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On the limit set of a spherical CR uniformization

MIGUEL ACOSTA

We explore the limit set of a particular spherical CR uniformization of a cusped
hyperbolic manifold. We prove that the limit set is the closure of a countable union
of R–circles and contains a Hopf link with three components. We also show that the
fundamental group of its complement in S3 is not finitely generated. Additionally,
we prove that rank-one spherical CR cusps are quotients of horotubes.

22E40, 57M50; 37C85, 51M10

1 Introduction

Studying the geometric structures on three-dimensional manifolds is a very powerful
tool to link topological and geometric properties, as confirmed by the Thurston ge-
ometrization conjecture proved by Perelman in 2003. Here, we will consider geometric
structures in the language of .G;X/–structures, as described for example by Thurston
in [21]. In this context, X is a model space and G is a group acting transitively and
analytically on it; a geometric structure on a manifold M is an atlas of M with values
on X and transition maps given by elements of G. A case of particular interest is the
one of complete structures, that can be written as �nX , where � is a subgroup of G
acting properly discontinuously and without fixed points on X . In this case, all the
information on the manifold and the structure is contained in the group � . A similar
situation is the one of uniformizable structures, that arises naturally when considering
conformal structures or the spherical CR structures that we will consider in this article.
In those cases, we say that a structure is uniformizable if it can be written as �n�� ,
where �� �X is the set of discontinuity of � . Observe that, in these cases, the set of
discontinuity is the complement of the limit set ƒ� of � .

For the conformal structures arising from the boundary at infinity of the real hyperbolic
space H3

R, a very well-known case is the one of Fuchsian representations of a surface
group. The image of these representations have round circles in S2 as limit sets and
uniformize two copies of the same hyperbolic surface. By the remarkable Bers double
uniformization theorem, their deformations, which are quasi-Fuchsian representations,
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still uniformize two copies of the surface, and the limit set remains a topological circle.
In the light of the work of Guichard and Wienhard in [11], this last point about the
limit set is expected, since the representation of the surface group is Anosov, and this
condition is open.

We will focus on a particular uniformization in spherical CR geometry, which is
modeled on the boundary at infinity of the complex hyperbolic plane H2

C and has group
of transformations PU.2; 1/. As in the case of conformal structures coming from the
boundary at infinity of H3

R, there are also analogs to the Fuchsian representations, but
coming in two different flavors. On the one hand, a surface group can be embedded in
PU.2; 1/ as a subgroup of PO.2; 1/. The corresponding representation is then called
R–Fuchsian. By a computation by Burns and Shnider in [4, Proposition 6.1], these
representations uniformize the unit tangent bundle of the corresponding surface. The
corresponding limit set is the boundary at infinity of a totally real subspace of H2

C , and
is called an R–circle. On the other hand, it can be embedded in PU.2; 1/ as a subgroup
of PU.1; 1/. The corresponding representation is then called C–Fuchsian, and still
uniformizes a circle bundle over the surface. The limit set in this case is the boundary
at infinity of a complex line in H2

C , and is called a C–circle. From this construction,
Falbel and Gusevskii build in [9] spherical CR uniformizations for circle bundles over
surfaces of arbitrary Euler number.

Apart from these Fuchsian examples and the quotients of S3, we know a family
of cusped hyperbolic 3–manifolds admitting spherical CR uniformizations. On the
side of the manifolds, there are two different uniformizations of the Whitehead link
complement: one given by Schwartz in [19] and a second one given by Parker and Will
in [15]. By deforming this last structure, we prove in [3] that an infinite family of Dehn
surgeries on one of the cusps of the Whitehead link complement admit spherical CR
uniformizations. The structure on the last surgery of the family is precisely the spherical
CR uniformization of the figure eight knot complement constructed by Deraux and
Falbel in [7]. As for the groups that uniformize these cusped manifolds, they are index
two subgroups of triangle groups: in particular, they have torsion, but the fixed points
of finite order elements lie in H2

C and not in its boundary at infinity. The discreteness
of most of the representations can be proved from this viewpoint, as done by Parker,
Wang and Xie in [14]. Recall that if p, q and r are integers � 2, the .p; q; r/–triangle
group is the abstract group with presentation˝

�1; �2; �3 j �
2
1 D �

2
2 D �

2
3 D .�1�2/

p
D .�2�3/

q
D .�3�1/

r
D Id

˛
:
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In a more general frame, the discreteness of triangle groups into PU.2; 1/ has been
widely studied; see for example the survey by Schwartz [17], or the article by Deraux [5],
where he proves that there is an explicit representation of the .4; 4; 4/–triangle group
into PU.2; 1/ whose image is a cocompact lattice.

For the spherical CR uniformization of cusped hyperbolic manifolds, no much is known
about the corresponding limit sets. The aim of this article is to explore the limit set of
a particular uniformization of a cusped hyperbolic manifold, that can be obtained as a
Dehn surgery of the Whitehead link complement. We will denote the corresponding
group by �6. It is the image of a particular representation of the .3; 3; 6/–triangle group,
where a parabolic element appears. Gathering the results of Section 4, if �6 is the
uniformization group, ƒ�6

� @1H2
C ' S

3 is its limit set, and ��6
D @1H2

C �ƒ�6
,

we obtain:

Theorem 1.1 � The limit set ƒ�6
is connected and the closure in @1H2

C of a
countable union of R–circles.

� The limit set ƒ�6
contains a Hopf link with three components.

� The fundamental group of ��6
is not finitely generated.

This situation has a number of common points with the uniformizable spherical CR
structure constructed by Schwartz in [18, Theorems 1.1 and 1.2]. The statement of
Schwartz corresponds to a particular representation of the .4; 4; 4/–triangle group,
where the images of the standard generators I1, I2 and I3 satisfy .I1I2I1I3/7 D Id. If
�.4;4;4;7/ is the corresponding subgroup of PU.2; 1/ with limit set ƒ�.4;4;4;7/

and set
of discontinuity ��.4;4;4;7/

, part of the result can be restated as follows:

Theorem 1.2 (Schwartz [18]) � The group �.4;4;4;7/ is discrete.

� The quotient �.4;4;4;7/n��.4;4;4;7/
is a compact orbifold , which is finitely covered

by a hyperbolic 3–manifold.

� The limit set ƒ�.4;4;4;7/
is connected and the closure in @1H2

C of a countable
union of R–circles.

We believe that the results stated for �6 also hold for the groups �3m, form� 2, defined
either as images of representations of .3; 3; 3m/–triangle groups or by the condition
U 3m D Id in the Parker–Will parametrization. See Section 3 for more details on the
definition of the groups. In those cases, we still have the string of beads used in
Section 4, and the proofs should be analogous but with more tedious computations.

Algebraic & Geometric Topology, Volume 22 (2022)
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Outline of the article In Section 2, we recall the geometric background of the problem
and fix notation for the complex hyperbolic plane H2

C , its boundary at infinity @1H2
C

and some objects used in the latter constructions. We also prove a result about the shape
of uniformizable cusps in spherical CR geometry. In Section 3, we briefly describe
the manifold that we consider, as well as the subgroup of SU.2; 1/ that uniformizes
it in @1H2

C . Then, in Section 4, we find an R–circle in the limit set of the group by
considering a string of beads, and we prove some consequences of this fact, namely
that the limit set is connected, contains a Hopf link and that the fundamental group of
its complement is not finitely generated.

Acknowledgements This work was done while the author was a postdoctoral re-
searcher at the University of Luxembourg. He was partially supported by the grants R-
STR-8023-00-B “MnLU-MESR CAFE-AutoFi” and R-AGR-3172-10-C “FNR-OPEN”.
He would also like to thank the anonymous referee for helping to improve the article
and avoid some unnecessary hypotheses.

2 Geometric background

In this section, we will describe briefly a geometric background on the complex
hyperbolic plane and its boundary at infinity, the isometry group of this space and
the bisectors and spinal spheres, which are the geometric objects that appear in the
construction of fundamental domains. For a more complete description, see the book
of Goldman [10]. We also prove, in Section 2.4, a result on the shape of rank-one cusps
for spherical CR structures.

2.1 The complex hyperbolic plane and its boundary at infinity

Let V be the complex vector space C3 endowed with the Hermitian product h � ; � i
given by

hz; wi D Nz1w3C Nz2w2C Nz3w1;

where z D
�
z1
z2
z3

�
and w D

�
w1
w2
w3

�
belong to C3. Let ˆ be the corresponding Hermitian

form, of signature .2; 1/, with matrix0@0 0 10 1 0

1 0 0

1A :
Algebraic & Geometric Topology, Volume 22 (2022)
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Let U.2; 1/ be the unitary group for the Hermitian form ˆ, SU.2; 1/ its intersection
with SL3.C/ and PU.2; 1/ its projectivization. In this article, we will use parentheses
to write elements of C3 or in a linear group, and square brackets for their projections
on CP2 and the corresponding projectivized group. For example, if U 2 SU.2; 1/,
then ŒU � 2 PU.2; 1/. This last element has exactly three lifts in SU.2; 1/, namely U ,
e2i�=3U and e�2i�=3U . The complex hyperbolic plane H2

C is defined as

H2
C D P .fz 2 V jˆ.z/ < 0g/�CP2:

The Hermitian form ˆ induces a Riemannian metric on H2
C with pinched negative

sectional curvature �1� � � �1
4

. The boundary at infinity of H2
C is the set

@1H2
C D P .fz 2 V �f0g jˆ.z/D 0g/:

In this article, we will use a particular chart to describe H2
C and @1H2

C; it is called
the Siegel model and parametrizes the spaces as

H2
C D

8<:
24�12.jzj2Cw/z

1

35 ˇ̌̌̌ .z; w/ 2C2 and Re.w/ > 0

9=; ;
@1H2

C D

8<:
24�12.jzj2C i t/z

1

35 ˇ̌̌̌ .z; t/ 2C �R

9=;[
8<:
2410
0

359=; :
Thus, the space H2

C is homeomorphic to a ball B4, and its boundary at infinity @1H2
C

to a sphere S3 that we identify with C �R[f1g in the Siegel model.

The group of holomorphic isometries of H2
C is PU.2; 1/, which acts transitively on

H2
C and on @1H2

C . In the same way as for real hyperbolic isometries, an element
of PU.2; 1/ is elliptic if it has a fixed point in H2

C , parabolic if it is not elliptic and
has a unique fixed point in @1H2

C , and loxodromic otherwise. Among the parabolic
elements, the unipotent ones are precisely those whose lifts in SU.2; 1/ wave a triple
eigenvalue. We will also use these terms for elements of SU.2; 1/, depending on the
type of their projection in PU.2; 1/.

Given a discrete subgroup � < PU.2; 1/, the limit set of � is the set of accumulation
points of one (or equivalently any) �–orbit in H2

C . We will denote this set by ƒ� .
Thus, ƒ� is a closed, �–invariant subset of @1H2

C . Indeed, it is the smallest closed
nonempty �–invariant subset of @1H2

C . The complement of ƒ� in @1H2
C is called

the set of discontinuity of � and is denoted by �� . It is the largest open set on which

Algebraic & Geometric Topology, Volume 22 (2022)
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Figure 1: Various views of three R–circles in the Siegel model.

� acts properly. When the action of � has no fixed points in �� , the quotient �n��
is a manifold.

2.2 Some geometric objects

We will use some geometric objects related to the complex hyperbolic plane and its
boundary at infinity. First, we focus on the totally geodesic subspaces of H2

C . Of
course, points, geodesics and H2

C are totally geodesic. However, there is no totally
geodesic subspace of dimension 3, and there are two types of totally geodesic subspaces
of dimension 2. On the one hand, there are the complex geodesics, which are the
intersections of complex lines of CP2 with H2

C; they are isometric to H1
C and have

constant sectional curvature equal to �1. On the other hand, there are the real planes,
defined as intersections of H2

C with totally real subspaces of CP2. They are copies
of H2

R, but the induced distance is rescaled, so they have constant sectional curvature
equal to �1

4
. The group PU.2; 1/ acts transitively on each type of subspace.

The boundary at infinity of complex geodesics and real planes are smooth circles in
@1H2

C , called C–circles and R–circles, respectively. Two of these circles are linked if
and only if the corresponding subspaces intersect in H2

C . Some views of R–circles are
depicted in Figure 1.

Since there is no totally geodesic hypersurface in H2
C , we need to consider another

kind of geometric object in order to bound domains. A possible class of objects that
arise naturally when studying Dirichlet domains are bisectors, which are equidistant
surfaces. More precisely, if Œz1�; Œz2� 2H2

C , the bisector of Œz1� and Œw2� is defined as

B.Œz1�; Œz2�/D
˚
Œw� 2H2

C j d.Œz1�; Œw�/D d.Œz2�; Œw�/
	
:

Algebraic & Geometric Topology, Volume 22 (2022)
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If z1 and z2 are lifts of Œz1� and Œz2� in C3 such that ˆ.z1/ D ˆ.z2/, we define the
same object by

B.z1; z2/D
˚
Œw� 2H2

C j jhz1; wij D jhz2; wij
	
:

A bisector is homeomorphic to a ball B3. For a more detailed description, see again [10,
Chapters 5, 8 and 9]. The boundary at infinity of a bisector is homeomorphic to a sphere
S2 in @1H2

C , and is called a spinal sphere. For z; w 2C3 as before, the corresponding
spinal sphere is defined by

S.z1; z2/D
˚
Œw� 2 @1H2

C j jhz1; wij D jhz2; wij
	
:

We will consider domains in H2
C bounded by bisectors, and their boundaries at infinity

that are bounded by spinal spheres. In general, the intersections and tangencies of
bisectors and spinal spheres can be complicated, as Goldman shows in [10, Chapter 9].
However, since we will only consider a Dirichlet domain and bisectors equidistant from
a single point, the intersections will be connected by [10, Theorem 9.2.6].

2.3 Spherical CR structures and uniformizations

We will use the language of .G;X/–structures in order to work with geometric structures
in this article, in the sense given for example by Thurston in [21]. Given a model
space X and a group G acting transitively and analytically on X , a .G;X/–structure
on a manifold M is an atlas of M with values in X and with transition maps given by
elements of G. Equivalently, a .G;X/–structure on M can be seen as a pair .Dev; �/
of a developing map and a holonomy representation, where � W �1.M/ ! G is a
representation and Dev W �M !X is a �–equivariant local diffeomorphism, in the sense
that for all  2 �1.M/ and all x 2 �M , Dev.x/ D �./Dev.x/. We will use both
definitions, depending on the points that we want to highlight. We will focus here on
spherical CR structures, which are defined as follows:

Definition 2.1 A spherical CR structure on a 3–manifold M is a .G;X/–structure
where X D @1H2

C and G D PU.2; 1/.

We say that a spherical CR structure on M is uniformizable if �.�1.M// D � is a
discrete subgroup of PU.2; 1/ with set of discontinuity �� � @1H2

C , the manifold
M is diffeomorphic to �n�� and the spherical CR structure on M is given by this
quotient. This type of structures is of particular interest, since all the information is
contained in the group � .

Algebraic & Geometric Topology, Volume 22 (2022)
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2.4 Rank-one spherical CR cusps are horocusps

Consider a cusped hyperbolic 3–manifold M , and C an open cusp neighborhood
bounded by a horosphere homeomorphic to T �RC, where T is the corresponding
peripheral torus. Choose, once and for all, zC � �M to be a copy of the universal cover
of C in the universal cover of M . By choosing this lift, we obtain an injection of the
peripheral group �1.T /' �1.C / ,! �1.M/. If .Dev; �/ is a spherical CR structure
on M , its peripheral holonomy is the restriction of � to �1.T /.

IfM is one of the cusped hyperbolic manifolds for which a spherical CR uniformization
is known, then the image of the corresponding peripheral holonomy is generated by
a single parabolic element. In the cases of the Figure Eight knot complement and
the Whitehead link complement, the spherical CR cusp has the shape of a horotube
quotiented by a parabolic element. This follows from the work of Deraux in [6] for
the Figure Eight knot complement and Parker and Will in [15] as well as Schwartz
in [19] for two different uniformizations of the Whitehead link complement. Recall
that, following Schwartz in [19], a horotube and a horocusp are defined as follows.

Definition 2.2 Let ŒP �2PU.2; 1/ be a parabolic element with fixed point Œp�2@1H2
C .

A ŒP �–horotube is a ŒP �–invariant open subset H of @1H2
C�fŒp�g such that hŒP �inH

has a compact complement in hŒP �in.@1H2
C/�fŒp�g. A ŒP �–horocusp is a quotient

of the form hŒP �inH where H is a ŒP �–horotube.

In this section we are going to prove that in a spherical CR uniformization, the shape
of a cusp is always a horocusp, as long as the image of the peripheral holonomy is
generated by a single parabolic element. This last hypothesis might be surprising, since
it implies that the peripheral holonomy has nontrivial kernel, but the condition holds for
all the known spherical CR uniformizations of cusped manifolds. In order to prove this
result about the shape of cusps, we need a technical lemma, stating that an embedded
ŒP �–invariant cylinder always bounds a horotube.

Lemma 2.3 Let ŒP � 2 PU.2; 1/ be a parabolic element with fixed point Œp� 2 @1H2
C ,

and L� @1H2
C be an embedded cylinder invariant by ŒP �. Then L cuts @1H2

C�fŒp�g

into two connected components H and K, where H is a horotube and hP in.K [L/ is
compact.

Proof Since L is a closed connected surface in @1H2
C �fŒp�g 'R3, we can apply

the Jordan–Brouwer separation theorem (as stated for example in [13, Theorem 4.16]).
Hence, @1H2

C � .L[fŒp�g/ has exactly two connected components.

Algebraic & Geometric Topology, Volume 22 (2022)
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Since hŒP �in@1H2
C � fŒp�g ' S1 � R2 and the projection of C is an embedded

torus, there is only one unbounded connected component in the quotient, so the two
components are a P –horotube H and a component K such that hP in.K [ L/ is
compact.

Proposition 2.4 Let .Dev; �/ be a spherical CR uniformization of M such that
�.�1.T // is a parabolic subgroup generated by a unipotent element ŒP �. Then there
exists a ŒP �–horotubeH such that the spherical CR structure on C is given by hŒP �inH .

Proof Maybe after choosing a smaller neighborhood C , we can suppose that for all
 2 �1.M/,

 zC \ zC ¤∅ ()  2 �1.T /:

Our goal is to prove that Dev. zC/ is a horotube H , and that the spherical CR structure
on C is given by hŒP �inH .

First, we prove that the structure of C is given by hŒP �inDev. zC/. Since .Dev; �/
is a uniformization of M , we know that the structure on C is given by �nDev. zC/.
Let  2 �1.M/ be such that �./Dev. zC/\Dev. zC/ ¤ ∅. Let x0 2 zC be such that
�./Dev.x0/ 2 Dev. zC/. Since Dev. zC/ is path-connected and x0 and x0 are lifts of
the same point in M , there is a path in Dev. zC/ from Dev.x0/ to Dev.x0/ that lifts
to a path in zC representing an element � 2 �1.T /. Hence, �.��1/ fixes Dev.x0/.
Since the actions are continuous, the same is true for points in a neighborhood of x0,
so ��1 2 ker.�/. Thus, the stabilizer of Dev. zC/ in � is �.�1.T //, so the spherical
CR structure on C is given by �.�1.T //nDev. zC/D hŒP �inDev. zC/.

It only remains to prove that Dev. zC/ is a horotube. Choose a basis .l; m/ of �1.C /
such that m generates ker.�j�1.T // and �.l/ D ŒP �. Since the structure on M is a
uniformization, Dev induces an embedding of the cylinder hmin@ zC into S3. By the
equivariance of Dev, the cylinder is ŒP �–invariant, so, by Lemma 2.3, Dev.@ zC/ cuts
@1H2

C �fŒp�g into two connected components H and K, where H is a ŒP �–horotube
and hŒP �in.K [Dev.@ zC// is compact.

Now, let zN be the full preimage of M �C in �M . By the choice of C , zN is connected
and disjoint from all the lifts of C in �M . Therefore, Dev. zN/ �H or Dev. zN/ � K.
Since zC is connected as well, Dev. zC/ is contained in the other connected component.
Note that ƒ� must be contained in the same component as Dev. zN/. Otherwise, since
the �–orbit of Œp� is dense in ƒ� , there would be a ŒQ� 2 � conjugated to ŒP � with

Algebraic & Geometric Topology, Volume 22 (2022)



3314 Miguel Acosta

fixed point Œq� in the other component. If Œx� 2 Dev. zN/, then ŒQ�nŒx�! Œq�, so there
would exist an n 2N such that ŒQ�nŒx� is in the connected component that does not
intersect Dev. zN/, leading to a contradiction.

Suppose, by way of contradiction, that Dev. zN/�H . Then the limit set ƒ� must be
contained in H , and K ��. Let pr W�! �n�'M be the natural projection. Since
Dev. zC/ ��, we know that C � pr.K/, and since K \ pr�1.N /D ∅, we also have
pr.K/ � C . Thus, C ' pr.K/ ' �nK. But �nK is a quotient of hP inK, which is
relatively compact by Lemma 2.3. The fact that C is not contained in any compact
subset of M leads to a contradiction.

Therefore, Dev. zN/ � K, and Dev. zC/ � H � �. Since Dev. zN/ \H D ∅, H DS
2� Dev. zC/. But H is connected and Dev. zC/ is either equal to or disjoint from

its image by an element of � , so Dev. zC/DH .

Corollary 2.5 The spherical CR Dehn surgery theorem of [1] can be applied for all
the uniformizations of cusped hyperbolic manifolds given in [14].

This last corollary, which follows directly from Proposition 2.4, implies that there is an
infinite family of hyperbolic cusped manifolds for which an infinite number of Dehn
surgeries admit spherical CR structures. Observe, however, that these structures are
not necessarily uniformizable.

3 The uniformization

In the rest of this article, we will focus on a particular discrete subgroup of SU.2; 1/
that gives a spherical CR uniformization of a one-cusped hyperbolic manifold. We will
denote by �6 the group, and by M6 the manifold that it uniformizes, meaning that �6
has a nonempty discontinuity set ��6

and that M6 ' �6n��6
. The manifold M6 and

the group �6 can be defined in several ways. On the one hand, the manifold M6 is
homeomorphic to:

� The Dehn surgery of one cusp of the Whitehead link complement of slope 3.
(For the SnapPy marking, the peripheral curve that is killed has coordinates
.m; l/D .3; 1/).

� The one-punctured torus bundle over S1 with holonomy
�
4 3
1 1

�
(named b++RRRL

in SnapPy).

� The manifold m023 in the SnapPy census of cusped hyperbolic manifolds.

Algebraic & Geometric Topology, Volume 22 (2022)
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On the other hand, the group �6 � SU.2; 1/ is conjugate to:

� The index 2 subgroup of the .3; 3; 6/–triangle group where I1I2I3 is unipotent,
which appears in [14].

� The Parker–Will representation of Z=3Z�Z=3Z of parameter .˛1; ˛2/D
�
0; �
3

�
,

which appears in [15].

� A lift in SU.2; 1/ of the point in the character variety XSU.2;1/.Z=3Z�Z=3Z/

of coordinates
�
3; 2 cos

�
�
3

�
C 1

�
D .3; 2/, which appears in [2].

We will mainly use the explicit parametrization given by Parker and Will in [15]. The
group is generated by two order 3 elements. We will keep the notation of [15] and [3],
which we recall briefly.

Notation 3.1 Let S; T 2 SU.2; 1/ be the order 3 generators of �6, as described in [15].
Keeping the same notation, we let AD ST and B D TS . We also keep the notation
in [3] and let U D S�1T and V D TS�1. Note that U and V have order 6 in this
group. The matrices S , T , A and B are explicitly given by

S D

0@ 1
p
2 N� �1

�
p
2� �1 0

�1 0 0

1A ; T D

0@ 0 0 �1

0 �1 �
p
2 N�

�1
p
2� 1

1A ;
AD

0@1 �
p
2 i
p
3� 1

0 1
p
2

0 0 1

1A ; B D

0@ 1 0 0
p
2 1 0

�i
p
3� 1 �

p
2 1

1A ;
where � D exp.i�=3/D .1C i

p
3/=2.

Remark 3.2 The coefficients of the Parker–Will representation are in QŒi;
p
2;
p
3�.

As in [3], if G 2 SU.2; 1/ is a regular elliptic element, we denote by ŒpG � its fixed point
in H2

C and pG 2C3 a lift. In the same way, if G 2 SU.2; 1/ is parabolic, we denote
by ŒpG � its fixed point in @1H2

C and pG 2 C3 a lift. There are several possibilities
for choosing the lifts in C3. However, in our case, if G1; G2 2 �6 and G2 is elliptic or
parabolic, we choose as lift for ŒpG1G2G

�1
1
� the point G1pG2

. For example, we can
choose the lifts

pAD

0@10
0

1A ; pB D

0@00
1

1A ; pU D

0@ 4

�
p
2.3C i

p
3/

�4

1A ; pV D

0@ 4
p
2.1� i

p
3/

�2.1C i
p
3/

1A :
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We consider the bisectors JC0 D B.pU ; pV /, J �0 D SJC0 and J˙
k
D U kJ˙0 for

k 2 Z=6Z. Note that these bisectors are the same as the ones considered by Parker,
Wang and Xie in [14]. The correspondence in the notation for the group is given by
U D I1I2, S�1 D I1I3, T D I3I2; the corresponding bisectors are JC

k
D B�2k and

J �
k
D B�2k�1.

In [14], Parker, Wang and Xie prove that the Dirichlet domain for �6 centered at ŒpU �
is bounded by 12 bisectors, namely fJ˙

k
j k 2 Z=6Zg. Using the Poincaré polyhedron

theorem, they obtain, as a particular case of [14, Theorem 1.6]:

Proposition 3.3 The group �6 is discrete in SU.2; 1/. Furthermore , the domain in
H2

C bounded by the bisectors J˙
k

for k 2Z=6Z is the Dirichlet domain of �6 centered
at ŒpU �. Moreover , �6 admits the presentation hs; t j s3; t3; .s�1t /6i.

Considering the boundary at infinity of the domain and doing some topological consid-
erations, we prove in [3] that it gives a uniformizable spherical CR structure on M6.
Thus, we obtain:

Proposition 3.4 The space �6n��6
is a manifold homeomorphic to M6.

We conclude this section by two miscellaneous facts about the subgroup of �6 generated
by A and B and the limit set ƒ�6

.

Remark 3.5 As noticed by Parker and Will in [15, page 3415], we have ŒA; B�D V 3.

Proposition 3.6 The subgroup hA;Bi generated by A and B is a normal subgroup of
index 3 of �6.

Proof First, we prove that hA;Bi is a normal subgroup. Since �6 is generated by S
and T , which have finite order, we only need to check that SAS�1, SBS�1, TAT �1

and TBT �1 belong to hA;Bi. But SAS�1 D B�1A�1, SBS�1 D A, TAT �1 D B
and TBT �1 D A�1B�1, so hA;Bi is a normal subgroup of �6.

Now, consider the quotient group �6=hA;Bi. It has the presentation

hs; t j s3; t3; .s�1t /6; sti;

so t D s�1, and the presentation simplifies to hs j s3i ' Z=3Z.

Since the limit set of a group is the same as the limit set of any finite index subgroup,
we obtain that the limit set of hA;Bi is equal to the limit set of �6. Some views of this
set are pictured in Figure 2.
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Figure 2: Different views of ƒ�6
in the Siegel model.

4 An R–circle in the limit set

We are going to prove that there is a string of beads related to the action of a subgroup
of �6. With this object, we will be able to prove that ƒ�6

contains a topological circle,
and then prove that the circle is in fact an R–circle. The fact that ƒ�6

is the closure of
the orbit of this R–circle by �6 follows immediately, which gives us a situation similar
to the one in [18]. We will then prove three facts about the limit set and the domain of
discontinuity of �6, namely that the limit set is connected and contains a Hopf link,
and that the fundamental group of the domain of discontinuity is not finitely generated.

4.1 A string of beads

Following Dutenhefner and Gusevskii [8], a string of beads is a finite collection of pairs
of spinal spheres S D f.Sk; S 0k/ j k 2 f1; : : : ; ngg placed along a knot K and satisfying
the following condition: there is an enumeration T1; : : : ; T2n of the spheres, where the
indexes are considered mod 2n, such that each Tk is tangent to Tk˙1 in an isolated
point and lies strictly outside all the other spheres.

Let us point out two slight differences with the content of [8], that will not raise any
problem. First, observe that the definition above extends the definition of Dutenhefner

Algebraic & Geometric Topology, Volume 22 (2022)
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J �3

JC�1

J �0

JC2

U 3pA U�2pB pA UpB U 3pA

Figure 3: Combinatorics of the string of beads.

and Gusevskii from spheres in the Heisenberg group to spheres in @1H2
C , so we

should be careful with the meaning of “inside” and “outside” since there is no longer a
canonical choice. However, since our spinal spheres are boundaries of bisectors that
define a Dirichlet domain, “outside” is to be considered with respect to this domain.
The other difference is, in our case, that the knot K is unknotted, so there will be no
immediate consequences on the limit set. However, this does not change the fact that
the limit set of the subgroup that we will consider is a topological circle.

In the following lemma we prove that we have a string of beads made of 4 bisectors,
which have tangency points as in Figure 3.

Lemma 4.1 The boundaries at infinity of the bisectors J �0 , JC
�1, J �3 and JC2 form

a string of beads in @1H2
C , with tangency points ŒpA�, U ŒpB �, U 3ŒpA� and U�2ŒpB �,

arranged as in Figure 3.

Proof This lemma follows immediately from the considerations done in [3] and [14]
on the incidences and the combinatorics of the bisectors. The fact that the points
belong to the corresponding bisectors follows immediately from [3, Corollary 8.4]. It
only remains to check the tangencies of two consecutive bisectors and the fact that
J �0 \J �3 D JC

�1\JC2 D∅. This is precisely the content of [14, Theorem 4.3].

Lemma 4.2 (generators for the string of beads) The bisector JC
�1 is mapped by A

to J �0 and the bisector JC2 is mapped by U 3AU�3 to J �3 . Furthermore ,

A.U�2ŒpB �/D U ŒpB � and U 3AU�3.U ŒpB �/D U
�2ŒpB �:

Proof We only need to prove the first point of each part of the statement; the second
one follows immediately by translating by U 3. We have

A�1J �0 D A
�1B.pU ; pW /DB.A�1pU ; A

�1pW /:

Algebraic & Geometric Topology, Volume 22 (2022)
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Now we compute

A�1UAD T �1S�1S�1TST D T �1STST D T �1STS�1S�1T D U�1V U

and
A�1WAD T �1S�1STSST D S�1T D U;

so A�1pU D pA�1UA D pU�1VU D U
�1pV and A�1pW D pA�1WA D pU . Hence,

A�1J �0 DB.A�1pU ; A
�1pW /DB.U�1pV ; pU /D JC

�1:

For the second point, we have

AU�2pB D ST T
�1ST �1SpB D S

�1T TSpB D UBpB D UpB :

With the two previous lemmas we obtain a string of beads consisting of 4 spinal spheres
and whose identifications are given by A and U 3AU�3. Then, following the statement
of Dutenhefner and Gusevskii in [8], or adapting the argument of Maskit in [12, VIII.F,
page 200], we obtain:

Proposition 4.3 The subgroup of �6 generated by A and U 3AU�3 is a free subgroup.
Its limit set is a topological circle.

In order to simplify the computations a little, and be able to express all the elements
in terms of A and B , we will consider a group which is conjugate to the one defined
in Proposition 4.3. Let � 0 < �6 be the subgroup generated by B and V 3BV �3. Since
B D TAT �1 and V D T UT �1, the conclusions of Proposition 4.3 also hold for � 0.
Moreover, since V 3 D ŒA; B� and is of order 2,

V 3BV �3 D ŒA; B�BŒA;B�D AB2A�1B�1:

The limit set of this group is indeed an R–circle, as proven in the following proposition.

Proposition 4.4 The limit set of � 0 is an R–circle.

Proof Let B1D V 3BV �3B DAB2A�1, so fB;B1g is a system of generators for � 0.
First, let us characterize the R–circle R0 that is going to be the limit set. Consider the
points

ŒpB �D

2400
1

35 ; B1ŒpB �D

24 �16

4i
p
6

3C 6i
p
3

35 ; B�11 ŒpB �D

24 �16

8
p
2C 4i

p
6

7C 2i
p
3

35 :
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Observe that the lifts of ŒpB �, B1ŒpB � and B�11 ŒpB � in C3 are linearly independent.
We claim that they belong to the same R–circle. We have

hpB ; B1pBi D hpB ; B
�1
1 pBi D �16 and hB1pB ; B

�1
1 pBi D �64;

so the three points lie in the same R–circle R0. Furthermore, since the three Hermitian
products are real, R0 is the set of points of @1H2

C that can be written in the form
Œx1pB C x2B1pB C x3B

�1
1 pB � with x1; x2; x3 2R.

Now we prove that R0 is stable by � 0. Let x1; x2; x3 2R and qD x1pBCx2B1pBC
x3B

�1
1 pB be such that Œq� 2R0. We only need to check that BŒq� and B1Œq� belong

to R0. A straightforward (but tedious) computation gives

BpB D pB ;

BB1pB D 24pB C 3B1pB � 2B
�1
1 pB ;

BB�11 pB D 8pB C 2B1pB �B
�1
1 pB :

Hence, Bq is a linear combination of pB , B1pB and B�11 pB with real coefficients,
and therefore B1Œq� belongs to R0. In the same way,

B1pB D B1pB ;

B21pB D�3pB � 3B1pB CB
�1
1 pB ;

B1B
�1
1 pB D pB ;

so B1q is a linear combination of pB , B1pB and B�11 pB with real coefficients, and
therefore B1Œq� belongs to R0. Thus R0 is stable by � 0.

Consider now the limit set ƒ� 0 . Since B is a parabolic element in � 0 with fixed
point ŒpB �, we know that ŒpB � 2ƒ� 0 , so ŒpB � 2R0\ƒ� 0 . Thus, R0\ƒ� 0 is a closed
nonempty invariant subset for the action of � 0 on @1H2

C . Hence ƒ� 0 �R0. But, by
Proposition 4.3, we know that ƒ� 0 is a topological circle, so ƒ� 0 DR0.

Remark 4.5 Since the limit set of � 0 is an R–circle, the subgroup stabilizes its convex
hull in H2

C , which is a copy of H2
R. Hence, � 0 is a free R–Fuchsian subgroup of �6.

Thus, �6 contains infinitely many free R–Fuchsian subgroups.

Now, the limit set of �6 is the closure of the orbit of this R–circle by �6, which leads
to a situation similar to the one described by Schwartz in [18, Theorems 1.1 and 1.2],
where the limit set is not all of @1H2

C and is the union of a countable set of R–circles.
The following corollary states that there are triples of points of ƒ�6

lying in the same
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C–circle. The proof works as soon as the limit set contains an R–circle and another
point, so the conclusion is also true for the limit set of the Schwartz group of [18].

Corollary 4.6 There exist two distinct points Œq1�; Œq2� 2ƒ�6
such that ŒpA�, Œq1� and

Œq2� lie in the same C–circle.

Proof Consider the Siegel model C�R[f1g for @1H2
C , where ŒpA� is identified with

the point at infinity. By Proposition 4.4, we know that there is an R–circleR0�ƒ�6
not

passing through ŒpA�. Let � WC�R!C be the first projection. By [10, Theorem 4.4.7],
�.R0/ is a lemniscate in C, so there are two distinct points Œq1�; Œq2� 2 R0 such that
�.Œq1�/D �.Œq2�/D z0 is the double point of the lemniscate. But ��1.z0/[fŒpA�g
is precisely the C–circle passing through ŒpA� and .z0; 0/. Therefore, ŒpA�, Œq1� and
Œq2� lie in the same C–circle.

An interesting consequence of this fact is that �6, as well as the group �.4;4;4;7/ consid-
ered by Schwartz in [18], cannot be the image of a .1; 1; 2/–hyperconvex representation
of a hyperbolic group, as defined by Pozzetti, Sambarino and Wienhard in [16].

4.2 The limit set is connected

Using the R–circle constructed above, we are going to prove that ƒ�6
is connected;

the proof will be similar to the one of the connectedness of the limit set described by
Schwartz in [18]. Let � 0 be the subgroup of �6 generated by B and V 3BV �3, as in
the previous section. Let R0 be its limit set, which is an R–circle by Proposition 4.4.
Since V 3D ŒA; B� is of order 2, we have V 3BV �3D ŒA; B�BŒA;B�DAB2A�1B�1,
so � 0 D hB;AB2A�1i and is in fact a subgroup of hA;Bi.

Lemma 4.7 Let C 2 fA;A�1; B; B�1g. Then R0\CR0 ¤∅.

Proof Since R0 is stable by B , we have nothing to prove if C D B or if C D B�1.
For the other cases, observe that B and AB2A�1 are parabolic elements of � 0, so
their fixed points belong to R0. Since ŒpAB2A�1 � D AŒpB2 � D AŒpB �, we have that
fŒpB �; AŒpB �g �R0.

Now, AR0 is the limit set of A� 0A�1 D hABA�1; A2B2A�2i, and therefore contains
AŒpB �. Hence AR0\R0 ¤∅. In the same way, A�1R0 is the limit set of A�1� 0AD
hA�1BA;B2i, and therefore contains ŒpB2 �D ŒpB �. Hence A�1R0\R0 ¤∅.
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Proposition 4.8 Let C 2 hA;Bi. Then there is an m 2N and R–circles R0; : : : ; Rm
contained in ƒ�6

such that ŒpB � 2 R0, C ŒpB � 2 Rm and Ri \ RiC1 ¤ ∅ for all
0� i �m� 1.

Proof Let m 2 N be such that there exist C1; : : : ; Cm 2 fA;A�1; B; B�1g with
C DC1 � � �Cm. Let R0 be the limit set of � 0 and, for 1� i �m, let Ri DC1 � � �CiR0.
Thus, for all 0� i �m, Ri is an R–circle contained in ƒ�6

, and C ŒpB � 2Rm. Now,
let i 2 f0; : : : ; m� 1g. Then,

Ri \RiCi D C1 � � �CiR0\C1 � � �CiC1R0 D C1 � � �Ci .R0\CiC1R0/:

By Lemma 4.7, R0\CiC1R0 ¤∅, so Ri \RiC1 ¤∅.

With the last proposition, we are able establish the connectedness of ƒ�6
.

Proposition 4.9 The limit set ƒ�6
is connected and the closure in @1H2

C of a count-
able union of R–circles.

Proof By Proposition 3.6, hA;Bi has finite index in �6. Since ŒpB �2ƒ�6
, the orbit of

ŒpB � by hA;Bi is therefore dense in ƒ�6
. Hence, since ŒpB � 2R0 �ƒ�6

, the limit set
ƒ�6

is the closure in @1H2
C of the �6–orbit of R0, so it is the closure of a countable

union of R–circles. Now, by Proposition 4.8, if C 2 hA;Bi, there is a path in ƒ�6

from ŒpB � to C ŒpB �. Hence, the set �6R0 is path-connected. Since ƒ�6
is the closure

of �6R0, it is connected.

4.3 A Hopf link in the limit set

It only remains to establish two topological facts about the limit set and the domain of
discontinuity of �6. We begin by proving that the limit set contains linked R–circles,
and therefore a Hopf link with three components.

Lemma 4.10 The R–circle R0 is linked with the two invariant C–circles for V.

Proof Consider the point

ŒpV �D

24 4
p
2� i
p
6

�2� 2i
p
3

35 :
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We have that pV is an eigenvector with eigenvalue 1 for V , and hpV ; pV i D �8, so
ŒpV � 2H2

C is the fixed point of V in H2
C .

We also have that pV D �74pB �
3
8
B1pB C

1
8
B�11 pB , so it belongs to the R–plane

spanned by pB , B1pB and B�11 pB . Thus, both axes of V intersect the R–plane at ŒpV �,
so, at the boundary at infinity, R0 is linked with the boundaries of these complex axes,
which are precisely the two invariant C–circles for V .

Proposition 4.11 The limit set ƒ�6
contains a Hopf link with three components.

Proof LetR0 be the R–circle which is the limit set of the subgroup� 0DhB; V 3BV �3i,
as in Proposition 4.4. Let R1 and R2 be the R–circles VR0 and V 2R0, respectively,
which are the limit sets of the groups V � 0V �1 and V 2� 0V �2. By Lemma 4.10, we
know that R0 is linked with the axes of V . Hence, the circles R0, R1 and R2 form a
Hopf link with three components.

4.4 The fundamental group of ��6
is not finitely generated

Finally, we will use the R–circles of the limit set and the fact that M6 is a cusped man-
ifold to prove that �1.��6

/ is not finitely generated. Since M6 is a cusped hyperbolic
manifold uniformized by �6, Lemma 2.3 gives immediately:

Lemma 4.12 The limit set ƒ�6
is contained in the complement of a B–horotube H

based at ŒpB �.

Let  be a loop going once around the horotube H of the previous lemma. We prove
the two following lemmas in order to have all the tools for showing that �1.��6

/ is
not finitely generated.

Lemma 4.13 The curve  is linked once around R0 and it is nontrivial in �1.��6
/.

Proof Since R0 �ƒ�6
, it is in the core of the complement of H , so  is linked once

around R0. Therefore, it is not homotopically trivial in S3�R0, so neither in ��6
.

Lemma 4.14 Let D0 be an open disk in @1H2
C whose boundary is R0 and that

intersectsR1 at exactly one point Œp0�¤V ŒpB �. Then any loop that is freely homotopic
to  in ��6

intersects D0.
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Proof Let  0 be a loop that is freely homotopic to  in ��6
, and suppose  0\D0D∅.

Since D0 is a closed disk in @1H2
C ' S

3, its complement is simply connected. Hence,
 0 is homotopically trivial in @1H2

C�D0, and therefore in @1H2
C�R0. But  is linked

with R0 and freely homotopic to  0 in ��6
� @1H2

C�R0, which is a contradiction.

Proposition 4.15 The fundamental group of ��6
is not finitely generated.

Proof We prove the proposition by contradiction. Suppose that �1.��6
/ is finitely

generated. Then, by Scott’s compact core theorem — see [20] — there is a compact
3–manifold N ���6

such that the induced map �1.N /!�1.��6
/ is an isomorphism.

Let C D VBV �1 be a unipotent element in �6, with fixed point V ŒpB �. We know
that V ŒpB � …D0 DD0[R0 by construction. Since D0 is compact, there is an open
neighborhood U of V ŒpB � in @1H2

C such that U \D0 D∅. Since N is compact and
does not contain V ŒpB � (because V ŒpB � …��6

), there is n 2N such that C nN � U .
But C n is an automorphism of ��6

, so C nN satisfies the conclusion of the Scott
theorem. Hence, the natural map �1.C nN/! �1.��6

/ is still an isomorphism. Thus,
there is a loop 1�C nN that is freely homotopic to  in ��6

. But C nN � U , that has
empty intersection with D0. Hence, 1\D0 D∅, which contradicts Lemma 4.14.
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