michael H. Albert, Steve Linton, and Nik Ruškuc. The insertion encoding of
permutations. Electronic Journal of Combinatorics, 12:Paper R47, 2005. 31

[AMR02] Mike D. Atkinson, M. M. Murphy, and N. Ruskuc. Sorting with two ordered
stacks in series. Theor. Comput. Sci., 289:205–223, October 2002. 145, 146,
193

[ARS11] Mike D. Atkinson, Nik Ruškuc, and Rebecca Smith. Substitution-closed pat-
tern classes. Journal of Combinatorial Theory, Series A, 118(2):317–340, 2011.
31

222 Bibliography

[AS02] Mike D. Atkinson and Timothy Stitt. Restricted permutations and the wreath
product. Discrete Mathematics, 259(1–3):19–36, 2002. 27

[B0́3] Miklós Bóna. A survey of stack-sorting disciplines. The Electronic Journal of
Combinatorics, 9(2), 2003. 21

[Bar09] Jean-Luc Baril. More restrictive Gray codes for some classes of pattern avoiding
permutations. Inform. Process. Lett., 109:799–804, 2009. 114

[BBL98] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for
permutations. Information Processing Letters, 65:277–283, 1998. 21, 114

[BBPR10] Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, and Dominique Rossin.
Deciding the finitness of the number of simple permutations contained in
a wreath-closed class is polynomial. Pure Mathematics and Applications,
21(2):119–135, 2010. 31, 55, 62, 93

[BBR11] Frédérique Bassino, Mathilde Bouvel, and Dominique Rossin. Enumeration of
pin-permutations. Electronic Journal of Combinatorics, 18, 2011. 16, 53, 54,
55, 56, 61, 65, 66, 67, 68, 69, 73, 74, 88, 108, 109

[BCMR08] Anne Bergeron, Cédric Chauve, Fabien de Montgolfier, and Mathieu Raffinot.
Computing common intervals of K permutations, with applications to modular
decomposition of graphs. SIAM Journal on Discrete Mathematics, 22(3):1022–
1039, June 2008. 55, 108

[BCMR11] Mathilde Bouvel, Cédric Chauve, Marni Mishna, and Dominique Rossin.
Average-case analysis of perfect sorting by reversals. Discrete Mathematics,
Algorithms and Applications, 3(3), 2011. 108

[Ber68] Claude Berge. Principes de combinatoire. Dunod, Paris, 1968. 12

[BHV08a] Robert Brignall, Sophie Huczynska, and Vincent Vatter. Decomposing simple
permutations, with enumerative consequences. Combinatorica, 28(4):385–400,
jul 2008. 31

[BHV08b] Robert Brignall, Sophie Huczynska, and Vincent Vatter. Simple permutations
and algebraic generating functions. Journal of Combinatorial Theory, Series
A, 115(3):423–441, 2008. 16, 31, 55

[BM03] Mireille Bousquet-Mélou. Four classes of pattern-avoiding permutations under
one roof: Generating trees with two labels. Electr. J. Comb., 9(2), 2003. 22,
31

[Bón02] Miklós Bóna. A survey of stack-sorting disciplines. Electr. J. Comb., 9(2),
2002. 144, 145

[BR06] Mathilde Bouvel and Dominique Rossin. The longest common pattern prob-
lem for two permutations. Pure Mathematics and Applications, 17(1–2):55–69,
2006. 36

[Bri10] Robert Brignall. A survey of simple permutations. In Steve Linton, Nik Ruškuc,
and Vincent Vatter, editors, Permutation Patterns, St Andrews 2007, volume
376 of London Mathematical Society Lecture Note Series, pages 41–65. Cam-
bridge University Press, Cambridge, 2010. 14, 23, 31

Bibliography 223

[Bri12] Robert Brignall. Grid classes and partial well order. Journal of Combinatorial
Theory, Series A, 119:99–116, 2012. 31

[BRV07] Mathilde Bouvel, Dominique Rossin, and Stéphane Vialette. Longest common
separable pattern among permutations. In CPM ’07: Proceedings of the 18th
annual symposium on Combinatorial Pattern Matching, volume 4580 of Lecture
Notes in Computer Science, pages 316–327, Berlin, Heidelberg, 2007. Springer-
Verlag. 50

[BRV08] Robert Brignall, Nik Ruškuc, and Vincent Vatter. Simple permutations: decid-
ability and unavoidable substructures. Theoret. Comput. Sci., 391(1–2):150–
163, 2008. 15, 16, 31, 32, 53, 54, 55, 58, 59, 60, 61, 67, 108, 140

[BXHP05] Binh-Minh Bui Xuan, Michel Habib, and Christophe Paul. Revisiting T. Uno
and M. Yagiura’s algorithm. In Lecture notes in computer science, volume
3827, pages 146–155. ISAAC, Springer, 2005. 108

[Cib09] Josef Cibulka. On constants in the Füredi–Hajnal and the Stanley–Wilf con-
jecture. Journal of Combinatorial Theory, Series A, 116(2):290–302, 2009. 31

[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltz-
mann samplers for the random generation of combinatorial structures. Com-
binatorics, Probability and Computing, 13(4–5):577–625, 2004. 114, 115, 117,
118, 139

[DFMV08] W. M. B. Dukes, M. F. Flanagan, T. Mansour, and V. Vajnovski. Combi-
natorial gray codes for classes of pattern avoiding permutations. Theoretical
Computer Science, 396:35–49, 2008. 114

[DV] Phan Thuan Do and Vincent Vajnovszki. Exhaustive generation of some classes
of pattern avoiding permutations using succession functions. Conference in
honor of Donald E. Knuth, Bordeaux, France (2007). 114

[EI71] S. Even and A. Itai. Queues, stacks, and graphs. In Theory of Machines and
Computations, pages 71–86. Academic Press, 1971. 145, 192, 214

[Eli04] Sergi Elizalde. Statistics on pattern-avoiding permutations. PhD thesis, MIT,
2004. 22, 31

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge
University Press, Cambridge, 2009. 32, 33, 114, 115, 116, 139

[FZVC94] Philippe Flajolet, Paul Zimmerman, and Bernard Van Cutsem. A calculus
for the random generation of labelled combinatorial structures. Theoretical
Computer Science, 132(1–2):1–35, 1994. 117

[HS01] Steffen Heber and Jens Stoye. Finding all common intervals of k permutations.
In 12th Annual Symposium Combinatorial Pattern Matching, (CPM 2001),
volume 2089 of Lecture Notes in Computer Science, pages 207–218. Springer
Verlag, 2001. 25

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979. 59, 88, 89, 91, 110

224 Bibliography

[KM03] Sergey Kitaev and Toufik Mansour. A survey on certain pattern problems.
available at http://www.ru.is/kennarar/sergey/publications.html, 2003. 22,
31, 114

[Knu68] Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental
Algorithms. Addison-Wesley, 1968. 13, 143, 144

[Knu73a] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973. 143, 145, 156, 191

[Knu73b] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading MA, 3rd edition, 1973. 31

[LS90] Venkatramani Lakshmibai and B Sandhya. Criterion for smoothness of Schu-
bert varieties in SL(n)/B. In Proceedings of the Indian Academy of Sciences-
Mathematical Sciences, volume 100, pages 45–52. Springer, 1990. 21

[MR84] Rolf H. Möhring and Franz J. Radermacher. Substitution decomposition for
discrete structures and connections with combinatorial optimization. Annals
of Discrete Math, 19:257–356, 1984. 22

[MT04] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the
Stanley-Wilf conjecture. J. Comb. Theory, Ser. A, 107(1):153–160, 2004. 22,
31, 114

[Mur02] Maximillian M. Murphy. Restricted permutations, anti chains, atomic classes
and stack sorting. Phd thesis, University of St Andrews, 2002. 17, 145, 148,
150, 162

[PR12] Adeline Pierrot and Dominique Rossin. Simple permutation poset. Preprint
available at http://arxiv.org/abs/1201.3119, 2012. 31

[Pra73] Vaughan R. Pratt. Computing permutations with double-ended queues, par-
allel stacks and parallel queues. In Alfred V. Aho, Allan Borodin, Robert L.
Constable, Robert W. Floyd, Michael A. Harrison a nd Richard M. Karp, and
H. Raymond Strong, editors, STOC - Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas,
USA, pages 268–277. ACM, 1973. 144, 145

[PSS08] C. Pivoteau, B. Salvy, and M. Soria. Boltzmann oracle for combinatorial sys-
tems. In Algorithms, Trees, Combinatorics and Probabilities, pages 475–488.
Discrete Mathematics and Theoretical Computer Science, 2008. Proceedings
of the Fifth Colloquium on Mathematics and Computer Science. Blaubeuren,
Germany. September 22-26, 2008. 118

[RT84] Pierre Rosenstiehl and Robert Endre Tarjan. Gauss codes, planar hamiltonian
graphs, and stack-sortable permutations. J. Algorithms, 5(3):375–390, 1984.
192

[ST93] James H. Schmerl and William T. Trotter. Critically indecomposable par-
tially ordered sets, graphs, tournaments and other binary relational structures.
Discrete Mathematics, 113:191–205, 1993. 14, 35, 36, 37, 38, 39, 40

[Tar72] Robert Endre Tarjan. Sorting using networks of queues and stacks. J. ACM,
19(2):341–346, 1972. 144

http://arxiv.org/abs/1201.3119

Bibliography 225

[Úlf11] Henning Úlfarsson. Describing West-3-stack-sortable permutations with per-
mutation patterns, 2011. 146

[Ung92] Walter Unger. The complexity of colouring circle graphs (extended abstract).
In Alain Finkel and Matthias Jantzen, editors, STACS 92, 9th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Cachan, France, February
13-15, 1992, Proceedings, volume 577 of Lecture Notes in Computer Science,
pages 389–400. Springer, 1992. 145, 214

[Vat08] Vincent Vatter. Enumeration schemes for restricted permutations. Combina-
torics, Probability and Computing, 17(1):137–159, 2008. 22, 31

[Vat10] Vincent Vatter. Permutation classes of every growth rate above 2.48188. Math-
ematika, 56:182–192, 2010. 31, 140

[Vat11] Vincent Vatter. Small permutation classes. Proceedings of the London Mathe-
matical Society, 103:879–921, 2011. 31

[VW11] Vincent Vatter and Steve Waton. On partial well-order for monotone grid
classes of permutations. Order, 28:193–199, 2011. 31

[Wes90] Julian West. Permutations with forbidden subsequences and Stack sortable
permutations. Phd thesis, Massachusetts Institute of Technology, 1990. 145,
192

[Wes93] Julian West. Sorting twice through a stack. Theor. Comput. Sci.,
117(1&2):303–313, 1993. 145

[Zei92] Doron Zeilberger. A proof of Julian West’s conjecture that the number of 2-
stack sortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!). Discrete
Mathematics, 102(1):85–93, 1992. 146

	Introduction
	Preliminaries: Definitions and some background
	Permutation patterns and permutation classes
	Substitution decomposition of permutations

	I Structure of permutation classes
	Foreword: A fully algorithmic method to make explicit the structureof a permutation class
	Simple permutations as a poset
	Introduction
	Preliminaries
	Exceptional permutations
	General results on binary relational structures

	Pattern containment on simple permutations
	Simple patterns of simple permutations
	Simple pattern containing a given simple permutation

	Simple permutations as a poset
	Paths in the poset of simple permutations
	Degree of vertices in the poset

	Generating simple permutations in a permutation class
	An algorithm for substitution-closed classes
	An algorithm for not substitution-closed classes

	Finitely many simple permutations?
	Introduction
	Preliminaries
	Pin-permutations and pin representations
	Pin words
	Decidability procedure

	Characterization of classes with finitely many proper pin-permutations
	Pattern containment and piecewise factor relation
	Pattern containment and set inclusion
	Characterizing when a class has a finite number ofproper pin-permutations

	Pin words of pin-permutations
	Characterization of pin-permutations
	Reading of children of a linear node
	Non-recursive case: size 1 and simple pin-permutations
	Non-recursive case: decomposition trees with a linear root
	Recursive case: decomposition trees with a linear root
	Recursive case: decomposition trees with a prime root

	Building deterministic automata accepting the languages L
	Generic constructions of deterministic automata
	Pin-permutation of size 1 and simple pin-permutations
	Pin-permutations with a linear root: non-recursive case
	Pin-permutations with a linear root: recursive case
	Pin-permutations with a prime root: recursive case
	Marking states
	Complexity analysis

	A polynomial algorithm deciding whether a class contains a finite number of simple permutations
	Finitely many parallel alternations and wedge simple permutations in C?
	Finding pin-permutations in the basis.
	Finitely many proper pin-permutations in C?
	Main result

	Combinatorial specification of permutation classes
	Introduction
	Combinatorial Structures and Random Generation
	Constructible combinatorial structures and generating functions
	Automatic methods for uniform random generation

	Combinatorial system describing C
	The simple case of substitution-closed classes
	Adding constraints for classes that are not substitution-closed

	Disambiguation of the system
	General framework
	Disambiguation
	Compute an equation for a restriction

	Case study of C = Av(2413, 1243,2341, 531642, 41352)
	Ambiguous system for C
	Disambiguation
	Experiments

	Conclusion and perspectives

	II Sorting with two stacks in series
	Foreword: Stack sorting
	Pushall sorting: a new notion closely linked with general sorting
	Introduction
	Pushall sorting vs. 2-stack sorting
	A word approach
	Stack configurations
	Decomposition and stack sorting
	Basis of stack sorting classes

	Pushall sorting and bicoloring
	A simple characterization
	Increasing sequences in a valid coloring
	Case study
	A first polynomial algorithm

	An optimal algorithm
	Rooting colorings
	Algorithm for -indecomposable permutations
	Final algorithm

	A polynomial algorithm deciding if a permutation is 2-stack sortable
	Introduction
	Definitions and notations
	Study of two-stack sorting processes
	Stack configurations and accessibility
	From time ti to time ti+1

	An iterative algorithm
	A first naive algorithm
	Towards the sorting graph
	First step: G(1)
	From step i to step i+1

	Complexity Analysis
	Conclusion and perspectives

	List of Figures and Tables
	List of Algorithms
	Bibliography

