
2-Stack Sorting is polynomial ∗

Adeline Pierrot1 and Dominique Rossin2

1 Adeline Pierrot
Institute of Discrete Mathematics and Geometry, TU Wien, Austria

2 Dominique Rossin
LIX UMR 7161, École Polytechnique and CNRS, 91128 Palaiseau, France

Abstract
This article deals with deciding whether a permutation is sortable with two stacks in series. Whether
this decision problem lies in P or is NP-complete is a longstanding open problem since the introduction
of serial compositions of stacks by Knuth in The Art of Computer Programming [6] in 1973. We hereby
prove that this decision problem lies in P by giving a polynomial algorithm to solve it. This algorithm
uses the concept of pushall sorting, which was previously defined and studied by the authors in [8, 9].

1998 ACM Subject Classification G.2.1 Permutations, F.2.2 Sorting, E.1 Lists, stacks, and queues

Keywords and phrases permutation, stack, sort, NP-complete

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Stack sorting has been studied first by Donald Knuth in the sixties (see volume 1 of The Art of
Computer Programming [5]). One of its theoretical interests is that it is a linear time sort. Its
drawback is that it cannot sort all permutations.

Characterizing the stack-sortable permutations is a historical problem, which led to define
permutation patterns and permutations classes closed by excluded pattern, an active research
domain in combinatorics (see the book [4]). Stack-sorting was then generalized by Tarjan, who
introduced sorting networks [10] allowing to sort more permutations, and many variations of this
problem have been studied afterwards (see [3] for a summary).

Here we study the decision problem “Is a given permutation σ sortable by two stacks connected
in series?”. It is cited many times in the literature: in [3], Bóna gives a summary of advances on
stack-sorting and mentions this problem as possibly NP-complete; more recently, it is also cited as
possibly NP-complete in [1]. Surprisingly, both conjectures exist: in [2], the authors conjecture it
is NP-complete, while Murphy in his PhD thesis [7] conjectures it is polynomial.

In this article, we solve this problem that stayed open for several decades by giving a polynomial
decision algorithm. Details of the proofs can be found in [8].

The difficulty of this problem, whose statement is however very simple, lies in the fact that
both stacks are considered at once, which gives a great liberty on which operation to apply on the
permutation at each step, and yields an exponential naive algorithm.

There are two key ideas in this article: first, limit the number of sortings to consider by proving
that if a permutation σ is sortable, then there exists a sorting process of σ respecting some condition
denoted P. Second, encode a possibly exponential number of sortings by a sequence of graphs
called sorting graphs, using pushall stack configurations introduced in [9, 8].

The article is organized as follows: Section 2 studies general properties of two-stack sorting
thanks to stack words and stack configurations and limits the number of sortings to consider by
introducing Property P. Section 3 introduces the sorting graph G(i) which encodes possible stack
configurations at a given time ti and gives an algorithm to compute this graph iteratively for
all i from 1 to the number of right-to-left minima, leading to an algorithm deciding whether a
permutation is 2-stack sortable. Then Section 4 proves that the resulting algorithm is polynomial.

∗ This work was completed with the support of the ANR project ANR BLAN-0204_07 MAGNUM and of the
SFB project SFB F50 Algorithmic and Enumerative Combinatorics.

© A. Pierrot and D. Rossin.;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 2-Stack Sorting is polynomial

2 Study of two-stack sorting processes

2.1 Definitions and general problem statement
Let us recall the problem of sorting a permutation with two stacks in series. A permutation of size
n is a word of n letters σ = σ1σ2 . . . σn on the alphabet [1..n] containing each letter from 1 to n
exactly once. Given two stacks H and V in series (see Figure 1) and a permutation σ, we want to
sort the elements of σ using the stacks. We take σ as input: the elements σi will be read one by
one, beginning with σ1 and ending with σn. We have three different operations (see Figure 1):

ρ: Take the next element of σ still in the input and push it on top of the first stack H.
λ: Pop the topmost element of stack H and push it on top of the second stack V .
µ: Pop the topmost element of stack V and write it to the output.

HV

ρλµ
σ1 . . . σn

(input)
1 . . . n

(output)

Figure 1 Sorting with two stacks in series.

If there is a sequence w = w1 . . . wk of operations ρ, λ, µ leading to the identity 1 . . . n as output,
the permutation σ is said 2-stack sortable. In that case, we define the sorting word associated to
this sorting process as the word w on the alphabet {ρ, λ, µ}. Note that w must have n times each
letter ρ, λ and µ and thus k = 3n. For example, 2431 is sortable using the following process:

2 4 3 1 2
4 3 1 24 3 1 2

3
4 1 24

3 1 2
1

4
3

24
3
1

24
31 4

3
2

1 4
31 2 41 2 3 1 2 3 4

This sorting process is encoded by the word w = ρρλρλρλµλµµµ. We can also decorate the word
to specify the element on which each operation is performed. The decorated word for w and 2431
is ŵ = ρ2ρ4λ4ρ3λ3ρ1λ1µ1λ2µ2µ3µ4. Note that we have the same information in (σ,w) and in ŵ.
Nevertheless, in a decorated word each letter ρi, λi or µi appears only once. The decorated word
associated to (σ,w) is denoted ŵσ.

Not all permutations are 2-stack sortable. The smallest non-sortable ones are of size 7, for
instance σ = 2435761. The question of interest here is to decide whether a permutation is sortable.

There is a naive algorithm to solve this question: given a permutation σ of size n, a sorting
process corresponds to a word on the alphabet {ρ, λ, µ} of size 3n. It is thus enough to test all
words of size 3n and check if one of them yields the identity permutation on the output when
taking σ as input. But this decision algorithm is exponential since there are 33n words to test.

The number of words to test can be reduced by noting that not all words correspond to a
sorting process: a necessary condition is to contains n times each letter. But some permutation
have an exponential number of sorting processes. For instance, it is easy to see that the decreasing
permutation n(n−1) . . . 1 admits 2n−1 sorting processes.

A natural solution would be to define a canonical sorting process among all possible sorting
processes of a permutation, to be able to test only this one, but researches in this direction have
been unsuccessful. Several greedy algorithms for 2-stack sorting have been defined, (cf. [11] and [2])
but none is able to sort all 2-stack sortable permutations. A key idea of our polynomial algorithm
is to limit the number of sortings to consider by studying stack words and stack configurations.

2.2 Stack words and stack configurations
We saw that a sorting process can be described as a word on the alphabet {ρ, λ, µ}. However not
all words on the alphabet {ρ, λ, µ} describe sorting processes.

A. Pierrot and D. Rossin. 3

I Definition 1 (stack word and sorting word). Let w be a word on the alphabet {ρ, λ, µ} and
α ∈ {ρ, λ, µ}. Then |w|α denotes the number of occurrences of α in w.

A stack word is a word w ∈ {ρ, λ, µ}∗ such that for any prefix v of w, |v|ρ ≥ |v|λ ≥ |v|µ.
A sorting word is a stack word w such that |w|ρ = |w|λ = |w|µ.
For any permutation σ, a sorting word for σ is a sorting word encoding a sorting process with

σ as input (leading to the identity of size |σ| as output).

Intuitively, stack words describe a sequence of operations ρ, λ, µ that can be carried out starting
with empty stacks (and an arbitrarily long input), whereas sorting words are words encoding a
complete sorting process (stacks are empty at the beginning and at the end of the process).

Another way of describing sorting processes is, instead of focusing on the operations made, to
focus on the description of which element lies in each stack (and their order in the stacks) at each
step of the process. Such a description for one step is called a stack configuration. For example

2
3

4 is a stack configuration which is a part of the sorting process ρρλρλρλµλµµµ of 2431.
Stack configurations and stack words describing a sorting process are linked:

I Definition 2. Let w be a stack word. Starting with a permutation σ as input, the stack
configuration reached after performing operations described by the word w is denoted cσ(w).
A stack configuration c is reachable for σ if there exists a stack word w such that c = cσ(w). In
other words, a stack configuration is reachable for σ if there exists a sequence of operations ρ, λ, µ
leading to this configuration with σ as input.
A stack configuration is poppable if elements in stacks H and V can be output in increasing order
using operations λ and µ.

Any stack configuration which is a part of a sorting process of a permutation σ has to be
reachable for σ and poppable. We now describe necessary or sufficient conditions for a stack
configuration to be reachable or poppable.

I Lemma 3. Let c be a stack configuration. If c is poppable, then the elements of V are in
decreasing order (concerning their values) from bottom to top. If c is reachable for a permutation
σ, then the elements of H have increasing indices (as letters of σ) from bottom to top.

Poppable stack configurations have been characterized in [9] by the following Lemma. Recall
first that a permutation π = π1π2 . . . πk is a pattern of σ = σ1σ2 . . . σn if there exists indices
1 ≤ i1 < i2 < . . . < ik such that σi1σi2σi3 . . . σik is order-isomorphic to π.

I Lemma 4. A stack configuration c is poppable if and only if :
Stack V does not contain the pattern 12 (seen from bottom to top).
Stack H does not contain the pattern 132 (seen from bottom to top).
Stacks (V,H) do not contain the pattern |2|13|.

Plus, there is a unique way to pop the elements out in increasing order in terms of stack operations.

The first two conditions are usual pattern relations (note that the first one corresponds to the
first part of Lemma 3). The third one means that there are no elements i, j, k with i in V and j, k
in H (k above j) such that j < i < k.

Most of the time, a stack configuration is associated to a permutation implying that the elements
in the stacks are a subset of those of the permutation. In particular a total stack configuration of σ
is a stack configuration in which the elements of the stacks are exactly all those of σ.

I Definition 5 (pushall configuration). A stack configuration is a pushall stack configuration of σ if
it is poppable, total and reachable for σ.

Pushall stack configurations, which were defined and studied in [8] and [9], play a key role in
our polynomial algorithm. Indeed, a permutation which ends with its smallest element is 2-stack
sortable if and only if it admits a pushall stack configuration. Moreover we have:

I Theorem 6 ([8, 9]). One can compute in time O(n2) the set of pushall stack configurations of
any permutation of size n.

4 2-Stack Sorting is polynomial

2.3 Restrict the number of sortings to focus on: Property (P)
Some permutations have an exponential number of sorting processes. To obtain a polynomial
algorithm, we restrict the number of sortings to focus on. The following lemma shows that we can
focus on sorting processes such that the smallest elements are popped out “as soon as possible”.

I Lemma 7. Let σ be a 2-stack sortable permutation and w = uv be a sorting word for σ. Assume
that after performing the operations of u, the elements 1 . . . i− 1 have been output and the elements
i . . . j are at the top of the stacks. Then there exists a sorting word w′ = uu′u′′ for σ such that
u′ consists only of moving the elements i . . . j from the stacks to the output in increasing order
without moving any other elements.

I = [i . . . j]
i(i + 1) . . . j

Now we add some other constraints on the sortings, using the block-decomposition of per-
mutations. A block B of a permutation σ = σ1σ2 . . . σn is a factor σiσi+1 . . . σj of σ such that
the set of values {σi, . . . , σj} is an interval. Note that by definition of a factor, the set of indices
{i, . . . , j} is also an interval. Given two blocks B and B′ of σ, we say that B < B′ if and only
if σi < σj for all σi ∈ B, σj ∈ B′. A permutation σ is 	-decomposable if it can be written as
σ = B1 . . . Bk such that k ≥ 2 and for all i, Bi > Bi+1 in terms of blocks. Otherwise we say that
σ is 	-indecomposable. When each Bi is 	-indecomposable, we write σ = 	[B1, . . . , Bk] and call
it the 	-decomposition of σ. Note that we do not renormalize the elements of Bi, thus, except
Bk, the Bi are not permutations. Nevertheless, Bi can be seen as a permutation by subtracting
|Bi+1|+ · · ·+ |Bk| to all its elements.

The RTL (right-to-left) minima of a permutation are the elements σk such that there is no j
with j > k and σj < σk. We denote by σki

the ith RTL minimum of σ. If σ has r RTL minima,
then σ = . . . σk1 . . . σk2 . . . σkr

with σk1 = 1 and kr = n.
Take for example the permutation σ = 6 5 8 7 4 1 3 2. The 	-decomposition of σ is σ =

	[6 5 8 7, 4, 1 3 2]. Furthermore, σ has 2 RTL-minima which are σ6 = 1 and σ8 = 2.
We denote σ(i) = {σj | j < ki and σj > σki} the restriction of σ to elements in the upper left

quadrant of the ith RTL minimum σki
. The 	i-decomposition of σ is the 	-decomposition of

σ(i) = 	[B(i)
1 , . . . , B

(i)
si]. In the following, si always denotes the number of blocks of σ(i) and B(i)

j

the jth block in the 	i-decomposition.
We note A(i) the common part of the permutations σ(i) and σ(i+1), i.e., A(i) = σ(i)⋂σ(i+1) =

{σj | j < ki and σj > σki+1}. This sub-permutation A(i) intersects 	-indecomposable blocks of
σ(i) and σ(i+1). Let p(i) (resp. q(i+1)) be the index such that B(i)

p(i) (resp. B(i+1)
q(i+1)) contains the

smallest value of A(i). Let D(i) =
(
B

(i)
p(i)

⋃
B

(i+1)
q(i+1)

)⋂
A(i) (see Figure 2).

A(i)

σki

σki+1

B
(i+1)
q(i+1)

B
(i)
p(i)

D(i)

A(i)

σki

σki+1

B
(i+1)
q(i+1)

B
(i)
p(i)

D(i)

A(i)

σki

σki+1

B
(i+1)
q(i+1)

B
(i)
p(i)

D(i)

Figure 2 The 	-decomposition of σ(i) and of σ(i+1) visualized in the diagram of σ (set of the points at
coordinates (i, σi)) resp. when p(i) = q(i+1), p(i) < q(i+1) and p(i) > q(i+1)).

A. Pierrot and D. Rossin. 5

I Definition 8 (Properties (Pi) and (P)). Let σ be a permutation and w a sorting word for σ. We
say that w verifies (Pi) if and only if the corresponding decorated word ŵ satisfies:

(i) µσj
appears before ρσki

for all σj < σki
,

(ii) ρσki
λσki

µσki
is a factor of ŵ,

(iii) All operations µσ`
with σ` ∈ B(i)

j and j ∈ [p(i) + 1..si] appear before ρσ(ki)+1 in ŵ.

If a word w verifies Property (Pi) for all i then we say that w verifies Property (P).
We call ti the time just before σki

enters stack H.

I Theorem 9. If σ is 2-stack sortable then there is a sorting word of σ satisfying Property (P).
In particular, in the sorting process encoded by this word, the elements in the stacks at time ti are
exactly those of σ(i).

Theorem 9 is proved recursively using the following lemmas:

I Lemma 10 (easy). If the sorting word encoding a sorting process of σ verifies Property (Pi),
then the elements in the stacks at time ti are exactly those of σ(i).

I Lemma 11 (Follows from Lemma 3). If σ = 	[B1, . . . Bk] then in any poppable stack configuration
reachable for σ, for all i < j, the elements of Bi are, in the stacks, below the elements of Bj.

I Lemma 12. Let w be a sorting word for a permutation σ, r be the number of RTL-minima of
σ and ` ∈ [1..r]. If w verifies (Pi) for i ∈ [1..`−1] then there exists a sorting word w′ for σ that
verifies (Pi) for i ∈ [1..`].

The proof of this last lemma involves Lemma 7 and Lemma 11.
Theorem 9 ensures that if a permutation σ is sortable then there exists a sorting in which at

each time step ti, the elements in the stacks are exactly those of σ(i). Such a stack configuration
is then a pushall stack configuration of σ(i). Thus if σ is sortable, then for all i, σ(i) has to
admit a pushall stack configuration. This necessary condition is not sufficient: the pushall stack
configuration for σ(i) has to be accessible from the one of σ(i−1). This is formalized below.

2.4 Stack configurations and accessibility
The stack configurations for a sorting process encode the elements that are currently in the stacks.
But some elements are still waiting in the input and some elements have been output. To fully
characterize a configuration, we define an extended stack configuration of a permutation σ of size
n to be a pair (c, i) where i ∈ {1, . . . , n+1} and c is a poppable stack configuration made of all
elements within σ1, σ2, . . . , σi−1 that are greater than a value p. The elements σi, . . . , σn are still
in the input and the elements σj < p, j < i have already been output. Note that we don’t ask the
configuration to be reachable.

I Definition 13. Let σ be a permutation and (c, i) be an extended stack configuration of σ. Then
an extended stack configuration (c′, j) of σ is accessible from (c, i) if the stack configuration (c′, j)
can be reached starting from (c, i) and performing operations ρ, λ and µ such that the elements of
c ∪ {σi . . . σn} that are output by the operations µ performed are output in increasing order.

For example, for σ = 2 3 1 6 5 8 4 7, the sequence of operations µ2µ3ρ6ρ5ρ8λ8 proves that

(6
5

8 , 7) is accessible from (3
2

, 4). But (63
2

, 5) is not accessible from (32
1

, 4).
In the following, given two total pushall stack configurations c and c′, corresponding to stack

configuration of σ(i) and σ(i+1), we study conditions for c′ to be accessible from c, (i.e. conditions
for being able to move elements, starting from c at time ti, to obtain c′ at time ti+1).

I Lemma 14. Let (c, ki), resp. (c′, ki+1), be a pushall stack configuration of σ(i), resp. σ(i+1). Let
π = σ|B(i)

p(i)

⋃
B

(i+1)
q(i+1)

. Then (c′, ki+1) is accessible from (c, ki) for σ if and only if:

1. (c′|π, |π|+ 1) is accessible from (c|π,#(D(i)⋃B(i)
p(i)) + 1) for π (see Figure 2).

6 2-Stack Sorting is polynomial

2. ∀j < min(p(i), q(i+1)), c|B(i)
j

= c′
|B(i)

j

.

3. ∀j > q(i+1), c′
|B(i+1)

j

is a pushall configuration of σ|B(i+1)
j

.
Informally, it is possible to efficiently decide whether a configuration at time ti can evolve into
a given configuration at time ti+1. Moreover, during this transition, only a few operations are
undetermined: the largest elements don’t move, the smallest ones are output in increasing order,
and the remaining ones form a 	-indecomposable permutation. This will allow us to exhibit a
polynomial algorithm checking accessibility. The proof of Lemma 14 relies on Lemma 7, Lemma 11
and the following lemma:
I Lemma 15. Let σ` ∈ A(i). During a sorting process of σ, the elements σm such that σm > σ`
and m < ` do not move between ti and ti+1.
Idea of the proof : σ` prevent those elements from moving.

Thanks to Lemma 14, if c and c′ are two total pushall stack configurations corresponding to
stack configurations of σ(i) and σ(i+1), to decide whether c′ is accessible from c it is enough to
check three kind of conditions. The last two ones are easy to check, and the first one can be checked
using the following lemma:
I Lemma 16. Let σ be a permutation of size n and (c, i), (c′, j) two extended stack configurations
of σ with i < j. Let E (resp. F) be the set of elements of c (resp. c′).

If there exists k, ` ∈ {1 . . . n} such that E = {σm | m ≤ k} and F = {σm | σm ≥ `},
if moreover E ∪ F = σ,

then we can decide in linear time whether (c′, j) is accessible from (c, i) using Algorithm 1.

∅E
`

F

k

σq · · ·σn
x
ρ

x
λ

x
µ

1 · · · p− 1
σV...

σH...

Algorithm 1: isAccessible
(
(c, i), (c′, j), σ

)
Data: σ a permutation and (c, i), (c′, j) two stack configurations of σ satisfying conditions of

Lemma 16
Result: true or false depending on whether the configuration c′ is accessible from c

Put configuration c in the stacks H and V
p← the smallest element of c ∪ {σi . . . σn} (next element to be output)
q ← i (next index of σ that must enter the stacks)
We denote by V (c′) the set of elements of V in configuration c′ and by σV the top of V in
the current configuration (the same goes for H).
while q < j or p < ` or σH ∈ V (c′) do

if σV = p then Perform µ; p← p+ 1 else
if σH < ` then Perform λ else

if H = ∅ or σH ∈ H(c′) then Perform ρ; q ← q + 1 else
if σq ∈ H(c′) or σH > σq then Perform λ else Perform ρ; q ← q + 1

Return (H,V) == c′

The proof of Lemma 16 relies on Lemma 4 and Lemma 7. The idea is that Algorithm 1 perform
only operations that we have to do to obtain (c′, j) starting from (c, i). Thus (c′, j) is accessible
from (c, i) if and only if the configuration obtained at the end of the algorithm is c′.

3 An iterative algorithm

3.1 A first naive algorithm
From Theorem 9, a permutation σ is 2-stack sortable if and only if it admits a sorting process
satisfying Property (P). The main idea is to compute the set of sorting processes of σ satisfying

A. Pierrot and D. Rossin. 7

Property (P) and decide whether σ is 2-stack sortable by testing the emptiness of this set.
Verifying (P) means verifying (Pj) for all j from 1 to r, r being the number of right-to-left

minima (whose indices are denoted kj). The algorithm proceeds in r steps: for all i from 1 to
r we iteratively compute the sorting processes of σ≤ki

verifying (P`) for all ` from 1 to i (with
σ≤ki = σ1 . . . σki). As σ≤kr = σ, the last step gives sorting processes of σ satisfying Property (P).

By “compute the sorting processes of σ≤ki” we mean “compute the stack configuration just
before σki

enters the stacks in such a sorting process”:

I Definition 17. We call Pi-stack configuration of σ a stack configuration cσ(w) for which there
exists u such that the first letter of u is ρσki

and wu is a sorting word of σ≤ki
verifying (P) for

σ≤ki (that is, verifying (P`) for all ` from 1 to i).

The algorithm is based on the following two lemmas:

I Lemma 18 (Consequence of Theorem 9). For any i from 1 to r, σ≤ki
is 2-stack sortable if and

only if the set of Pi-stack configurations of σ is nonempty. In particular, σ is 2-stack sortable if
and only if the set of Pr-stack configurations of σ is nonempty.

I Lemma 19 (Consequence of Lemma 10). Any Pi-stack configuration of σ is a pushall stack
configuration of σ(i), accessible from some Pi−1-stack configurations of σ.

As explained above, the algorithm proceeds in r steps such that after step i we know every
Pi-stack configuration of σ and we want to compute the Pi+1-stack configurations of σ at step
i+ 1. As configurations for i+ 1 are a subset of pushall stack configurations of σ(i+1), a possible
algorithm is to take every pair of configurations (c, c′) with c being a Pi-stack configuration of σ
(computed at step i) and c′ be any pushall stack configuration of σ(i+1) (given by Algorithm 5 of
[9], see Theorem 6). Then we can use Algorithm 1 to decide whether c′ is accessible from c for σ.
This leads to an algorithm deciding whether a permutation σ is 2-stack sortable, but this algorithm
is not polynomial. Indeed, the number of Pi-stack configurations of σ is possibly exponential.
However, this set can be described by a polynomial representation as a graph.

3.2 Towards the sorting graph
We now explain how to adapt the previous idea to obtain a polynomial algorithm. Instead of
computing all Pi-stack configurations of σ (which are pushall stack configurations of σ(i)), we
compute the restriction of such configurations to blocks B(i)

j of the 	-decomposition of σ(i). By
Lemma 11, those configurations are stacked one upon the others to give a Pi-stack configuration.
The stack configurations of any block B(i)

j are labeled with an integer which is assigned when the
configuration is computed. Those pairs (configurations, integer) will be the vertices of the graph
G(i) which we call a sorting graph, the edges of which representing the configurations that can be
stacked one upon the other. Vertices of the graph G(i) are partitioned into levels corresponding to
blocks B(i)

j . The integer labels allows us to ensure the polynomiality of the representation. Indeed,
a given label can only appear once per level of the graph G(i). As those labels are assigned to
configurations when they are created, each label corresponding to a pushall stack configuration,
from Theorem 4.4 of [9] there are at most 9|σ| distinct labels thus at most 9|σ| vertices per level
of the graph G(i). This is formalized in Lemma 22. The label can be seen as the memory of the
configuration that encodes its history since it has been created: two configurations having the same
label come from the same initial pushall configuration.

More precisely, a sorting graph G(i) for a permutation σ and an index i verifies:
Vertices of G(i) are partitioned into si subsets V (i)

j with j ∈ [1 . . . si] called levels.
For any j ∈ [1 . . . si], the number of vertices in level V (i)

j is less than 9|σ|.
Each vertex v ∈ G(i) is a pair (c, `) with c a stack configuration and ` an index called
configuration index.
All configuration indices are distinct inside a graph level V (i)

j .
(c, `) ∈ V (i)

j ⇒ c is a pushall stack configuration of B(i)
j accessible for σ.

8 2-Stack Sorting is polynomial

There are edges only between vertices of adjacent levels V (i)
j , V (i)

j+1 (this implies Lemma 23).
Paths between vertices of V (i)

1 and V (i)
si correspond to stack configurations of σ(i). Precisely, and

that is why the algorithm is correct, such paths are in bijection with the Pi-stack configurations
of σ (i.e., stack configurations corresponding to a sorting of σ≤ki

satisfying (P) just before σki

is pushed to H) by stacking one upon the other the configurations of the vertices of a path.
For any vertex v of G(i), there is a path between vertices of V (i)

1 and V (i)
si going through v.

Take for example the permutation σ = 4321. There is only one right-to-left minimum, which
is 1. The sorting graph G(1) for σ = 4321 encodes pushall stack configurations of σ(1) = 432,
corresponding to stack configurations just before 1 enters H.

There are 8 different such configurations, which are:

4
3
2

4
3

2 4
2

3 3
2

4 24
3

34
2

43
2

4
3
2

As the 	-decomposition of σ(1) is σ(1) = 	[4, 3, 2], the sorting graph G(1) has 3 levels (Fig. 3).

2 5 2 6

3 3 3 4

4 1 4 2

Stack configurations of B3 = 2

Stack configurations of B2 = 3

Stack configurations of B1 = 4

Figure 3 Sorting graph G(1) of σ = 4321.

Then the 8 configurations of σ are found taking each of the 8 different paths going from any
configuration of B1 to any configuration of B3. For example, in Figure 3, the thick path gives the

stack configuration 34
2

by stacking the selected configuration of B3 above the configuration of
B2 and so on.

Our algorithm computes iteratively the graph G(i) from the graph G(i−1) for all i from 2 to
r. The way G(i) is computed from G(i−1) depends on the relative values of p(i) and q(i+1). By
definition of G(i), if at any step G(i) is empty, it means that σ≤ki

is not sortable (from Theorem 9),
so σ is not sortable either, and the algorithm returns false. This is summarized in Algorithm 2.

Algorithm 2: isSortable
Data: σ a permutation
Result: true or false depending on whether σ is 2-stack sortable
G ← ComputeG1
for i from 2 to r do

if p(i) = q(i+1) then G ← iteratepEqualsq(G) or return false
else

if p(i) < q(i+1) then G ← iteratepLessThanq(G) or return false
else G ← iteratepGreaterThanq(G) or return false

return true

In the next subsections we describe the sub-procedures used in our main algorithm isSortable(σ).

3.3 First step: G(1)

In this subsection, we show how to compute the P1-stack configurations of σ, that is, the stack
configurations corresponding to time t1 for sorting words of σ≤k1 that satisfy (P) for σ≤k1 .

A. Pierrot and D. Rossin. 9

From Lemma 19, such a stack configuration is a pushall stack configuration of σ(1). Conversely,
since σk1 = 1, σ(1) = σ<k1 and each sorting word of σ≤k1 satisfies (P1) for σ≤k1 . Thus the set of
P1-stack configurations of σ is the set of pushall stack configurations of σ(1).

By Proposition 4.7 of [9], these stack configurations are described by the set of stack config-
urations for each block of the 	-decomposition of σ(1). More precisely, with σ(1) = 	[B(1)

1 , . . . , B
(1)
s1],

there is a bijection from pushallConfigs(B(1)
1)×· · ·×pushallConfigs(B(1)

s1) onto pushallConfigs(σ(1))
by stacking configurations one upon the other (as in Lemma 11). As a consequence, from Lemma 18
σ≤k1 is not sortable if and only if a set pushallConfigs(B(1)

j) is empty.
Moreover, it will be useful to label the configurations computed so that we attach a distinct

integer to each stack configuration when computed.
At this point, we have encoded all configurations corresponding to words satisfying P up to the

factor ρ1λ1µ1.
The obtained graph is G(1). This step is summarized in Algorithm 3.

Algorithm 3: ComputeG1
Data: σ a permutation, num a global integer variable
Result: false if σ≤k1 is not sortable, the sorting graph G(1) otherwise.
E = ∅
Compute σ(1) and its 	-decomposition 	[B(1)

1 , . . . , B
(1)
s1]

for j from 1 to s(1)
1 do

V
(1)
j ← ∅
S = pushallConfigs(B(1)

j)
if S = ∅ then return false
else

for s ∈ S do

V
(1)
j ← V

(1)
j

⋃
{(s, num)}

num← num+ 1
if j > 1 then E = E

⋃
{(s, s′), s ∈ V (1)

j , s′ ∈ V (1)
j−1}

return G(1) = (
⋃

j∈[1..s(1)
1]
V

(1)
j , E)

3.4 From step i to step i + 1
After step i we know the graph G(i) encoding every Pi-stack configuration of σ and we want to
compute the graph G(i+1) encoding Pi+1-stack configurations of σ at step i+1. From Lemma 19 it is
enough to check the accessibility of pushall stack configuration of σ(i+1) from Pi-stack configurations
of σ. We cannot check every pair of configurations (c, c′) with c being a Pi-stack configuration and
c′ be a pushall stack configuration of σ(i+1), because the number of such pair of configurations is
possibly exponential. Thus our algorithm focuses not on stack configurations of some σ(`) but on
sets of stack configurations of blocks B(`)

j , making use of Lemma 14.
Using Lemma 19, Lemma 14 can be rephrased as:

I Lemma 20. Let c′ be a total stack configuration of σ(i+1), p = p(i) and q = q(i+1). Then c′ is a
Pi+1-stack configuration of σ if and only if:

For any j ≤ q, c′
|B(i+1)

j

is a pushall stack configuration of σ|B(i+1)
j

, and
there exists a Pi-stack configuration c of σ such that:
c′
|B(i)

min(p,q)∪···∪B
(i)
q

is accessible from c|B(i+1)
min(p,q)∪···∪B

(i+1)
p

for σ|B(i)
p

⋃
B

(i+1)
q

and

c′
|B(i+1)

1 ∪···∪B(i+1)
min(p,q)−1

= c|B(i)
1 ∪···∪B

(i)
min(p,q)−1

Recall that a Pi-stack configuration of σ is encoded by a path in the sorting graph G(i),
corresponding to the 	-decomposition of the permutation σ(i) into blocks B(i)

j . The last point of

10 2-Stack Sorting is polynomial

Lemma 20 ensures that the first levels (1 to min(p(i), q(i+1)) − 1) in G(i+1) are the same as the
ones in G(i). The first point of Lemma 20 ensures that the last levels (> q(i+1)) of G(i+1) form a
complete partitioned graph whose vertices are all pushall stack configurations of corresponding
blocks. So the only unknown levels for G(i+1) are those between min(p(i), q(i+1)) and q(i+1) and we
can compute them by testing accessibility.

There are distinct cases depending on the relative values of p(i) and q(i+1). To lighten the
notations in the following, we sometimes write p (resp. q) instead of p(i) (resp. q(i+1)).

3.4.1 Case p(i) = q(i+1)

If p(i) = q(i+1) then B(i+1)
q(i+1) ∩A(i) = B

(i)
p(i) ∩A(i) (see Figure 2).

We have the sorting graph G(i) encoding all Pi-stack configurations of σ and we want to
compute the sorting graph G(i+1) encoding all Pi+1-stack configurations of σ assuming that
p(i) = q(i+1) = min(p(i), q(i+1)).

In this case, from Lemma 20, we only have to check accessibility of pushall configurations
of B(i+1)

q from configurations of B(i)
p belonging to level p of G(i). Indeed, from the definition of

a sorting graph given p.7, for any vertex v of G(i), there is a path between vertices of V (i)
1 and

V
(i)
si going through v, and such a path corresponds to a Pi-stack configuration of σ. Thus for any

configurations x of B(i)
p belonging to a vertex v of level p of G(i), there is at least one Pi-stack

configuration c of σ such that c|B(i)
p

= x, and c|B(i)
1 ∪···∪B

(i)
min(p,q)−1

is encoded by a path from v to

level p of G(i) (which goes through each level < p).
If there is no pushall configuration of B(i+1)

q accessible from some configurations of B(i)
p belonging

to level p of G(i), or if σ(i+1) has no pushall configuration, then σ has no Pi+1-stack configuration
and σ≤ki+1 is not sortable (from Lemma 18).

This leads to algorithm 4.

Algorithm 4: iteratepEqualsq(G(i))
Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1 is not sortable, the sorting graph G(i+1) otherwise.
G an empty sorting graph with si+1 levels
G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false
Copy levels q + 1 . . . si+1 of G′ into the same levels of G
for (c, `) in level p of G(i) do
H the subgraph of G(i) induced by (c, `) in levels < p

for (c′, `′) in level q of G′ do
if isAccessible(c, c′, σ|B(i)

p

⋃
B

(i+1)
q

) then
Add (c′, `′) in level q of G (if not already done)
Merge H in levels ≤ q of G with (c′, `′) as origin

if level q of G is empty then return false
for (c′, `′) in level q of G do

Add all edges from (c′, `′) to each vertex of level q + 1 of G;
return G

3.4.2 Case p(i) < q(i+1)

If p(i) < q(i+1) then B(i+1)
q(i+1) ∩A(i) B

(i)
p(i) ∩A(i) (see Figure 2).

Again, Lemma 20 ensures that the first p− 1 levels of G(i+1) come from those of G(i) and the
levels > q are all pushall stack configurations of the blocks B(i+1)

>q of σ(i+1). The difficult part is
from level p to level q. As in the preceding case, by Lemma 20, we have to select among pushall
stack configurations of blocks p, p+ 1, . . . , q of σ(i+1) those accessible from a configuration of B(i)

p

that appears at level p in G(i). We can restrict the accessibility test from configurations of B(i)
p

A. Pierrot and D. Rossin. 11

appearing in graph G(i) to pushall stack configurations of B(i+1)
q . Indeed, Lemma 15 ensures that

the elements of blocks B(i+1)
j for j from p to q− 1 are in the same stack at time ti and at time ti+1.

Thus configurations of B(i+1)
j for j from p to q − 1 are restrictions of configurations of B(i)

p . We
keep the same label in the vertex to encode that those configurations of B(i+1)

p , B
(i+1)
p+1 , . . . , B

(i+1)
q−1

come from the same configuration of B(i)
p and we build edges between vertices of B(i+1)

j+1 and B(i+1)
j

that come from the same configuration of B(i)
p . It is because of this case p = q that we have to

label configurations in our sorting graph. Indeed, two different stack configurations c1 and c2 of
B

(i)
p may have the same restriction to some block B(i+1)

j but not be compatible with the same
configurations, thus we want the corresponding vertices of level j of G(i+1) to be distinct, that’s
why we use labels.

More precisely, we have algorithm 5.

Algorithm 5: iteratepLessThanq(G(i))
Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1 is not sortable, the sorting graph G(i+1) otherwise.
G an empty sorting graph with si+1 levels
G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false
Copy levels q + 1, . . . , si+1 of G′ into the same levels of G
for (c, `) in level p of G(i) do
H the subgraph of G(i) induced by (c, `) in levels < p

for (c′, `′) in level q of G′ do
if isAccessible(c, c′, σ|B(i)

p

⋃
B

(i+1)
q

) then
Add (c′, `′) in level q of G (if not already done)
for j from q − 1 downto p do

Add (c|B(i+1)
j

, `) in level j of G
Add an edge between (c|B(i+1)

j

, `) and (c|B(i+1)
j+1

, `) in G.

Merge H in levels ≤ p of G with (c|B(i+1)
p

, `) as origin

if level q of G is empty then return false
for (c′, `′) in level q of G do Add all edges from (c′, `′) to each vertex of level q + 1 of G
return G

Note that in Algorithm 5, before calling isAccessible(c, c′, σ|B(i)
p

⋃
B

(i+1)
q

), we extend configura-

tion c′ to D(i)⋃B(i+1)
q by assigning the same stack than in c to points of D(i) \ B(i+1)

q . This is
justified by Lemma 15.

3.4.3 Case p(i) > q(i+1)

If p(i) > q(i+1) then B(i)
p(i) ∩A(i) B

(i+1)
q(i+1) ∩A(i) (see Figure 2).

This case is very similar to the preceding one except that B(i)
p is not cut into pieces but glued

with preceding blocks. As a consequence, when testing accessibility of a configuration of B(i+1)
q , we

should consider every corresponding configuration in G(i), that is, every configuration obtained by
stacking configurations at level q, q + 1, . . . , p in G(i). Unfortunately, this may give an exponential
number of configurations; but noticing that by Lemma 15 the elements of blocks B(i)

q , B
(i)
q+1 . . . B

(i)
p−1

are exactly in the same stack at time ti and at time ti+1, it is sufficient to check the accessibility of
a pushall configuration c′ of B(i+1)

q from a configuration c of B(i)
p and verify afterwards whether

the configuration c has ancestors in G(i) that match exactly the configuration c′. This leads to
algorithm 6.

Note that in Algorithm 6, before calling isAccessible(c, c′, σ|B(i)
p

⋃
B

(i+1)
q

), we extend configura-

tion c to D(i)⋃B(i)
p by assigning the same stack than in c′ to points of D(i) \B(i)

p . This is justified
by Lemma 15.

Now that we have described all steps of our algorithm, we turn to the study of its complexity.

12 2-Stack Sorting is polynomial

Algorithm 6: iteratepGreaterThanq(G(i))
Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1 is not sortable, the sorting graph G(i+1) otherwise
G an empty sorting graph with si+1 levels
G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false
Copy levels q + 1, . . . , si+1 of G′ into the same levels of G
for (c, `) in level p of G(i) do

for (c′, `′) in level q of G′ do
if isAccessible(c, c′, σ|B(i)

p

⋃
B

(i+1)
q

) then

if there is a path (c, `)↔ (c′
|B(i)

p−1
, `1)↔ . . .↔ (c′

|B(i)
q

, `k) in G(i) then

Add (c′, `′) in level q of G (if not already done)
H the subgraph of G(i) induced by (c′

|B(i)
q

, `k) in levels < q

Merge H in levels ≤ q of G with (c′, `′) as origin

if level q of G is empty then return false
for (c′, `′) in level q of G do Add all edges from (c′, `′) to each vertex of level q + 1 of G
return G

4 Complexity Analysis

In this section we state the complexity of isSortable(σ), our main algorithm (Algorithm 2).

I Theorem 21. Given a permutation σ, Algorithm 2 isSortable(σ) decides whether σ is sortable
with two stacks in series in polynomial time w.r.t. |σ|.

The key idea to prove this theorem relies on bounding the size of each graph G(i):

I Lemma 22. For any i ∈ [1..r], the maximal number of vertices in a level of G(i) is 9n where n
is the size of the input permutation.

I Lemma 23. For any i ∈ [1..r], the number of vertices of G(i) is O(n2) and the number of edges
of G(i) is O(n3), where n is the size of the input permutation.

References
1 Michael Albert, Mike D. Atkinson, and Steve Linton. Permutations generated by stacks and

deques. Annals of Combinatorics, 14:3–16, 2010.
2 Mike D. Atkinson, M. M. Murphy, and N. Ruskuc. Sorting with two ordered stacks in series.

Theor. Comput. Sci., 289:205–223, October 2002.
3 Miklós Bóna. A survey of stack-sorting disciplines. Electr. J. Comb., 9(2), 2002.
4 S. Kitaev. Patterns in Permutations and Words. Monographs in Theoretical Computer Science.

An EATCS Series. Springer, 2011.
5 Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms.

Addison-Wesley, 1968.
6 Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.

Addison-Wesley, 1973.
7 Maximillian M. Murphy. Restricted permutations, anti chains, atomic classes and stack sorting.

PhD thesis, University of St Andrews, 2002.
8 A. Pierrot. Combinatoire et algorithmique dans les classes de permutations. PhD thesis, Université

Paris Diderot - Paris 7, 2013. (in English).
9 A. Pierrot and D. Rossin. 2-stack pushall sortable permutations, 2013. arxiv:1303.4376.
10 Robert Endre Tarjan. Sorting using networks of queues and stacks. J. ACM, 19(2):341–346, 1972.
11 Julian West. Sorting twice through a stack. Theor. Comput. Sci., 117(1&2):303–313, 1993.

	Introduction
	Study of two-stack sorting processes
	Definitions and general problem statement
	Stack words and stack configurations
	Restrict the number of sortings to focus on: Property (P)
	Stack configurations and accessibility

	An iterative algorithm
	A first naive algorithm
	Towards the sorting graph
	First step: G(1)
	From step i to step i+1
	Case p(i) = q(i+1)
	Case p(i) < q(i+1)
	Case p(i) > q(i+1)

	Complexity Analysis

