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Abstract
We present an analytical model reproducing literature-based numerical simulations

of the Marine Atmospheric Boundary Layer (MABL) over a Sea-Surface Temper-

ature (SST) front, with wind blowing from the cold to the warm side. Turbulence

is parametrized through a varying diffusion coefficient with two critical features: it

is parabolic in the vertical and its mean value is decoupled from the MABL height

(unlike an Ekman layer model). These two novel features are found essential to

recover the internal structure of the MABL from numerical simulations. Different

dynamical regimes are obtained and interpreted through non-dimensional numbers

characterizing the relative importance of terms driving the momentum equation.

A closed-form expression of the vertically integrated wind divergence in the MABL

is then obtained. The resulting divergence is linearly linked to the SST Laplacian

and to the downwind SST gradient. This shows that the response of the MABL

wind divergence to an SST front is highly dependent on its spatial scale. The cou-

pling coefficients vary with the ratio of MABL height to turbulence strength, i.e. the

inverse Ekman number. We further show different regimes in the rate of variation of

the coupling coefficients, depending on the Ekman number value. This can result in

qualitatively different vertical winds, having potential implications for the coupling

of the MABL with the free troposphere.
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1 INTRODUCTION

Air–sea interactions over sea-surface temperature (SST)
fronts have aroused renewed interest in recent years (reviews
by Xie, 2004; Small et al., 2008). Observations of the marine
atmospheric boundary layer (MABL) structure, surface winds
and wind stress over SST fronts show persistent patterns, on
monthly time-scales and on spatial scales from 50 to 100 km
(e.g. Businger and Shaw, 1984; Liu et al., 2000; O’Neill
et al., 2003; O’Neill et al., 2005; Chelton et al., 2004; Chel-
ton et al., 2007; Chelton and Xie, 2010), with stronger surface
wind stress and speed over the warm part of the front. These

imprints and associated horizontal wind divergences have
been shown to have important impacts on the free troposphere
dynamics (e.g. Foussard et al. 2019a).

Two main physical mechanisms are put forth in the lit-
erature to explain the generation of ageostrophic wind in
the MABL: the downward momentum mixing mechanism
(Hayes et al., 1989; Wallace et al., 1989) and the pressure
adjustment mechanism (Lindzen and Nigam, 1987). In the
former, the wind increase is explained by a change in vertical
momentum mixing and boundary-layer thickness, induced by
a destabilization of the MABL on the warm side of the front.
It results (O’Neill et al., 2003; Chelton et al., 2004) in a linear
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correspondence between the divergence of the wind stress
perturbation and the downwind SST gradient field. In the lat-
ter, the SST gradient drives an atmospheric pressure gradient.
The consequence is a linear relation between the horizontal
divergence of the wind and the Laplacian of SST, and thus the
vertical wind speed in the MABL. This link has been studied
numerically in idealized (Spall, 2007; Kilpatrick et al., 2014)
and more realistic (Lambaerts et al., 2013; O’Neill et al.,
2017; Plougonven et al., 2018; Foussard et al., 2019b) config-
urations, along with its consequences for the full troposphere
(e.g. Minobe et al., 2008; Takatama et al., 2012; 2015).

Different aspects of the MABL response to an SST front
have been investigated using analytical models. The MABL
height variation as a consequence of an atmospheric tem-
perature difference has been derived by Hsu (1984) and Hsu
et al. (1985), using a thermodynamical model. Within the
same line of work, Laikhtman and Yordanov (1979), Brown
and Liu (1982) and Kudryavtsev (1996) focused on deriving
both the MABL height and the turbulent intensity varia-
tions by using a two-layer model, with an Ekman layer on
top of a bottom surface log-layer. The relative contributions
of downward momentum mixing and pressure adjustment
mechanisms to the generation of ageostrophic wind have
been studied by Bourras et al. (2004) with a simple linear
wind stress parametrization in the MABL. Other works have
focused on the downward momentum mixing mechanism
by assuming a sharp front (Samelson et al., 2006) or on the
pressure adjustment mechanism to study the impact of the
MABL wind divergence on the free troposphere above with
an Ekman layer model (Feliks et al., 2004). A semi-analytical
model (Schneider and Qiu, 2015) has also been developed
to investigate the response of the MABL to an undulating
SST front. The linear reduced-gravity model includes both
coupling mechanisms and a non-constant vertical turbu-
lent diffusion. Coupling between wind stress divergence
and downwind SST gradients was found be sensitive to the
turbulent diffusion representation.

Focusing on the case of a wind blowing from the cold to
the warm side of the front, several numerical investigations
of the MABL structure have been performed (Spall, 2007;
Kilpatrick et al., 2014). Results show a complex vertical
structure of the wind in the MABL, questioning to what
extent it can be reproduced by a simple model of the type
Schneider and Qiu (2015), and how it affects the horizontal
wind divergence within the MABL. In particular, numerical
simulations reveal that (a) the vertical profile of the turbulent
diffusion coefficient (driving the vertical momentum mixing)
in the MABL is not horizontally and vertically constant, and
has a parabolic vertical shape; and (b), more importantly, the
relationship between the intensity of the turbulent diffusion
coefficient and the MABL height as prescribed in standard
Ekman layer theory is not satisfied. In the present work, we
present an analytical model including those two features, to

investigate the vertical and horizontal structure of the MABL
and the resulting mean wind divergence

The analytical model is presented in Section 2. It includes
both above-mentioned features, which allow exploration of
different dynamical regimes of the MABL response to an
SST front. These are characterized by means of dimension-
less parameters in Section 3. The model is then compared to
a state-of-the-art idealized numerical simulation (Section 4).
A closed form for the vertically integrated horizontal wind
divergence is then derived from the model in Section 5.
It links the physical processes responsible for the internal
dynamical structure of the MABL to the response of the
vertically integrated divergence to different features of the
SST field. Conclusions are presented in Section 6. The
code containing the analytical solution and used to generate
the figures is available freely on https://github.com/AAyet/
QJRMS_2019.

2 ANALYTICAL MODEL
DESCRIPTION

In this section, we describe the quasi-equilibrium response of
the MABL to an SST front within an analytical framework,
reproducing results from numerical simulations. The analyt-
ical model set-up is summarized in Figure 1 with notations
given in Table 1. A cross-front zonal geostrophic wind 𝑈g

is considered, blowing from the cold to the warm part of the
front. The cross-front (zonal), along-front (meridional) and
vertical coordinates are denoted by 𝑥, 𝑦 and 𝑧 respectively.
In order to derive the ageostrophic wind in the MABL, the
model uses the momentum balance. The thermodynamical
and turbulent structure are model parameters unlike other
works where they were determined from a heat balance or
Monin–Obukhov theory (e.g. Brown and Liu, 1982; Hsu,
1984; Kudryavtsev, 1996).

In addition to the quasi-equilibrium assumption (i.e.
𝜕𝑡(⋅) = 0), cases with low Rossby number (𝑅𝑜) are consid-
ered, so that momentum advection can also be neglected. By
denoting𝑈 = 𝑢+i𝑣 the complex ageostrophic wind generated
in the MABL, 𝐿 the characteristic horizontal length-scale of
the SST front and 𝑓 the Coriolis parameter (∼ 10−4 in the
following), this assumption reads

𝑅𝑜 =
|𝑈 + 𝑈g|
𝑓𝐿

≪ 1. (1)

The horizontal momentum balance, on an 𝑓 -plane, is
obtained by expanding around a reference vertically uni-
form MABL characterized by a hydrostatic pressure 𝑃0 in
geostrophic equilibrium with 𝑈g and a constant potential
temperature 𝜃0 (equal to 280 K in the following). It reads

1
𝜌0
𝜕𝑧𝜏

⏟⏟⏟
turbulent mixing

−i𝑓𝑈
⏟⏟⏟

Coriolis force

= 1
𝜌0

(𝜕𝑥𝑃 + i𝜕𝑦𝑃 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

pressure force

, (2)
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T A B L E 1 Nomenclature table of the physical quantities used in the atmospheric analytical model

Notation Definition
Model constants
𝑓 Coriolis parameter (s−1)

𝑔 Gravity acceleration (m/s)

𝑃0 Reference pressure (Pa)

𝜃0 Reference atmospheric potential temperature (280 K)

𝜌0 Air density (kg/m)

Model parameters
ℎ Marine Atmospheric Boundary-Layer height (m)

𝐾0 Bottom value of the vertical mixing coefficient (𝐾0 = 𝐾(𝑧 = 0)) (m2∕s)

𝐾m Vertical mixing coefficient at the middle of the MABL (𝐾m = 𝐾(𝑧 = ℎ∕2)) (m2/s)

𝐾1 Top value of the vertical mixing coefficient (𝐾1 = 𝐾(𝑧 = ℎ)) (m2/s)

𝐿 Characteristic horizontal length-scale of the SST front (m)

𝑈g Complex geostrophic wind (m/s)

Δ𝜃 Characteristic temperature difference across the SST front (K)

𝜃 Atmospheric potential temperature perturbation (K)

Other variables
ℎe “Effective” MABL height defined by Equation (12) (m)

𝐾 Vertical turbulent mixing coefficient (m2/s)

𝐾e Height-averaged turbulent mixing coefficient in the MABL (m2/s)

𝑙e Ekman layer height (𝑙e = 𝜋(2𝐾e∕𝑓 )1∕2) (m)

𝑃 Pressure perturbation (Pa)

𝑈 Complex ageostrophic wind (m/s)

𝜏 Complex horizontal wind stress perturbation (kg/m/s2)

where 𝜃 and 𝑃 are the potential temperature and pressure per-
turbations, and 𝜏 the complex wind stress perturbation. The
momentum equation is an Ekman-like balance, as defined
by Samelson et al. (2006), Spall (2007) and Kilpatrick et al.
(2014). It describes the MABL in the regions where it is
nearly at equilibrium with SST. By further assuming a hydro-
static atmosphere, that is, under the condition that

||||| 𝑐𝜐𝑐𝑝 𝑃𝑃0

|||||≪ |||| 𝜃𝜃0

||||≪ 1, (3)

the vertical momentum balance for the perturbations reads

1
𝜌0
𝜕𝑧𝑃 = 𝑔 𝜃

𝜃0
, (4)

where 𝑐𝑣 and 𝑐𝑝 are the isobaric and isochoric heat capacities
of dry air. Note that relaxation of condition (1) would require
the use of a numerical scheme to solve the momentum balance
(e.g. Schneider and Qiu, 2015, where the first-order nonlinear
advection term is considered).

The analytical model relies on four assumptions, based on
results from numerical simulations both from the literature
(Spall, 2007; Kilpatrick et al., 2014) and performed in the
present work (Section 4). First, the MABL is assumed to be
well-mixed, which implies that atmospheric potential temper-
ature is constant in the vertical. The horizontal momentum

balance can thus be rewritten as

1
𝜌0
𝜕𝑧𝜏 − i𝑓𝑈 = 𝑔

𝜃0

[
(𝑧−ℎ)(𝜕𝑥𝜃+i𝜕𝑦𝜃) − (𝜕𝑥ℎ+i𝜕𝑦ℎ)𝜃

]
, (5)

where the pressure perturbation has been computed by
vertically integrating the vertical momentum equation
(Equation (4)) from the top of the MABLℎ to a given height 𝑧.

Second, we assume that the ageostrophic wind is zero at
the top of the MABL (simulations show a weak ageostrophic
wind). We further assume a no-slip surface condition, leading
to the boundary conditions

𝑈 (𝑥, 𝑦, ℎ) = 0 and 𝑈 (𝑥, 𝑦, 0) = −𝑈g. (6)

Third, the stress vector is classically related to the wind
shear through a turbulent mixing coefficient 𝐾

𝜏(𝑥, 𝑦, 𝑧) = 𝜌0𝐾(𝑥, 𝑦, 𝑧) 𝜕𝑧𝑈 (𝑥, 𝑦, 𝑧) (7)

and, following numerical simulations (e.g. Kilpatrick et al.,
2014), we assume the coefficient to be parabolic along the
vertical

𝐾(𝑥, 𝑦, 𝑧) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦)
[
𝑧− ℎ(𝑥, 𝑦)

2

]
+ 𝐶(𝑥, 𝑦)

[
𝑧 − ℎ(𝑥, 𝑦)

2

]2

. (8)
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For clarity, the parabola is defined through the mixing
coefficient values at the bottom (𝐾0), middle (𝐾m), and top
(𝐾1) of the MABL, such that

⎧⎪⎪⎨⎪⎪⎩

𝐴(𝑥, 𝑦) = 𝐾m(𝑥, 𝑦),

𝐵(𝑥, 𝑦) = 𝐾1(𝑥, 𝑦) −𝐾0(𝑥, 𝑦)
ℎ(𝑥, 𝑦)

,

𝐶(𝑥, 𝑦) = 2[𝐾0(𝑥, 𝑦) +𝐾1(𝑥, 𝑦) − 2𝐾𝑚(𝑥, 𝑦)]
ℎ2(𝑥, 𝑦)

.

(9)

Neglecting advection implies that the model solves the
momentum balance in independent vertical columns, labelled
by the horizontal coordinate (𝑥, 𝑦). Using the first three
assumptions, the dynamical structure (i.e. the wind𝑈 ) of each
column is uniquely defined in the model by prescribing 𝜃,
𝜕𝑥,𝑦𝜃, ℎ, 𝜕𝑥,𝑦ℎ and 𝐾 .

The last assumption, on the thermodynamical structure
of the independent columns, is twofold. First, the horizon-
tal variations of potential temperature are assumed to follow
SST variations with an horizontal lag that destabilizes the
MABL (as drawn in Figure 1). This was found in numerical
simulations for flows over realistic (Lambaerts et al., 2013)
and idealized (Kilpatrick et al., 2014) SST fields. Second we
consider that the intensity of the turbulent diffusion coeffi-
cient (i.e., 𝐾0, 𝐾1 and 𝐾m) and the MABL height (ℎ) are
proportional to potential temperature (and thus SST pertur-
bation with some lag). This relationship holds if we assume
to be in the thermal wake of the SST front, where the atmo-
sphere is not in local thermal equilibrium with the ocean,
and the turbulent structure is thus mainly determined by the
air–sea temperature difference. Since the MABL is invari-
ant along the along-front direction (𝑦), this implies that in
the above equations, potential temperature can be used as the

F I G U R E 1 Drawing of a typical configuration of a front in the
meridional direction, with zonal geostrophic wind blowing from the cold
to the warm side. Physical parameters of the MABL model and their
spatial dependencies are represented. In the upper panel, dashed lines
represent the vertical turbulent diffusion coefficient, and the dot-dashed
line the height ℎ of the MABL. In the lower panel, the dot-dashed line
is SST and the solid line is the potential temperature (homogeneous in
the MABL). Note that it follows SST with a horizontal lag

cross-front coordinate, that is, we replace (𝑥, 𝑦) by 𝜃 in the
previous equations. In particular, replacing ℎ(𝑥, 𝑦) by ℎ(𝜃) in
the momentum balance (5) yields

1
𝜌0
𝜕𝑧𝜏 − i𝑓𝑈 = 𝑔

𝜃0
[𝑧 − ℎ(𝜃) − 𝜃𝜕𝜃ℎ] (𝜕𝑥𝜃 + i𝜕𝑦𝜃). (10)

Note that this change of variables does not imply that 𝑈
depends solely on 𝜃, since it also depends also on its hori-
zontal gradient. The horizontal lag in potential temperature
with respect to SST impacts both MABL height and turbulent
intensity. It accounts to some extent for nonlinear advection
affecting both fields. This lag is calibrated from numerical
simulations (Section 4).

The simplicity of the model allows for an analytical solu-
tion to be found (see appendix A for details). This is used
in the next sections to both perform an in-depth analysis
of the solution properties and to derive an exact expression
of the wind-divergence within the MABL. Equation (10) is
solved using the Legendre functions, a generalization of the
Legendre polynomials, for non-integer order and degree. The
solutions reveal that the assumption of a parabolic turbu-
lent mixing coefficient (i.e. 𝜕𝑧𝜏 ≠ 0 in Equation (10)) has a
large impact on the solution and thus the MABL structure.
Section 5 further shows that this difference results in a qual-
itatively different response of the vertically integrated wind
divergence.

3 INTERNAL DYNAMICAL
STRUCTURE OF THE MABL

To characterize the behaviour of the analytical model solu-
tions, the following non-dimensional numbers are defined to
quantify the relative importance of the mixing, pressure and
Coriolis terms in the momentum balance (10)

⎧⎪⎪⎨⎪⎪⎩
𝐸𝑘 =

mixing
Coriolis

=
𝑙2e

ℎ2
= 2𝜋2𝐾e

ℎ2𝑓
,

𝑃 𝑐 =
pressure
Coriolis

= 𝑔ℎ𝑒Δ𝜃
𝜃0𝑓𝑈g𝐿

,

(11)

where Δ𝜃 is the characteristic temperature difference across
the SST front, and where we have defined an “effective"
MABL height

ℎe(𝜃) = ℎ(𝜃)
(

1 + 𝜃 d lnℎ
d𝜃

)
, (12)

a mean turbulent mixing coefficient (over the MABL)

𝐾e =
1
3
𝐾m + 1

6
(𝐾0 +𝐾1) (13)



AYET AND REDELSPERGER 5

and 𝑙2e = (2𝜋2𝐾e)∕𝑓 , the height of an Ekman layer given
the mixing intensity and the Coriolis force (following Feliks
et al., 2004).

Equation (10) can be thus rewritten as

𝐸𝑘 𝜕𝑧′ (𝐾 ′𝜕𝑧′𝑈
′) − i𝑈 ′ = 𝑃𝑐 (𝑧′ − 1)(𝜕𝑥′ + i𝜕𝑦′ )𝜃′, (14)

where the primes denote non-dimensional quantities defined
as

𝑧′ = 𝑧

ℎ
,

𝑈 ′ = 𝑈

𝑈g
,

𝐾 ′ = 𝐾

𝐾e
,

𝜕′𝑥𝜃
′ = 𝐿𝜕𝑥𝜃

Δ𝜃
,

𝜕′𝑦𝜃
′ =

𝐿𝜕𝑦𝜃

Δ𝜃
.

(15)

The dependence of the zonal and meridional winds on the
two non-dimensional numbers defined above are presented in
Figure 2, and discussed below.

3.1 Role of mixing
The present model includes the fact that the height of the
MABL (related to the intensity of turbulent heat mixing) is not
entirely determined by 𝐾 , the intensity of turbulent momen-
tum mixing (unlike an Ekman layer model). The Ekman
number is thus interpreted as a free parameter reflecting
how the MABL adjusts to an SST perturbation. Its variation
accounts for changes in environmental conditions (e.g. the
upwind MABL structure)

Non-dimensional vertical wind profiles as a function of
Ekman number are presented on Figure 2a,b. The pressure
gradient is set to zero and variation of the Ekman number is
achieved by varying the three values parametrizing the mix-
ing coefficient (𝐾0, 𝐾1 and 𝐾m) uniformly, with 𝐾 nearly
constant on the vertical (i.e., 𝐾0 = 𝐾1 = 𝐾m − 0.1 m2/s).

For 𝐸𝑘 ∼ 1, a vertical wind profile close to that of
an Ekman layer is obtained, that is, an Ekman spiral with
a supergeostrophic region starting at 𝑧 ∼ 0.8ℎ, also called
upper-layer jet (e.g. Samelson et al., 2006). The difference
from a standard Ekman layer is here mostly that the top
boundary condition is set at a finite height ℎ.

As mentioned above, allowing for values of 𝐸𝑘 different
from 1 is a specificity of the analytical model (in contrast to
Feliks et al., 2004, where it is set to 1). For values of 𝐸𝑘
larger than one, the wind becomes more homogeneous in the
MABL as the Ekman layer extends upwards. For values less
than 1, the wind shear increases close to the ground and the
upper-layer jet extends deeper near the surface, for example,
starting at 𝑧 ∼ 0.4ℎ for 𝐸𝑘 = 0.5.

Figure 2a also reveals that the sensitivity of the zonal
wind to variations in 𝐸𝑘 decreases as 𝐸𝑘 increases. This
has important implications for the vertically integrated wind
divergence, as discussed in Section 5.

Variation of the Ekman number has also been performed
by varying only 𝐾m keeping 𝐾0 and 𝐾1 fixed (i.e. increasing
the curvature of the horizontal parabola followed by 𝐾 , not
shown here). In this case, an increase of the Ekman number
decreases the shear in the middle of the boundary layer, but
a similar shear as previously is obtained close to the top and
bottom boundaries.

3.2 Role of the pressure gradient
For a fixed temperature difference Δ𝜃 and geostrophic wind
𝑈g, the 𝑃𝑐 non-dimensional number varies as ℎe∕𝐿 (with 𝐿
the typical width of the SST front). It can thus be interpreted
as either measuring the relative impact of pressure on the
momentum balance (i.e. as defined in (11)), or as the inverse
relative scale of the SST front.

When mixing vanishes (𝐸𝑘 = 0), the momentum bal-
ance (10) reduces to a geostrophic balance. In the analytical
model, this is investigated by taking the limit 𝐸𝑘 ≪ 1 with
𝑃𝑐 ∼ 1 (𝐸𝑘 = 0 would change the order of the momentum
equation, hence the solution). The bottom boundary condition
(𝑈 = 0) is incompatible with a purely geostrophic and ver-
tically homogeneous equilibrium. The turbulent mixing term
thus acts in a shallow bottom boundary sub-layer to create
necessary vertical wind shear. This can be described mathe-
matically following a standard matched asympotics approach.
If we let 𝜉 = 𝑧′∕𝐸𝑘1∕2 in (14), we obtain

𝜕𝜉(𝐾 ′𝜕𝜉𝑈
′) − i𝑈 ′ = (𝐸𝑘1∕2𝜉 − 1)(𝜕𝑥′ + i𝜕𝑦′ )𝜃′, (16)

which describes a MABL at geostrophic equilibrium, with
a shallow sheared sub-layer at the ground. Note that this
equation is similar to the one derived in Munk, 1950, for an
ocean basin wind-driven circulation with a western boundary
current.

Figure 2c,d show the influence of a variation of the pres-
sure gradient on the vertical wind structure with 𝐸𝑘 = 1
(i.e. with respect to a reference Ekman layer, recovered for
𝑃𝑐 = 0). Consistently with the above matched asymptotics
analysis, the Ekman layer becomes shallower with increas-
ing pressure or decreasing front scale (for 𝑃𝑐 = 1, it starts
at 𝑧 ∼ 0.6ℎ), with vertical zonal wind shear confined to the
bottom of the MABL.

For stronger values of 𝑃𝑐, negative meridional winds are
observed, jointly with supergeostrophic zonal winds (i.e. at
a height 𝑧 ∼ 0.2ℎ for 𝑃𝑐 = 1.5). This is interpreted as the
geostrophic wind (negative meridional wind in the North-
ern Hemisphere) overcoming the background Ekman wind.
However note that, when 𝑃𝑐 increases, the scale of the front
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(a) (c)

(b) (d)

F I G U R E 2 (a, c) Zonal and (b, d) meridional relative wind 𝑈∕𝑈g as a function of height for different regimes (a, b) for 𝑃𝑐 = 0 as a function
of 𝐸𝑘, and (c, d) for 𝐸𝑘 = 1 as a function of 𝑃𝑐

decreases, which implies that advection might start playing
a role in the momentum balance (thus invalidating the model
assumptions).

4 COMPARISON WITH A
NUMERICAL SIMULATION

In this section, we present a comparison of the analytical
model with a numerical simulation to gain insight on the
dynamical regimes revealed by the analytical model and to
validate the assumptions presented in Section 2.

4.1 Numerical model set-up
A typical configuration as encountered in the literature (e.g.
Spall, 2007; Kilpatrick et al., 2014) is used here, with an SST

anomaly of the form

𝑇 (𝑥) = Δ𝜃
2

[
1 + tanh

(𝑥 − 𝑥0

𝐿

)]
, (17)

with 𝐿 = 100 km, 𝑥0 = 1, 800 km and Δ𝜃 = 3 K. A back-
ground zonal geostrophic wind is prescribed with a value of
5 m/s and balanced by a barotropic meridional pressure gradi-
ent. In this configuration, hypothesis (1) used in the analytical
model is satisfied (with 𝑅𝑜 ∼ 10−1).

This configuration corresponds to large-scale and weak
fronts, as can be generated by large-scale oceanic currents
such as the Gulf Stream (e.g. Piazza et al., 2016), the Kuroshio
Extension (Kawai et al., 2014), the Agulhas Current (e.g.
Perlin et al., 2014) or associated with the Pacific Equatorial
Cold Tongue (e.g. Anderson, 2001).

The Mesoscale Non-Hydrostatic model (Meso-NH) ver-
sion 5.3.0 (Lafore et al., 1998; Lac et al., 2018) is used in its
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idealized two-dimensional configuration. Clouds, precipita-
tion, and radiative fluxes are not considered. Open boundary
conditions are prescribed along the 𝑥 direction. The domain
dimensions are 3,600 km in the zonal direction and 20 km
in the vertical. The horizontal resolution is 1 km whereas
the vertical grid spacing varies from 1 m at the surface to
1,000 m at 8 km height. We use an 𝑓 -plane geometry with
𝑓 = 10−4 s−1. In the troposphere a lapse rate of 6.8 K/km
is prescribed with the tropopause at 12 km. The turbulence
scheme (Cuxart et al., 2000) is based on a 1.5-order clo-
sure and used in its one-dimensional form with the mixing
length parametrized according to Bougeault and Lacarrere
(1989). Sea surface fluxes are computed using the bulk
parametrization COARE3.0 (Fairall et al., 2003). The model
starts from initial homogeneous geostrophic conditions, and
runs for 36 hr. At this time, the flow is in a quasi-equilibrium
state, even though the MABL continues to grow slightly
and some inertial oscillations of the wind are observed
above it.

4.2 Analytical model set-up and hypothesis
In the following we discuss how the assumptions made in the
derivation of the analytical model (Section 2) compare with
the numerical simulation, and we calibrate the free parameters
of the analytical model (i.e. 𝜃, 𝐾0, 𝐾1, 𝐾m and ℎ).

The total zonal and meridional winds from the numeri-
cal simulation are shown in Figures 3a and 4a (i.e. the sum
of the ageostrophic 𝑈 and the geostrophic wind 𝑈g), together
with the simulated potential temperature. The results show
a bottom atmospheric boundary layer, where potential tem-
perature is vertically homogeneous, on top of which the total
wind matches the geostrophic wind. The height of this layer
increases with the cross-frontal coordinate. We define the
MABL as this bottom atmospheric boundary layer.

The magnitude of the turbulent mixing coefficient as com-
puted in the numerical model (dashed lines in Figure 4c–e)
exhibits a parabolic shape along the vertical direction and
is symmetric with respect to the middle of the MABL. The

F I G U R E 3 Total zonal wind (m/s) (a) after 36 hr as simulated by the numerical model and (b) from the analytical solution. (c) shows SST
(dotted line) and mean potential temperature (dashed line) from the numerical model, and extrapolated potential temperature used in the analytical
calculations (solid line). Solid black contours in (a) show potential temperature, with 0.5 K interval. The dashed line in (a, b) is the extrapolated
MABL height used in the analytical calculations
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intensity of the vertical maximum of the mixing coefficient
increases with SST.

As shown in Figure 3c, the MABL-averaged potential
temperature from the numerical model (dashed line) follows
SST (dotted line) with a horizontal lag. To represent the
advection of the MABL thermodynamical structure (as dis-
cussed in Lambaerts et al., 2013) in the analytical model,
the MABL potential temperature 𝜃 is set to have the same
shape as the SST (17), but with 𝐿 = 300 km and 𝑥0 =
2,200 km (solid line). This profile follows closely the poten-
tial temperature obtained from the numerical model (dashed
line), thus reproducing the numerically simulated pressure
gradient.

Following the fourth assumption of Section 2,𝐾0,𝐾1,𝐾m

and ℎ are assumed to be linearly linked to potential temper-
ature 𝜃 (in K). To obtain the best match with the numerical

results, this dependence is calibrated as

⎧⎪⎨⎪⎩
𝐾1 = 𝐾0 = 10−5 (m2∕s),

𝐾m = 1.5 + 3 × 𝜃 (m2∕s),

ℎ = 134 + 142 × 𝜃 (m),

(18)

that is, the diffusion coefficient at the top and at the bottom of
the MABL is of the order of magnitude of molecular viscos-
ity, and its value in the middle increases linearly with potential
temperature perturbation. As shown in Figure 4c–e, the result-
ing mixing coefficient is of the order of magnitude of the
one obtained in the numerical simulation. The extrapolated
MABL height is consistent with the MABL height observed
in numerical simulations before and after the front (the dashed
line in Figure 4a). Above the front, the extrapolated value is
higher than the value from numerical simulation, indicating

F I G U R E 4 Total meridional wind (m/s) (a) as simulated after 36 hr from the numerical model and (b) from the analytical solution. Black
contours in (a) show potential temperature, with 0.5 K interval. The dashed line in (a, b) is the extrapolated MABL height used in the analytical
calculations. (c, d, e) show vertical profiles of the turbulent mixing coefficient used in the analytical solution (solid line) and as simulated from the
numerical model (dashed line) (c) before, (d) above and (e) after the SST front
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that the link between ℎ and 𝜃 is no longer linear. This can be
attributed to nonlinear advection effects in the heat equation
solved by the numerical model.

Summarizing, the four assumptions made in the deriva-
tion of the analytical model are consistent with the numerical
simulation. In particular, Equation (18) is a strong result, indi-
cating that the turbulent structure of the MABL can be almost
described as linearly related to the advected SST.

4.3 Discussion
Results of the numerical simulation and the analytical model
are shown in Figures 3 and 4, for the total zonal and merid-
ional wind respectively. The evolution of the winds in the
boundary layer is consistent with previous simulations (Spall,
2007; Kilpatrick et al., 2014). In particular in both numer-
ical and analytical models, a vertical shear is created over
the cold water, stronger than above the warm water, where
momentum mixing is enhanced due to thermal production
of turbulent kinetic energy. As a result of the Coriolis force,
the shear occurs both in the zonal and meridional compo-
nents of the wind. In both models, the zonal wind exhibits a
sharp variation on top of the front, consistent with a dominant
response of the wind divergence to the SST Laplacian in this
configuration (Section 5).

The horizontal structure in both the analytical model and
the numerical simulations can be split into three distinct
regions. Vertical wind profiles in each region are presented in
Figure 5. Upwind and downwind of the front (for 𝑥∼200 km,
Figure 5a,b and for 𝑥 ∼ 3,000 km, Figure 5e,f respectively),
meridional and zonal wind shear is present. The shear is not
constant on the vertical, but increases when approaching the
top and bottom boundaries of the MABL, due to the parabolic
shape of the mixing coefficient.

Focusing on the region upwind of the front, numerical sim-
ulations reveal the presence of a strongly stratified layer on top
of the MABL (at around 140 m height, Figure 3a), which bal-
ances the sharp decrease of the ageostrophic wind to zero. The
no-slip upper boundary condition enforced in the analytical
model plays a similar role in developing a strong wind shear,
even though it is located higher than in the numerical model
(Figure 5a). However, a zone of supergeostrophic wind (at 𝑧 ∼
90 m in Figure 5a) is missed by the analytical model, possibly
due to the presence of upper-layer temperature stratification
in the numerical model.

Above the SST front (between 1,500 and 2,500 km), the
effect of the pressure gradient on the momentum balance
cause a horizontal wind divergence linked to the tempera-
ture Laplacian (Figure 3). Line plots (Figure 5c,d) further
show that the main difference between the analytical and
numerical model is in the meridional wind. The analytical
model predicts a negative meridional wind (as can be seen
also in Figure 4b). In this region, the pressure gradient
induces a strong value of the non-dimensional number 𝑃𝑐,

which implies the existence of a geostrophic meridional wind
overcoming the Ekman wind (Section 3.2). The absence of
this feature in the numerical model results from the advec-
tion term. Thus, even though the Rossby number is weak in
this particular configuration, advection still plays a role near
the frontal region (as diagnosed in Kilpatrick et al., 2014, for
stronger winds).

In all three regions, vertical profiles reveal that the main
difference between the analytical and numerical models lies in
the meridional winds. This indicates that the effect of advec-
tion is predominant for meridional winds, which are thus not
well represented by the analytical model. Note that this has
no impact on the discussion on wind divergence in Section 5,
since meridional winds have no meridional derivative in the
present configuration (i.e. 𝜕𝑦𝑣 = 0).

Equation (18) is a strong result of the analytical model
indicating that the turbulent structure of the MABL can be
linearly linked to SST. The sensitivity of the MABL structure
to a change in this relation been studied and is not shown
here. It was found that the internal structure of the MABL is
not sensitive to a decrease in 𝐾0 and 𝐾1, whereas it diverges
from the numerical solution when both these coefficients are
increased.

Figure 6 shows the Ekman number as a function of the
cross-front coordinate from the numerical simulation and
the analytical model. Both values are similar upwind and
downwind of the front. The numerical model shows an
increase in Ekman number above the front (peaking at 𝑥 ∼
1,800 km) which is not present in the analytical model. The
Ekman number increases with increasing 𝐾e and decreases
with increasing ℎ. Since, from Figure 4d, 𝐾e is lower in
the numerical model than in the analytical solution in this
region, the observed difference in Ekman number is due to
a difference in ℎ. Comparison of Figure 4a,b indeed shows
that the MABL height in the numerical model is lower than
the MABL height in the analytical model for 𝑥∼1,800. This
delayed increase in the numerical model MABL height is
due to the nonlinear effect of advection on the heat budget,
and results in a violation of the linear dependence between
MABL height and potential temperature, as assumed in the
analytical model. More generally, this indicates that advec-
tion intensity (which can vary depending on e.g. 𝑈g) can
be an environmental parameter affecting the Ekman number
value, for a given SST front.

Figure 6 further shows that the Ekman number is lower in
the downwind part of the front (𝐸𝑘 ∼ 2) than in the upwind
part (𝐸𝑘 ∼ 6). This decrease is correlated with an increase
of the zonal wind, and of the turbulent diffusion coefficient.
Previous work (e.g. Frenger et al., 2013) attributed this wind
increase to the downward momentum mixing mechanism,
that is, an enhanced downward transport of momentum due
to enhanced turbulence, leading to a stronger wind. What the
present analysis shows is that this wind increase is related to a
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(a) (c) (e)

(b) (d) (f)

U (m/s) U (m/s) U (m/s)

V (m/s) V (m/s) V (m/s)

F I G U R E 5 Vertical profiles of total (a, c, e) zonal and (b, d, f) meridional winds from the analytical solution (solid line) and from the
numerical model as simulated after 36 hr (dashed line). (a, b) are before the SST front at 𝑥 = 200 km, (c, d) are above the SST front at 𝑥 = 2,000 km,
and (e, f) are after the SST front at 𝑥 = 3,000 km. Grey shading denotes heights above the extrapolated MABL height used in the analytical solution

decrease in the Ekman number, that is, to 𝜕𝜃𝐸𝑘−1. The Ekman
number is the ratio between the Ekman layer height 𝑙e and
the MABL height ℎ. This ratio can be interpreted as the rel-
ative efficiency of turbulence at mixing momentum (𝐾) with
respect to its efficiency at mixing heat (which contributes to
setting the MABL height ℎ). This analysis thus seems to indi-
cate that the downward momentum mixing mechanism could
be not related to an increase in turbulent mixing, but rather
to a relative decrease of the turbulence mixing efficiency on
momentum with respect to its efficiency on heat.

To test the robustness of the above analysis, simulations
were performed for a geostrophic wind of 15 m/s, in a sim-
ilar configuration to that in Kilpatrick et al. (2014) (their
figure 2) and Spall (2007), that is, where hypothesis (1) is
no longer satisfied. The parameters of the model (𝐾0, 𝐾1,
𝐾m and ℎ) were also linked linearly to potential temperature,
which again followed SST with a horizontal lag. Zonal winds
from the analytical model matched closely the numerical
results, and differences were mainly observed for meridional
winds. Those results indicate that (a) the horizontal lag in

temperature variations accounts for most of the nonlinear
terms affecting the thermodynamical and the turbulent struc-
ture of the MABL for higher Rossby numbers, and (b), as
observed for the 5 m/s case, advection acts mostly on the
meridional wind.

5 HORIZONTAL WIND
DIVERGENCE

For weather and climate prediction, a key quantity arising
from the MABL response to SST fronts is the average hori-
zontal wind divergence (e.g. Feliks et al., 2004; Minobe et al.,
2008; Kilpatrick et al., 2014), defined as

∇ ⋅ U = ∫
ℎ

0
(𝜕𝑥ℜ𝑈 + 𝜕𝑦ℑ𝑈 ) d𝑧, (19)

U = ∫ ℎ

0 U d𝑧 is the vertically integrated wind. It is linked
to the vertical velocity at the top of the MABL, which can
influence the free troposphere above.
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F I G U R E 6 Ekman number 𝐸𝑘 from the analytical solution (solid line) and as simulated after 36 hr from the numerical model (dashed line)

5.1 Comparison with the numerical
simulation
The mean divergence from the analytical model (i.e. ∇ ⋅U∕ℎ)
is first compared to the numerical simulation (Figure 7).
The numerical simulation exhibits a mean divergence pro-
portional to the SST Laplacian, with some horizontal lag
(consistent with Lambaerts et al., 2013). The pattern and
amplitude of the divergence is well reproduced by the ana-
lytical solution, especially within the strong temperature
gradient zone (𝑥 ∼ 2,000 km).

However the analytical model exhibits a stronger diver-
gence upwind of the front. Comparison of Figure 3a,b reveals
that the horizontal wind variation pattern causing the diver-
gence is translated upwind in the analytical solution, that is, it
begins at 𝑥 ∼ 1,500 km instead of 𝑥 ∼ 1,800 km in the numer-
ical model. This difference can thus be interpreted as a con-
sequence of having neglected the nonlinear advection terms
which, in the numerical model, affect the momentum budget,
and also delay the response of the MABL height to tempera-
ture variations (through their effect on the heat budget).

Considering this overall good agreement between analyti-
cal and numerical solutions, the variation of wind divergence
for different dynamical regimes is now investigated with the
analytical solution.

5.2 Analytical expression of the divergence
The simplest model for the horizontal wind divergence is
described in Lindzen and Nigam (1987) and Minobe et al.
(2008). In the present framework, it can be recovered by
using a linear drag (𝜕𝑧𝜏 = −𝜖𝑈 , with 𝜖 a proportionality
coefficient) in Equation (10), yielding

𝛁 ⋅ U = 𝜅𝜖

𝑓 2 + 𝜖2
𝜃, (20)

with 𝜅 = (𝑔∕𝜃0)(ℎ2∕2). As mentioned in the introduction, this
simple relationship is a consequence of the pressure adjust-
ment mechanism, and links the wind divergence to the SST
Laplacian (since 𝜃 was assumed to be roughly equal to SST
in Section 2). In rest of the section, the analytical model with
a parabolic diffusion coefficient is used to go beyond this
formula.

We first consider a simplified case, where 𝑓 = 0, and the
diffusion coefficient is a maximum at the ground and nearly
constant within the MABL. With these hypothesis, the wind
divergence can be computed from the analytical solution of
the model as (Appendix B)

𝛁 ⋅ U = 𝑔ℎ3𝜃𝜕𝜃ℎ

𝜃0(𝐾0 −𝐾1)
∇2𝜃 − 1

2
(Ug.𝛁𝜃)𝜕𝜃ℎ

+ 𝑔

𝜃0

𝜕

𝜕𝜃

(
ℎ3𝜃𝜕𝜃ℎ

𝐾0 −𝐾1

)
(𝛁𝜃)2. (21)

Equation (21) contains three terms depending linearly
on different functions of potential temperature. The first
two terms relate the integrated wind divergence to the SST
Laplacian and the downwind SST gradient. They can thus
be related to the pressure adjustment mechanism and the
downward momentum mixing mechanism respectively (even
though we are considering here an integrated wind diver-
gence and not the surface wind stress divergence). The third
term is proportional to (𝛁𝜃)2, and is thus of the same sign as
𝜕𝜃[(ℎ3𝜃𝜕𝜃ℎ)∕(𝐾0 − 𝐾1)]. This dependence results from the
assumption that ℎ and 𝐾 are only dependent on 𝜃 (the fourth
assumption in Section 2), which implies that their spatial
derivatives 𝜕𝑥,𝑦(⋅) can be replaced by a temperature deriva-
tive 𝜕𝑥,𝑦𝜃𝜕𝜃(⋅). If this assumption was relaxed, the third term
would read

𝜕

𝜕𝑥

(
𝐹 (ℎ)

𝐾0 −𝐾1

)
𝜕𝑥𝜃 +

𝜕

𝜕𝑦

(
𝐹 (ℎ)

𝐾0 −𝐾1

)
𝜕𝑦𝜃,

with 𝐹 (ℎ) a function of the MABL height, i.e. it would be
proportional to the SST gradient only.

The different terms in Equation (21) depend on the SST
field, on ℎ, 𝜃,𝐾 and their derivatives with respect to SST. By
denoting by Δ𝜃 the typical horizontal variation of SST such
that ∇2𝜃 varies as Δ𝜃∕𝐿2, the first term in Equation (21)
varies as

𝑔ℎ3𝜃𝜕𝜃ℎ

𝜃0(𝐾0 −𝐾1)
∇2𝜃 ∝ ℎ2

𝐾

ℎΔ𝜃
𝐿2

𝜕𝜃ℎ. (22)

This scaling is the product of

(i) ℎ2∕𝐾 , a factor similar to the inverse of the Ekman number
𝐸𝑘−1 (Equation 11, even though in the present case 𝑓 = 0),



12 AYET AND REDELSPERGER

F I G U R E 7 Mean wind divergence (left axis) in the MABL from the numerical simulation after 36 hr filtered with a 40 km window moving
average (solid blue line) and from the analytical model (dashed black line). The dotted line shows the SST Laplacian (right axis) [Colour figure can
be viewed at wileyonlinelibrary.com]

that is, related to the turbulent structure of the MABL and its
adjustment to an SST front;
(ii) ℎΔ𝜃∕𝐿2 a factor related to the inverse relative scale of the
SST front (i.e. for 𝑓 ≠ 0, to 𝑃𝑐∕𝐿);
(iii) 𝜕𝜃ℎ, the variation of the MABL height with temperature,
i.e. how it adjusts to SST-induced destabilization.

The product between 𝐸𝑘−1 and 𝑃𝑐 (factors (i) and (ii)) is
the ratio between the pressure term and the turbulent mix-
ing term in the momentum balance (10). Factor (iii) can be
intepreted, in this simplified situation where 𝜕𝜃𝐾 ∼ 0, as
being related to 𝜕𝜃𝐸𝑘−1 (which is then 𝜕𝜃ℎ) and thus to the
intensity of the downward momentum mixing mechanism
(Section 4.3). This shows that this first term is related to
the pressure adjustment mechanism (factors (i) and (ii), the
relative importance of pressure in the MABL), but is a gener-
alization of (20) since it is also modulated by the presence of
the downward momentum mixing mechanism (by factor (iii)).

The second term in Equation (21) is the product between
𝜕𝜃ℎ, (i.e. the intensity of the downward momentum mixing)
and the downwind temperature gradient, scaling as Δ𝜃∕𝐿.
The last term depends on how the pressure adjustment mech-
anism intensity (the first term) varies with temperature, i.e.
related to the response of the MABL to SST variations.

The above analysis shows that each of the terms in the
response of the integrated wind divergence can be factored
into a factor related to the adjustment of the MABL to SST
perturbations (i.e. to 𝐸𝑘−1 or 𝜕𝜃𝐸𝑘−1), and a factor depend-
ing on the relative scale of the front 𝐿. The scale-dependent
factor indicates that the structure and causes of horizontal
wind divergence change when different horizontal scales are
considered. In particular, the ratio between the Laplacian of
temperature and the gradient of temperature varies as 𝐿−1,
with 𝐿 the typical length-scale of the front. This has been
shown in Skyllingstad et al. (2007) using a large-eddy simula-
tion of the MABL. The Ekman number and its derivative, that
is, the adjustment of the MABL to an SST perturbation, could
in principle vary depending on e.g. SST, the upwind MABL,

and the relative direction of the geostrophic wind with respect
to the frontal gradient.

In the general case, the analytical model integrated diver-
gence reads (Appendix C gives details):

𝛁 ⋅U = 𝛼𝐿∇2𝜃 + 𝛼𝐷Ug.𝛁𝜃 + 𝛼𝐺(𝛁𝜃)2 + 𝛼𝐶 (Ug ×𝛁𝜃), (23)

with coefficients defined in Equation (C2), and representing
the amplitude of the linear response of the wind divergence to
different functions of potential temperature. The divergence
contains the same terms as in the simple case described above,
with an additional factor 𝛼𝐶 representing the amplitude of the
response to the cross-wind gradient. It is not discussed in the
following, since the present model focuses on situations with
a downwind SST gradient.

The analytical form of each of the coefficients introduced
in Equation (23) reveals that they are not dependent on the
scale of the front 𝐿 or on Δ𝜃 (Appendix C). All coefficients
are also independent on the vertical structure of the MABL
(not shown) as has been noted in Samelson et al. (2006),
implying that they only depend on the average value of the
mixing coefficient over the MABL𝐾e and not on𝐾0 ,𝐾1 and
𝐾m. For a given SST field, 𝐾e, 𝜕𝜃𝐾e, ℎ and 𝜕𝜃ℎ are thus the
free parameters determining the integrated wind divergence
coefficients. We can thus reasonably assume that the same
factorization as for the simplified case (21) can be performed,
that is, that each of the terms in (23) contains a part depend-
ing only on 𝐸𝑘−1 and 𝜕𝜃𝐸𝑘−1 and that the part depending on
the relative scale of the front is fixed, depending solely on the
derivatives of SST.

Figure 8 shows the dependence of the coefficients with𝐸𝑘
and 𝜕𝜃𝐸𝑘, varied by changing 𝐾e and 𝜕𝜃𝐾e in the analytical
model. Note first that 𝛼𝐿 is independent of 𝜕𝜃𝐾 (Figure 8b),
and that it is dependent on 𝜕𝜃ℎ (not shown). Similarly, an
increase of 𝜕𝜃𝐾e causes an increase of the magnitude of
𝛼𝐷 (Figure 8d). Both results are consistent with the simple
case, (21). All three coefficients vanish with increasing 𝐾e

http://wileyonlinelibrary.com
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(a) (c) (e)

(b) (d) (f)

F I G U R E 8 Variation of the coefficient linking the horizontal wind divergence and (a, b) the temperature Laplacian (𝛼𝐿), (c, d) the downwind
temperature gradient (𝛼𝐷), and (e, f) the magnitude of the temperature gradient squared (𝛼𝐺). The variation is as a function of (a, c, e) the mean
diffusion coefficient in the MABL and (b, d, f) its temperature derivative

(Figure 8a–c), consistent with a decrease in wind shear dis-
cussed in Section 3.1. This implies that the imprint of an
SST field on the integrated wind divergence decreases with
increasing turbulence.

Figure 8a presents the variation of 𝛼𝐿 with 𝐾e. Two
regimes are observed: an increase of 𝛼𝐿, followed by a
decrease when 𝐾e increases, the transition occurring for 𝐸𝑘
of order unity. The Coriolis and the pressure forces domi-
nate the momentum balance in the first regime. The increase
of 𝛼𝐿 with mixing is reminiscent of its increase with drag in
the model of Equation (20). In the second regime, the mixing
and the pressure forces dominate and thus the pressure adjust-
ment mechanism is diminished with increased mixing. Those
regimes are absent in the simple model (21), and are thus a
consequence of the parabolic vertical shape of the turbulent
diffusion coefficient. A similar behaviour is observed when
varying 𝛼𝐺 with 𝜕𝜃𝐾e (Figure 8f).

Variations of the different coefficients with the Ekman
number and its derivative (i.e. the local adjustment of the
MABL to SST perturbations) are essential for large-scale
applications. Glendening and Doyle (1995) studied the
response of the MABL in terms of vertical wind to a mean-
dering zonal SST front. They showed that it could vary
depending on the bulk MABL adjustment (measured by the
deformation radius in their case) and the scale of the meander.
If the present model is applied to a meandering configuration,
then the local adjustment of the MABL could vary along the
meander, which would translate into variations of 𝐸𝑘 and

𝜕𝜃𝐸𝑘. The two regimes revealed by Figure 8a,f show that the
resulting wind divergence (and thus vertical wind) response
can be completely different depending on the bulk Ekman
number value.

5.3 Comparison with the literature
The results of the analytical model are compared to three liter-
ature studies. First, the analytical model of Feliks et al. (2004),
based on a similar equation to (10), with however a constant
mixing coefficient 𝑘0 = (ℎ2𝑓 )∕(2𝜋2) consistent with the stan-
dard Ekman layer theory. From equation (7) of their paper, if
we let the MABL height vary with temperature, we get

𝛁 ⋅ U = 𝑔ℎ2

2𝜋𝑓𝜃0

(
1 − 1

2𝜋

)
∇2𝜃 − Ug.𝛁𝜃

𝜕𝜃ℎ

𝜋

+ 𝑔ℎ𝜕𝜃ℎ

𝜋𝑓𝜃0

(
1 − 1

2𝜋

)
(𝛁𝜃)2 + (Ug × 𝛁𝜃)|𝑧 𝜕𝜃ℎ

𝜋
.

(24)

The coefficients of the response to the different deriva-
tives of potential temperature vary quadratically or linearly
with ℎ, with no sign of the different regimes as observed
before. Indeed, in the model of Feliks et al. (2004), 𝐸𝑘
being equal to 1 by definition, the transition cannot occur.
Note that the cases of 𝐸𝑘 ≠ 1 are not purely academic. As
discussed in Section 3, these cases are found to be impor-
tant to obtain a realistic internal structure of the MABL. No
regimes are observed with variation of 𝜕𝜃ℎ (equivalent of 𝜕𝜃𝐾
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in the present model). This highlights again the qualitative
difference between Equation (10) with a vertically constant
coefficient 𝐾 as opposed to the non-constant case.

A second study (Lambaerts et al., 2013) evaluates the the-
oretical 𝛼𝐿 coefficient of Feliks et al. (2004) (the first term
in (24)) against a numerical simulation, for a configuration
with ℎ = 971 m. The MABL is simulated on top of an SST
field associated with a simulated turbulent mesoscale oceanic
eddy field. The theoretical and numerical model values of 𝛼𝐿
are respectively 11 × 106 m3s−1K−1 and 17 × 106 m3s−1K−1,
for a divergence integrated upto the middle of the MABL.
Following the typical values used in Section 3, their numer-
ical model value of 𝛼𝐿 can be recovered using the present
analytical model (C2), assuming that 𝐾e = 1.3 m2/s. This
corresponds to a specific𝐸𝑘 ∼ 0.3 regime. It highlights again
the importance of the different regimes discussed above,
𝐸𝑘 varying between 1 and 5 in the numerical simulations
presented in Section 4.

Finally, the study of Plagge et al. (2016) used paired buoys
to estimate the mean correlation coefficient between wind
divergence and SST gradient for frontal scales of (100) km.
They found a value of 0.22 m s−1K−1. This value also agrees
with scatterometer measurements (e.g. O’Neill, 2012). In the
present model, this mean correlation coefficient is estimated
as 𝛼𝐷𝑈g∕ℎ. Assuming a MABL height of 500 m and values
of 𝜕𝜃𝐾e, 𝜕𝜃𝛿 and 𝐾e derived from the numerical simulation
(18), results in 𝛼𝐷 ∼ 15 m/K. Further, assuming an average
geostrophic wind of 8,m/s results in a correlation coefficient
of 0.27, matching the value of Plagge et al. (2016). Another
commonly discussed quantity is the SST–surface wind stress
correlation coefficient (e.g. Chelton et al., 2004). It is out of
the scope of the present model to discuss this quantity, which
would require more realistic bottom boundary conditions
(e.g. imposing boundary conditions on the momentum flux
rather than on the wind).

6 CONCLUSION

We have presented an analytical model that describes the
response of the MABL to an SST front in terms of
ageostrophic wind. The model has been compared to a sim-
ple state-of-the-art numerical simulation. The assumptions
underlying the model are valid for a cross-front geostrophic
wind, blowing from the cold to the warm side of the front, and
for a low Rossby number. However, the model is able to repro-
duce numerical simulations at higher Rossby numbers, except
on top of the SST gradient, where advection is important. This
results from the fact that the turbulent and thermodynamic
structure of the analytical model are prescribed, and that non-
linear effects affecting these structures can thus be partially
accounted for.

Comparison between the analytical model and the numer-
ical simulation highlighted the importance of considering a

realistic turbulent diffusion coefficient (both its intensity and
its vertical variation) to explain the vertical structure of the
MABL. The ageostrophic wind in the MABL was explained
by various dynamical balances depending on its position
relative to the SST front. These regimes were then character-
ized by non-dimensional numbers (in particular the Ekman
number), and discussed within the framework of the analyt-
ical model. They revealed that the increase in zonal wind
across the front, usually associated to the downward momen-
tum mixing mechanism, could be linked to a decrease in
the Ekman number. The effect of advection (not present in
the analytical model) was shown to be important mainly for
meridional winds, and on the MABL height above the front.

A closed-form expression for the integrated wind diver-
gence in the MABL was also derived. This novel relation
combines the effect of the downward momentum mixing
mechanism and of the pressure adjustment mechanism, both
already described in the literature. However, within the
analytical model, both mechanisms have an imprint on the
wind divergence, linking it to multiple-order derivatives of
SST, and not only to its Laplacian. The response to the SST
derivatives was shown to depend on the dynamical regimes
of the MABL, a feature which has never been discussed in
the literature. Several realistic examples have been shown
in which both of these regimes are reached, showing their
relevance. The existence of these regimes was shown to be a
consequence of considering a realistic diffusion coefficient
in the analytical model.

The link of the wind divergence to multiple-order deriva-
tives of SST is an important novel feature of the closed-form
expression. It implies that the wind divergence response might
change with the scale of the front. This should be investigated
in future work, based on observations over sharp SST fronts
(e.g. Chevallier et al., 2014). The sensitivity of the wind diver-
gence to non-dimensional numbers characterizing how the
MABL turbulent structure adjusts to an SST perturbation is
the second main result of this work. It implies that horizontal
gradients of vertical wind on top of the MABL might be sen-
sitive to the turbulent properties of the MABL, which depend
on environmental parameters. In its present form, the model
could be used as a diagnostic tool to infer the internal struc-
ture of the MABL from the observed or simulated imprint of
an SST field on the wind divergence. This could help to char-
acterize the variability of the response of the MABL to SST
variations (e.g. the variability of the MABL height observed
in Vihma et al., 1998; Hashizume et al., 2002), which is
essential for large-scale applications.

ACKNOWLEDGEMENTS

The authors thank the three anonymous reviewers and
Marie-Noëlle Bouin for insightful comments leading to sig-
nificant improvements in the manuscript. They also wish to



AYET AND REDELSPERGER 15

thank Guillaume Lapeyre and Bertrand Chapron for fruitful
discussions.

ORCID

Alex Ayet http://orcid.org/0000-0002-4044-4488

REFERENCES

Abramowitz, M. and Stegun, I.A. (Eds.) (1964) Handbook of Mathemat-
ical Functions. Applied Mathematics Series 55, National Bureau of
Standards, Washington DC.

Anderson, S.P. (2001) On the atmospheric boundary layer over the equa-
torial front. Journal of Climate, 14(7), 1688–1695. https://doi.org/
10.1175/1520-0442(2001)014<1688:OTABLO>2.0.CO;2.

Bougeault, P. and Lacarrere, P. (1989) Parameterization of
orography-induced turbulence in a mesobeta–scale model. Monthly
Weather Review, 117, 1872–1890. https://doi.org/10.1175/1520-
0493(1989)117<1872:pooiti>2.0.co;2.

Bourras, D., Reverdin, G., Giordani, H. and Caniaux, G. (2004)
Response of the atmospheric boundary layer to a mesoscale oceanic
eddy in the northeast Atlantic. Journal of Geophysical Research:
Atmospheres, 109(D18). https://doi.org/10.1029/2004JD004799.

Brown, R. and Liu, W.T. (1982) An operational large-scale marine plan-
etary boundary layer model. Journal of Applied Meteorology, 21(3),
261–269. https://doi.org/10.1175/1520-0450(1982)021<0261:
AOLSMP>2.0.CO;2.

Businger, J.A. and Shaw, W.J. (1984) The response of the marine
boundary layer to mesoscale variations in sea-surface temperature.
Dynamics of Atmospheres and Oceans, 8, 267–281. https://doi.org/
10.1016/0377-0265(84)90012-5.

Chelton, D.B., Schlax, M.G., Freilich, M.H. and Milliff, R.F. (2004)
Satellite measurements reveal persistent small-scale features in
ocean winds. Science, 303, 978–983. https://doi.org/doi.org/10.
1126/science.1091901.

Chelton, D.B., Schlax, M.G. and Samelson, R.M. (2007) Summertime
coupling between sea surface temperature and wind stress in the
California current system. Journal of Physical Oceanography, 37,
495–517. https://doi.org/10.1175/JPO3025.1.

Chelton, D.B. and Xie, S.P. (2010) Coupled ocean–atmosphere interac-
tion at oceanic mesoscales. Oceanography, 23, 52–69. https://doi.
org/10.5670/oceanog.2010.05.

Chevallier, C., Herbette, S., Marié, L., Le Borgne, P., Marsouin, A., Péré,
S., Levier, B. and Reason, C. (2014) Observations of the ushant front
displacements with msg/seviri derived sea surface temperature data.
Remote Sensing of Environment, 146, 3–10. https://doi.org/10.1016/
j.rse.2013.07.038.

Cuxart, J., Bougeault, P. and Redelsperger, J.-L. (2000) A turbulence
scheme allowing for mesoscale and large-eddy simulations. Quar-
terly Journal of the Royal Meteorological Society, 126, 1–30. https://
doi.org/10.1002/qj.49712656202.

Fairall, C., Bradley, E.F., Hare, J., Grachev, A. and Edson, J. (2003) Bulk
parameterization of air–sea fluxes: updates and verification for the
COARE algorithm. Journal of Climate, 16, 571–591. https://doi.org/
10.1175/1520-0442(2003)016<0571:bpoasf>2.0.co;2.

Feliks, Y., Ghil, M. and Simonnet, E. (2004) Low-frequency variability
in the midlatitude atmosphere induced by an oceanic thermal front.
Journal of the Atmospheric Sciences, 61, 961–981. https://doi.org/
10.1175/jas3780.1.

Foussard, A., Lapeyre, G. and Plougonven, R. (2019a) Storm track
response to oceanic eddies in idealized atmospheric simulations.
Journal of Climate, 32(2), 445–463. https://doi.org/10.1175/JCLI-
D-18-0415.1.

Foussard, A., Lapeyre, G. and Plougonven, R. (2019b) Response of
surface wind divergence to mesoscale SST anomalies under dif-
ferent wind conditions. Journal of the Atmospheric Sciences, 76,
2065–2082. https://doi.org/10.1175/JAS-D-18-0204.1.

Frenger, I., Gruber, N., Knutti, R. and Münnich, M. (2013) Imprint
of southern ocean eddies on winds, clouds and rainfall. Nature
Geoscience, 6(8). https://doi.org/10.1038/ngeo1863.

Glendening, J.W. and Doyle, J.D. (1995) Mesoscale response to a
meandering surface temperature interface. Journal of the Atmo-
spheric Sciences, 52(5), 505–518. https://doi.org/10.1175/1520-
0469(1995)052<0505:MRTAMS>2.0.CO;2.

Hashizume, H., Xie, S.P., Fujiwara, M., Shiotani, M., Watanabe, T.,
Tanimoto, Y., Liu, W.T. and Takeuchi, K. (2002) Direct observa-
tions of atmospheric boundary layer response to SST variations
associated with tropical instability waves over the eastern equatorial
Pacific. Journal of Climate, 15(23), 3379–3393. https://doi.org/10.
1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2.

Hayes, S.P., McPhaden, M.J. and Wallace, J.M. (1989) The influence
of sea-surface temperature on surface wind in the eastern equa-
torial Pacific: weekly to monthly variability. Journal of Climate,
2, 1500–1506. https://doi.org/10.1175/1520-0442(1989)002<1500:
TIOSST>2.0.CO;2.

Hsu, S., Fett, R. and La Violette, P.E. (1985) Variations in atmo-
spheric mixing height across oceanic thermal fronts. Journal of
Geophysical Research: Oceans, 90, 3211–3224. https://doi.org/10.
1029/jc090ic02p03211.

Hsu, S.A. (1984) Sea-breeze-like winds across the north wall of the
Gulf Stream: An analytical model. Journal of Geophysical Research:
Oceans, 89, 2025–2028. https://doi.org/10.1029/JC089iC02p02025.

Kawai, Y., Tomita, H., Cronin, M.F. and Bond, N.A. (2014) Atmospheric
pressure response to mesoscale sea surface temperature variations in
the Kuroshio extension region: In situ evidence. Journal of Geophys-
ical Research: Atmospheres, 119(13), 8015–8031. https://doi.org/10.
1002/2013JD021126.

Kilpatrick, T., Schneider, N. and Qiu, B. (2014) Boundary-layer con-
vergence induced by strong winds across a midlatitude SST front.
Journal of Climate, 27, 1698–1718. https://doi.org/10.1175/JCLI-
D-13-00101.1.

Kudryavtsev, V. (1996) A simplified model for the transformation of the
atmospheric planetary boundary layer overlying a thermal front in
the sea. Physical Oceanography, 7(2), 99. https://doi.org/10.1007/
BF02509814.

Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar,
J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C., Aumond, P.,
Auguste, F., Bechtold, P., Berthet, S., Bielli, S., Bosseur, F., Cau-
mont, O., Cohard, J.-M., Colin, J., Couvreux, F., Cuxart, J., Delautier,
G., Dauhut, T., Ducrocq, V., Filippi, J.-B., Gazen, D., Geoffroy, O.,
Gheusi, F., Honnert, R., Lafore, J.-P., Lebeaupin Brossier, C., Libois,
Q., Lunet, T., Mari, C., Maric, T., Mascart, P., Mogé, M., Molinié,
G., Nuissier, O., Pantillon, F., Peyrillé, P., Pergaud, J., Perraud, E.,
Pianezze, J., Redelsperger, J.-L., Ricard, D., Richard, E., Riette, S.,
Rodier, Q., Schoetter, R., Seyfried, L., Stein, J., Suhre, K., Taufour,
M., Thouron, O., Turner, S., Verrelle, A., Vié, B., Visentin, F., Vion-
net, V. and Wautelet, P. (2018) Overview of the Meso-NH model
version 5.4 and its applications. Geoscientific Model Development,
11, 1929–1969. https://doi.org/10.5194/gmd-72811-1929-2018.

http://orcid.org/0000-0002-4044-4488
http://orcid.org/0000-0002-4044-4488
https://doi.org/10.1175/1520-0442(2001)014<1688:OTABLO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<1688:OTABLO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117<1872:pooiti>2.0.co;2
https://doi.org/10.1175/1520-0493(1989)117<1872:pooiti>2.0.co;2
https://doi.org/10.1029/2004JD004799
https://doi.org/10.1175/1520-0450(1982)021<0261:AOLSMP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1982)021<0261:AOLSMP>2.0.CO;2
https://doi.org/10.1016/0377-0265(84)90012-5
https://doi.org/10.1016/0377-0265(84)90012-5
https://doi.org/doi.org/10.1126/science.1091901
https://doi.org/doi.org/10.1126/science.1091901
https://doi.org/10.1175/JPO3025.1
https://doi.org/10.5670/oceanog.2010.05
https://doi.org/10.5670/oceanog.2010.05
https://doi.org/10.1016/j.rse.2013.07.038
https://doi.org/10.1016/j.rse.2013.07.038
https://doi.org/10.1002/qj.49712656202
https://doi.org/10.1002/qj.49712656202
https://doi.org/10.1175/1520-0442(2003)016<0571:bpoasf>2.0.co;2
https://doi.org/10.1175/1520-0442(2003)016<0571:bpoasf>2.0.co;2
https://doi.org/10.1175/jas3780.1
https://doi.org/10.1175/jas3780.1
https://doi.org/10.1175/JCLI-D-18-0415.1
https://doi.org/10.1175/JCLI-D-18-0415.1
https://doi.org/10.1175/JAS-D-18-0204.1
https://doi.org/10.1038/ngeo1863
https://doi.org/10.1175/1520-0469(1995)052<0505:MRTAMS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052<0505:MRTAMS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2
https://doi.org/10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2
https://doi.org/10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2
https://doi.org/10.1029/jc090ic02p03211
https://doi.org/10.1029/jc090ic02p03211
https://doi.org/10.1029/JC089iC02p02025
https://doi.org/10.1002/2013JD021126
https://doi.org/10.1002/2013JD021126
https://doi.org/10.1175/JCLI-D-13-00101.1
https://doi.org/10.1175/JCLI-D-13-00101.1
https://doi.org/10.1007/BF02509814
https://doi.org/10.1007/BF02509814
https://doi.org/10.5194/gmd-728 11-1929-2018


16 AYET AND REDELSPERGER

Lafore, J.P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron,
J., Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J.P.,
Redelsperger, J.-L., Richard, E. and Vilà-Guerau de Arellano, J.
(1998) The Meso-NH atmospheric simulation system. Part I: adia-
batic formulation and control simulations. Annals of Geophysics, 16,
90–109. https://doi.org/10.1007/s00585-997-0090-6.

Laikhtman, D. and Yordanov, D. (1979) On the vertical velocity at the
top of the planetary boundary layer in non-stationary conditions.
Boundary-Layer Meteorology, 17(3), 293–296. https://doi.org/10.
1007/BF00117920.

Lambaerts, J., Lapeyre, G., Plougonven, R. and Klein, P. (2013) Atmo-
spheric response to sea surface temperature mesoscale structures.
Journal of Geophysical Research: Atmospheres, 118, 9611–9621.
https://doi.org/10.1002/jgrd.50769.

Lindzen, R.S. and Nigam, S. (1987) On the role of sea surface tem-
perature gradients in forcing low-level winds and convergence in
the Tropics. Journal of the Atmospheric Sciences, 44, 2418–2436.
https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.
CO;2.

Liu, T.W., Xie, X., Polito, P.S., Xie, S.P. and Hashizume, H. (2000)
Atmospheric manifestation of tropical instability wave observed
by Quikscat and Tropical Rain Measuring Mission. Geophys-
ical Research Letters, 27, 2545–2548. https://doi.org/10.1029/
2000gl011545.

Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S.P. and Small, R.J.
(2008) Influence of the Gulf Stream on the troposphere. Nature, 452,
206–209. https://doi.org/10.1038/nature06690.

Munk, W.H. (1950) On the wind-driven ocean circulation. Jour-
nal of Meteorology, 7(2), 80–93. https://doi.org/10.1175/1520-
0469(1950)007<0080:OTWDOC>2.0.CO;2.

O’Neill, L.W. (2012) Wind speed and stability effects on coupling
between surface wind stress and SST observed from buoys and satel-
lite. Journal of Climate, 25(5), 1544–1569. https://doi.org/10.1175/
JCLI-D-11-00121.1.

O’Neill, L.W., Chelton, D.B. and Esbensen, S.K. (2003) Observations of
SST-induced perturbations of the wind stress field over the Southern
Ocean on seasonal timescales. Journal of Climate, 16, 2340–2354.
https://doi.org/10.1175/2780.1.

O’Neill, L.W., Chelton, D.B., Esbensen, S.K. and Wentz, F.J. (2005)
High-resolution satellite measurements of the atmospheric boundary
layer response to SST variations along the Agulhas return cur-
rent. Journal of Climate, 18, 2706–2723. https://doi.org/10.1175/
JCLI3415.1.

O’Neill, L.W., Haack, T., Chelton, D.B. and Skyllingstad, E. (2017)
The Gulf Stream convergence zone in the time-mean winds. Journal
of the Atmospheric Sciences, 74(7), 2383–2412. https://doi.org/10.
1175/JAS-D-16-0213.1.

Perlin, N., De Szoeke, S.P., Chelton, D.B., Samelson, R.M.,
Skyllingstad, E.D. and O’Neill, L.W. (2014) Modeling the atmo-
spheric boundary-layer wind response to mesoscale sea surface
temperature perturbations. Monthly Weather Review, 142(11),
4284–4307. https://doi.org/10.1175/MWR-D-13-00332.1.

Piazza, M., Terray, L., Boé, J., Maisonnave, E. and Sanchez-Gomez, E.
(2016) Influence of small-scale North Atlantic sea surface temper-
ature patterns on the marine boundary layer and free troposphere:
a study using the atmospheric ARPEGE model. Climate Dynamics,
46(5-6), 1699–1717. https://doi.org/10.1007/s00382-015-2669-z.

Plagge, A., Edson, J.B. and Vandemark, D. (2016) In situ and satellite

evaluation of air–sea flux variation near ocean temperature gradi-

ents. Journal of Climate, 29(4), 1583–1602. https://doi.org/10.1175/

JCLI-D-15-0489.1.

Plougonven, R., Foussard, A. and Lapeyre, G. (2018) Comments on “the

Gulf Stream convergence zone in the time-mean winds”. Journal
of the Atmospheric Sciences, 75(6), 2139–2149. https://doi.org/10.

1175/JAS-D-17-0369.1.

Samelson, R., Skyllingstad, E., Chelton, D., Esbensen, S., O’Neill, L.

and Thum, N. (2006) On the coupling of wind stress and sea surface

temperature. Journal of Climate, 19, 1557–1566. https://doi.org/10.

1175/JCLI3682.1.

Schneider, N. and Qiu, B. (2015) The atmospheric response to weak sea

surface temperature fronts. Journal of the Atmospheric Sciences, 72,

3356–3377. https://doi.org/jas-d-14-0212.1.

Skyllingstad, E.D., Vickers, D., Mahrt, L. and Samelson, R. (2007)

Effects of mesoscale sea-surface temperature fronts on the marine

atmospheric boundary layer. Boundary-Layer Meteorology, 123(2),

219–237. https://doi.org/10.1007/s10546-006-9127-8.

Small, R.J., de Szoeke, S.P., Xie, S.P., O’Neill, L., Seo, H., Song, Q.,

Cornillon, P., Spall, M. and Minobe, S. (2008) Air–sea interaction

over ocean fronts and eddies. Dynamics of Atmospheres and Oceans,

45, 274–319. https://doi.org/10.1016/j.dynatmoce.2008.01.001.

Spall, M.A. (2007) Midlatitude wind stress–sea surface temperature

coupling in the vicinity of oceanic fronts. Journal of Climate, 20,

3785–3801. https://doi.org/10.1175/JCLI4234.1.

Takatama, K., Minobe, S., Inatsu, M. and Small, R.J. (2012) Diagnos-

tics for near-surface wind convergence/divergence response to the

Gulf Stream in a regional atmospheric model. Atmospheric Science
Letters, 13(1), 16–21. https://doi.org/10.1002/asl.355.

Takatama, K., Minobe, S., Inatsu, M. and Small, R.J. (2015) Diagnos-

tics for near-surface wind response to the Gulf Stream in a regional

atmospheric model. Journal of Climate, 28(1), 238–255. https://doi.

org/10.1175/JCLI-D-13-00668.1.

Vihma, T., Uotila, J. and Launiainen, J. (1998) Air–sea interaction over

a thermal marine front in the Denmark Strait. Journal of Geophys-
ical Research: Oceans, 103(C12), 27665–27678. https://doi.org/10.

1029/98JC02415.

Wallace, J.M., Mitchell, T.P. and Deser, C. (1989) The influence of

sea-surface temperature on surface wind in the eastern equatorial

Pacific: seasonal and interannual variability. Journal of Climate,

2, 1492–1499. https://doi.org/10.1175/1520-0442(1989)002<1492:

TIOSST>2.0.CO;2.

Xie, S.P. (2004) Satellite observations of cool ocean–atmosphere

interaction. Bulletin of the American Meteorological Society, 85,

195–208. https://doi.org/10.1175/BAMS-85-2-195.

How to cite this article: Ayet A, Redelsperger J-L.
An analytical study of the atmospheric boundary-layer
flow and divergence over an SST front. Q J R Meteorol
Soc. 2019;1–19. https://doi.org/10.1002/qj.3578

https://doi.org/10.1007/s00585-997-0090-6
https://doi.org/10.1007/BF00117920
https://doi.org/10.1007/BF00117920
https://doi.org/10.1002/jgrd.50769
https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
https://doi.org/10.1029/2000gl011545
https://doi.org/10.1029/2000gl011545
https://doi.org/10.1038/nature06690
https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2
https://doi.org/10.1175/JCLI-D-11-00121.1
https://doi.org/10.1175/JCLI-D-11-00121.1
https://doi.org/10.1175/2780.1
https://doi.org/10.1175/JCLI3415.1
https://doi.org/10.1175/JCLI3415.1
https://doi.org/10.1175/JAS-D-16-0213.1
https://doi.org/10.1175/JAS-D-16-0213.1
https://doi.org/10.1175/MWR-D-13-00332.1
https://doi.org/10.1007/s00382-015-2669-z
https://doi.org/10.1175/JCLI-D-15-0489.1
https://doi.org/10.1175/JCLI-D-15-0489.1
https://doi.org/10.1175/JAS-D-17-0369.1
https://doi.org/10.1175/JAS-D-17-0369.1
https://doi.org/10.1175/JCLI3682.1
https://doi.org/10.1175/JCLI3682.1
https://doi.org/jas-d-14-0212.1
https://doi.org/10.1007/s10546-006-9127-8
https://doi.org/10.1016/j.dynatmoce.2008.01.001
https://doi.org/10.1175/JCLI4234.1
https://doi.org/10.1002/asl.355
https://doi.org/10.1175/JCLI-D-13-00668.1
https://doi.org/10.1175/JCLI-D-13-00668.1
https://doi.org/10.1029/98JC02415
https://doi.org/10.1029/98JC02415
https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2
https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2
https://doi.org/10.1175/BAMS-85-2-195
https://doi.org/10.1002/qj.3578


AYET AND REDELSPERGER 17

APPENDICE A: GENERAL SOLUTION OF
THE MODEL

In this Appendix we give some details on analytical solution
of the model. Using the wind stress closure (Equation (7)),
the momentum Equation (10) reads

𝜕𝑧{𝐾(𝜃, 𝑧)𝜕𝑧𝑈 (𝜃, 𝑧)} − i𝑓𝑈 (𝜃, 𝑧) = 𝑔

𝜃0
(𝑧 − ℎe)(𝜕𝑥𝜃 + i𝜕𝑦𝜃),

(A1)
where we have defined an “effective" MABL height

ℎe = ℎ(𝜃) − 𝜃𝜕𝜃ℎ, (A2)

and where the turbulent diffusion coefficient is parabolic in
the vertical

𝐾(𝜃, 𝑧) = 𝐴(𝜃)+𝐵(𝜃)
[
𝑧 − ℎ(𝜃)

2

]
+𝐶(𝑥, 𝑦)

[
𝑧 − ℎ(𝜃)

2

]2

. (A3)

Note that having a realistic concave mixing coefficient in
the vertical direction requires that 𝐶 is negative.

This equation is solved for the ageostrophic wind 𝑈 by
using the method of undetermined coefficients: the solu-
tion is found as a superposition of a particular solution
to Equation (A1), 𝑈p, and a solution to the homogeneous
problem, 𝑈h.

A particular solution to Equation (10) is a first-degree
polynomial, which reads

𝑈p(𝑧)=
𝑔

𝜃0
(𝜕𝑥𝜃+i𝜕𝑦𝜃)

[
ℎe

i𝑓
− 𝑧

i𝑓−2𝐶
+ 𝐶ℎ − 𝐵

i𝑓 (i𝑓−2𝐶)

]
, (A4)

assuming that 𝑓 ≠ 0.
The homogeneous equation of (A1) (i.e. without the

right-hand side) can be rewritten as a Legendre differential
equation

(1−𝑍2)d2𝑈 (𝑍)
d𝑍2

−2𝑍
d𝑈 (𝑍)

d𝑍
+𝜆(𝜆+1)𝑈 (𝑍) = 0 (A5)

by using the change of variable

𝑍(𝑧) = 1
(𝐵2 − 4𝐴𝐶)1∕2

[
2𝐶

(
𝑧 − ℎ

2

)
+ 𝐵

]
, (A6)

and with

𝜆 = 1
2

(√
4i𝑓
𝐶

+ 1 − 1

)
. (A7)

The solution of this equation is

𝑈h(𝑧) = 𝑐1𝑃𝜆[𝑍(𝑧)] + 𝑐2𝑄𝜆[𝑍(𝑧)], (A8)

where 𝑃𝜆(𝑍) and𝑄𝜆(𝑍) are the Legendre functions of degree
𝜆 (and of order zero) of the first and second kind respectively
(Abramowitz and Stegun, 1964). Note that the Legendre func-
tions are defined for𝑍 between −1 and +1, which is the case
if the roots of 𝐾 are above and below the MABL. This is
necessary for physical consistency.

The coefficients 𝑐1 and 𝑐2 are determined by using the
boundary conditions (6) and read

{
𝑐1 = 𝐷

{
𝑄𝜆[𝑍(ℎ)][𝑈p(0) + 𝑈g] −𝑄𝜆[𝑍(0)]𝑈p(ℎ)

}
,

𝑐2 = −𝐷
{
𝑃𝜆[𝑍(ℎ)][𝑈p(0) + 𝑈g] − 𝑃𝜆[𝑍(0)]𝑈p(ℎ)

}
,

(A9)
with

𝐷 =
{
𝑃𝜆[𝑍(ℎ)]𝑄𝜆[𝑍(0)] −𝑄𝜆[𝑍(ℎ)]𝑃𝜆[𝑍(0)]

}−1
. (A10)

Finally, the total solution to (A1) reads

𝑈 (𝜃, 𝑧) = 𝑈p(𝜃, 𝑧)+
[
𝑈p(𝜃, 0)+𝑈g

]
𝐻h(𝜃, 𝑧)−𝑈p(𝜃, ℎ)𝐻0(𝜃, 𝑧),

(A11)
with

{
𝐻h(𝑧) = 𝐷

{
𝑃𝜆

[
𝑍(𝑧)

]
𝑄𝜆

[
𝑍(ℎ)

]
−𝑄𝜆

[
𝑍(𝑧)

]
𝑃𝜆

[
𝑍(ℎ)

]}
,

𝐻0(𝑧) = 𝐷
{
𝑃𝜆

[
𝑍(𝑧)

]
𝑄𝜆

[
𝑍(0)

]
−𝑄𝜆

[
𝑍(𝑧)

]
𝑃𝜆

[
𝑍(0)

]}
.

(A12)
The particular solution 𝑈p, defined in Equation (A4),

depends on the magnitude of the pressure force and the tur-
bulent diffusion coefficient structure. However, the functions
𝐻0 and 𝐻h rely solely on an Ekman balance between turbu-
lent dissipation and Coriolis force, since they result from the
solution of the homogeneous problem (whitout the pressure
force). In particular𝐻h defines a “background” vertical wind
without the effect of pressure, that is, it is the only remaining
term in Equation (A11) if the pressure gradient vanishes (i.e.
for 𝑈p = 0).

Considering a parabolic turbulent mixing coefficient has a
large impact on the solution of the momentum Equation (A1).
If𝐾 has no dependence on the vertical coordinate (i.e. 𝜕𝑧𝐾 =
0), then

i
𝑓

𝑔

𝜃0
[𝑧 − ℎ(𝜃) − 𝜃𝜕𝜃ℎ] (𝜕𝑥𝜃 + i𝜕𝑦𝜃)

is a particular solution to (A1). It does not contain any
dependence on 𝐾 , unlike the particular solution 𝑈p in the
case of a vertically dependent turbulent mixing coefficient
(Equation A4). The product between the “background” wind
and the particular solution (the term 𝑈p(0)𝐻h in (A11)) also
has a different dependence on the intensity of the diffusion
coefficient.
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APPENDIX B: WIND DIVERGENCE IN
A LIMIT CASE

In this Appendix, we compute explicitly the height-integrated
wind divergence using three simplifying assumptions: (i) 𝑓 =
0; (ii) the turbulent diffusion coefficient is a maximum at the
ground; and (iii) the turbulent diffusion coefficient is nearly
constant in the vertical.

Considering that 𝑓 = 0 implies that the degree 𝜆

of the Legendre functions used in the model solution,
defined in (A7), is zero. In this case, the Legendre functions
read

𝑃0(𝑥) = 1, 𝑄0(𝑥) =
1
2

ln
(1 + 𝑥

1 − 𝑥

)
. (B1)

Assuming that the turbulent diffusion coefficient is a max-
imum near the ground yields

𝜕𝑧𝐾|𝑧=0 = 𝐵 − ℎ𝐶 = 0 ⇔ 𝐾m = (3∕4)𝐾0 + (1∕4)𝐾1, (B2)

In this case the two roots of the parabolic diffusion coef-
ficients are symmetric with respect to 𝑧 = 0. Thus 𝐾 can be
factorized as

𝐾(𝑧) = (𝑧 − 𝑟)(𝑧 + 𝑟), (B3)

with 𝑟 and −𝑟 its two roots

𝑟 = ℎ
√

𝐾0

𝐾0 −𝐾1
(B4)

and a coefficient  which reads

 = 𝐾0 −𝐾1

ℎ2
. (B5)

Using Equations (B1) and (B3) in the expressions of the
particular and homogeneous solutions (Equations (A4) and
(A8)) yields

⎧⎪⎨⎪⎩
𝑈h(𝑧) =𝑐1 + 𝑐2

𝑄0(𝑧∕𝑟)
2𝑟

,

𝑈p(𝑧) =
𝑔

2𝐶𝜃0
(𝜕𝑥 + i𝜕𝑦)𝜃

[
𝑧 − ℎe ln(𝑧2 − 𝑟2)

]
.

(B6)

Using the expression of 𝑐1 and 𝑐2 from (A9), the
height-integrated complex ageostrophic wind reads

𝑈 = 𝑔

2𝐶𝜃0
(𝜕𝑥𝜃 + i𝜕𝑦𝜃)

{
3ℎ2

2
+ 2𝜃ℎ𝜕𝜃ℎ +𝐻

(
ℎ

𝑟

)}
+ 𝑈g𝑟𝐺

(
ℎ

𝑟

)
(B7)

with

⎧⎪⎪⎨⎪⎪⎩
𝐹 (𝑥) = ℎe ln(1 − 𝑥2) − ℎ,

𝐺(𝑥) = ln(1 − 𝑥2)
2𝑄0(𝑥)

,

𝐻(𝑥) = 𝑟𝐹 (𝑥)𝐺(𝑥) − 2𝑟ℎe𝑄0(𝑥).

(B8)

The integrated divergence 𝛁 ⋅ U = 𝜕𝑥ℜ𝑈 + 𝜕𝑦ℑ𝑈 reads

𝛁 ⋅ U = 𝑔

2𝐶𝜃0
∇2𝜃

[
3ℎ2

2
+ 2𝜃ℎ𝜕𝜃ℎ+𝐻

(
ℎ

𝑟

)]
+ 𝑔

2𝜃0
(𝛁𝜃)2𝜕𝜃

{
1
𝐶

[
3ℎ2

2
+2𝜃ℎ𝜕𝜃ℎ+𝐻

(
ℎ

𝑟

)]}
+ (Ug.𝛁𝜃)𝜕𝜃

[
𝑟𝐺

(
ℎ

𝑟

)]
. (B9)

The assumption that the turbulent coefficient is nearly con-
stant in the vertical implies that its positive root is located
much higher than the MABL height, that is, ℎ∕𝑟 ≪ 1. Within
this limit

⎧⎪⎨⎪⎩
𝐺(𝑥) = −𝑥

2
− 𝑥3

12
+ (𝑥5),

𝐻(𝑥) = −𝑟ℎ
[

3+4𝜃𝜕𝜃 lnℎ
2

𝑥+ 1+2𝜃𝜕𝜃 lnℎ
12

𝑥3+(𝑥5)
]
.

(B10)

Replacing these expressions in Equation (B9) leads
to (21).

APPENDIX C: GENERAL FORM OF WIND
DIVERGENCE

The wind divergence is obtained by defining Πr and
Πi as

𝑈p(𝑧) = (𝜕𝑥𝜃 + i𝜕𝑦𝜃)(Πr + iΠi) (C1)

that is, separating the dependence in the gradient of potential
temperature from the dependence in MABL height and verti-
cal wind shear in the particular solution Equation (A4). The
integrated wind divergence 𝛁 ⋅ U = 𝜕𝑥ℜ𝑈 + 𝜕𝑦ℑ𝑈 can then
be computed from Equation (A11), leading to Equation (23),
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with

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛼𝐿 =∫
ℎ

0

[
Πr(𝑧) + Πr(0)ℜ𝐻h(𝑧) − Πi(0)ℑ𝐻h(𝑧)

− Πr(ℎ)ℜ𝐻0(𝑧) + Πi(ℎ)ℑ𝐻0(𝑧)
]
d𝑧,

𝛼𝐺 =∫
ℎ

0
𝜕𝜃
[
Πr(𝑧) + Πr(0)ℜ𝐻h(𝑧) − Πi(0)ℑ𝐻h(𝑧)

− Πr(ℎ)ℜ𝐻0(𝑧) + Πi(ℎ)ℑ𝐻0(𝑧)
]
d𝑧,

𝛼𝐷 =∫
ℎ

0
𝜕𝜃
[
ℜ𝐻h(𝑧)

]
d𝑧,

𝛼𝐶 = − ∫
ℎ

0
𝜕𝜃
[
ℑ𝐻h(𝑧)

]
d𝑧.

(C2)

The four coefficients contain no quantities related to the
temperature derivatives:𝐻0 and𝐻h result from the solution to
the homogeneous problem (i.e. the momentum equation with-
out the pressure term), and Πr and Πi were defined above as
the components of the particular solution without the effects
of the temperature gradient.


