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Summary
Correspondence analysis of 28 proteomes selected to
span the entire realm of prokaryotes revealed universal
biases in the proteins’ amino acid distribution. Integral
Inner Membrane Proteins always form an individual
cluster, which can then be used to predict protein
localisation in unknown proteomes, independently of
the organism’s biotope or kingdom. Orphan proteins are
consistently rich in aromatic residues. Another bias is
also ubiquitous: the amino acid composition is driven by
the GþC content of the first codon position. An
unexpected bias is driven, in many proteomes, by the
AANboxof thegenetic code, suggesting some functional
biochemical relationship between asparagine and lysine.
Less-significant biases are driven by the rare amino
acids, cysteine and tryptophan. Someallow identification
of species-specific functions or localisation such as
surface or exported proteins. Errors in genome annota-
tions are also revealed by correspondence analysis,
making it useful for quality control and correction.
BioEssays 28:726–738, 2006. � 2006 Wiley Periodicals,
Inc.

Introduction

Natural selection drives adaptation of living organisms through

subtle variations that integrate over many generations. As the

main effectors of the cell’s life and architecture, the sequences

of proteins integrate features that are directly related to their

function and indirectly result from a great diversity of

processes contributing to the organism’s survival. Each amino

acid displays specific structural and physico-chemical proper-

ties that combine into the final outcome (Table 1). At each

position of each protein sequence, the electric charge, the

metabolic cost and codon availability, to choose a few

properties, have integrated all kinds of selections, shufflings

or drifts during the course of evolution, only a few of which are

required (typically less than 10% of all positions) for the

function of the catalytic centres. Genome studies analyse the

bulk of the proteins of an organism, its proteome, as the

conceptual translation of protein-coding DNA sequences.(1–8)

With the development of rapid sequencing methods, the

genome sequence of prokaryotic organisms, Bacteria and

Archaea, have become widely available. Several analyses of

the codon-usage bias or the amino acid usage in reference

proteomes have been published, such as those ofThermotoga

maritima,(9) Pseudomonas aeruginosa,(10) Buchnera spe-

cies,(11) or the three model prokaryotes Escherichia coli,

Bacillus subtilis and Methanococcus jannaschii.(12) These

studies revealed remarkable and possibly universal rules that

we attempted to relate to the biological function and evolution

of the proteins of the organisms of interest. To substantiate or

disprove the observations derived from this very limited set, we

analysed a representative sample of the proteome of the

prokaryote world (we chose 28 organisms, excluding closely

related organisms) (Fig. 1) to look for rules that would reflect

the constraints of evolution, of the environment, or of both. For

the sake of generality, we analysed the proteome of one

organism from each phylogenetic branch for which a complete

genome was available (Fig. 1). Sometimes, several organisms

belonging to the same branch were included in the analysis

because they displayed interesting biological features that

may interfere with the amino acid composition of their

proteome (Table 2). Superimposed on the rules that previous

work had already partially suggested and that the present work

show are indeed universal,(12) we find variations that tell much

about the history and environment of each organism, allowing

us, by analysing a protein sequence within a proteome, to

make inferences about its function and structure. This will help

in the discovery of new functions.

Overview of the analysis

The choice of each amino acid residue in a protein results from

superposition of a wide range of selection pressures,

some indirect (such as the metabolic cost to obtain each

residue(13)), or the availability of pathways for the synthesis of

nucleotides,(14) with a limited contribution from the nature of

the protein function. Global features, such as the genomic

GþC content (from 28.6% to 72.1%), the optimal growth

temperature (from 108C to 1038C), the ecological niche (living

in animal or plant tissues, in soil, in marine, alkaline or acidic
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environments, etc), the extent of phylogenetic divergence

(Fig. 1) and other constraints due to differences in growth rate

or pathogenicity, all contribute to the final outcome. The

methods used in the study are summarised in Box 1. Because

selection pressure acts on individual proteins, we analysed the

impact of these various constraints on each protein (excluding

the shortest ones) of each proteome of the representative

organisms, and not on the concatenated proteomes, as

proposed in a previous study(15) (Table 2). For this purpose,

we used correspondence analysis (CA) (see Box 2). It

sometimes happens that the difference between the amino

acid compositions of particular groups of proteins is so

important that several well-defined clouds are formed.

Furthermore, the more a cloud is extended, the more its

extremities are interesting to study, because they reveal large

divergence in composition and, frequently, are correlated with

the proteins’ function. Finally, we observed an intermediate

level of complexity in the proteomes of interest, with rules that

apply not to the whole domain of prokaryotes, but to some

domains or to some general environmental constraints, such

as temperature. These are described and placed in relation to

the niche of the organism.

A universal rule: integral inner membrane

proteins cluster together

The amino acids that comprise proteins are roughly split into

two major classes, depending on their interaction with water. In

the cytoplasm, they contribute to protein folding, with the

hydrophobic amino acids usually clustered within the inside of

the protein and the hydrophilic to the outside. In contrast,

membrane-associated proteins interact with a highly hydro-

phobic lipid bilayer, which they usually perform through

sequences of exposed hydrophobic residues. In particular,

hydrophobic alpha helices made of 19–22 residues span the

lipid bilayer.(16) Proteins that are embedded in the membrane,

with limited outside stretches (Integral Inner Membrane

Proteins, IIMPs), are rich in hydrophobic residues(17,18)

including a significant amount of Phe, Leu and Ile, while

they have only a few charged residues, Asp, Arg, Glu and

Lys, mostly located outside of the lipid core of the

membrane.(12,17,19) These proteins, atypical in their amino

acid composition, differ from the proteins from other cellular

compartments, including those of the outer membrane, when it

exists.(20,21)

While this feature seemed a fairly general property, it was of

interest to explore whether those proteins would group

together as a specific cloud of proteins in each organism

of interest. Remarkably, in all the organisms analysed, a well-

separated cloud was observed. This cloud is distinguished by

one single factor, hydrophobicity of proteins, often brought

about by leucine and phenylalanine, versus charged residues

(See Supplementary Figs 1, 2 and 3 for this article on

the BioEssays website (http://www.interscience.wiley.com/

jpages/0265-9247/suppmat/2006/28/v28.xxx.html)). In a pre-

vious study based on model prokaryotes, this homogeneous

class was shown to comprise exclusively IIMPs.(12) Most of the

proteomes studied here have not been experimentally

characterized. While we can be confident that the isolated

cluster driven by the hydrophobic versus charged residues is

made of IIMPs, we tentatively named the corresponding

proteins Probable Inner Integral Membrane Proteins (PIIMPs).

The presence of a single consistent class of proteins in

such a large diversity of organisms is particularly surprising as

the study includes both Bacteria and Archaea, and organisms

Figure 1. Phylogenetic tree of the 28 organisms of this study.
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that live in extremely different environments. The case of the

industrial bacteriumClostridiumacetobutylicum is of particular

interest (Fig. 2A), as these cells produce a mixture of acetone

and butanol. Hydrophobic interactions, which are crucial to

membrane organisation, are dramatically modified in solvents

such as acetone. The cellular membrane is made up of lipids

and it is therefore remarkable that the amino acid composition

of C. acetobutylicum membrane proteins looks similar to that

of the membrane proteins of organisms living in more typical

conditions. In the same way, it is worth noticing that PIIMPs

constitute a consistent class in Archaea, which have a

membrane bilayer formed of lipids completely different from

those of Bacteria (ethers instead of esters, in particular).(22) As

a consequence, this feature of the amino acid distribution in the

proteins that form the proteome of prokaryoteswould be useful

for valid annotation of the corresponding class of genes in

genome projects.

Highly expressed ancestral proteins

display common biases

The majority of the expressed proteins in fast-growing

organisms constitutes the translation machinery. These core

proteins are considered ancestral, and are generally used as

markers for phylogenetic analyses, in parallel with studies

involving ribosomal RNA.(23,24) They have been used as a

reference to compare the proteomes of all organisms,

including those that grow poorly or slowly. Generally, highly

expressed proteins have a biased amino acid composition,

Table 2. First three columns: description of studied organisms (A: Archaea, B: Bacteria)

Organisms Classification Features GC bias (Axes)
Lys/Asn Bias vs.
Opposites (Axes)

Cys & Trp bias
(Axes)

A. pernix A:Thermoprotei G1 (2), G2 (3) No bias Cys (3)

A. fulgidus A:Archaeoglobi G1, GC1 (3) No bias Cys (2 & 4)

H. salinarum A:Halobacteria GC1 (2) No bias No bias

M. kandleri A:Methanopyri G1(3) No bias Cys (4)

P. abyssi A:Thermococci No bias No bias Cys (3)

T. acidophilum A:Thermoplasmata G1 (3) Asn A2 vs. T2 (2) Cys (4)

M. tuberculosis B:Actinobacteria pathogen No bias Gly Asn vs. Arg Glu (1), Asn vs. Ala (2) No bias

M. tuberculosis* Lys Glu Asn vs. Ala (1)

S. coelicolor B:Actinobacteria GþC high No bias Lys Asn Ile vs. Arg Ala (1) Trp (4)

A. aeolicus B:Aquificae GC2, GC, C2 (2) No bias Cys (3)

C. trachomatis B:Chlamydiae GC2, C2 (3) No bias No bias

Synechocystis B:Cyanobacteria:

Chroococcales

No bias Asn Gln vs. Met Val (4) No bias

Nostoc B:Cyanobacteria:

Nostocales

GC1, G1, GC (3) Aromaticity Asn vs. GC1 G1 GC (3) No bias

D. radiodurans B:Deinococci No bias Lys Ile Asn vs. Leu Ala (1) Cys & Trp (4)

B. halodurans B:Firmicutes:Bacilli halophile G1 (2) No bias Cys (4)

C. acetobutylicum B:Firmicutes:Clostridia G1, GC1 (2) Asn Ser A2 vs. T2 (3) No bias

M. penetrans B:Firmicutes:Mollicutes GC1, GC, G1 (2) Asn T1 vs. GC1 GC (2) No bias

F. nucleatum B:Fusobacteria GþC low GC2, C2, GC (1) A2 Lys Asn vs. GC2 C2 GC (1) Trp (4)

G1, GC1 (2)

B. japonicum B:Proteobacteria: Alpha C1, GC1 (2) A1 A2 Lys vs. C1 GC1 (2) No bias

R. solanacearum B:Proteobacteria: Beta No bias Lys Asn vs. Ala (1) No bias

B. bacteriovorus B:Proteobacteria: Delta GC2 (1) A2 Lys vs. T2 GRAVY AROMO (2) No bias

D. psychrophila B:Proteobacteria: Delta psychrophile GC1, G1, GC (3) A1 Aromaticity Asn vs. GC1 G1 GC (3) No bias

C. jejuni B:Proteobacteria: Epsilon GC1, G1 (2) A2 Lys vs. GC2 Gly GC (1) Cys (3)

Asn Ser vs. Cys (3)

E. coli O157:H7 B:Proteobacteria: Gamma pathogen C1, GC1 (2) A1 Asn vs. C1 GC1 (2) No bias

G1 (3)

P. luminescens B:Proteobacteria: Gamma pathogen GC, GC1 (1) A1 Lys Asn vs. GC GC1 (1) No bias

G1 (3)

P. profundum B:Proteobacteria: Gamma psychrophile G1, GC1 (2) Tyr Asn Ser vs. GC1 (3) No bias

Y. pestis B:Proteobacteria: Gamma pathogen C1 (2) A1 Asn Lys vs. C1 Leu GC (2) No bias

GC1 (3)

B. burgdorferi B:Spirochaetes GþC low GC2, GC (1) A2 A1 Lys Asn vs. GC2 Gly GC Val (1) Trp (4)

GC1, GC, G1 (2)

T. maritima B:Thermotogae G1, GC2, GC1 (2) No bias Trp (3)

The fourth column gives which axis is built by genome GþC content bias per each organism. The fifth column gives which axis where there is a bias including

asparagine (Asn) and/or lysine (Lys) and their opposite biases. The sixth column gives which axis is built by cysteine (Cys) or tryptophan (Trp) bias.

*Proteome of M. tuberculosis without PE, PPE and PE-PGRS proteins.
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frequently linked to the way that they use the genetic code,

their Codon Adaptation Index (CAI). The highly expressed

genes use a subset of optimal codons as a result of selection

for efficient translation of their mRNAs.(1,6,8,25–27) Further-

more, ribosomal proteins are characterised by an enrichment

in basic amino acids (Lys and Arg) and small, hydrophobic

residues (Ala, Val and Gly).(28,29)

The cloud of proteins forming a proteome in Correspon-

dence Analysis can be separated into further clusters (see

coloured clusters in Fig. 2 and Supplementary Figs 1, 2 and 3

for this article on the BioEssays website (http://www.

interscience.wiley.com/jpages/0265-9247/suppmat/2006/28/

v28.xxx.html)).(30) To analyse the content of the different

clusters in terms of protein function, we first determined how

the proteins conserved in most genomes (‘‘persistent’’

proteins) distribute among the clusters.(31) This analysis

demonstrated that proteins in the clusters indeed differ in

terms of functional annotations. As an example, in the

representatives of Firmicutes (Bacillus halodurans) and

Gamma-proteobacteria (E. coli O157:H7), these persistent

proteins were mostly found in a single cluster (52% of the

persistent proteins make the cluster labelled with yellow circles

for B. halodurans and 62% of the persistent proteins are in the

orange triangle cluster for E. coli). To further understand the

functional constraints that might drive this clustering, we

analysed ribosomal proteins. In the majority of the proteomes

(22 out of 28), the ribosomal proteins belonged to one

Box 1: Material and methods

Correspondence analysis(65) was used to analyse the

distribution of amino acids in the proteins of the

proteomes (see Box 2). Clustering into consistent

classes used the dynamic clouds method(66) that

automatically clusters the proteins located close to one

another.

All complete proteomes of interest were extracted

from the Genome Review databank (http://www.ebi.a-

c.uk/genomes/). In order to avoid constraints linked to

the molecular processes of initiation and termination of

translation, all proteins used in our study were truncated

by 10 amino acids from their N-terminal end, and 5

amino acids from their C-terminal end (there is an over-

representation of hydrophilic residues near both termini

of proteins(67)). To reduce the influence of stochastic

variations that may occur in small proteins, only proteins

longer than 100 residues (after truncating) were

retained.

Box 2: Correspondence Analysis

Correspondence analysis (CA) is a multivariate method

that belongs to the Principal Component Analysis (PCA)

class of multivariate methods meant to extract informa-

tion from large data tables (contingency tables) asso-

ciating objects and properties (in our case proteins and

their amino acid residues). The goal of this class of

methods, which all rest on the assumption that the

statistical behaviour of the dataset of interest follows

Laplace-Gauss (’normal’’) statistics is to explore the

links between objects in the data table as consistent

function of properties. To this aim, a distance is

calculated between objects, using a particular measure.

In PCA, it is usually based on providing the same weight

to each object of interest. This has many unwanted

consequences when analysing heterogeneous data-

sets. In contrast to PCA, CA therefore uses a more

sophisticated measure and considers the chi-squared

metrics(65) to calculate the distance between objects, a

common statistical way to provide a similar weight to

objects the type of which can vary widely in a collection

to be analysed. One important feature of CA is that it

allows representation simultaneously of the lines and

the columns of the contingency table (here the proteins

in the space of amino acids or the amino acids in the

space of proteins are represented jointly). Correspon-

dence analysis (CA)(65) was used to identify the major

factors that shape variation in amino acid usage among

proteins of the organism of interest. The analyses were

based on absolute frequencies (i.e. actual residues

counts in each protein) in order to avoid introducing

some unwanted biases.(68) Correspondence analysis

was applied on the data table including all proteins of an

organism as described by their amino acid usage, to

determine an orthogonal space, or factorial space, with

dimension 19. The axes (called factors) are constructed

and ordered in such a way to represent the space with

decreasing order of importance (each axis therefore

contributes to the information on the structure of the CA

space). The axes are represented in a decreasing order

of importance as quantified by their corresponding

’inertia’’(69) (axis 1 is the most informative, followed by

axis 2 and so on). Sequences that have a similar amino

acid composition appear as neighbours. Following CA,

an automatic clustering method, the dynamic clouds

method,(30,70) was subsequently used to interpret the

graphical representation in terms of clusters with

common properties.
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730 BioEssays 28.7



or two clusters. For example, despite separation of the

Campylobacter jejuni proteome into four classes (Fig. 2B),

all 66 identified proteins cluster together. This systematic

gathering into one or two clusters shows once again that

ribosomal proteins, and more generally persistent proteins

(data not shown), are remarkably conserved in prokaryotes in

terms of their amino acid composition, despite enormous

phylogenetic divergence or variety of growth environments.

Rare amino acids create specific clusters

Not all amino acids are equal in terms of their frequency in

proteins. Some are systematically rare, while others are

frequent. Among the former, cysteine (Cys) and tryptophan

(Trp) are particularly important as their rarity (each represents

less than 1% of the amino acids of the proteomes) often results

in a strong bias in the proteome cloud’s shape. Cys contains

the highly reactive sulphhydryl group, and takes part in

numerous active sites. It also plays an important role in

structural stabilisation of exported proteins in forming dis-

ulphide bridges. Trp is an aromatic amino acid with a

voluminous side chain. Its specific role is not well established:

besides its aromaticity, it is mildly hydrophobic and often

contributes to the stabilisation of protein structures; it has a

positive impact on the folding of proteins, because indole can

accept hydrogen bonds under certain circumstances.(32,33)

Trp is not, however, used very frequently, perhaps because it is

very costly in terms of metabolism and quite reactive towards

reactive oxygen species (also, it is usually coded by only one

codon, TGG, or two in many mycoplasma, including TGA).

These two residues, Cys and Trp, are so rare in proteomes that

proteins having several of these amino acids are atypical and

therefore worth investigation.

As shown in Table 2, a consequence of this scarcity is that

one of the first four axes that best describes the proteome is

often led by the frequency of the rare residues Cys and Trp.

Analysis of the extremities of cysteine-biased axes shows that

most Cys-rich proteins systematically belong to the class of

metal-binding proteins (iron- or zinc-binding in general),

presumably via Cys residues (data not shown). In some

organisms (e.g. Thermoplasma acidophilum), many of these

proteins are annotated as ‘of unknown function’; inference

from annotation of the other genome sequences suggests that

the corresponding proteins belong to similar classes. As

expected perhaps, organisms atypical in their GþC content,

such as Borrelia burgdorferi or Fusobacterium nucleatum

(AþT-rich) and Streptomyces coelicolor (GþC-rich), show a

Trp distribution bias in one of their factorial first four axes. After

analysis of the proteins located at the extremities of Trp bias

axes, weobserved that thiswasdue to a variety of independent

causes and not a single common one (data not shown). In B.

burgdorferi, the bias mostly affects proteins involved in the

translation machinery. This is likely due to the fact that the

corresponding genes are located in the leading strand of the

DNA, which is biased in GþT.(34) Furthermore, biochemical

experiments suggest involvement of Trp residues in RNA

binding.(35,36) In F. nucleatum, proteins are mostly involved in

the construction of the envelope, with a significant proportion

of proteins predicted to be on the surface of the cell.

Interestingly, this seems also to be the case of S. coelicolor,

where an excess of Trp is expected because of the high GþC

content of the cells: in this case, mostly in proteins of the cell

envelope and in particular heme-binding proteins.(37)

The GþC content of the coding DNA

sequences creates an unexpected

bias in amino acid composition

The amino acids present in proteins are constrained by the

nucleotide composition of the cognate genes. Because there

is often a strong bias in the composition of the leading and

lagging strands of chromosomes, distinguished from each

other by an enrichment in GþT and CþA, respectively,

proteins coded from the leading strand are enriched in valine

relative to those coded from the lagging strand, which are

enriched in isoleucine and threonine.(34,38–41) Moreover, there

is a general bias in GNN codons in CDSs, possibly acting as a

ratchet-like mechanism during the translation elongation

process that could influence the overall amino acid composi-

tion of the proteomes.(42) In the same way, the overall GþC

base composition of genomes influences strongly the choice

of amino acids that constitute the corresponding pro-

teomes.(12,43,44) The GþC content will drive the codon usage

bias and not the reverse.(45) As a consequence, because it is

adapted to the optimal growth temperature of the organ-

ism,(46–48) the resulting constraints on the proteome create the

first discriminant factor for thermophilic organisms.(15,49)

The role of nucleotides in codons is not symmetrical (the

third position of codons often results in synonymous substitu-

tions in proteins) and this may impact on the amino acid

content of a proteome depending on the GþC content of the

genome. It has long been noticed that the second codon

position shows the highest correlation with the specific nature

of the amino acid, with Tassociated with hydrophobic residues

and A with hydrophilic residues. When present, the bias due to

the second position of the codons’ nucleotides was highly

correlated with a bias in amino acids (or amino acids similar to

each other according to Dayhoff’s classification). For example,

the Aquifex aeolicus GþC bias at the second position of

codons (Table 2) overlaps with the alanine, glycine and proline

biases (GCN, GGN and CCN respective codons) and impacts

on many of the cellular metabolism proteins. Remarkably,

however, we observed that the GþC genes’ content influ-

enced the amino acid composition of the proteins in an

unexpected way, frequently following a GþC gradient at the

first codon position. We analysed phylogenetically consistent

groups of Bacteria and Archaea to see whether this resulted

from a separation between different classes of protein
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Figure 2.
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functions (Table 2). This study demonstrated that a bias driven

by the GþC content at the first codon position was probably

not associated with specific biological functions.

While this GþC-content-driven bias seems fairly ubiqui-

tous, its raison-d’être in terms of functionality in proteins is not

obvious. This bias creates a discrimination between Asn, Cys,

Ile, Lys, Met, Phe, Ser, Thr, Trp, Tyr on the one hand and Ala,

Asp, Gln, Glu, Gly, His, Pro, Val on the other hand. Each class

has some common properties (aromaticity, sulfur content,

hydroxyl group in the first class; negative electric charge,

relatively smaller size in the second class) but nothing really

compelling (Table 1). This bias might be the consequence of a

remnant of the origin of translation associated with some

optimisation of the translation machinery, which seems to

prefer GNN codons.(42) However, in the case of the GþC-poor

genome ofB. burgdorferi (Fig. 2C), where the GþC bias at the

first position of codons is correlated with the overall GþC

content of the organism, a remarkable separation of proteins

into four clusters was observed. Two of those (green diamond

and blue square clusters, Fig. 2C) (separated along axis 2 and

correlated with the GþC content at the first position of

codons) contained almost exclusively proteins encoded by the

leading strand or the lagging strand of the chromosome

(Fig. 2D). This particular split between genes has previously

been noticed in several studies.(34,50)

Aromatic amino acids tag orphan proteins

As new genome sequences continue to be deciphered, a

particular class of proteins of unknown function is becoming

prominent. While most of the predicted proteins are similar to

counterparts in other genomes, approximately 10% of the

proteins do not look like anything known in other genomes,

except in those that are highly related. These proteins are

usually named orphan proteins. Interestingly, they are en-

riched in aromatic amino acids.(12,51) Aromatic amino acids are

very costly in terms of metabolic requirements, supporting the

hypothesis that they are newly created proteins that did not yet

have time to be optimised in terms of cost versus benefit. As a

consequence, theyare markers of the ‘‘self’’ of a given species.

One of their possible functions is that of stabilising agents for

multimeric complexes. Those with this type of hypothetical

function have been named ‘‘gluons’’.(12) An aromatic amino

acid bias was rarely observed in Archaea but frequently in

Bacteria. This is shown in Table 3, where the content of

proteins of unknown function (hypothetical or putative pro-

teins) has been computed for the 10% located in the CA cloud

at the extremity of the axis driven by aromaticity. This value has

been subsequently compared to the percentage of unknown

proteins in the whole proteomes. Two interesting features

stand out: (1) most aromatic proteins show a significant

proportion of unknown proteins (1.1–2.5 times the average,

depending on the proteome), and (2) this gradient is more

pronounced when the axis driven by aromaticity appears early

in the order of the axes organising the CA space. This is most

likely due to the contribution of orphan proteins, as observed in

the proteome of model organisms,(12) substantiating our

previous hypotheses about the involvement of aromatic

residues in the creation of new functions, such as protein

complex stabilisation.

A persistent bias is generated by AAN codons

As we go down the list of importance of the CA axes, we find

features that become more and more specific for a given

species. However, we still uncovered a remarkable bias that

persists in many genomes: numerous organisms (19 of the

selected organisms) present a clear bias due to a gradient in

lysine (Lys) and/or asparagine (Asn) content along one of the

CA factorial axes (Table 2). While this bias exists in B. subtilis

(41% GþC), it is almost absent inB. halodurans (44% GþC),

a halophilic Bacillus. It is present in a single Archaeon living in

an acidic biotope, T. acidophilum (46% GþC).

Interestingly, in Deinococcus radiodurans, the AAN bias is

the first factor of the CA cloud. The proteins responsible for the

bias are clearly linked to the protein biosynthesis machinery,

with Lys contributing most to the bias. In the case of C.

acetobutylicum (Asn bias on axis 3) the cluster of Asn-rich

proteins (428 proteins) was dominated by enzymes involved in

polysaccharide biosynthesis and turnover, and often present in

the cellulosome.(52) C. acetobutylicum is known to have an

abundance of polymer degradation systems.(53) In line with a

specific relationship between Asn enrichment and the surface

of the cell, we also observed that many proteins linked to

Figure 2. First CA space (axes 1, 2 and 3) with the PIIMPs group indicated in parentheses, except when indicated otherwise

A: Clostridium acetobutylicum (green diamonds), B: Campylobacter jejuni (green diamonds), cyan stars represent proteins tagged

‘‘ribosomal protein’’,C:Borrelia burgdorferi (orange triangles),D: distribution along leading and lagging strands of chromosome of genes of

CA clustered proteins ofB. burgdorferi.E:Ralstonia solanacearum (green diamonds),F:Yersinia pestis (orange triangles),G:Bdellovibrio
bacteriovorus (orange triangles), pink stars represent GþC rich gene proteins,H:Mycoplasmapenetrans (blue squares), green diamonds

represent Ser- and Thr-rich proteins, large red triangles and the large khaki circle represent proteins tagged ‘‘ribosomal protein’’,

I:Mycobacterium tuberculosis, PE/PPE/PE-PGRS pink stars,J: axis 2, 3 and 4 ofM. tuberculosiswithout PE, PPE and PE-PGRS proteins

(green diamonds), K: Thermoplasma acidophilum (blue squares), orange triangles represent cysteine rich proteins, yellow circles

represent cytoplasmic proteins, green diamonds represent extracellular proteins,L:Aeropyrumpernix (orange triangles), blue squares and

green diamonds represent proteins which may be false-positive.
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flagella and the cell wall belonged to this same cluster.

Likewise, a Lys-dominated bias was observed on axis 2 of

Bdellovibrio bacteriovorus and an Asn-dominated bias on axis

3 ofC. jejuni. InB. bacteriovorus, the group formed on axis 2 is

mostly composed of hypothetical proteins (two-thirds), while

most of the rest are linked to proteins involved in the outer

surface of the cell: outer membrane proteins, flagella, cell wall,

secreted proteases or other extracellular activities. A similar

situation holds for C. jejuni, with proteins linked to flagella,

outer membrane, chemotaxis and proteolysis forming the bulk

of the Asn-rich proteins.Ralstonia solanacearum represents a

situation where the bias involves both Lys and Asn. The cluster

defined by this bias (the yellow circles shown in Fig. 2E)

comprises mostly outer membrane proteins, porins, side-

rophore-iron transporter activity and calcium ion binding

proteins. In the same way, the Yersinia pestis proteome also

has a bias in Asn and Lys, on axis 2 (Fig. 2F). Proteins situated

on the Asn/Lys-enriched extremity are often putatively

exported proteins or proteins located in the outer membrane.

The most remarkable feature of this particular bias is that it

behaves as if Asn and Lys had some common physico-

chemical feature that would account for them being coded by

the same box (AAN) of the genetic code. Both are hydrophilic

but, in general, Lys is positively charged. However, when

appropriately screened from the environment, the amino-

terminal end of Lys can be a doublet electron-donating group.

In known metabolism, the most similar amino acid would be

ornithine. This amino acid, however, is not among those

present in proteins, the underlying biochemical reason being

that, upon activation as an amino acid adenylate and loading

onto tRNA, it would become cyclised.(54) One may therefore

conjecture that asparagine might use its end amide group in

the same way as lysine does with its distal amine group, with a

shorter chain, as a substitute for ornithine, thereby accounting

for the selection pressure that has coded both amino acids

from a common genetic code box.

Zooming in on some interesting cases

Most biases described in this study were persistent among

prokaryotes, indicative of common trends of selection,

probably associated with inevitable physico-chemical con-

straints. Sometimes however, a bias showing up in one of the

CA axes, belonged to only one organism. Three of the

corresponding features, which are usually highly revealing

about the lifestyle of an organism, are presented in the next

paragraphs.

Table 3. This table shows which organisms have a bias due to aromatic amino acids

Organism Axis % unknown in 10% aromatic rich %unknown in proteome

A. pernix no bias

A. fulgidus no bias

H. salinarum 3 49 33

M. kandleri no bias

P. abyssi no bias

T. acidophilum no bias

M. tuberculosis no bias

S. coelicolor no bias

A. aeolicus no bias

C. trachomatis 3 44 23

Synechocystis no bias

Nostoc 3 62 35

D. radiodurans no bias

B. halodurans 2 44 22

C. acetobutylicum 4 25 21

M. penetrans no bias

F. nucleatum 4 40 22

B. japonicum 3 37 30

R. solanacearum no bias

B. bacteriovorus no bias

D. psychrophila 2 65 26

C. jejuni 4 26 23

E. coli O157:H7 3 46 23

P. luminescens 3 41 30

P. profundum no bias

Y. pestis 3 39 21

B. burgdorferi 2 53 24

T. maritima 2 54 22

Moreover, it displays the percentage of unknown proteins content among 10% of proteins situated at extremity of CA axis built byaromaticity bias (aromatic-rich

extremity). The percentage of unknown proteins in the global proteome is also indicated.
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GþC content bias of Bdellovibrio bacteriovorus
B. bacteriovorus, a medium GþC content bacterial parasite,

displays a strong bias mediated by the GþC content of its

genes at the second position of its codons. This bias builds a

well-separated cluster of proteins in the CA space (pink stars,

axis 1, Fig. 2G). Remarkably, approximately 30% of the

proteins of B. bacteriovorus are annotated as ‘‘protein

precursors’’ (i.e. as proteins in the form that they assume

before post-translational modifications and processing, usual-

ly for export). This was so unexpected that we verified that all

these proteins were authentic proteins, using the MiCheck

tool.(55) The distribution of these proteins into five clusters,

determined using dynamic clustering,(30) is not uniform.

Indeed, whereas four clusters contained between 20 and

30% of ‘‘protein precursors’’, the pink star protein cluster

displayed in Fig. 2G is composed of approximately 70% of

this kind of protein. In addition, these proteins stem from genes

that are GþC rich. Interestingly, the genome analysis did not

identify particular regions that would deviate from the

average GþC content (except for four regions generally

composed of AþT rich genes).(56) This shows that the

method could be used as a complement to detect properties

that are not identified by more standard genome analysis

approaches.

Atypical PIIMPs of Mycoplasma penetrans
Although the M. penetrans CA presents a PIIMPs cluster

similar to that of all other prokaryotes, this cluster is not driven

by an opposition between Phe and Leu and charged amino

acids but by an opposition between charged (Lys, Glu) and

uncharged hydrophilic residues (Thr, Ser). At one extremity of

the axis, a cluster of SerþThr rich proteins is formed (green

diamond cluster, Fig. 2H), with about half of them annotated as

hypothetical, and about one-third as membrane-associated

proteins (blue square cluster content: PIIMPs). Yánez and co-

workers have described the original structure of the membrane

of this Mollicute.(57) M. penetrans has a typical elongated,

flask-shaped morphology, with two internal compartments that

permit the cells to adhere, then to penetrate into human cells.

SerþThr rich proteins are often involved in adhesion to

membranes(58–60) and it is not unexpected that the small

proteome of this pathogen could be biased by one specific

category of proteins. The proteome of M. penetrans displayed

a second unusual feature: the cluster formed on axis 2 of the

CA, built by opposition of Asn to the codons GþC content,

contained almost all the ribosomal proteins of the organism

(Fig. 2H), except for an interesting exception. Unexpectedly,

protein MYPE1290, annotated as a ‘‘ribosomal protein’’ is

located completely outside the ribosomal protein cluster, in

another cluster comprising many enzymes (large khaki circle,

Fig. 2H). This prompted us to check its annotation. In the

metabolic pathway database MetaCyc,(61) MYPE1290 is

annotated as a enzyme (alanine acetyltransferase, putative,

EC number 2.3.1.128). Using its sequence to browse

the proteome of Firmicutes, we uncovered that it is most

probably an enzyme modifying a ribosomal protein (e.g. YdiD

in the SubtiList database). Combining this description and

the protein localisation in the CA space, we can therefore be

confident that this protein is not a structural constituent of the

ribosome, but rather a protein involved in post-translational

modification. This further illustrates that the methodology

presented here is a powerful complement to other methods

used for proteome annotation.

Pathogenicity proteins of Mycobacterium
tuberculosis
The CA cloud of M. tuberculosis is appreciably atypical, as

shown in Fig. 2I. Axis 1 allows the formation of a first cluster

(pink stars in Fig. 2I), opposing Gly and Asn to Arg. This

cluster mostly contains the PPE, PE and PE-PGRS family

proteins (some of these are also located in the blue cluster, at

the positive extremity of axis 1). These proteins are rich in Gly

and certain members of these families could be located in the

mycobacterial cell wall.(62) This cluster is well-separated on

axis 2 due to opposition of Asn and Phe versus Ala.

Remarkably, this opposition differentiates PPE proteins

(positive extremity of axis 2) from PE-PGRS proteins

(negative extremity of axis 2). The bias is so intense that it

may hide other biases. Indeed, the first CA axis represents

approximately 35% of the total information, while the

average information of axis 1 in the CA of all others

organisms is between 15% and 25%. To overcome the

contribution of this unwanted bias, we computed a new CA

omitting the proteins of the PPE, PE and PE-PGRS families

(approximately 140 proteins). The most interesting outcome

of the new analysis is the opposition between Pro and Leu,

Phe on axis 4, separating two clusters of proteins (Fig. 2J).

All the identified functions of the proteins in one of the

clusters correspond to IIMPs; we can therefore reasonably

predict that all proteins of this cluster belong to that category.

The second one (blue square cluster) is very homogeneous

and when annotated its members are all somehow involved

in pathogenicity, leading to the hypothesis that the whole

cluster is composed of proteins involved in pathogenic

processes. This comprises: (1) hydrolases, all associated

with activity at the cell surface or to proteins anchored in the

membrane (proteases, peptidases, murein hydrolases,

complex carbohydrate hydrolases, lipases), (2) weak com-

plexity proteins, (3) protein kinase-like regulators and (4)

other proteins present at the membrane surface (integral

membrane proteins, oxido-reductases etc.). In addition to

providing us with a remarkable way to make inferences about

actors of pathogenicity, these observations lead to the idea

that CA shows several levels of complexity and that

by suppressing some clusters, we could observe novel
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characteristics associated with specific amino acid usage in

proteins.

Perspective: using CA as a tool

for functional annotation.

In addition to the clear characterisation of PIIMPs, CA could

be used as a versatile tool for protein functional annotation

to refine the annotation of already annotated proteins, and

to propose new functional categories for unannotated pro-

teins. Furthermore, as demonstrated in the case of M.

penetrans, CA can help to identify probable annotation errors

and, in general, to annotate new genome sequences. This can

be illustrated by two final examples. The CA of T. acidophilum

is quite unusual. Indeed, CA separates the T. acidophilum

proteome into four distinct clusters (Fig. 2K). Three clusters

are associated with a specific cellular compartment, while the

fourth one, driven by cysteine, is composed of iron-binding

proteins, mostly proteins containing iron–sulfur clusters. Not

surprisingly, the PIIMP cluster is composed of very hydro-

phobic proteins. In contrast, the yellow circle cluster (Fig. 2K)

groups together cytoplasmic proteins, while extracellular

proteins (green diamond cluster) are clustered according to

their asparagine content.

To investigate further whether CA could be used to improve

genome sequence annotation, we chose to work on the

proteome of Aeropyrum pernix, as revised by Natale et al.(63)

As in the case of T. acidophilum, the CA that we obtained is

atypical. Four well-separated protein clusters are formed and

the correlations between the amino acids constructing the

axes differ from those other organisms, except for the

hydrophobicity-driven axis 1. The orange triangle cluster,

shaped on this axis, indeed contains membrane proteins

(Fig. 2L). After exploration of the functional annotations of

proteins of the three other clusters, two were found to be

composed (green diamond and blue square clusters) almost

exclusively of unknown proteins (98% and 90%, respectively),

whereas the last one (yellow circle cluster) contains the rest of

the proteome (with 36% unknown proteins). This may indicate

that, in spite of reannotation efforts, the annotated sequence

of this genome still contains many erroneous proteins.

Conclusion

The availability of large datasets derived from genome studies

makes them amenable to refined statistical analyses. It is

remarkable and perhaps surprising that analysis of the

collective behaviour of such simple objects as individual

codons(64) or amino acids (this work) allow us to uncover

unexpectedly high correlations between the function and/or

the structure of corresponding biological entities. Proteins with

similar amino acid composition play similar role (e.g. patho-

genicity) or belong to common structures (e.g. the cytoplasmic

membrane or the cell’s envelope). While we have defined

broad clusters with common amino acid properties, it appears

that a finer grain analysis reveals that neighbouring proteins

often have common properties. This is the case of outer

membrane proteins of gamma-proteobacteria, for example.

However, despite our care in trying to span as much as

possible of the tree of prokaryotic life, our choice of organisms

for analysis, which reflected faithfully the availability of

genomes in databases, could not escape being biased by

the available complete proteomes (predicted from complete

genomes). Some of the rules that we have uncovered might be

qualified by analysis of new proteomes, and we expect that

new functional relationships, associated to new specific

biases, will appear as the full proteomes from organisms

living in usual or difficult niches become known. This work

must be understood as a first step in deeper knowledge of what

life is.
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tion. We thank Aurélie Lajus for her help on running MiCheck

and Susan Cure for her help in writing the manuscript.

References
1. Lobry JR, Gautier C. 1994. Hydrophobicity, expressivity and aromaticity

are the major trends of amino-acid usage in 999 Escherichia coli

chromosome-encoded genes. Nucleic Acids Res 22:3174–3180.

2. Blake RD, Hinds PW. 1984. Analysis of the codon bias in E. coli

sequences. J Biomol Struct Dyn 2:593–606.

3. Grantham R, Gautier C, Gouy M, Mercier R, et al. 1980. Codon catalog

usage and the genome hypothesis. Nucleic Acids Res 8:r49–r62.

4. Grantham R, Gautier C, Gouy M, Jacobzone M, et al. 1981. Codon

catalog usage is a genome strategy modulated for gene expressivity.

Nucleic Acids Res 9:r43–r74.

5. Grantham R, Gautier C, Gouy M. 1980. Codon frequencies in 119

individual genes confirm consistent choices of degenerate bases

according to genome type. Nucleic Acids Res 8:1893–1912.

6. Gouy M, Gautier C. 1982. Codon usage in bacteria: correlation with gene

expressivity. Nucleic Acids Res 10:7055–7074.

7. Karlin S, Mrazek J, Campbell AM. 1997. Compositional biases of

bacterial genomes and evolutionary implications. J Bacteriol 179:3899–

3913.
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30. Diday E. 1971. Une nouvelle méthode en classification automatique et

reconnaissance des formes: la méthode des nuées dynamiques. Rev
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