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Abstract Let Γ be a finitely generated group and G a real form of SLn(C). We propose a
definition for the G-character variety of Γ as a subset of the SLn(C)-character variety of Γ .
We consider two anti-holomorphic involutions of the SLn(C) character variety and show that an
irreducible representation with character fixed by one of them is conjugate to a representation
taking values in a real form of SLn(C). We study in detail an example: the SLn(C), SU(2, 1) and
SU(3) character varieties of the free product Z/3Z ∗ Z/3Z.
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1 Introduction

Character varieties of finitely generated groups have been widely studied and used, whether from
the point of view of algebraic geometry or the one of geometric structures and topology. Given a
finitely generated group Γ , and a complex algebraic reductive group G, the G-character variety
of Γ is defined as the GIT quotient

XG(Γ ) = Hom(Γ,G)//G.

It is an algebraic set that takes account of representations of Γ with values in G up to conjugacy
by an element of G. See the articles of Sikora [30] and Heusener [19] for a detailed exposition of
the construction. Whenever Γ has a geometric meaning, for example when it is the fundamental
group of a manifold, the character variety reflects its geometric properties. For SL2(C)-character
varieties, we can cite for example the construction of the A-polynomial for knot complements, as
detailed in the articles of Cooper, Culler, Gillet, Long and Shalen [3], and Cooper and Long [4],
or the considerations related to volume and the number of cusps of a hyperbolic manifold, as well
as ideal points of character varieties treated by Morgan and Shalen in [23], Culler and Shalen in
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[5] and the book of Shalen [29]. On the other hand, SL2(C)-character varieties of compact surface
groups are endowed with the Atiyah-Bott-Goldman symplectic structure (see for example [15]).

In the construction of character varieties, we consider an algebraic quotient Hom(Γ,G)//G
where G acts by conjugation. The existence of this quotient as an algebraic set is ensured by the
Geometric Invariant Theory (as detailed for example in the article of Sikora [30]), and it is not
well defined for a general algebraic group, nor when considering a non algebraically closed field.
Besides that, for the compact form SU(n), the classical quotient Hom(Γ,SU(n))/SU(n), taken
in the sense of topological spaces, is well defined and Hausdorff. See the article [10] of Florentino
and Lawton for a detailed exposition. Furthermore, if G is a complex reductive group, the G-
character variety is identified with the set of closed orbits of Hom(Γ,G)/G. If K is a maximal
compact subgroup of G, some recent results prove there is a strong deformation retraction from
the set of closed orbits of Hom(Γ,G)/G to Hom(Γ,K)/K. When G is a complex or real algebraic
reductive group, this fact is proven for Abelian groups by Florentino and Lawton in [12], for free
groups by Casimiro, Florentino, Lawton and Oliveira in [2], and for nilpotent groups by Bergeron
in [1].

The quotient Hom(Γ,SU(n))/SU(n), that Procesi and Schwartz show in their article [28] to
be a semi-algebraic set, can be embedded in the SLn(C)-character variety; we give a proof of this
last fact in Section 3.2. Similar quotients for other groups have been studied by Parreau in [25],
in which she studies completely reducible representations and in [26], where she compactifies the
space of conjugacy classes of semi-simple representations taking values in noncompact semisimple
connected real Lie groups with finite center.

It is then natural to try to construct an object similar to a character variety for groups G
which are not in the cases stated above, for example real forms of SLn(C). For the real forms of
SL2(C), Goldman studies, in his article [13], the real points of the character variety of the rank
two free group F2 and shows that they correspond to representations taking values either in SU(2)
or SL2(R), which are the real forms of SL2(C). Inspired by this last approach, we will consider
SLn(C)-character varieties and will try to identify the points coming from a representation taking
values in a real form of SLn(C). For a finitely generated group Γ , we introduce two involutions
Φ1 and Φ2 of the SLn(C)-character variety of Γ induced respectively by the involutions A 7→ A

and A 7→ tA
−1 of SLn(C). We show the following theorem:

Theorem 1 Let x be a point of the SLn(C)-character variety of Γ corresponding to an irreducible
representation ρ. If x is a fixed point for Φ1, then ρ is conjugate to a representation taking values
in SLn(R) or SLn/2(H). If x is a fixed point for Φ2, then ρ is conjugate to a representation taking
values in a unitary group SU(p, q) with p+ q = n.

In the second section of this article, we recall the definition of SLn(C)-character varieties
with some generalities and examples that will be studied further. In the third section, we recall
some generalities on real forms of SLn(C), we propose a definition for "character varieties for a
real form" as a subset of the SLn(C)-character variety and we show Theorem 1 by combining
Propositions 4 and 5 in order to identify those character varieties beneath the fixed points
of involutions Φ1 and Φ2. At last, in Section 4, we study in detail the SU(3) and SU(2, 1)-
character varieties of the free product Z/3Z ∗ Z/3Z. This particular character variety has an
interesting geometric meaning since it contains the holonomy representations of two spherical
CR uniformizations: the one for the Figure Eight knot complement given by Deraux and Falbel
in [7] and the one for the Whitehead link complement given by Parker and Will in [24].
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2 SLn(C)-character varieties

Let Γ be a finitely generated group and n a positive integer. We are going to consider represen-
tations of Γ , up to conjugation, taking values in SLn(C) and in its real forms. In order to study
these representations, the most adapted object to consider is the SLn(C)-character variety.

2.1 Definition of character varieties

We give here a definition of the SLn(C)-character variety and recall some useful properties.
Character varieties of finitely generated groups have been widely studied, for example in the case
of SL2(C) by Culler and Shalen in [5]. For a detailed exposition of the general results that we
state, we refer to the article [30] of Sikora or the first sections of the article [19] of Heusener.

Definition 1 The SLn(C)-representation variety of Γ is the set Hom(Γ,SLn(C)).

Remark 1 Hom(Γ,SLn(C)) is an algebraic set, not necessarily irreducible. If Γ is generated by
s1, . . . , sk, an element of Hom(Γ,SLn(C)) is given by (S1, . . . , Sk) ∈ (Mn(C))k ' Ckn2 satisfying
the equations det(Si) = 1 for 1 ≤ i ≤ k and, for each relation in the group, the n2 equations in the
coefficients associated to an equality Sα1

i1
· · ·Sαl

il
= Id. Since all these equations are polynomial,

they define an algebraic set, possibly with many irreducible components. Finally, by changing
the generators, we obtain an isomorphism of algebraic sets.

Definition 2 The group SLn(C) acts by conjugation on Hom(Γ,SLn(C)). The SLn(C)-character
variety is the algebraic quotient Hom(Γ,SLn(C))//SLn(C) by this action. We denote this alge-
braic set by XSLn(C)(Γ ).

Remark 2 The existence of this quotient is guaranteed by the Geometric Invariant Theory (GIT),
and it is due to the fact that the group SLn(C) is reductive. By construction, the ring of functions
of XSLn(C)(Γ ) is exactly the ring of invariant functions of Hom(Γ,SLn(C)). Moreover, the quotient
map is functorial. In particular, if we have a surjective homomorphism Γ̃ → Γ , we obtain
an injection Hom(Γ,SLn(C)) ↪→ Hom(Γ̃ ,SLn(C)), which induces an injection XSLn(C)(Γ ) ↪→
XSLn(C)(Γ̃ ). See the article [19] of Heusener for a detailed exposition.

The following result, due to Procesi (Theorems 1.3 and 3.3 in [27] ) tells us that it is enough
to understand the trace functions in order to understand the whole ring of invariant functions,
and that this ring of functions is generated by finitely many trace functions.

Theorem 2 The ring of invariant functions of Hom(Γ,SLn(C)) is generated by the trace func-
tions τγ : ρ 7→ tr(ρ(γ)), for γ in a finite subset {γ1, . . . , γk} of Γ . Consequently, XSLn(C)(Γ ) is
isomorphic, as an algebraic set, to the image of (τγ1 , . . . , τγk

) : Hom(Γ,SLn(C))→ Ck.

Character varieties are strongly related to characters of representations. Let us briefly recall
their definition:

Definition 3 Let ρ ∈ Hom(Γ,SLn(C)). The character of ρ is the function χρ : Γ → C given by
χρ(g) = tr(ρ(g)).

Remark 3 We have a projection map Hom(Γ,SLn(C))→ XSLn(C)(Γ ). Two representations ρ, ρ′ ∈
Hom(Γ,SLn(C)) have the same image if and only if χρ = χρ′ . This explains the name "character
variety" for XSLn(C)(Γ ). We will sometimes abusively identify the image of a representation ρ in
the character variety with its character χρ.
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Semi-simple representations are representations constructed as direct sums of irreducible rep-
resentations. We will use the following statement when dealing with irreducible representations.

Theorem 3 (Theorem 1.28 of [22]) Let ρ, ρ′ ∈ Hom(Γ,SLn(C)) be two semi-simple representa-
tions. Then χρ = χρ′ if and only if ρ and ρ′ are conjugate.

2.2 Some SL2(C) and SL3(C)-character varieties

We consider here two SL3(C)-character varieties that we will study further: the character variety
of the free group of rank two F2 and the one of the fundamental group of the Figure Eight knot
complement. We will also recall a classic result describing the SL2(C)-character variety of F2.

2.2.1 The free group of rank 2

We denote here by s and t two generators of the free group of rank two F2, so F2 = 〈s, t〉. We will
use the character varieties XSL2(C)(F2) and XSL3(C)(F2). Consider first the following theorem,
that describes the SL2(C)-character variety of F2. A detailed proof can be found in the article
of Goldman [16].

Theorem 4 (Fricke-Klein-Vogt) The character variety XSL2(C)(F2) is isomorphic to C3, which
is the image of Hom(F2,SL2(C)) by the trace functions of the elements s, t and st.

Remark 4 Thanks to the theorem below, we know that it is possible to write the trace of the image
of st−1 in terms of the traces of the images of s, t and st for any representation ρ : F2 → SL2(C).
By denoting S and T the respective images of s and t, the traces of the four elements are related
by the trace equation:

tr(S)tr(T ) = tr(ST ) + tr(ST−1).

On the other hand, in his article [21], Lawton describes the SL3(C)-character variety of F2.
He obtains the following result:

Theorem 5 The character variety XSL3(C)(F2) is isomorphic to the algebraic set V of C9, which
is the image of Hom(F2,SL3(C)) by the trace functions of the elements s, t, st, st−1, of their in-
verses s−1, t−1, t−1s−1, ts−1, and of the commutator [s, t]. Furthermore, there exist two poly-
nomials P,Q ∈ C[X1, . . . , X8] such that (x1, . . . , x9) ∈ V if and only if x2

9 − Q(x1, . . . , x8)x9 +
P (x1, . . . x8) = 0.

Remark 5 The polynomials P and Q are explicit: we can find them in the article of Lawton [21]
or in the survey of Will [31]. By denoting ∆ = Q2 − 4P , the algebraic set V is a double cover of
C8, ramified over the zero level set of ∆. Furthermore, the two roots of X2

9 −Q(x1, . . . , x8)X9 +
P (x1, . . . x8), as a polynomial in X9, are given by the traces of the commutators [s, t] and [t, s] =
[s, t]−1.

More recently, Gongopadhyay and Lawton study in [17] the character variety XSL4(C)(F2),
and describe a minimal global coordinate system of order 30 for it. However, the set of relations
between the traces of this minimal set is not known.
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2.2.2 The Figure Eight knot complement

We state briefly some results about the SL3(C)-character variety of the figure eight knot comple-
ment. It is one of the very few SL3(C)-character varieties of three-manifolds studied exhaustively.
We will come back to it in Subsection 4.4. The results were obtained independently by Falbel,
Guilloux, Koseleff, Rouiller and Thistlethwaite in [9], and by Heusener, Muñoz and Porti in [20].
Denoting by Γ8 the fundamental group of the Figure Eight knot complement, they describe the
character variety XSL3(C)(Γ8). Theorem 1.2 of [20] can be stated in the following way:

Theorem 6 The character variety XSL3(C)(Γ8) has five irreducible components: XTR, XPR, R1,
R2, R3. Furthermore:

1. The component XTR only contains characters of completely reducible representations.
2. The component XPR only contains characters of reducible representations.
3. The components R1, R2, R3 contain the characters of irreducible representations.

Remark 6 We take here the notation R1, R2, R3 given in [9]. These components are denoted
respectively by V0, V1 and V2 in [20].

Remark 7 – The component R1 contains the class of the geometric representation, obtained
as the holonomy representation Γ8 → PSL2(C) of the complete hyperbolic structure of the
Figure Eight knot followed by the irreducible representation PSL2(C)→ SL3(C).

– The component R3 is obtained from R2 by a pre-composition with an outer automorphism
of Γ8. These components contain the representations ρ2 and ρ3 with values in SU(2, 1) given
by Falbel in [8]. The representation ρ2 is the holonomy representation of the spherical CR
uniformization of the Figure Eight knot complement given by Deraux and Falbel in [7].

Besides determining the irreducible components R1, R2 and R3, Falbel, Guilloux, Koseleff,
Rouillier and Thistlethwaite give parameters, in Section 5 of their article [9], for explicit repre-
sentations corresponding to the points of the character variety.

3 Character varieties for real forms

We are going to be interested in representations of a finitely generated group Γ taking values in
some real forms of SLn(C) up to conjugacy. We will focus on the real forms SU(3) and SU(2, 1) of
SL3(C) in the detailed example that we will consider further. In order to study the representations
up to conjugacy, we will consider the SLn(C)-character variety and will try to figure out the locus
of representations taking values in real forms. When n = 2, the problem was treated by Morgan
and Shalen in [23] and by Goldman in his article [13].

3.1 Real forms and definition

Let us first recall the classification of the real forms of SLn(C). For a detailed exposition of the
results that we state, see the book of Helgason [18]. Recall that a real form of a complex Lie
group GC is a real Lie group GR such that GC = C⊗R GR. The real forms of SLn(C) belong to
three families: the real groups SLn(R), the unitary groups SU(p, q) and the quaternion groups
SLn/2(H). We give the definitions of the two last families in order to fix the notation.
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Definition 4 Let n ∈ N and p, q ∈ N such that n = p+ q. Denote by Ip,q the block matrix:

Ip,q =
(
Ip 0
0 −Iq

)

We define the group SU(p, q) as follows:

SU(p, q) = {M ∈ SLn(C) | tMIp,qM = Ip,q}.

It is a real Lie group, which is a real form of SLn(C).

Definition 5 Let n ∈ N. Denote by J2n the block matrix:

J2n =
(

0 In
−In 0

)

We define the group SLn(H), also noted SU∗(n) as follows:

SLn(H) = {M ∈ SL2n(C) |M−1
J2nM = J2n}.

It is a real Lie group, which is a real form of SL2n(C).

In order to study representations taking values in real forms, we consider the following defi-
nition of character variety for a real form:

Definition 6 Let G be a real form of SLn(C). Let Γ be a finitely generated group. We call the
G-character variety of Γ the image of the map Hom(Γ,G)→ XSLn(C)(Γ ). In this way,

XG(Γ ) = {χ ∈ XSLn(C) | ∃ρ ∈ Hom(Γ,G), χ = χρ}.

Remark 8 The set XG(Γ ) given by this definition is a subset of a complex algebraic set, which
is not, a priori, a real nor a complex algebraic set. It is the image of a real algebraic set by a
polynomial map, and hence a semi-algebraic set. The definition might seem strange if compared to
the one for the SLn(C)-character variety. This is due to the fact that the real forms of SLn(C) are
real algebraic groups but not complex algebraic groups and that the algebraic construction and
the GIT quotient do not work properly when the field is not algebraically closed. Nevertheless,
when considering the compact real form SU(n), it is possible to define a SU(n)-character variety
by considering a topological quotient. We will show, in the next section, that this topological
quotient is homeomorphic to the SU(n)-character variety as defined above.

Furthermore, in some cases, the SU(n)-character variety is a strong deformation retraction
of the SLn(C)-character variety. This fact fits in the more general frame of real reductive groups
and maximal compact subgroups. It is proven for free groups by Casimiro, Florentino, Lawton
and Oliveira in [2], for Abelian groups by Florentino and Lawton in [12] and for nilpotent groups
by Bergeron in [1].
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3.2 The character variety XSU(n)(Γ ) as a topological quotient

Let n be a positive integer. We are going to show that the topological quotient Hom(Γ,SU(n))/SU(n),
where SU(n) acts by conjugation, is naturally homeomorphic to the character variety XSU(n)(Γ ).
Let us notice first that a map between these two sets is well defined. Indeed, since two represen-
tations taking values in SU(n) which are conjugate in SU(n) are also conjugate in SLn(C), the
natural map Hom(Γ,SU(n))→ XSLn(C)(Γ ) factors through the quotient Hom(Γ,SU(n))/SU(n).
Proposition 1 The map Hom(Γ,SU(n))/SU(n)→ XSU(n)(Γ ) is a homeomorphism.
Proof We consider XSU(n)(Γ ) as a subset of XSLn(C)(Γ ) ⊂ Cm, endowed with the usual topology
of Cm. By definition, we know that the map Hom(Γ,SU(n))/SU(n) → XSU(n)(Γ ) is continuous
and surjective. Since a continuous bijection between a compact space and a Hausdorff space
is a homeomorphism, it is enough to show that the map is injective. We want to show that if
ρ1, ρ2 ∈ Hom(Γ,SU(n)) are representations such that χρ1 = χρ2 , then ρ1 and ρ2 are conjugate
in SU(n). It is the statement of Lemma 2, that we prove below.

In order to prove Proposition 1, we are going to show the following lemma, which seems
standard despite the lack of references. 1

Lemma 1 Let ρ1, ρ2 ∈ Hom(Γ,SU(n)). If they are conjugate in SLn(C), then they are conjugate
in SU(n).
Proof Let us deal first with the irreducible case, and treat the general case after that.
First case: The representations ρ1 and ρ2 are irreducible. Let G ∈ SLn(C) such that ρ2 =
Gρ1G

−1. Let J be the matrix of the Hermitian form
∑n
i=1 xiyi, which is preserved by the images

of ρ1 and ρ2. Since ρ2 = Gρ1G
−1, we know that the image of ρ1 also preserves the form tGJG.

But ρ1 is irreducible: its image preserves then a unique Hermitian form up to a scalar. We deduce
that J = λtGJG with λ ∈ R. Since J is positive definite, we have λ > 0, and, by replacing G by√
λG, we have J = tGJG i.e. that G ∈ SU(n).
General case. Since ρ1 is unitary, it is semi-simple, and therefore can be written as ρ(1)

1 ⊕
· · · ⊕ ρ(m)

1 acting on E1⊕ · · · ⊕Em, where ρ(i)
1 acts irreducibly on Ei and the sum E1⊕ · · · ⊕Em

is orthogonal. The same holds for ρ2, which can be written as ρ(1)
2 ⊕ · · · ⊕ ρ

(m′)
2 acting on

F1⊕ · · ·⊕Fm′ , also in orthogonal sum. Since ρ1 and ρ2 are conjugated in SLn(C), an irreducible
representation has the same multiplicity for ρ1 and for ρ2. Therefore, m = m′ and, perhaps after
rearranging the terms, we can suppose that ρ(i)

1 and ρ(i)
2 are conjugated for all i ∈ {1, . . .m}.

Since for all i ∈ {1, . . . ,m}, dimEi = dimFi and the direct sums are orthogonal, there
exists U0 ∈ SU(n) such that U0Ei = Fi for all i ∈ {1 . . . ,m} Let i ∈ {1, . . . ,m}. Since ρ(i)

1
and U0ρ

(i)
2 U−1

0 act on Ei and are unitary, conjugated and irreducible, there exists Gi ∈ SU(Ei)
that conjugates them by the first case. Let G = G1 ⊕ · · · ⊕ Gm and G′ = GU0. We have then
GU0 ∈ SU(n) and ρ1 = G′ρ2(G′)−1.

Thanks to Lemma 1, we can show the following lemma, which finishes the proof of Proposition
1 and ensures that Hom(Γ,SU(n))/SU(n) and XSLn(C)(Γ ) are homeomorphic.
Lemma 2 Let ρ1, ρ2 ∈ Hom(Γ,SU(n)) such that χρ1 = χρ2 . Then ρ1 and ρ2 are conjugate in
SU(n).
Proof Since ρ1 and ρ2 take values in SU(n), they are are semi-simple. By Theorem 3, since
χρ1 = χρ2 and ρ1 and ρ2 are semi-simple, we know that ρ1 and ρ2 are conjugate in SLn(C). We
deduce, thanks to Lemma 1, that ρ1 and ρ2 are conjugate in SU(n).

1 Florentino and Lawton give a first proof of this fact in the appendix of [10]; the proof is corrected in Remark
4.7 of [11].
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3.3 Anti-holomorphic involutions and irreducible representations

In this section, we find the locus of character varieties for the real forms of SLn(C) inside the
SLn(C)-character variety XSLn(C)(Γ ). Before focusing on irreducible representations, we show
the following proposition, which ensures that two character varieties for two different unitary
real forms intersect only in points which correspond to reducible representations.

Proposition 2 Let n ∈ N, and p, p′, q, q′ ∈ N such that p + q = p′ + q′ = n and p 6= p′, q′. Let
ρ ∈ Hom(Γ,SLn(C)) such that χρ ∈ XSU(p,q) ∩ XSU(p′,q′). Then ρ is a reducible representation.

Proof Suppose that ρ is irreducible. It is then, up to conjugacy, the only representation of char-
acter χρ. Since χρ ∈ XSU(p,q), we can suppose that ρ takes values in SU(p, q). Then, for every
g ∈ Γ , we have tρ(g)Jp,qρ(g) = Jp,q. On the other hand, let us assume that ρ is conjugate to a
representation taking values in SU(p′, q′). Hence there exists a matrix J ′p′,q′ , conjugated to Jp′,q′ ,
such that, for every g ∈ Γ , we have tρ(g)J ′p′,q′ρ(g) = J ′p′,q′ . We deduce that, for every g ∈ Γ ,

J ′p′,q′ρ(g)(J ′p′,q′)−1 = tρ(g)
−1

= Jp,qρ(g)(Jp,q)−1.

The matrix (Jp,q)−1J ′p′,q′ commutes with the whole image of Γ . Since ρ is irreducible, it is a scalar
matrix. We deduce that Jp,q has either the same signature as Jp′,q′ , or the opposite signature.
Hence (p′, q′) = (p, q) or (p′, q′) = (q, p).

From now on, we will limit ourselves to irreducible representations and will consider two
anti-holomorphic involutions of the SLn(C)-character variety, which induce anti-holomorphic
involutions on the character variety. We will denote by φ1 and φ2 two anti-holomorphic auto-
morphisms of the group SLn(C), given by φ1(A) = A and φ2(A) = tA−1. These two involutions
induce anti-holomorphic involutions Φ1 and Φ2 on the representation variety Hom(Γ,SLn(C)),
in such a way that, for a representation ρ, we have Φ1(ρ) = φ1 ◦ ρ and Φ2(ρ) = φ2 ◦ ρ.

Proposition 3 The involutions Φ1 and Φ2 induce as well anti-holomorphic involutions on the
character variety XSLn(C)(Γ ).

Proof For ρ ∈ Hom(Γ,SLn(C)) and g ∈ Γ we have tr(Φ1(ρ)(g)) = tr(ρ(g)) and tr(Φ2(ρ)(g)) =
tr(ρ(g−1)). Hence χρ(Φ1(g)) = χρ(g) and χρ(Φ2(g)) = χρ(g−1). Let g1, . . . , gm ∈ Γ such that
XSLn(C)(Γ ) is isomorphic to the image of ψ : Hom(Γ,SLn(C))→ C2m given by

ψ(ρ) = (χρ(g1), . . . , χρ(gm), χρ(g−1
1 ), . . . , χρ(g−1

1 )).

If ψ(ρ) = (z1, . . . , zm, w1, . . . , wm) ∈ C2m, then ψ(Φ1(ρ)) = (z1, . . . , zm, w1, . . . , wm) and
ψ(Φ2(ρ)) = (w1, . . . , wm, z1, . . . , zm). The anti-holomorhic involutions

(z1, . . . , zm, w1, . . . , wm) 7→ (z1, . . . , zm, w1, . . . , wm)

and
(z1, . . . , zm, w1, . . . , wm) 7→ (w1, . . . , wm, z1, . . . , zm)

are hence well defined on XSLn(C)(Γ ) and induced by Φ1 and Φ2 respectively.

We will still denote these involutions on XSLn(C)(Γ ) by Φ1 and Φ2. We will denote by Fix(Φ1)
and Fix(Φ2) the points in XSLn(C)(Γ ) fixed respectively by Φ1 and Φ2.
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Remark 9 If ρ ∈ Hom(Γ,SLn(C)) is conjugate to a representation taking values in SLn(R),
then χρ ∈ Fix(Φ1). Furthermore, if is conjugate to a representation taking values in SLn/2(H),
then χρ ∈ Fix(Φ1), since a matrix A ∈ SLn/2(H) is conjugated to A. On the other hand, if ρ
is conjugate to a representation taking values in SU(p, q), then χρ ∈ Fix(Φ2). Indeed, if A is a
unitary matrix, then it is conjugated to tA−1. In this way, XSLn(R)(Γ ) ⊂ Fix(Φ1), XSLn/2(H)(Γ ) ⊂
Fix(Φ1) and XSU(p,q)(Γ ) ⊂ Fix(Φ2).

From now on, we will work in the reciprocal direction. We will show that an irreducible
representation with character in Fix(Φ1) or Fix(Φ2) is conjugate to a representation taking
values in a real form of SLn(C). The corresponding statements can be proven in a more general
frame by considering the involution A 7→ PΦ(A)P−1 if Φ equals Φ1 or Φ2. The involution will
define a real form containing the image of an arbitrary lift ρ of a character χρ. However, this
abstract proof gives no hint on how to determine the corresponding real form. We give here an
elementary proof, that allows to determine the real form if a conjugating matrix for ρ and Φ(ρ)
is known. Let us begin with the case of Fix(Φ2), which corresponds to unitary groups. The result
is given in the following proposition:

Proposition 4 Let ρ ∈ Hom(Γ,SLn(C)) be an irreducible representation such that χρ ∈ Fix(Φ2).
Then there exists p, q ∈ N with n = p + q such that ρ is conjugate to a representation taking
values in SU(p, q).

Proof We know that χρ ∈ Fix(Φ2), so the representations ρ and Φ2(ρ) have the same character.
Since ρ is irreducible, ρ and Φ2(ρ) are conjugate. Then there exists P ∈ GLn(C) such that,
for every g ∈ Γ , we have Pρ(g)P−1 = tρ(g)−1. By considering the inverse, conjugating and
transposing, we obtain, for every g ∈ Γ , that

tP−1tρ(g)−1tP = ρ(g).

By replacing tρ(g)−1 in the expression, we deduce that

(P−1tP )−1ρ(g)(P−1tP ) = ρ(g).

The matrix P−1tP commutes to the whole image of ρ. But ρ is irreducible, so there exists λ ∈ C
such that P−1tP = λId. By taking the determinant, we know that |λ| = 1. Up to multiplying
P by a square root of λ, we can suppose that λ = 1. We then have that P = tP , which means
that P is a Hermitian matrix. We have then a Hermitian matrix P such that, for every g ∈ Γ ,
tρ(g)Pρ(g) = P . The representation ρ takes then values in the unitary group of P . Denoting by
(p, q) the signature of P , the representation ρ is then conjugate to a representation taking values
in SU(p, q).

Remark 10 1. When n = 3, the only possibilities are SU(3) and SU(2, 1).
2. When n = 2, the involutions Φ1 and Φ2 are equal: we recognize the result shown by Morgan

and Shalen in [23] (Proposition III.1.1) and by Goldman in [13] (Theorem 4.3), which is
that an irreducible representation with real character is conjugate to either a representation
with values in SU(2), or to a representation with values in SU(1, 1) (appearing as SL2(R) for
Morgan and Shalen and SO(2, 1) for Goldman).

Let us see now the case of Fix(Φ1), which corresponds to representations taking values in
SLn(R) or SLn/2(H). The result is given in the following proposition:

Proposition 5 Let ρ ∈ Hom(Γ,SLn(C)) be an irreducible representation such that χρ ∈ Fix(Φ1).
Then ρ is conjugate to either a representation taking values in SLn(R), either a representation
taking values in SLn/2(H) (when n is even).
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We are going to give a proof of this statement inspired from the proof of Proposition 4. An
alternative proof can be done by adapting the proof given by Morgan and Shalen in the third
part of their article [23] for the SL2(C) case.

Lemma 3 Let P ∈ SLn(C) such that PP = Id. Then, there exists Q ∈ GLn(C) such that
P = QQ−1.

This fact is an immediate consequence of Hilbert’s Theorem 90, which says thatH1(Gal(C/R),SLn(C))
is trivial. We give here an elementary proof.

Proof We search Q of the form Qα = αId + αP . Those matrices satisfy trivially QαP = Qα. It
is then sufficient to find α ∈ C such that det(Qα) 6= 0. But det(Qα) = αn det(P + α

α Id), so any
α such that −αα is not an eigenvalue of P works.

Lemma 4 Let P ∈ SL2m(C) such that PP = −Id. Then there exists Q ∈ GL2m(C) such that
P = QJ2mQ

−1.

Proof We search Q of the form Qα = −αId − αJ2mP . Those matrices satisfy trivially QαP =
αP + αJ2m = J2mQα. It is then sufficient to find α ∈ C such that det(Qα) 6= 0. But det(Qα) =
α2n det(J2mP − α

α Id), so any α such that α
α is not an eigenvalue of J2mP works.

Proof (Proof of Proposition 5) We know that χρ ∈ Fix(Φ1), so the representations ρ and Φ1(ρ)
have the same character. Since ρ is irreducible, ρ and Φ1(ρ) are conjugate. Hence, there exists
P ∈ SLn(C) such that, for all g ∈ Γ , we have Pρ(g)P−1 = ρ(g). By taking the complex
conjugation, we obtain Pρ(g)P−1 = ρ(g). By replacing ρ(g) in the expression, we deduce that
for all g ∈ Γ :

(PP )ρ(g)(PP )−1 = ρ(g).
The matrix PP commutes to the whole image of ρ. But ρ is irreducible, so here exists λ ∈ C

such that PP = λId. In particular, P and P commute, so, by conjugating the equality above,
we have λ ∈ R. Furthermore, by taking the determinant, we have λn = 1, hence λ = ±1 and
PP = ±Id. We have two cases:

First case: PP = Id. By Lemma 3, there exists Q ∈ SLn(C) such that P = QQ−1.
We deduce that for all g ∈ Γ :

QQ−1ρ(g)QQ−1 = ρ(g)

Q−1ρ(g)Q = Q−1ρ(g)Q
This means that the representation Q−1ρQ takes values in SLn(R).
Second case PP = −Id. By taking the determinant, we see that this case can only happen if

n is even. Let m = n
2 . By Lemma 4, there exists Q ∈ GL2m(C) such that P = QJ2mQ

−1. We
deduce that, for all g ∈ Γ :

QJ2mQ
−1ρ(g)QJ−1

2mQ
−1 = ρ(g)

ρ(g)−1QJ2mQ
−1ρ(g)QJ2mQ−1 = Id

(Q−1ρ(g)Q)−1J2mQ
−1ρ(g)QJ−1

2m = Id
(Q−1ρ(g)Q)−1J2mQ

−1ρ(g)Q = J2m.

This means that the representation Q−1ρQ takes values in SLm(H).

With the propositions below, we showed that an irreducible representation with character in
Fix(Φ1) or Fix(Φ2) is conjugate to a representation taking values in a real form of SLn(C). By
combining Propositions 4 and 5 we obtain immediately a proof of Theorem 1.
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4 A detailed example: the free product Z/3Z ∗ Z/3Z

We are going to study in detail the character varieties XSU(2,1)(Z/3Z ∗Z/3Z) and XSU(3)(Z/3Z ∗
Z/3Z). We will begin by studying the character variety XSL3(C)(Z/3Z ∗ Z/3Z) inside the variety
XSL3(C)(F2) given by Lawton in [21]. We will then focus on the fixed points of the involution
Fix(Φ2), that will give us the two character varieties with values in real forms, and we will finally
describe them in detail and find the slices parametrized by Parker and Will in [24] and by Falbel,
Guilloux, Koseleff, Rouillier and Thistlethwaite in [9].

4.1 The character variety XSL3(C)(Z/3Z ∗ Z/3Z)

In this section, we will study the character variety XSL3(C)(Z/3Z ∗ Z/3Z). First, notice that
Z/3Z ∗ Z/3Z is a quotient of the free group of rank two F2. Thanks to remark 2, we are going
to identify XSL3(C)(Z/3Z ∗Z/3Z) as a subset of XSL3(C)(F2) ⊂ C9. Let us begin by making some
elementary remarks on order 3 elements of SL3(C).

Remark 11 – If S ∈ SL3(C), then the characteristic polynomial of S is χS = X3 − tr(S)X2 +
tr(S−1)X − 1.

– If S ∈ SL3(C) is of order 3, then S3 − Id = 0. Hence the matrix S is diagonalizable and
admits as eigenvalues cube roots of 1. We will denote these cube roots by 1, ω and ω2.

The following elementary lemma will be useful to separate the irreducible components of
XSL3(C)(Z/3Z ∗ Z/3Z).

Lemma 5 Let S ∈ SL3(C). The following assertions are equivalent:

1. S3 = Id
2. One of the following cases holds:
(a) There exists i ∈ {0, 1, 2} such that S = ωiId.
(b) tr(S) = tr(S−1) = 0.

Proof
(a)⇒ (1): Trivial
(b)⇒ (1): In this case, χS = X3 − 1. By Cayley-Hamilton theorem, we have S3 − Id = 0.
(1) ⇒ (2): If S3 = Id, then S is diagonalizable and its eigenvalues are cube roots of one. If

S has a triple eigenvalue, we are in case (a). If not, since det(S) = 1, the three eigenvalues are
different and equal to (1, ω, ω2). We deduce that tr(S) = tr(S−1) = 1 + ω + ω2 = 0.

We can now identify the irreducible components of XSL3(C)(Z/3Z ∗ Z/3Z), thanks to the
following proposition:

Proposition 6 The algebraic set XSL3(C)(Z/3Z ∗ Z/3Z) has 16 irreducible components: 15 iso-
lated points and an irreducible component X0 of complex dimension 4.

Proof Consider the character variety XSL3(C)(Z/3Z ∗Z/3Z) ⊂ XSL3(C)(F2) ⊂ C9, as the image of
Hom(Z/3Z∗Z/3Z,SL3(C)) by the trace maps of elements s, t, st, st−1, s−1, t−1, t−1s−1, ts−1, and
of the commutator [s, t]. Let ρ ∈ Hom(Z/3Z ∗Z/3Z,SL3(C)). Denote by S = ρ(s) and T = ρ(t).
By Lemma 5, either S or T is a scalar matrix, or tr(S) = tr(S−1) = tr(T ) = tr(T−1) = 0. Let us
deal with this two cases separately.
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First case: S or T is a scalar matrix. Suppose, for example, that S = ωiId with i ∈ {0, 1, 2}.
Since T is of finite order and hence diagonalizable, the representation is totally reducible, and it
is conjugate to either a representation of the form

S = ωiId T = ωjId

with i, j ∈ {0, 1, 2}, either a representation given by

S = ωiId T =

ω2 0 0
0 ω 0
0 0 1

 .

Considering the symmetries, we obtain 15 points of the character variety, classified by the
traces of S and T in the following way (where i, j ∈ {0, 1, 2}):

tr(S) 3ωi 0 3ωi
tr(T ) 3ωj 3ωj 0

Since the traces of S and T are different for these 15 points and both 0 in the second case,
the points are isolated in XSL3(C)(Z/3Z ∗ Z/3Z).

Second case: tr(S) = tr(S−1) = tr(T ) = tr(T−1) = 0. By Lemma 5, all the points of
XSL3(C)(F2) satisfying this condition are in XSL3(C)(Z/3Z ∗ Z/3Z). Denote by z = tr(ST ),
z′ = tr((ST )−1), w = tr(ST−1), w′ = tr(TS−1) and x = tr([S, T ]). The equation defining
XSL3(C)(F2) ⊂ C9 becomes:

x2 − (zz′ + ww′ − 3)x+ (zz′ww′ + z3 + z′3 + w3 + w′3 − 6zz′ − 6ww′ + 9) = 0

This polynomial is irreducible. Indeed, if it were not, it would be equal to a product of two
polynomials of degree 1 in x. By replacing z′, w and w′ by 0, we would obtain a factorization of the
form x2 +3x+z3 +9 = (x−R1(z))(x−R2(z)), with R1(z)R2(z) = z3 +9 and R1(z)+R2(z) = −3.
By considering the degrees of the polynomials R1 and R2 we easily obtain a contradiction.

Since the polynomial defining X0 is irreducible, X0 is an irreducible component of the alge-
braic set XSL3(C)(Z/3Z ∗ Z/3Z). Furthermore, it can be embedded into C5 and it is a ramified
double cover of C4.

4.2 Reducible representations in the component X0 ⊂ XSL3(C)(Z/3Z ∗ Z/3Z)

In order to complete the description of the character variety XSL3(C)(Z/3Z ∗Z/3Z), we are going
to identify the points corresponding to reducible representations. The 15 isolated points of the al-
gebraic set come from totally reducible representations; it remains to determine the points of the
component X0 corresponding to reducible representations. We consider here X0 ⊂ C5, with co-
ordinates (z, z′, w, w′, x) corresponding to the traces of the images of (st, (st)−1, st−1, ts−1, [s, t])
respectively. We denote by Xred

0 the image of reducible representations in X0

Remark 12 If the coordinates (z, z′, w, w′, x) correspond to a reducible representation, then
∆(z, z′, w, w′) = 0. Indeed, for a reducible representation, the two commutators [s, t] and [t, s]
have the same trace, and the polynomial X2−Q(z, z′, w, w′)X+P (z, z′, w, w′) has a double root
equal to those traces.
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We are going to show that the locus of the characters of reducible representations is a set of
9 complex lines, which intersect at six points with triple intersections, corresponding to totally
reducible representations. Before doing the proof let us fix a notation for these lines. For i, j ∈
{0, 1, 2}, let

L(i,j) = {(z, z′, w, w′, x) ∈ X0 | ωiz = ω−iz′;ωjw = ω−jw′;ωiz + ωjw = 3}.

Each L(i,j) is a complex line parametrized by the coordinate z (or w), and these lines intersect
with triple intersections at the six points of coordinates (z, w) = (0, 3ωj) and (z, w) = (3ωi, 0),
where i, j ∈ {0, 1, 2}. With this notation, we can state in a simpler way the proposition describing
the points of X0 corresponding to reducible representations.

Proposition 7 The points of X0 corresponding to reducible representations are exactly those in
the lines L(i,j). In other terms, we have

Xred
0 =

⋃
i,j∈{0,1,2}

L(i,j).

Proof We are going to show a double inclusion. Let us first show that

Xred
0 ⊂

⋃
i,j∈{0,1,2}

L(i,j).

Let ρ ∈ Hom(Z/3Z ∗ Z/3Z,SL3(C)) be a reducible representation such that χρ ∈ X0. Let
S = ρ(s) and T = ρ(t). Since the representation is reducible, we can suppose, after conjugating
ρ, that

S = ωi
(
S′

1

)
and T = ωj

(
T ′

1

)
where i, j ∈ {0, 1, 2}, and S′, T ′ ∈ SL2(C) of order 3 (and trace −1). Notice that it is enough to
show that, whenever i = j = 0, we have χρ ∈ L(0,0), in order to have the other cases by symmetry.
Let us consider this case, with i = j = 0. Since S′T ′ ∈ SL2(C), we have tr(S′T ′) = tr((S′T ′)−1),
hence tr(ST ) = tr((ST )−1) and z = z′. Similarly, we know that w = w′. Furthermore, the trace
equation in SL2(C) gives tr(S′)tr(T ′) = tr(S′T ′) + tr(S′T ′−1). Hence (−1)2 = (z − 1) + (w− 1),
i.e. z + w = 3. We obtain finally that χρ ∈ L(0,0).

Let us show now the other inclusion. In order to do it, it is enough to show that all the points
of L(0,0) are images of representations given by

S =
(
S′

1

)
and T =

(
T ′

1

)
with S′, T ′ ∈ SL2(C), and recover the points of the other lines L(i,j) by considering (ωiS, ωjT ).
Since the image of every reducible representation of this form satisfies z = z′, w = w′ and
z + w = 3, we have to show that any z ∈ C can be written as 1 + tr(S′T ′) with S′, T ′ ∈ SL2(C)
of order 3 and trace −1. Fix z ∈ C. Since the SL2(C)-character variety of F2 is isomorphic to
C3 by the trace maps of two generators and their product, there exist matrices S′, T ′ ∈ SL2(C)
such that (tr(S′), tr(T ′), tr(S′T ′)) = (−1,−1, z − 1). In this case, the two matrices S′ and T ′

have trace −1 and hence order 3, and we have z = 1 + tr(S′T ′).

Remark 13 The lines L(i,j) intersect with triple intersections at the six points of coordinates
(z, w) = (3ωi, 0) and (z, w) = (0, 3ωi) with i ∈ {0, 1, 2}. The corresponding representations are
exactly the totally reducible ones, where S and T are diagonal with eigenvalues (1, ω, ω2).
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4.3 The fixed points of the involution Φ2

We are going to describe here the character varieties XSU(2,1)(Z/3Z ∗ Z/3Z) and XSU(3)(Z/3Z ∗
Z/3Z) as fixed points of the involution Φ2 of XSL3(C)(Z/3Z ∗Z/3Z). In this technical subsection,
we will choose coordinates and find equations that describe the fixed points of Φ2. We will identify
the characters corresponding to reducible representations as lying in an arrangement of 9 lines,
and show that the ones corresponding to irreducible representations are in a smooth manifold of
real dimension 4. We will describe the set obtained in this way in Subsection 4.4.

Remark 14 Notice first that the 15 isolated points of XSL3(C)(Z/3Z ∗ Z/3Z) come from totally
reducible representations taking values in SU(2, 1) and SU(3). Hence they are in XSU(2,1)(Z/3Z∗
Z/3Z) ∩ XSU(3)(Z/3Z ∗ Z/3Z), and so in Fix(Φ2).

From now on, we will only consider the points of Fix(Φ2)∩X0. Recall that we have identified
X0 to {(z, z′, w, w′, x) ∈ C5 | x2 −Q(z, z′, w, w′)x+ P (z, z′, w, w′) = 0} by considering the trace
maps of st, (st)−1, st−1, ts−1 and [s, t].

Remark 15 If (z, z′, w, w′, x) ∈ Fix(Φ2) ∩X0, then z′ = z and w′ = w. In this case, the polyno-
mials P and Q, that we will denote by P (z, w) and Q(z, w), take real values. Furthermore, we
can write the discriminant of X2 −Q(z, w)X + P (z, w) as

∆(z, w) = f(z) + f(w)− 2|z|2|w|2 + 27,

where f(z) = |z|4−8Re(z3)+18|z|2−27 is the function described by Goldman in [14] which is
nonzero in the traces of regular elements of SU(2, 1) (positive for loxodromic elements, negative
for elliptic elements). In a point of Fix(Φ2) ∩ X0, the two roots of X2 − Q(z, w)X + P (z, w)
are the traces of the images of the commutators [s, t] and [t, s]. Since these commutators are
inverses, and since we are in Fix(Φ2), the two roots are complex conjugate, which is equivalent
to ∆(z, w) ≤ 0.

Proposition 8 We have:

Fix(Φ2) ∩X0 = {(z, z′, w, w′, x) ∈ X0 | z′ = z, w′ = w,∆(z, w) ≤ 0}.

Proof We are going to show a double inclusion. The first one is given by Remark 15. Let us show
the second.

Let z, w ∈ C such that ∆(z, w) ≤ 0. Let x be a root of X2 − Q(z, w)X + P (z, w). Since
∆(z, w) ≤ 0, the other root of the polynomial is x. We know that (z, z, w,w, x) ∈ X0; we want
to show that (z, z, w,w, x) ∈ Fix(Φ2). Let ρ ∈ Hom(Γ,SL3(C)) be a semi-simple representation
with image in X0 equal to (z, z, w,w, x). It is enough to prove that for all γ ∈ Γ we have
tr(ρ(γ)) = tr(ρ(γ)−1). But the representation tρ−1 has image (z, z, w,w, x) in X0. We deduce
that the representations ρ and tρ−1 are semi-simple and have the same character. Hence they are
conjugate and for all γ ∈ Γ we have tr(ρ(γ)) = tr(ρ(γ)−1), and so (z, z, w,w, x) ∈ Fix(Φ2).

From now on, we will consider Fix(Φ2) ∩X0 as

{(z, w, x) ∈ C3 | ∆(z, w) ≤ 0, x2 −Q(z, w)x+ P (z, w) = 0}.

The projection on the first two coordinates is a double cover of {(z, w) ∈ C2 | ∆(z, w) ≤ 0}
outside from the level set ∆(z, w) = 0, where points have a unique pre-image.

We are going to identify the points corresponding to reducible representations, and then show
that outside from these points, the SU(2, 1) and SU(3)-character varieties are smooth manifolds.
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Remark 16 Let (z, w, x) ∈ X0 ∩ Fix(Φ2). Let ρ ∈ Hom(Z/3Z ∗ Z/3Z,SL3(C)) have coordinates
(z, z, w,w, x). The following assertions are equivalent:

1. ρ is reducible.
2. There exist i, j ∈ {0, 1, 2} such that ωiz and ωjw are real and ωiz + ωjw = 3.

In this case ∆(z, w) = 0.

Proof It is an immediate consequence of Proposition 7 and the fact that we are in Fix(Φ2) and
hence, in the coordinates (z, z′, w, w′, x) ∈ C5, we have z′ = z and w′ = w. At last, we check
that ∆(z, 3− z) = 0. If we are in the setting of the equivalence, we have ∆(z, w) = 0.

Proposition 9 Outside from the points corresponding to reducible representations, the set X0 ∩
Fix(Φ2) is a sub-manifold of C3 of real dimension 4.

Proof Recall that we defined X0 ∩ Fix(Φ2) as:

{(z, w, x) ∈ C3 | x2 −Q(z, w)x+ P (z, w) = 0, ∆(z, w) ≤ 0}

where
Q(z, w) = |z|2 + |w|2 − 3

P (z, w) = 2Re(z3) + 2Re(w3) + |z|2|w|2 − 6|z|2 − 6|w|2 + 9.

We can hence re-write X0 ∩ Fix(Φ2) as:

{(z, w, x) ∈ C3 | x+ x = Q(z, w), xx = P (z, w)}.

Consider the functions f1, f2 : C3 → R given by f1(z, w, x) = Q(z, w) − (x + x) and
f2(z, w, x) = P (z, w)−(xx), and then f = (f1, f2) : C3 → R2. With this notation, X0∩Fix(Φ2) =
f−1({0}). We are going to show that outside from the points corresponding to reducible repre-
sentations, f is a submersion, i.e. that df is of rank 2.

Let (z0, w0, x0) ∈ X0 ∩ Fix(Φ2). Notice first that

∂f

∂x
(z0, w0, x0) =

(
−1
−x0

)
and ∂f

∂x
=
(
−1
−x0

)
,

hence f is always of rank at least 1 and, if x0 /∈ R, the map f is a submersion at (z0, w0, x0).
Suppose now that df(z0, w0, x0) is of rank 1. In particular, x0 ∈ R. We want to show that in this
case, the point (z0, w0, x0) corresponds to a reducible representation.

We have
z0
∂f

∂z
(z0, w0, x0) =

(
|z0|2

3z3
0 + |z0|2|w0|2 − 6|z0|2

)
and

z0
∂f

∂z
(z0, w0, x0) =

(
|z0|2

3z0
3 + |z0|2|w0|2 − 6|z0|2

)
,

and, since the two vectors linearly dependent, we have z3
0 ∈ R. In the same way, w3

0 ∈ R. Then
there exist r1, r2 ∈ R and i, j ∈ {0, 1, 2} such that z0 = ωir1 and w0 = ωjr2. By Proposition 7,
it is enough to show that r1 + r2 = 3 in order to finish the proof. We consider two cases:

First case: r1 or r2 is zero. Suppose, for example, that r2 = 0. In this case, since f(0, 0, x0) 6=
(0, 0), we have r1 6= 0. On the one hand, we have 2x0 = Q(z, 0) = r2

1−3. On the other hand, since
z0
∂f
∂z (z0, w0, x0) and ∂f

∂x (z0, w0, x0) are linearly dependent, we have x0 = 3(r1 − 2). We deduce
that 6(r1 − 2) = 2x0 = r2

1 − 3, hence r2
1 − 6r1 + 9 = 0 and r1 = 3.
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Second case: r1, r2 6= 0. We know that the following vectors are collinear:

z0
∂f

∂z
(z0, w0, x0) =

(
|z0|2

3z3
0 + |z0|2|w0|2 − 6|z0|2

)
= r2

1

(
1

3r1 + r2
2 − 6

)

w0
∂f

∂w
(z0, w0, x0) =

(
|w0|2

3w3
0 + |w0|2|z0|2 − 6|w0|2

)
= r2

2

(
1

3r2 + r2
1 − 6

)
.

We deduce that 3r1 +r2
2−6 = 3r2 +r2

1−6. If r1 6= r2, then they are the two roots of a polynomial
of the form X2−3X+k, hence r1 +r2 = 3. If not, and r1 = r2 we have 2x0 = Q(z0, w0) = 2r2

1−6
and, since z0

∂f
∂z (z0, w0, x0) and ∂f

∂x (z0, w0, x0) are collinear, x0 = r2
1 − 3r1 − 6. We deduce that

r1 = 3
2 and r1 + r2 = 3.

4.4 Description of XSU(2,1)(Z/3Z ∗ Z/3Z) and XSU(3)(Z/3Z ∗ Z/3Z)

We are going to describe here the character varieties XSU(2,1)(Z/3Z ∗ Z/3Z) and XSU(3)(Z/3Z ∗
Z/3Z). In order to do it, we are going to study in detail Fix(Φ2), verify that it is the union of
the two character varieties, and that their intersection corresponds to reducible representations.
We finally consider two slices of Fix(Φ2), that were studied respectively by Parker and Will in
[24] and by Falbel, Guilloux, Koseleff, Rouiller and Thistlethwaite in [9].

First, consider the 15 isolated points of XSL3(C)(Z/3Z∗Z/3Z), which are all in Fix(Φ2). They
correspond to totally reducible representations. Since an order 3 matrix is conjugated to a matrix
in SU(2, 1) and SU(3), we have the following remark:

Remark 17 The points of Fix(Φ2) corresponding to totally reducible representations are all in
XSU(2,1)(Z/3Z ∗ Z/3Z) ∩ XSU(3)(Z/3Z ∗ Z/3Z).

It remains to consider the representations of X0 ∩ Fix(Φ2). Proposition 2 ensures us that
points corresponding to irreducible representations are exactly in one of the character varieties
XSU(2,1)(Z/3Z∗Z/3Z) and XSU(3)(Z/3Z∗Z/3Z). For the points of X0 corresponding to reducible
representations, we briefly modify the proof of Proposition 7 in order to obtain the following
remark:

Remark 18 The points of Fix(Φ2)∩X0 corresponding to reducible representations are in the set
XSU(2,1)(Z/3Z ∗ Z/3Z). Only some of them are in XSU(3)(Z/3Z ∗ Z/3Z).

Proof A reducible representation ρ with character in X0 is conjugate to a representation given
by

S = ωi
(
S′

1

)
and T = ωj

(
T ′

1

)
with i, j ∈ {0, 1, 2}, and S′, T ′ ∈ SL2(C) of order 3 (and trace −1). Since χρ ∈ Fix(Φ2), the
representation ρ′ : Z/3Z ∗ Z/3Z → SL2(C) given by ρ′(s) = S′ and ρ′(t) = T ′, is in Fix(Φ2) ⊂
XSL2(C)(Z/3Z∗Z/3Z). If ρ is totally reducible, then, by Remark 18, χρ ∈ XSU(2,1)(Z/3Z∗Z/3Z)∩
XSU(3)(Z/3Z ∗ Z/3Z). If not, ρ′ is irreducible and, by Proposition 4, maybe after a conjugation
of ρ′, we have S′, T ′ ∈ SU(2) or SU(1, 1). If S′, T ′ ∈ SU(2), then S, T ∈ SU(2, 1) ∩ SU(3). If, on
the other hand, S′, T ′ ∈ SU(1, 1), then S, T ∈ SU(2, 1). It remains to see that the second case
happens. The point (4,−1, 7) ∈ X0 ∩ Fix(Φ2) corresponds to a reducible representation, with a
trace 4 element, and so it cannot take values in SU(3).

Furthermore, by noticing that an irreducible representation cannot take values at the same
time in SU(2, 1) and in SU(3), we obtain the following proposition:
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Proposition 10 We have

Fix(Φ2) = XSU(2,1)(Z/3Z ∗ Z/3Z) ∪ XSU(3)(Z/3Z ∗ Z/3Z).

The subsets XSU(2,1)(Z/3Z ∗Z/3Z) and XSU(2,1)(Z/3Z ∗Z/3Z) are non-empty and intersect only
at points corresponding to reducible representations.

At last, we are going to draw some slices of Fix(Φ2), corresponding to projections on coordi-
nates (z, w), followed by a restriction to a slice of the form z = z0 or w = w0. Recall that the
projection on coordinates (z, w) is a double cover outside from the level set ∆(z, w) = 0, where
points have a unique pre-image. We draw, in a plane of the form (z, w0), the curve ∆(z, w0) = 0,
and then we identify the regions contained in XSU(2,1)(Z/3Z ∗ Z/3Z) and those contained in
XSU(3)(Z/3Z ∗ Z/3Z).

4.4.1 The Parker-Will slice

In their article [24], Parker and Will give an explicit parametrization of representations of Z/3Z∗
Z/3Z = 〈s, t〉 taking values in SU(2, 1) such that the image of st is unipotent. This corresponds
exactly to representations such that the trace of the image of st is equal to 3. They form a
family of representations of the fundamental group of the Whitehead link complement containing
the holonomy representation of a spherical CR uniformization of the manifold. This particular
representation has coordinates (z, w, x) = (3, 3, 15+3i

√
15

2 ). We can see this slice in figure 1. We
see three lobes corresponding to representations taking values in SU(2, 1), which intersect in
a singular point, of coordinate z = 0, which corresponds to a totally reducible representation,
of coordinates (z, w, x) = (0, 3, 3). Going back to coordinates (z, w, x) on X0 ∩ Fix(Φ2), the
representations of the slice z = 0 form, topologically, three spheres touching at a single point.

Fig. 1: The Parker-Will slice of XSU(2,1)(Z/3Z ∗ Z/3Z).
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4.4.2 The Thistlethwaite slice

In the last section of their article [9], Falbel, Guilloux, Koseleff, Roullier and Thistlethwaite give
an explicit parametrization of representations lifting the irreducible components R1, R2 and R3
of XSL3(C)(Γ8), as we saw in Subsection 2.2.2. They also give necessary and sufficient conditions
for a representation to take values in SU(2, 1) or SU(3): therefore they parametrize lifts of the
intersections of R1 and R2 with XSU(2,1)(Γ8) and XSU(3)(Γ8). Recall that the fundamental group
of the figure eight knot complement has the following presentation:

Γ8 = 〈g1, g2, g3 | g2 = [g3, g
−1
1 ], g1g2 = g2g3〉

As noticed by Deraux in [6] and by Parker and Will in [24], if G1, G2 and G3 are the images of
g1, g2 and g3 respectively by a representation with character in R2, then (G1G2) = (G2

1G2)3 =
G4

2 = Id. Setting T = (G1G2)−1 and S = (G2
1G2), we have two elements of SL3(C) of order 3

which generate the image of the representation, since G1 = ST,G3 = TS and G2 = (TST )−1 =
(TST )3. Hence we can consider R2 ⊂ XSL3(C)(Z/3Z ∗Z/3Z): this component corresponds to the
slice of coordinate w = 1, since TST has order 4 if and only if tr(TST ) = tr(ST 2) = tr(ST−1) =
1. We can see this slice in figure 2. It has three regions of representations taking values in SU(2, 1)
and a region of representations taking values in SU(3). They intersect at three singular points,
corresponding to reducible representations. Going back to coordinates (z, x) on on the slice w = 1
of X0 ∩Fix(Φ2), these regions are the images of four topological spheres which intersect at three
points.

Fig. 2: The slice of Falbel, Guilloux, Koseleff, Roullier and Thistlethwaite of XSU(2,1)(Z/3Z ∗
Z/3Z) ∪ XSU(3)(Z/3Z ∗ Z/3Z). It is given by w = 1
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4.4.3 Other remarkable slices

At last, to complete the whole picture, we describe three more slices of X0∩Fix(Φ2). Recall that,
thanks to Proposition 9, a slice of the form w = w0 will only have singular points if w3

0 ∈ R.
On the one hand, in figure 3, we see the slices w = 3.5 and w = 3.5 + 0, 1i. In each one there
are three regions corresponding to irreducible representations taking values in SU(2, 1), which
intersect, in the slice w = 3.5 at three points corresponding to reducible representations. There
are no points corresponding to representations with values in SU(3).

(a) The slice w0 = 3.5. There are three singu-
lar points.

(b) The slice w0 = 3.5 + 0, 1i. The region is
smooth.

Fig. 3: The slices w0 = 3.5 and w0 = 3.5 + 0.1i.

On the other hand, in figure 4, we see the slice w = 1 + 0, 1i: there are three regions corre-
sponding to irreducible representations taking values in SU(2, 1) and a region corresponding to
representations taking values in SU(3).
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Fig. 4: The slice w0 = 1 + 0, 1i. The region is smooth.
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