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Abstract—Accurate forecasting of Global Horizontal Ir-
radiance (GHI) is essential for the integration of the solar
resource in an electrical grid. We implement a novel
data-driven model for up to 6h probabilistic forecasting
of GHI. Cloud dynamics are emulated using an analog
method on a geostationary satellite database (herein 5
years of hourly images). It contains both the images to
be compared to the current meteorological conditions
and their successors at one or more hours of interval.
No approximation is thus made on the physics of the
system, unlike numerical weather forecast. The algorithm
is computationally efficient and requires no tuning. It is
designed to be easily used on different locations, requiring
only GHI satellite images.

I. INTRODUCTION

In the context of a growing need for sustainable energy,
the solar resource ranks among the most promising
solutions to meet this upcoming demand. However, the
intermittent nature of the production makes its integra-
tion into an electrical gird challenging. The main input
for most solar power generation systems is Global Hor-
izontal Irradiance (GHI), and its accurate probabilistic
and deterministic forecasting is thus essential.

Depending on the forecast horizon, different approaches
are used for GHI forecasting (see the reviews [1], [2]).
Satellite images have proven to be efficient for the intra-
day horizon (up to six hours). The popular cloud motion
vector methods ([3], [4]) estimate a motion field from
successive cloud satellite images, to then advect the
clouds, producing the forecast. The main drawback of
this methods is the need for post-processing to take into
account the cloud dissipation and deformation. Analog
methods are also used, e.g. [5] that combines outputs
from numerical models and in-situ data as features of
a k-nearest neighbors algorithm. However, to satisfy
the forecasting demand for a big amount of different
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Télécom Atlantique, Brest, France

sites, in locations where numerical models and in-situ
observations are sparse, a robust and easy to use method
is still needed.

For precipitation nowcasting, atmospheric analogs have
become an important topic (e.g. [6], [7]) due to the
availability of huge radar datasets. Analogs represent
two atmospheric states closely resembling each other
[8], with the hypothesis that these states evolve sim-
ilarly. The forecast is thus issued by finding similar
states in an historical database (the analogs), and con-
sidering how the atmosphere evolved following these
states (the successors). The whole physics of the system
is thus contained in the analog-successor pair.

The aim of this paper is to present an operational
method to forecast GHI over a precise solar energy
source (e.g. a solar photovoltaic panel). It uses only one
source of data: hourly satellite images of GHI, which
are easily accessible for different locations. Finally, the
method needs no tuning, meaning that it can be easily
applied to forecast the irradiance over sites in different
locations, with different climatic conditions.

Fig. 1: OSI SAF satellite GHI image with selected
BSRN stations in Europe on July 2nd, 2016.
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II. DATA AND SETUP

To demonstrate the method, we use an archive of
18, 521 GHI images obtained from the geostationary
satellite Meteosat and processed by the Ocean and
Sea Ice Satellite Application Facility (OSI SAF, [9])
covering western Europe and Africa. The images are
remapped on a regular grid of 0.05◦, and interpolated
to produce hourly maps. The archive extends from Sept.
6th, 2011 to Dec. 31st, 2016. We use the 2016 year as a
test year and the rest of the archive as the training set.
The method is tested at the location of five stations
of the Baseline Surface Radiation Network (BSRN,
see [10]) where in-situ pyrgeometer data is available.
The stations, shown in Fig. 1, cover a wide range of
climatic situations (oceanic, mountain, continental) and
constitute a good framework to test the robustness of
the method.

The variability of GHI, hereinafter noted G, is due both
to the daily and seasonal solar cycle (the clear sky
contribution Gclr) and to the cloudiness. Since clouds
only reduce GHI, the clear sky at a location (x, y) is
obtained as

Gclr(t, x, y) = max
t′∈S(t)

G(t′, x, y), (1)

with S(t) a 3-month interval around time t, with con-
stant hour. This is a general expression that does not
require any clear sky model (e.g. [11]). The cloud index
c (between zero and one) is then defined as

G = (1− c)Gclr. (2)

Fig. 2: Correlation masks for different BSRN sites (red
dots) for Jan. 1st (full line) and July 1st (dotted line).

III. METHODOLOGY

The main GHI variability being due to change in cloudi-
ness, the analog method presented herein forecasts the
cloud index, which is then converted to GHI using
Eq. (2).

A. Correlation Mask

For a given site of coordinates (xs, ys), it is crucial
to automatically select the zone in which the analogs
are looked for. A daily correlation map Cm (for a day
d) between the pixel of interest and the surrounding
region is computed. We use a metric inspired by [12]
that measures the average spatial extension of cloud
structures around the site

Cm(d, x, y) =
c(t, xs, ys, )c(t, x, y)

d[
c(t, xs, ys)2

d
c(t, x, y)2

d
]1/2 , (3)

where the averages · d are temporal within a 3-month
interval around d. The region where the correlation is
higher than 0.9 is then selected. Examples of masks
are presented in Fig. 2. In the following, all compu-
tations are performed considering only image pixels
in the mask corresponding to the site and day of
forecast.

Fig. 3: (a) Histogram of cloud index from image (b) on
the 2nd of July 2016 at Payerne. The threshold in (a)
corresponds to the thick black line in (b).

B. Analog forecasting

The forecast consists in two steps: the analogs selection
and aggregation. To avoid overfitting and for computa-
tional efficiency, the analogs selection is done consid-
ering images compressed in a four dimensional space.
For a given cloud index image, Otsu’s method [13]
(similar to a bimodal Fisher’s discriminant analysis on a
histogram of cloud index) is used to obtain a threshold
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separating the clear sky and the cloud pixels (c below
and above the threshold respectively, see Fig. 3). The
images (observed and database) are compressed into
four features between 0 and 1:

1) the cloud fraction: number of cloud pixels over the
total number of pixels in the mask

2) the cloud spread: number of cloud pixels over the
number of pixels in the convex hull of the clouds.
It tends to one when there is only one cloud (its
convex hull is nearly identical to the cloud itself)
and to zero when there are many separate clouds

3) the clear sky intensity: the mean cloud index of
the clear sky pixels

4) the cloud intensity: the mean cloud index of the
cloud pixels.

Following [7], the database is first shrinked by consid-
ering images only within a time of the year (3-month
window) and time of the day (±3h) interval with respect
to the date at which the forecast is to be issued. This
increases the likelihood of finding similar convective
and advective patterns. Then, the k-nearest neighbors
of the observed image are selected using the Euclidean
distance in the four-dimensional features space. For
the BSRN sites of this study, the optimal number of
neighbors is close to k = 90.

Next, the selected analogs are aggregated to produce
a probabilistic forecast. For a given k-th analog, we
determine the optimal spatial translation δ such that
the correlation Cs

k between the analog cloud index cak
and the observed cloud index co

Csk(Tδ) =
< co(x, y)Tδcak(x, y) >[

< co(x, y)2 >< Tδcak(x, y)2 >
]1/2 (4)

is maximal (Tδ· is the translation operator).

A local linear operator (see [14] or [15] for more
details) is then applied on the translated images: it con-
sists in fitting a linear regression between the translated
analogs and successors, taking into account the weights
computed in Eq. (4). The regression operator is then
applied to the current observation to provide the analog
nowcasts.

IV. EVALUATION

The deterministic forecast of GHI (the mean of the pre-
dicted Gaussian) is evaluated with the normalized Root

Mean Squared Error (RMSE) for a set of validation
observations S

RMSE =

√∑
s∈S(c

o
s − ĉs)2∑

s∈S c
o
s

(5)

with cos the observed cloud index from a satellite
image at the BSRN sites, and ĉs the corresponding
forecast. The analog forecast is compared to an Eulerian
persistence (keeping the last cloud index observation
frozen), and a hourly climatology, obtained by taking
the hourly average of GHI in the train dataset for days
in a 2-weeks interval around the forecasted day. Results
are given in Fig. 4 and indicate good performance and
robustness to different locations. In all cases, the analog
nowcasting procedure reaches better performances than
the persistence and climatology method.
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Fig. 4: Normalized RMSE for the five BSRN sites.

V. CONCLUSION AND PERSPECTIVES

We have presented a computationally efficient method
for GHI analog nowcasting on a particular site. The
method uses a k-nearest neighbors algorithm on a
four-dimensional feature-space of cloud index to then
apply a local regression between selected analogs and
successors. The methodology has proven to be robust to
different geographical locations, and requires no tuning,
no in-situ data nor a numerical weather model.

The method will be extended by downscaling predic-
tions on a particular site. The analogs times will be
used to select historical in-situ data, using the BSRN
data also available during the period 2011-2016. An
aggregation operator will then be applied to forecast
the in-situ production.
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