FRUSTRATION: PHYSICO-CHEMICAL PREREQUISITES FOR THE CONSTRUCTION OF A SYNTHETIC CELL

Antoine Danchin

Systems Chemistry, Beilstein Institut, Bolzano, 27 May 2008
ACKNOWLEDGEMENTS

The University of Hong Kong
Dpt of Mathematics and HKU-Pasteur Research Centre

⇒ Stanislas Noria (collective name, working seminar in « Conceptual Biology »)

Génétique des Génomes Bactériens

⇒ Gang Fang
⇒ Etienne Larsabal
⇒ Undine Mechold
⇒ Géraldine Pascal
⇒ Eduardo Rocha
⇒ Agnieszka Sekowska
⇒ Tingzhang Wang

Génoscope AGC

⇒ Claudine Médigue

Marine Biological Laboratory, Woods Hole

⇒ Monica Riley

Genetics of Bacterial Genomes
http://www.pasteur.fr/recherche/unites/REG/
THREE REVOLUTIONS

- 1944 - 1985 MOLECULAR BIOLOGY
- 1985 - 2005 GENOMICS
- 2005 - … SYNTHEtic (SYMPLECTIC) BIOLOGY

(highly multidisciplinary !)

Mind media special interest groups!: « Symplectic » is in Greek (συν, together, πλεκτείν, to weave) the same word as « Complex » in Latin; used here to avoid the unwanted fuzzy connotations associated to « Complexity »; a connotation in Geometry will not interfere…

Genetics of Bacterial Genomes
http://www.pasteur.fr/recherche/unites/REG/
GOALS OF SB

- A first aim of SB is to reconstruct life, in an endeavour to explore whether we understand what life is and learn missing entities from our failures.
- A second aim is to keep the laws defining life, and to apply them using objects of a different physico-chemical nature.
- A third aim is to see life from an engineering standpoint, trying to class and normalize « biobricks ».
Life requires:

- A program (a “book of recipes”)
 - 1. Recursive information transfer => coding from one level to a second one as an essential element

- A machine allowing the program to be enacted
 - 2. Metabolism (a dynamic process)
 - 3. Compartmentalization (defining an inside and an outside)

The cell is the atom of life
The machine reproduces

- Reproduction can improve over time: it is always an aged organism that gives birth to a young one

The program replicates

- Replication keeps accumulating errors
~ 800 molecules are absolutely necessary ("anabolism and catabolism")

- Assimilation of C, H, N, O, S, P, and ions
- Management of energy (ATP and electron transfers)

"Coenzymes" are essential components of metabolism (generally forgotten in the common scenarios of the origin of life!)
COMPARTMENTALIZATION

Cells define an inside and an outside

Two strategies separate the domains of life:

- A single envelope (more or less complex): prokaryotes
- Multiplication of membranes and skins: eukaryotes
As in the construction of a machine, one needs a « book of recipes » to construct the cell. This asks to change the text of the recipe into something concrete. This process transfers « information ». In the cell, information transfer is organized by the genetic program.
A NOVEL COMPONENT OF REALITY: INFORMATION

- Physics: *matter, energy, time*
- Statistical physics: Physics + « *information* »

Information reconciles classical physics and quantum physics

- Biology: Physics + *information, coding, control*...
- Arithmetics: *sequences of integers, recursivity, coding*...
- Computation: Arithmetics + *programs + machine*...

The « genetic program » metaphor has practical consequences: we know how to manipulate genes and gene products, do we have the conceptual tools to push the metaphor to its ultimate consequences?
Two entities permit computing:

- A machine able to read and write
- A program on a physical support, split by the human mind (not conceptually!) into two entities:
 - Program (providing the “goal”)
 - Data (providing the context)

The machine is distinct from the data/program
Genetics rests on the description of genomes as texts written with a four letter alphabet: do cells behave as computers?

Horizontal Gene Transfer
Viruses
Genetic engineering

Direct transplantation of a naked genome into a recipient cell with subsequent change of the recipient machine into a new one (2007)

all points to separation between «Machine» (the cell factory) and «Data/Program» (the genome)

Need: conceptual analysis of biological information (algorithmic complexity, logical depth...)

The Turing machine

May exist in a parallel setup

Genome transplantation

Genetics of Bacterial Genomes
http://www.pasteur.fr/recherche/unites/REG/
The organization just described is conceptual, but it needs to be implemented concretely.

Concrete objects have often properties that are not compatible with those of other objects. This implies « frustration » of possible mutually exclusive entities (because of constraints in space or energy states).

The cell factory will require construction of « patches » to cope with these incompatibilities.
AN ALGORITHMIC VIEW OF BIOLOGICAL ACTIONS

Replication, transcription, translation: high parallelism

“Begin, Check Control Points, Repeat, End”

The action is always oriented, with a beginning and an end.

The processes of time control (check points, or clocks) are rarely taken into account (except for the replication/division processes), but their role is essential to allow coordination of multiple actions in parallel.

Frustration 1 accounts for the origin of regulation: Check points introduce a requirement for regulation, with competition between different requirements, sometimes mutually exclusive.
John von Neumann, trying to understand the brain, suggested that were a computer both to behave as a computer and to construct the machine itself, it should harbour an image of the machine somewhere

That special computer had to be split into a replicator and a constructor, which expresses the program for construction of both the replicator and the constructor

The metaphor does not appear to apply to the brain, does it apply to the cell?
PARADOX

If the machine has not only to behave as a Turing machine but also to make the machine, one must find a geometrical program somewhere in the machine (J. von Neumann)

Is there an image of the organism in the genome?
HOMEOGENES

Drosophilocus, Homunculus? Cellulocusus?
The *mur-fts* cluster

Tamames J, Gonzalez-Moreno M, Mingorance J, Valencia A, Vicente M

Bringing gene order into bacterial shape

Genetics of Bacterial Genomes

http://www.pasteur.fr/recherche/unites/REG/
DISSYMMETRY OF REPLICATION

Genetics of Bacterial Genomes
http://www.pasteur.fr/recherche/unites/REG/
OPEN QUESTIONS

- The constraints resulting from the difference in leading and lagging replication are extremely important.
- They may result in non-random distribution of genes if some functions are associated to properties of proteins (amino acid frequency, formation of complexes, etc).

Frustration 2: conflict between protein structure and DNA structure, partially solved by the choice of the transcription strand.
TO LEAD HAS A COST: BIAS VISIBLE IN PROTEINS…

GT in the leading strand, CA in the lagging strand…

Genetics of Bacterial Genomes
http://www.pasteur.fr/recherche/unites/REG/
Laplace-Gauss statistics

Principal Component Analysis uses the centered average and a simple distance (identity); it is the reference method but does not use properly information.

Correspondence Analysis belongs to the same family; it uses the χ^2 measure as a distance (Benzécri, 1965) which is very close to a first level of information.

Absence of normality (or log-normality)

Independent Component Analysis uses the non gaussian character of the values associated to descriptors; it characterizes objects belonging to common independent clusters (the « cocktail party » theorem), (Hérault, 1984)

Further methods need to be developed.
Correspondence Analysis (CA)

Factorial space of the proteins

Factorial space of the amino acids

Superimposition of both spaces (clouds)
BIAS IN AMINO ACID DISTRIBUTION

Neighborhood: distribution of amino acids in the proteome
A strong bias opposing charged residues to hydrophobic residues

Proteins of the inner membrane: LacY. SecE…

Proteins of the outer membrane: OmpT. OmpL…
UNIVERSAL BIASES IN PROTEIN AMINO ACID COMPOSITION

First axis: separates Integral Inner Membrane Proteins (IIMP) from the rest; driven by opposition between charged and large hydrophobic residues.

Second axis: separates proteins by their content in aromatic amino acids; highly enriched in orphan proteins.

Third axis: separates proteins according to an opposition driven by the G+C content of the first codon base.
Distribution of amino acids in the proteome of *Psychromonas ingrahamii*.

TEMPERATURE-DEPENDENT BIASES IN PROTEIN AMINO ACID COMPOSITION

- The general trend of amino acid composition bias is to avoid some amino acids at higher temperatures (associated to aging processes).
- Mesophilic bacteria belong to at least two different classes (in a 5-clusters analysis).
- Biases are always dominated by the IIMP clustering.
A specific asparagine bias in psychrophiles

- Motility
- Cell wall, outer membrane
- Transport (TonB), secretion
- Adaptation to stress
- Metabolism of DNA and RNA

- 53% mesophiles
- 55% psychrophiles
- 62% thermophiles

IIMPs

Axe 1 "Hydrophobicité"
Axe 2 "Aromaticité"
Axe 3 "contenu en Asparagine"
Asparagine deamidates: a major contribution to protein aging

- Main post-translational modification
- Reaction still poorly understood
- Spontaneous reaction (untargeted?)
- Affects the protein structure (and function?)
- Role in regulating protein folding
- Signal for degradation of intracellular proteins

Asparagine (N)

Degradation: succinimide

Intermediary: succinimide

Aspartate

Isoaspartate
REVISITING THE INEVITABILITY OF AGING

- Proteins age, sometimes very fast (e.g. ribosomal protein S11 from *E. coli*, within minutes at 37°C)

- As a consequence, it is always an aged cell (or multicellular organism) that gives birth to a young one

- This implies that in the process of forming a progeny, there is creation of information

- We need to identify the genes acting in this process of accumulating information
Improvement of metabolism can be conceptually tolerated as creation of information is reversible (Landauer, 1961; Bennett, 1982, 1988)

Open question: « making room » is needed to accomodate innovation; how is it obtained? Can we identify in genomes the genes coding for the functions required to put this process in action?
FUNCTION OR STRUCTURE?

We need to look for ubiquitous functions, while we have only direct access to structures (or even worse, sequences)
A WEALTH OF UNKNOWN GENES

3721 ongoing projects, 665 completed, mostly from microbes (546 Bacteria, more or less correctly annotated)
204,981,131,711 nucleotides at International Nucleotide Sequence Database Collaboration (INSDC)

Microbes make 50% of the Earth protoplasm

The first discovery of genomics (1991):
40-50% coding DNA sequences (CDSs) do not correspond to known functions; 10% correspond to the core genome (« persistent » genes)
ACQUISITIVE EVOLUTION MASKS FUNCTIONAL PERSISTENCE

Variation / Selection / Amplification

Stabilisation

Evolution
creates

Function
captures (recruits)

Structure
codes

Sequence
FROM FUNCTIONAL UBIQUITY TO GENE PERSISTENCE

Functional ubiquity does not imply structural ubiquity
Efficient objects tends to persist through generations:
- Looking for « persistence » permits identification of (most) ubiquitous functions
- Is « ubiquitous » a synonym of « essential »?
« Laboratory essential » genes are located in the DNA leading strand

400-500 genes persist in bacterial genomes; they are not only involved in the three processes needed for life, but in **maintenance** and in **adaptation to transient phenomena**; a fraction manages the **evolution** of the organism.
GENE PERSISTENCE: TWO GENE CATEGORIES

Persistent genes

Essential genes and

Stress, maintenance and repair

Fighting weathering (anti-aging)

Genetics of Bacterial Genomes
http://www.pasteur.fr/recherche/unites/REG/
Persistent genes are functionally defined. They are located in the DNA replication leading strand.

Depending of their tendency to remain clustered in genomes (in > 250 bacteria with genome length > 1,500) they form three families that reflect a scenario of the origin of life.

This group of core genes form the paleome (from παλαιος, ancient)
CONSERVATION OF GENE CLUSTERING

The genome (from the Greek κοινος, common)

The paleome (from the Greek παλαιος, ancient)

Genome core <2000 genes
Variable genes already > 50000 genes

Antibiotics
Virulence

Rifampicin
Streptomycin
Tetracycline
Penicillin
Vancomycin
Isoniazide

Kuiper's Test Statistic

Clustering frequency

Pseudomonas putida

Known
Unknown

Frequency in genomes

+ frequent
+ rare
Sekowska A, Dénervaud V, Ashida H, Michoud K, Haas D, Yokota A, Danchin A.

Using 228 genomes with more than 1500 genes and « correct » annotations, we identified genes that tend to remain close to one another; this « mutual attraction » constructs a remarkable network made of three layers.

To understand its meaning, let us explore a scenario of the origin of life.
A MINERAL SCENARIO FOR THE ORIGIN OF LIFE

The surface of charged solids (e.g. pyrite (Fe-S)) selects and compartmentalizes charged molecules; this first step forms some aminoacids, the main coenzymes, fatty acids and ribonucleotides; polymerisation with elimination of water molecules increases entropy.

Compartmentalised metabolism creates surface substitutes via polymerisation of ribonucleotides in the presence of peptides (the RNA world); RNAs discover the complementarity law, and the genetic code is invented.

Nucleic acids are stabilised by the invention of deoxyribonucleotides, a the time when the rules controlling information transfer are discovered, first within the rna world where vesicles carrying the ancestors of genes split and fuse randomly, before formation of the first genomes.
The external network, made of genes of intermediary metabolism (nucleotides and coenzymes, lipids), is highly fragmented; the middle network is built around class I tRNA synthetases, and the inner network, almost continuous, organized around the ribosome, transcription and replication manages information transfers.
This scenario emphasizes the separation between metabolism and replication, the latter being a secondary invention of prebiotic systems:

Building blocks \Rightarrow nucleotides \Rightarrow tRNA \Rightarrow ribosome \Rightarrow DNA
Life manifests first by growth and repair of weathering: the corresponding genome exists since the origin, it is the **paleome**. Exploration of the environment is an inevitable consequence of existence, it results from continuous creation and exchange of the genes which form the **cenome**.

A SPLIT PALEOME

Paleome 1 (essential genes)
- **Constructor**: DNA specifies proteins which form the machine that constructs the cell (reproduction)
- **Replicator**: DNA specifies proteins that replicate DNA (replication)

Paleome 2 (persistent non essential genes)
Perennisation of life, requires identification of functional from non functional objects
THANK YOU