Overview

The knowledge of an entire genome sequence not only provides a wealth of data, but also specific information that can not be obtained by other approaches. Only after the completion of genome projects did it become obvious that many genes had not been identified by classical genetics. These included many genes that do not share similarities with known genes in databases, paralogous genes leading to redundancy of gene function, genes corresponding to potential new drug targets (Arigoni et al., 1998) and inactive genes resulting from reductive evolution (Andersson et al., 1998). Whole-genome sequencing has revealed important information on the organization of genomes. These include the G+C content and its variation within the genome, leading to the identification of DNA regions acquired by horizontal gene transfer, the presence of repeated elements or insertion elements, the discovery of new pathogenicity islands in pathogenic bacteria and the identification of new operons, genome polarity, and the identification of origin(s) of replication. Genome projects also can be starting points for other projects such as metabolic reconstruction (Selkov et al., 1997) and the systematic functional analysis of all of the genes of an organism which are, for example, currently being carried out for Saccharomyces cerevisiae (Dujon, 1998) and Bacillus subtilis (see the INRA web site; Table 1).

Several projects involving genome sequencing of model organisms, for example S. cerevisiae (Goffeau et al., 1997), Escherichia coli (Blattner et al., 1997) and B. subtilis (Kunst et al., 1997), have been completed using a large amount of previously available information, including the genetic and physical maps of the organisms as well as ordered large-insert libraries of cosmid, lambda, YAC (yeast artificial chromosome) or BAC (bacterial artificial chromosome) clones.

Nowadays, substantial preliminary data are no longer necessary for the initiation of a genome project. However, a prerequisite for a successful project is detailed pre-planning, and some basic knowledge of the bacterium at the beginning of the project is helpful. Features such as genome size, G+C content, the presence of a circular or linear chromosome and the eventual presence of (circular or linear) plasmids should be taken into account. The strategies to be followed should be very carefully considered, since midstream changes are time consuming and costly. In particular, the choice of the cloning strategies is crucial, since the construction of gene banks of poor quality may be unnoticed in the beginning of the project and lead, at a later stage, to assembly difficulties (see below).

The aim of a microbial genome project is to construct, from 500–800 bp sequence reads containing about 1% mistakes, a genome sequence of several megabases with an error rate lower than 1 per 10000 nucleotides. Because of technical improvements, including the availability of new software, automated sequencers and low computation costs, a microbial genome project can be completed in a small laboratory within two years.

In the first section of this review we will present a summary of the various cloning and sequencing strategies used in genome projects, including random and ordered approaches. In the following sections we will focus on the whole-genome shotgun-sequencing approach.
Table 1. Web sites cited in the text

<table>
<thead>
<tr>
<th>Organization</th>
<th>Web address (URL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Institute for Genomic Research (TIGR)</td>
<td>http://www.tigr.org/</td>
</tr>
<tr>
<td>GOLD, University of Illinois*</td>
<td>http://www.ebi.ac.uk/research/cgg.genomes.html</td>
</tr>
<tr>
<td>Invitrogen</td>
<td>http://geta.life.uiuc.edu/~nikos/genomes.html</td>
</tr>
<tr>
<td>Caltech Genome Research Laboratory</td>
<td>http://www.tree.caltech.edu</td>
</tr>
<tr>
<td>Laboratory of Genomics of Microbial Pathogens (GMP)</td>
<td>http://www.pasteur.fr/recherche/unites/gmp/</td>
</tr>
<tr>
<td>Stratagene</td>
<td>http://www.stratagene.com/</td>
</tr>
<tr>
<td>University of Oklahoma†</td>
<td>http://www.genome.ou.edu/big_dyes_bact.html</td>
</tr>
<tr>
<td>Clontech Laboratories</td>
<td>http://www.clontech.com/</td>
</tr>
<tr>
<td>Phrap, University of Washington</td>
<td>http://bozeman.mbt.washington.edu/</td>
</tr>
<tr>
<td>INRA</td>
<td>http://locus.jouinra.fr</td>
</tr>
</tbody>
</table>

*GOLD, Genome On Line Database.
† Sequencing of bacterial genomic DNA with ABI’s big dye terminators.

Genome-sequencing strategies

Two genome-sequencing strategies have frequently been used (Fig. 1). The first is the ordered-clone approach that uses a large-insert library to construct a map of overlapping clones covering the whole genome; selected clones are then sequenced to obtain the whole-genome sequence. The second strategy is direct shotgun sequencing, which does not require preliminary data (such as a map) before the sequencing phase.

Ordered-clone approach

Several methods are used to order clones, including restriction fingerprinting and hybridization mapping. Fingerprinting is a procedure for clone comparison based on the matching of characteristic restriction fragment sets (‘fingerprints’). If the fingerprints of two clones are found to share a significant number of fragment sets, it may be assumed that these two clones overlap and form a contiguous sequenced region, called a contig (Gregory et al., 1997). This method has been successfully applied during the Caenorhabditis elegans (Ellis et al., 1986) and Mycobacterium tuberculosis projects (Cole et al., 1998). Bioinformatic tools such as FPC, MCD and ATLAS (Gillett et al., 1996; Soderlund et al., 1997) may be of help for the construction and editing of clone maps and contigs, using fragment size data from multiple complete endonuclease digestions of a set of clones.

Hybridization is a simple and rapid method for identifying stretches of homologous DNA, and a large number of clones can be analysed and ordered concurrently. With this method, an ordered cosmid library covering nearly the whole genome (8 Mb) of Streptomyces coelicolor has been constructed (Redenbach et al., 1996). Chromosomal DNA was digested with a rare-cutting endonuclease, and the resulting gel-purified DNA fragments used as probes to order the cosmid library. Cosmid sublibraries corresponding to each DNA fragment were thus defined and the clones aligned with the help of labelled riboprobes corresponding to the insert ends. These probes can be easily prepared since the cloning site of the vector is flanked by T3 and T7 promoters adjacent to the insert ends. Management of the data may be facilitated by using software such as Cloneplacer (Singh & Krawetz, 1995).

Random-sequencing approach

Currently, the most widely used strategy for the sequencing of a microbial genome is that of whole-genome shotgun sequencing. A large number of clones, from libraries representative of the whole genome, are sequenced and assembled into contigs. The contigs are then joined together using a variety of methods to obtain the whole genome sequence in a single contig. It should be kept in mind that 90–95% of the sequence, collected during the shotgun phase of the project, is usually assembled into several hundred contigs without any difficulty. However, the obtention of the final 5–10% of the sequence and its assembly into a single contig is an important task that requires careful planning, as is outlined throughout this review.

With the use of the random-sequencing approach, the complete genome sequences of several organisms have been obtained, including Haemophilus influenzae (1·83 Mb), Helicobacter pylori (1·66 Mb), Archaeoglobus fulgidus (2·18 Mb) and Thermotoga maritima (1·86 Mb) (Fleischmann et al., 1995; Klenk et al., 1997; Nelson et al., 1999; Tomb et al., 1997; see also the TIGR and University of Illinois web sites; Table 1). This method has now been adopted by many laboratories for the completion of genomes in the size range of 2–6 Mb, and possibly also beyond this size since the utilization of this method has been discussed for the human genome (Green, 1997; Weber & Myers, 1997).

In the following sections of this review we describe the various phases of a whole-genome shotgun-sequencing
Microbial genome sequencing

Library construction

Experience from completed genome projects has demonstrated the need for several libraries (Fleischmann et al., 1995). The recommended procedure is to construct a small- and a large-insert library concurrently. The small-insert library is used for an appropriate coverage of the genome and the large-insert library to obtain a ‘scaffold’ of the genome which is used during the closure phase.

The first precaution to be taken before starting the construction of a library is to ensure that the genome of the chosen organism is stable under the culture conditions used. In bacteria with a short doubling time in rich media (less than 40 min), for example E. coli, B. subtilis and many others, the region surrounding the origin of replication will be overrepresented four to eight times compared to the replication termination region. To avoid such a potential bias in gene representation in genomic DNA libraries, it may be advisable to extract genomic DNA from a culture in the early stationary phase. However, an argument against this approach is that the cell walls of some stationary-phase bacteria are more difficult to lyse than those of exponentially growing bacteria. Additionally, cloning problems may result from the base composition (A+T-rich regions) or structural features of the DNA (palindromic sequences). Such problems may be solved by generating libraries with very small inserts (200–500 bp) (McMurray et al., 1998), or PCR amplification. Special precautions are recommended for the manipulation and cloning of A+T-rich DNA. These include extraction of DNA under high-salt conditions to prevent DNA from melting at a high temperature, the use of a reduced extension temperature in PCR and the use of transposon-insertion methods for the closure of gaps that are very rich in A+T (Gardner et al., 1998).

Small-insert libraries

It is important to construct a small-insert (1–2 kb) library with a single genomic DNA insert in each recombinant clone. The presence of multiple insertions in a given clone would cause genome-assembly artifacts. To avoid tandem inserts of two independently cloned fragments (co-cloning), Fleischmann et al. (1995) developed a procedure based on two steps of size selection.

The BstXI non-palindromic cloning method is another efficient strategy which minimizes co-cloning. This
method has been applied to several genome projects (Smith et al., 1997) and involves the use of special vectors containing a polylinker region with two BstXI sites, for example the ColE1 derivatives pcDNA1.1/Amp or pcDNA2.1 (Invitrogen; Table 1). After BstXI cleavage, the vector fragment containing non-palindromic TGTG-3' overhanging ends is purified and ligated to chromosomal DNA that has been fragmented by nebulization (Bodenteich et al., 1994). However, prior to ligation, gel-purified fragments in the range of 1–2 kb have their overhanging ends filled-in by T4 DNA polymerase, then they are ligated to CACA-3' adaptors and repurified. Under these conditions, a high proportion of the obtained recombinant plasmids contain single DNA inserts because the vector fragment can not recircularize and the probability of adaptor addition to a single blunt-ended DNA fragment is substantially higher than the ligation of two blunt-ended DNA fragments.

Large-insert libraries

High-level expression of genes whose products are toxic to the E. coli host (Kurland & Dong, 1996) is a major cause of cloning problems, especially with large-insert libraries (McMurray et al., 1998). This has been shown to be the case for genes encoding membrane proteins (Beck & Bremer, 1980; Beucher & Sparling, 1995; Luo et al., 1997). The problem of overexpression is particularly severe when genes from Gram-positive bacteria are cloned in a Gram-negative host. Gram-positive bacteria use ribosomal binding sequences which are close to the consensus sequence for efficient translation initiation (Farwell et al., 1992; Isono & Isono, 1976). This can be avoided, or at least reduced, by using a low-copy-number vector, in particular when a large-insert library is required to provide a scaffold of the entire bacterial genome.

Large fragments (20–300 kb) are usually cloned in lambda, cosmids, fosmids or BAC vectors. The main advantages of BAC vectors, which have the origin of replication of the E. coli F factor (Shizuya et al., 1992), are the potential to clone inserts of up to 300 kb and their stable maintenance. Moreover, BAC vectors have a copy number of one to two copies per cell, reducing the potential for recombination between cloned DNA fragments and avoiding counterselection due to over-expression of genes (Brosch et al., 1998). Their drawback is the somewhat laborious construction of BAC libraries: shearing of DNA must be avoided and n vitro manipulations such as restriction digestions are therefore performed in agarose plugs. A convenient BAC vector (pBeloBAC11) has been described by Kim et al. (1996) and detailed information on this vector, as well as protocols for BAC library construction, are available from the California Institute of Technology web site (Table 1). Alternative low-copy-number vectors are derivatives of pRK290, which exist at 5–8 copies per chromosomal equivalent in E. coli. Such vectors have been shown to maintain stably foreign DNA up to 300 kb (Tao & Zhang, 1998). Fosmid vectors are BAC vectors that contain cos sites, facilitating their n vitro packaging into lambda (Kim et al., 1992). YAC vectors have also been used for the cloning and stable maintenance of bacterial genomic DNA (Azevedo et al., 1993); however, the low yield of purified YAC recombinant DNA and contamination with yeast genomic DNA have limited their utilization.

Other versatile low-copy-number plasmid vectors are pSYX34 (Xu & Fomenkov, 1994) and pHSG757 (Takehashi et al., 1987). These vectors, which are maintained at about 5 copies per cell, are derivatives of pSC101 (Cohen et al., 1973), contain multiple cloning sites and allow for lacZ α-complementation. We have found pSYX34 to be an efficient vector for the construction of a large-insert library (6–12 kb) for the DNA of Gram-positive bacteria. In the case of the Listeria monocytogenes sequencing project, carried out by a consortium of European laboratories (GMP web site; Table 1), the partial fill-in method was used for the construction of a large-insert library (Korch, 1987). The pSYX34 vector was cleaved with Sall and the ends partially filled-in using Klenow polymerase to create 5'-TC overhangs. Chromosomal DNA from L. monocytogenes was partially digested with Sau3AI and partially filled-in to create 5'-GA overhangs. After n vitro ligation and transformation, 86% of the clones displayed a white phenotype and about 90% of these contained inserts in the expected size range of 6–12 kb (our unpublished results). In contrast, when using a high-copy-number plasmid such as pBluescript (Stratagene; Table 1), the percentage of white clones was much lower (9%), and only 25% of these contained inserts. These results show the advantage of a low-copy-number vector such as pSYX34 for the construction of large-insert libraries, especially in the case of DNA from Gram-positive bacteria. Cloning difficulties associated with high copy ColE1-type vectors can also be avoided using E. coli strains in which the copy number of these plasmids is lowered. The copy number of ColE1 derivatives is strongly reduced in the pcnB cya mutant TP611 (Glaser et al., 1993) and is reduced about fourfold and 10-fold in the ABLE C and K strains, respectively, commercially supplied by Stratagene (Table 1).

Assembly phase

During the assembly and closure phases, both computational and experimental results are crucial for obtaining the entire genome sequence. The various software tools used during these steps are listed on the GMP web site (Table 1). It should be kept in mind that the choice of an appropriate bioinformatics package should be made at the beginning of the project, since changing to another package generally leads to a vast amount of additional work.

The assembly phase is composed of three major steps: the conversion of the data from automated sequencers to nucleotide sequences, the utilization of these sequences in the assembly process and the continuous assessment of this assembly process.
Utilization of the data supplied by automated sequencers

A large diversity of programs or packages has been developed for the various stages from gel-image analysis to assembly editing. The analysis of the gel image is generally performed by the software supplied with the sequencer. However, it can also be analysed by other software tools such as Getlanes (Cooper et al., 1996) or GelImager (Giddings et al., 1998), which allow an automatic or semi-automatic separation of low-quality sequences from those of adequate quality. The following step, ‘base-calling’, is critical for obtaining high-quality sequences suitable for subsequent annotation of the contigs. In the past, for each chromatogram extracted from the gel image, users had to discriminate between high and low quality sequence areas. Recently, the development of programs such as BaseFinder (Giddings et al., 1998) or Phred (Ewing & Green, 1998; Ewing et al., 1998) has led to significant improvements in these procedures. These software tools analyse the traces of each sequence lane automatically and deliver a nucleotide sequence with an accuracy value for each nucleotide. During assembly, the accuracy value associated with each base allows the use of the entire sequence extracted from the traces. The weight of one base in the multi-alignment is proportional to the accuracy value provided by the base-caller.

The appropriate functioning of bioinformatic tools may depend on the type of automated sequencer used. Some base-callers have been created and validated on the chromatograms generated by one type of automated sequencer, leading to a slight bias of the software to the type of apparatus used. For instance, in our hands, the Phred base-caller produces better results with PE-ABI chromatograms compared to the standard chromatogram format originating from sequencers using the single-colour fluorescent technology.

Before the assembly step, cloning vector sequences are removed from the sequences supplied by the base-caller. These vector sequences can be masked automatically by several software tools such as Cross-match which uses the Smith and Waterman algorithm (University of Washington web site; Table 1).

Assembly step

The assembly of more than 10000 sequences into a few contigs, typically required for a bacterial genome project, is based on complex algorithms. The following need to be taken into account: the error rate of each sequence, the use of the generated sequence itself or its complement, and the presence of repeated sequences whose missassembly needs to be avoided. Computer tools to solve these problems were first described by Staden (1979, 1982) and have been intensively developed over the last few years (Kececioglu & Myers, 1995). The most recent algorithms perform pairwise comparisons for all sequences, allowing automatic threshold selection with respect to the decision of whether two sequences overlap or not. Clusters of overlapping sequences are constructed and consensus sequences are deduced from these clusters. The advanced algorithms allow the location of repeated and chimeric sequences. The most widely used assembly software tools are the TIGR-Assembler (Sutton et al., 1995), CAP2 (Huang, 1996), GAP (Bonfield et al., 1995) and Phrap (P. Green, University of Washington, Seattle, USA, unpublished). To take advantage of each software, efforts have been made to allow data exchanges between some of the packages. For example, TIGRAssembler can create an assembly-result file in Phrap format so that it can be viewed with Consed (Gordon et al., 1998). Moreover, tools such as Caftools (Dear et al., 1998) have been created to facilitate such exchanges. In 1994, a comparison of 11 assembly software tools showed important discrepancies between their results (Miller & Powell, 1994). However, to our knowledge, no recent comparisons have been performed on currently available software tools.

Providing there is no cloning bias, the assembled DNA fragments are located around the chromosome according to a Poisson distribution (Lander & Waterman, 1988; Fraser & Fleischmann, 1997). The fraction of the genome which remains unsequenced on both strands, is

\[
p_0 = e^{-nw/L}
\]

where \(n \) is the number of sequenced clones, \(w \) is the mean length of a sequence and \(L \) is the length of the genome (in kb). A threefold coverage of the genome \((nw/L = 3)\) would therefore produce about 95\% \((p_0 = 0.05)\) of the entire genome sequence on the basis of a random distribution. This level of coverage should already be sufficient for the discovery of genes of interest. If the final goal of the project is the completion of a genome sequence, a higher coverage, up to eightfold, is needed for the accomplishment of the shotgun phase. This would require about 15000 reads of 500 bp per megabase of genome length and would produce theoretically more than 99\% of the genome sequence. The number of contigs, which equals the number of unsequenced regions (double-strand gaps), can be calculated as

\[
\text{no. contigs} = \text{no. gaps} = ne^{-nw/L} \quad (\text{Fraser & Fleischmann, 1997})
\]

For a 4 Mb genome, the predicted number of contigs after a sevenfold coverage is about 50 \((n = 56000, L = 4000 \text{~kb}, w = 0.5 \text{~kb})\). In practice, the number of contigs is generally higher since several criteria are not taken into consideration in this calculation. The assembly software needs an overlap of several nucleotides to link two clones and the representation of some DNA regions may be biased due to cloning difficulties. In this context, an important effort must be dedicated to the assessment of the assembly, as explained below.

Assessment of the assembly

Several software tools such as Consed (Gordon et al., 1998) are dedicated to editing the assembly results. They show the structure of the assembly (the location of all
clones inside the contigs) with direct links to the traces of each clone and allow tags to be added to the sequences. Some of these tags change the accuracy value attributed to the sequences of a clone, and consequently affect the result of the next assembly run.

At low coverage levels of about onefold, intermediate assemblies should be carried out as tests: a large number of repeat sequences may occur in the genome and it is preferable to find solutions to this problem at an early stage of the project. The simplest way to avoid misalignment due to short repeated sequences is to obtain sequence reads that span most of the repeats. After assembly, most long repeats are found not to be exact repetitions. In this case, it is important to check contig regions containing several clones with mismatches in high-quality (i.e. high confidence values) sequence areas. If these regions correspond to a false assembly, the assembly software can be re-run with instructions to separate these clones.

Similarly, the locations of the end sequences of each clone have to be verified. In most cases, these sequences are part of the same contig containing the first sequence and the complement of the second sequence. A further requirement is that these two sequences are separated by a distance compatible with the cloned-insert length. Two sequences separated by an inconsistent distance and/or oriented in the same sense indicate a potential misalignment. A visual inspection of the corresponding regions should be performed and the misalignment corrected using tags in the sequences to allow the software to perform a better assembly.

There are no clear bases for deciding when to shift from the random strategy to the closure phase. This decision depends on the following considerations: does the contig number decrease sufficiently in proportion to the number of new sequences added to the assembly; is the mean coverage of each contig sufficient; are the closure strategies expected to be successful at an acceptable cost or would it be more advantageous to delay the shift from the random to the closure phase?

A thorough analysis of the sequences obtained by the assembly software allows for an effective choice of the moment to start the closure phase, which of course can be performed concurrently with the end of the shotgun sequencing phase.

Closure phase

After contig assembly, the first step is to order the contigs and to try to link them together with specific PCR products or cloned inserts that span each gap. The resulting contigs that are still unlinked are extended using methods as described below. Finally, a single contig is obtained. Fig. 2 summarizes the various methods used to identify the potential neighbours of contigs.

During the random phase, both ends of small- and large-insert clones are sequenced. Thus, if the terminal sequences of a single clone belong to different contigs, it is highly probable that these two contigs are neighbours (Fig. 2a, b). However, the orientation of the sequences and the distance to the end of the contig should be compatible with the size range of the inserts. These clones are called ‘linking clones’ and the resulting contigs are ‘supercontigs’. The probability that one clone can be used as a linking clone increases with its size. Therefore large-insert libraries are more useful at this stage in the assembly process.

Whatever the coverage of the genome, physical gaps will remain due to unclonable regions. However, the contig order can be deduced from the analysis of coding sequences (CDSs) predicted for each contig. If the comparison between protein databases and the CDSs from contig ends show that the ends of two contigs encode different parts of the same protein, it may be assumed that these contigs are neighbours. In addition, the gene order in certain operons may also be conserved between the genome being sequenced and the sequenced genome of a related organism, hereafter called a control.

Fig. 2. Methods for the construction of supercontigs. (a) Contigs sharing sequences with a linking small-insert clone. (b) Contigs sharing the end sequences of a linking clone from a large-insert library. (c) Contigs sharing the same operon (or gene) in another entirely sequenced genome. (d) Contigs identified by hybridization to be located on the same large genomic fragment. The symbols used are: cloned insert of the linking clone (rectangle with dotted lines); sequences performed on these clones (arrows); known sequences (black boxes); unknown sequences (white boxes); similarity detected by hybridization (××××××××); similarity detected by BLAST (ullivan).
genome (Fig. 2c). In this way, a control genome may be of help in the completion of the genome under study. For the infor- matic part of this strategy we have developed a software tool, called GMP TB. For this program, the FASTA database of the contig sequences created by Phrap is used as the input file. The user must choose the length of contig ends to be taken into account for the calculation (e.g. 1000–2000 nt). GMP TB then translates the largest ORF in this terminal region and searches for the counterpart of this protein in the protein database of the control genome with blastp (Altschul et al., 1997). If a significantly similar protein is found (>20% identity over the total length of the smaller of the two proteins), GMP TB searches for the location of the gene encoding this protein in the control genome. Finally, all pairs of selected genes from the genome under study whose counterparts are less than 10000 nucleotides apart in the control genome, are transferred to a results file. This file lists all these pairs with their homologous contig ends, which are therefore likely to be neighbours. In the case of L. monocytogenes, the protein sequences were systematically compared with those of B. subtilis, whose genome has already been completed (Kunst et al., 1997). At least 20% of a sample of 220 in silico predicted contig links were shown to be authentic, since these have been confirmed experimentally by the identification of large-insert clones linking these contigs (our unpublished data). With the increasing number of fully sequenced genomes, it is likely that this strategy will be applicable to many other projects.

If computational approaches fail to predict links between the remaining contigs, experiments may be required. Southern-hybridization experiments, using probes corresponding to different contigs, may show that some of these contigs are located on the same large restriction fragment (Fig. 2d). Such fragments can be obtained after digestion of chromosomal DNA with a rare-cutting endonuclease and separated by PFGE (Ramos-Diaz & Ramos, 1998; Umelo & Trust, 1998; Ze-Ze et al., 1998). Other techniques for rapid mapping, including optical mapping and HAPPY mapping may be envisaged (Cai et al., 1998; Piper et al., 1998). These experimental approaches are time-consuming and may be unnecessary in the case of small genomes.

All potential neighbour predictions have to be verified by standard or long-range PCR (Barnes, 1994). For the contigs without identified neighbours, gaps in genomic sequences may be bridged by chromosomal-walking methods. Direct sequencing of the chromosomal DNA template (Heiner et al., 1998; see also the University of Oklahoma web site; Table 1) has proved to be a powerful technique, allowing the rapid completion of the T. maritima genome project (Nelson et al., 1999). Another method for closing gaps is inverse PCR (standard and long-range; Offringa & van der Lee, 1995). This method allows the extension of contigs by amplification of regions flanking known DNA sequences. Both inverse and long-range PCR have been used extensively for the completion of the B. subtilis genome project (Bolotin et al., 1996; Ogasawara et al., 1994; Petit et al., 1998; Rose & Entian, 1996; Sorokin et al., 1996). An interesting and efficient alternative to inverse PCR is ligation-mediated PCR. This single-sided amplification method involves the ligation of a linker to DNA restriction fragments and subsequent amplification with a pair of primers, one of which recognizes the linker and the other a genomic sequence (Prod’hom et al., 1998). A refinement of the adaptor-ligation method, allowing reproducible amplification without background problems, has been published by Siebert et al. (1995) and a GenomeWalker kit based on this method has been commercialised by Clontech (Table 1).

An extension of the PCR methods, combinatorial PCR (multiplex PCR) has also been developed. It involves PCR amplification using a mixture of (up to 32) primers that are located in the vicinity of contig ends. These primers are designed to obtain the simultaneous amplification of PCR products, each primer pair allowing linkage of two contigs. Parallel PCR reactions are carried out in which one primer at a time is left out from the mixture. The absence of a given PCR product in these control reactions will identify the primer left out as being required for the synthesis of a particular product. After identification of each pair of productive primers, the contigs can be ordered and the gaps filled after sequencing of the obtained PCR products (Sorokin et al., 1996).

Whatever the PCR method used, software tools such as Consed or more specific programs such as Primo (Li et al., 1997) or Pride (Haas et al., 1998) automatically choose the primers needed for the closure phase; the primers are chosen according to the usual criteria (selectivity, melting temperature, etc.) and also according to the accuracy values of contig sequences to ascertain that the primer sequences correspond to genome sequences likely to be devoid of errors. Consed can also display the regions that have to be covered by additional sequences. These include regions with low-quality coverage, regions covered only by a single clone and regions sequenced only by dye-primer technology in a single orientation, since this technology leads to an increased frequency of sequence compressions.

Conclusion

Genomics is a new field of biology which has expanded very rapidly in the past few years. Technological advances in automated sequencing and in molecular biology (gene cloning techniques, construction of genome maps, etc.) together with the development of bioinformatics, has ensured the dynamism of this domain of biology. About 20 genome projects have been completed and more than 70 projects are in progress (see the TIGR and the University of Illinois web sites; Table 1). As more genome sequences become available, it is obvious that comparative genomics will play an increasingly important role in the closure phase of a new genome project. In this context, new software tools will be developed to meet the demands of this rapidly moving field of biology.
The completion of a genome sequence represents the end of one phase in the journey of discovery, and important tasks still lie ahead. These include both in silico analyses (homology searches) and experimental analyses for the deduction of unknown metabolic pathways, the prediction of operon structures and the identification of regulatory signals. DNA microarray techniques and two-dimensional proteomic analysis will also be used for monitoring gene activity under various environmental conditions. Additionally, the knowledge of a complete genome may identify gene displacements and horizontal transfers, which may help to trace evolutionary networks and to define common ancestors. The complete genome sequence of an organism provides a wealth of information that will provide the basis for a new generation of fundamental and applied biological studies.

Acknowledgements

We wish to thank Rachel Purcell for helpful discussions and critical reading of the manuscript.

The funding of the L. monocytogenes genome project (contract BIO4-98-0036), provided by the European Commission in the framework of the Biotechnology program, is gratefully acknowledged.

References

