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Abstract
We propose a new phenomenological model to represent the impact of wind-waves on the
dissipation of turbulence kinetic energy near the sea surface. In this model, the momentum
flux at a given height results from the averaged contribution of eddies attached to the sea
surface whose sizes are related to the surface geometry. This yields a coupling between long
wind-waves and turbulence at heights of about 10m. This new wind-and-waves coupling is
thus not exclusively confined to the short wave range and heights below 5m, where most of
the momentum transfer to the waves is known to occur. The proposed framework clarifies the
impact of wind-waves onMonin–Obukhov similarity theory, and the role of longwind-waves
on the observed wind-wave variability of momentum fluxes. This work reveals which state
variables related to the wind–wave coupling require more accurate measurements to further
improve wind-over-waves models and parametrizations.

Keywords Air–sea fluxes · Wall-bounded turbulence · Wave boundary layer · Wind stress ·
Wind-waves

1 Introduction

Observing a windy sea immediately reveals that wind and waves are strongly coupled. Yet,
consistent physical mechanisms explaining this two-way coupling are still elusive both to
theory and observations (e.g. Soloviev andKudryavtsev 2010;Hristov 2018;Villas Boas et al.
2019). Of particular interest is the link between near-surface momentum fluxes and waves,
due to its importance in atmospheric models, from the synoptic to the climate scale (e.g.
Janssen and Viterbo 1996; Shimura et al. 2017; Pineau-Guillou et al. 2018; Villas Boas et al.
2019). For a given near-surface mean wind speed, a large source of variability in turbulent
fluxes is atmospheric stability (e.g. Geernaert 1990; Fairall et al. 2003), consistently described
by Monin–Obukhov similarity theory (MOST, see the review by Foken 2006). However, for
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neutral atmospheric conditions, open-ocean observations exhibit a variability around their
mean value for a given mean wind speed, which has been attributed to waves (see e.g. Edson
et al. 2013). The mean value results from a local equilibrium between short wind-waves
and atmospheric turbulence. For low wind speeds, swell and non-stationary wind conditions
have been suggested as possible reasons of its variability (Drennan et al. 1999), whereas at
moderate to high wind speeds, the physical processes are still not clearly determined.

Close to the surface, wave impact on atmospheric turbulence has been accounted for
through the so-called wave-induced stress. Assuming that wind fluctuations can be described
as a linear superposition of a turbulent and an ocean-wave induced component, wave-induced
stress results, for growing seas, from the transfer of mean flow energy to the wave-induced
component (Janssen 1989). This energy is then transfered to turbulent motions, which sup-
port the growth of wind-waves (Plant 1982). In an equilibrium wind-and-waves situation, i.e.
for waves that have equilibrated with a local stationary airflow, wave-induced stress induces
an enhancement of turbulent motions compared to flow over a smooth surface (Makin and
Mastenbroek 1996). This net enhancement occurs up to a height that defines the wave bound-
ary layer (WBL), above which wave-induced stress vanishes. Wave-induced stress is mostly
correlated to the presence of short wind-waves, which are thus strongly coupled to the low-
level wind field and receive most of the wind energy input. Conceptual models including
this physical process were able to successfully predict measured open-ocean fluxes (Makin
and Kudryavtsev 1999; Hara and Belcher 2002; Kudryavtsev et al. 2014). These single-
columnmodels (called wind-over-wavesmodels in the following) couple a turbulence kinetic
energy (TKE) equation to a spectral wave model through wave-induced stress, and predict
the equilibrated turbulent momentum flux and wind-wave spectrum given a reference-height
mean wind speed. Following experimental and numerical studies, Kudryavtsev et al. (2014)
included wave-breaking effects (i.e. the effect of discontinuities in the surface slope) as an
additional source of wave-induced stress, and showed that this effect could be significant in
explaining the observed momentum fluxes. Being mostly supported by short waves (with
wavelength of the order of 0.01 to 1m), both processes act on a shallow atmospheric layer,
of height one order of magnitude smaller than their wavelength. This results in a height of
the WBL of at most 5 m in the absence of swell.

While wave-induced contributions to atmospheric variables are often reported as being
particularly difficult to detect at higher altitudes from single-point measurements (Soloviev
and Kudryavtsev 2010), Edson et al. (2004) mention that “field campaigns have shown that
some turbulent statistics, e.g., the pressure transport term in the kinetic energy budget equa-
tion, are influenced bywaves up to heights zwhere kpz ≈ 2, where kp is the peakwavenumber
of the dominant waves. The latter findings suggest a thicker WBL for some characteristics of
the flow”. Hence the coupling between atmospheric turbulence and wind-waves could pos-
sibly extend on vertical scales much above 5 m, suggesting the existence of other processes
beyond wave-induced stress. Similarly to wave-induced stress, those processes result from
spatial correlations between atmospheric quantities on the scale of wind-waves, and should
thus be more easily observed if spatial statistics of the atmospheric field (e.g., multiple-point
measurements) were available. In the absence of such measurements, a method extracting
those spatial correlations from single-point measurements is necessary (as developed for
wave-induced stress in Hristov et al. 1998, 2003). The present study is a first step towards
such a method by revealing state variables in which those processes might be buried.

More generally, the understanding of the local wind-and-waves equilibrium is related
to the longstanding question of the influence of a structured boundary (both in terms of
geometry and of velocity) on the properties of turbulence at a certain distance from the
boundary (see the review by Belcher and Hunt 1998). Wave-induced stress only accounts
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(a) (b)

Fig. 1 a State-of-the-art and b proposed attached-eddy model describing vertical turbulent fluxes through a
surface at a height z (dashed lines). a For wall-bounded turbulence (Gioia et al. 2010), the most energetic
structure (i.e. inducing most of the fluxes) has a vertical length scale 2sv equal to twice the considered height z.
Its horizontal length scale 2sh varies with stratification (Katul et al. 2011). The difference between the upward
and downward vertical velocity of the structure w yields the mean vertical turbulent motion. The structure can
be notionally represented by an attached eddy (thin solid line). b In the presence of a surface wave (thick solid
line), depending on the relative phase between the eddy and the wave (denoted χ ), the height of the surface
and thus the size of the attached eddy varies. We propose that multiple attached eddies contribute to the flux
(only three examples are drawn)

for the interaction of the turbulent field with additional, wave-induced, fluctuations. It does
not represent the possible reorganization of the turbulent fluctuations due to the presence
of a structured boundary (e.g. the formation of rolls presented by Phillips et al. 1996). This
reorganization has been shown to occur due to stratification effects for a flat and non-moving
boundary (in experiments, theory, and numerical simulations respectively:Kaimal et al. 1972;
Elperin et al. 2002; Li et al. 2018).

A phenomenological model enabling the inclusion of organized turbulent structures near
a wall has been recently described in Gioia et al. (2010). The model assumes that the turbu-
lent fluxes at a given height are driven by surface-attached eddies representing cross-wind
atmospheric turbulent structures in a convected frame of reference (invariant in the spanwise
direction), and whose horizontal and vertical length scales are related to the height at which
the flux is computed (dashed line in Fig. 1). The reorganization of these attached eddies due
to stratification was then included in this model by Katul et al. (2011) and Li et al. (2012).
These authors introduced an “eddy anisotropy” coefficient fa (related to the eddies horizontal
to vertical aspect ratio), accounting for the deformation of attached eddies due to buoyancy
forces (Fig. 1a). As this deformation can be linked to properties of the turbulence spectra
(as explained in Katul and Manes 2014), the authors calibrated eddy anisotropy based on
measurements from Kaimal et al. (1972). One of the main outcomes of Katul et al. (2011)
is to recover MOST universal functions, which were obtained through measurements, using
a theoretical model based on a TKE balance. In this balance, the deformation of attached
eddies translated into a change in TKE dissipation.

In the presence of surface waves, the link between the shape and spatial organization of the
turbulent structures and the geometry of the surface is still an open question. Hence, we (i)
propose that wind-waves deform attached eddies, inducing a change in TKE dissipation; (ii)
model this effect within the Katul et al. (2011) framework; and (iii) evaluate the impact of this
deformation on turbulent momentum fluxes, and its ability to explain the observed variability
atmoderatewind speeds. Themodel assumes that the deformed surface allows attached eddies
of different sizes to contribute to themomentum flux at a given height (Fig. 1b). The proposed
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physical mechanism is mainly supported by long wind-waves (wavelengths of the order of
10 m), and results in a modification of TKE dissipation at heights above 5 m. It introduces
a dependency of the wind-wave local equilibrium to the local spectral characteristics of
long wind-waves and to the intensity of the mechanism modulating the size of the eddies.
This variability is then used to explain open-ocean measurements using the wind-over-waves
model of Kudryavtsev et al. (2014) to obtain themean observedwind-and-waves equilibrium.

The paper is organized as follows: the wall-bounded model and the new physical mecha-
nism are presented in Sects. 2 (for a single wind wave) and 3 (for a realistic sea surface). The
wind-over-waves model is briefly summarized in Sect. 4. Section 5 focuses on the resulting
impact of the coupling mechanism on near-surface momentum fluxes for neutral conditions,
allowing explanation of their variability for a given wind in open ocean measurements. Sec-
tion 6 then studies the effect of stability on near-surface turbulence, by linking the model
with MOST and comparing it to measurements. Conclusions are presented in Sect. 7.

2 AWall-Bounded TurbulenceModel over a Monochromatic Wave

In this section, we propose a new mechanism to model the impact of a wave with a specific
wavenumber on TKE dissipation. To this end, starting from a model developed to describe
wall-bounded stratified turbulence (recalled in Sect. 2.1), an extension is proposed in order
to account for a periodic and undulating surface (Sect. 2.2).

2.1 AModel forWall-Bounded Stratified Turbulence

We first recall the framework presented in Gioia et al. (2010), Katul et al. (2011) and Li et al.
(2012) to describe a stratified surface boundary layer (SBL). The framework models the SBL
by means of a TKE balance equation. The mean wind shear and stratification are specified,
and the model predicts turbulent fluxes. The key result of the framework is to derive a closure
for TKE dissipation by considering the shape of eddies attached to the surface.

The SBL is defined as the lowest part of the surface atmospheric boundary layer (adjacent
to the surface) where the flow is horizontally homogeneous and stationary, and with no
subsidence. In what follows, the dominant wind-waves are assumed to be aligned with the
mean wind direction (and the horizontal coordinate x), so that we only consider perturbations
in the (x , z) directions (where z is the vertical coordinate). The turbulent momentum flux
normalized by air density (ul∗)2 = −u′w′ is constant within the layer due to horizontal
homogeneity. Anticipating Sect. 4, ul∗ is called the local friction velocity.

TheTKEbalance equationwithin this layer is assumed to be a balance betweenmechanical
(or shear) production, buoyancy production/destruction, and TKE dissipation ε

− u′w′ ∂U
∂z

+ g

θh
w′θ ′ = ε, (1)

where U is the mean wind speed and (·)′ denotes turbulent fluctuations. In the following,
water vapour effects are omitted for the sake of simplicity. Defining H , the sensible heat flux
within the SBL, as

H = −ρCpw′θ ′,
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and using the definition of ul∗, the TKE balance can been written as

(ul∗)2
∂U

∂z
− gH

ρCpθh
= ε, (2)

where g is the acceleration due to gravity, ρ is air density, and Cp is the heat capacity of dry
air.

We also introduce the Obukhov length,

L = ρCpθh(ul∗)3

κgH
, (3)

where κ = 0.4 is the von Kármán constant and θh is a reference potential temperature. With
this definition, the stability parameter ζ = z/L , is negative for an unstable boundary layer
and positive in the stable case.

The TKE balance equation can then be rewritten in dimensionless form from Eqs. 2 and 3,
and the definition of ζ (see e.g. Hogstrom 1996)

− κz

ul∗
∂U

∂z
+ ζ + κz

(ul∗)3
ε = 0. (4)

Following Katul et al. (2011), we further include the first-order effect of the turbulent flux-
transport and pressure redistribution terms (which are neglected in Eq. 1, and were shown to
be significant for non-neutral conditions) as a constant correction β2 to the buoyancy term,
yielding

− κz

ul∗
∂U

∂z
+ (1 + β2)ζ + κz

(ul∗)3
ε = 0, (5)

where β2 = 1 (Katul et al. 2011).
To solve this equation (i.e. to obtain ul∗ from given values of ∂U/∂z, z, and ζ ), a closure

for TKE dissipation ε is necessary. To this end, Gioia et al. (2010) and Katul et al. (2011)
proposed that turbulent fluxes at a height z are determined by the mean difference between
vertical velocities w at x and x + 2sh (at the same height z) corresponding to the edges of
a turbulent structure with given horizontal (2sh) and vertical (2sv) length scales. In such a
situation, the momentum flux is estimated as

(ul∗)2(z) = κT |w(x + 2sh) − w(x)|[U (z + sv) −U (z − sv)]
∼ κT |w(x + 2sh) − w(x)| ∂U

∂z
2sv, (6)

i.e., as the product between the turbulent structure mean vertical velocity and the horizontal
momentum perturbation, assuming that momentum is transported across the entire vertical
extension of the structure (Gioia et al. 2010). In the above expression, κT is a dimensionless
proportionality coefficient.

The vertical velocity differences were then estimated using the Kolmogorov 4/5 law for
the third-order velocity structure function (e.g. Monin and Yaglom 1975),

|w(x + 2sh) − w(x)| = (κεεsh)
1/3, (7)

where κε is a dimensionless proportionality coefficient. Inserting (7) into (6), and after some
algebra, the following expression results for dissipation,

ε = κ−4(ul∗)6
(

∂U

∂z

)−3

s−3
v s−1

h , (8)
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where κ = 23/4κ3/4
T κ

1/4
ε is the von Kármán constant (this matching is required to recover

the law-of-the-wall under neutral conditions).
In Eqs. 6– 8 only themost energetic structure at a height z is considered, i.e. corresponding

to the leading order contribution to the third-order structure function and hence to the vertical
momentum flux. It is the structure whose half vertical length scales as the height at which the
turbulent flux is computed, i.e. sv = z. In the absence of stratification, the horizontal length
scale is further assumed to be equal to the vertical length scale (Gioia et al. 2010). Katul et al.
(2011) showed that stratification introduces an eddy anisotropy factor fa in the horizontal
length scale, such that

sh = fa(ζ )sv, (9)

where fa = 1 for neutral conditions (i.e. ζ = 0).
Figure 1a shows a conceptual representation of the most energetic turbulent structure for a

height z as an ensemble-mean eddy in a convected frame of reference (following Gioia et al.
2010; Katul et al. 2011). The shape of the eddy depends on the horizontal and vertical length
scales of the turbulent structure. This conceptual representation does not entail any velocity
field associated with the eddy, apart from the vertical velocities at its upward and downward
branches (black arrows), corresponding to w(x) and w(x + 2sh) respectively.

The condition sv = z then yields that the eddies associated with the most energetic
turbulent structures (termed energy-containing eddies) are eddies attached to the surface,
reminiscent of the attached-eddy model of turbulence introduced by Townsend (1980)
(see also the review by Marusic and Monty 2019). The spatial aspect ratio of the energy-
containing eddies, fixed by relation (9), reflects their reorganization due to buoyancy forces
(through the stability parameter ζ ).

2.2 Inclusion of a SingleWaveWithin theWall-BoundedModel

We now propose an extension of the wall-bounded model to include the reorganization of
energy-containing eddies due to a boundary with a spatial structure. Let us first consider the
impact of a wave of wavenumber k and of height Hr (k) on an attached eddy driving the
momentum flux at a height z. In the following, we derive the horizontal extent of the eddy
2s̃h in the presence of the monochromatic wave. More generally, we use the notation (̃·)
throughout to denote the contribution a single wave of wavelength k to turbulent quantities.

The sea-surface height h varies around its reference value depending on the position along
the wave, measured by the relative phase (denoted χ) between the wave and the eddy. The
height variations follow h(k, χ) = Hr (k) cosχ . Within the wall-bounded model presented
in Sect. 2.1, the vertical extent of the most efficient eddy is twice the distance between the
surface and the height z (Fig. 1a). In the presence of a surface wave, the now phase-dependent
vertical extent of the attached eddy driving the momentum flux s̃v varies around its reference
value z. Figure 1b shows the configurations corresponding to χ = 0, π/2, and π.

Using (9), the horizontal length scale of the eddy varies as a function of phase χ as

s̃h(z, ζ, k, χ) = fa(ζ )(z − h(k, χ)))

= z fa(ζ )[1 − (Hr (k)/z) cosχ]. (10)

For a given wave, we further consider only the “outer region” of the SBL (as defined in
Belcher and Hunt 1993, 1998). Within this region, (i) the mean flow speed is larger than the
phase speed of the wave, and (ii) eddies have a turnover time longer than the advection time
above the considered wave. Thus, during the eddy lifetime and its advection above a wave,
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different configurations (depending on χ , and shown in Fig. 1b) can occur, which can all
potentially contribute to the resulting upward transport of momentum (Eq. 6) and to TKE
dissipation (Eq. 8).

We consider the most general form accounting for the contribution of all possible config-
urations to the eddy horizontal length scale, a weighted average over all configurations

〈s̃h〉(z, ζ, k) =
∫ π

0
p(χ)s̃h(z, ζ, k, χ)dχ, (11)

where p(χ) is a weight, or the (normalized) probability density function (p.d.f.) of the
configurations, and 〈·〉 denotes the average over all configurations labeled by χ . The average
vertical extent of the attached eddy is assumed to be unchanged by the presence of waves
(i.e. 〈s̃v〉 = sv = z). From Eq. 6 (see also Gioia et al. 2010), the vertical extent results from
the Taylor expansion of vertical wind variations (i.e.U (z + sv)−U (z − sv) ∼ (∂U/∂z)2sv)
and denotes the height over which the eddy mixes momentum. The horizontal extent denotes
the size and energy of the structure (through Kolmogorov’s law, Eq. 7). We thus consider
that, on average, the presence of waves only affects the energy of the horizontal structure.

If the p.d.f. p(χ) is not symmetric around χ = π/2, then the wave-induced sea-surface
height variation leads on average to a variation of the eddy aspect ratio, affecting TKE dissi-
pation (Eq. 8). In particular, a compression (respectively a stretching) occurs for a distribution
where configurations around χ = 0 (resp. χ = π) are dominant.

The different configurations in χ can also be interpreted as representing TKE bursts.
From Kolmogorov’s law (Eq. 7), a change in sh is related to a change in the vertical velocity
difference of the turbulent structure. Increase or decrease in sh due to a change in the phase
χ can thus be interpreted as an increase or decrease in the vertical velocity at the edges of the
turbulent structure, and those velocity variations can be associated with bursts. The average
horizontal length scale computed in Eq. 11 can thus be interpreted as accounting for the
contribution of bursts to TKE dissipation in the SBL due to the presence of waves. Bursts
were suggested as possibly supporting a large fraction of open-ocean surface momentum
fluxes (Dorman and Mollo-Christensen 1973). Laboratory measurements revealed that such
events could have an asymmetric p.d.f. (see Fig. 26 of Kawamura and Toba 1988).

3 The Impact of Wind-Waves on Near-Surface Turbulent Structures

Section 2 presented a wall-bounded turbulence model where the effects of a single wave
were included in TKE dissipation through the stretching or the compression of an attached
eddy, i.e. the change in its horizontal to vertical aspect ratio. We now generalize the model
to the case of a wave field (Sect. 3.1), while Sect. 3.2 then discusses the physical quantities
modulating the proposed mechanism.

3.1 Generalization of the Eddy-Stretching Process to aWind-Wave Sea

So farwe discussed how amonochromaticwave could affect a given turbulent structure. In the
case of a wave field composed of the sum of monochromatic waves of different wavelengths
and directions the question is to determine which waves can potentially stretch or compress
an attached eddy contributing to the momentum flux at a height z (in the sense of changing its
aspect ratio). In the following, we make the assumption that the deformation occurs mainly
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when wave and attached eddy sizes are close, i.e. for a wave of wavelength k scaling as the
inverse of the height 1/z, with z roughly the horizontal extent of the eddy (defined in Eq. 10).

The assumption can be made more precise by considering the physical mechanisms likely
to cause eddy deformation. The geometry of short wind-waves ismodulated by the supporting
longer waves. Hence, the resulting surface roughness (due to wave-induced stress from short
wind-waves) varies horizontally following the longer waves, on lengths of half the modu-
lating wave horizontal length scale (e.g. Kudryavtsev and Chapron 2016). This modulation
has been shown to significantly affect the near-surface atmospheric flow (Gent and Taylor
1976; Kudryavtsev and Chapron 2016) and could also impact attached eddies by inducing a
roughness variation on a scale resonant with that of the eddy. The average deformation of an
attached eddy by a wave, described in Sect. 2.2, is thus assumed to be due to these modulated
shorter waves. Within this picture, modulating waves whose half horizontal length scale is
shorter than the horizontal eddy size are not capable of interacting with both the upward
and the downward branch of the attached eddy. Moreover, among these longer modulating
wind-waves, we only consider the one experiencing the longest interaction timewith the eddy
advected above, i.e. the shortest (slowest) wind-wave. It is thus assumed that eddy stretching
or compression occurs for a resonant wave whose half-horizontal extent (π/kr ) is equal to
the horizontal length scale of the wall-bounded attached eddy prior to deformation (2z fa)

kr (z) = π

2z fa(ζ )
. (12)

The horizontal extent of an energy-containing eddy at a height z over a wave field, 2〈sh〉, is
then expressed from the individual contribution of monochromatic waves as

〈sh〉(z, ζ ) = 〈s̃h〉[z, ζ, kr (z)]. (13)

Using Eqs. 10 and Eq. 11, it further reads

〈sh〉(z, ζ ) = z fa(ζ )ge(z, ζ ), (14)

where we defined the eddy-stretching factor ge as

ge(z, ζ ) =
∫ π

0

{
1 − Hr

z
cosχ

}
p(χ)dχ, (15)

where Hr is the height of the resonant wave.
For a sea surface described by a wave spectrum S(k) (as a function of the isotropic

wavenumber k), Hr can be computed from contributions of a narrow wave-packet around kr ,
of width Δk as

H2
r (kr ) =

∫ kr+Δk/2

kr−Δk/2
S(p)dp ≈ S(kr )Δk. (16)

Note that for the physical picture of Fig. 1 to hold, the resonant wave height must be lower
than the height z at which fluxes are computed, restricting the physical process to cases where
Hr (kr ) < z.

The width of the wave-packet Δk is related to the accuracy of the resonance condition
(Eq. 12), since it quantifies to what extent waves that are not exactly of wavelength kr
contribute to eddy stretching. It can also be related to themagnitude of the physicalmechanism
causing eddy stretching, i.e. the modulation of short wind-waves by long wind-waves, which
is highly variable (e.g. due to slicks, sea-surface temperature, and jointly varying surface
currents and stability conditions, seeVandemark et al. 1997;Grodsky et al. 2012;Kudryavtsev
et al. 2012). The wave-packet width is thus considered as a model parameter, called �k . The
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resulting form for the wave-packet width, including the physical condition mentioned above
is

�k =
{

�k for Hr (kr ) < z

0 for Hr (kr ) ≥ z
. (17)

For Hr (kr ) ≥ z, or for no waves (i.e. S(k) = 0), Eq. 14 is reduced to the expression proposed
by Katul et al. (2011) (Eq. 9).

Eddy stretching accounts for the change in the shape of an energy-containing eddy by
interaction with a surface wave of a size resonant with the size of the eddy. Using Eq. 14 in
Eq. 8, TKE dissipation including eddy stretching reads

κz

(ul∗)3
ε = (ul∗)3

(κz)3

(
∂U

∂z

)−3

fa(ζ )−1ge(z, ζ )−1. (18)

Due to the resonance condition between the wave and the eddy (Eq. 12), the change in TKE
dissipation due to eddy stretching only occurs at heights he = π/[2 fa(ζ )k] ∼ 1/k, matching
the heights suggested in Edson et al. (2004) and also discussed in the introduction.

For ge and fa equal to one (i.e. neutral conditions and a flat boundary), we recover the
expression of TKE dissipation obtained for homogeneous and isotropic turbulence (and used
in the wind-over-waves model of Kudryavtsev et al. 2014, see Sect. 4).

3.2 Sources of Variability of Eddy Stretching

Eddy stretching is a new coupling mechanism between the wave and the wind fields, whose
magnitude can vary for a given mean wind speed. In order to understand the sources of this
variability, the expression of eddy stretching presented in Eq. 15 is rewritten in wavenumber
space, i.e. by defining g̃e such that

ge(z, ζ ) = g̃e(kr , ζ ). (19)

By using Eq. 15 together with the resonance condition (Eq. 12) and the height of the resonant
wave (Eq. 16), g̃e can be expressed as

g̃e(kr , ζ ) = 1 − 2�k1/2
fa(ζ )

π
[k2r S(kr )]1/2

∫ π

0
p(χ) cosχdχ. (20)

In addition to stability, g̃e depends on the wavenumber of the resonant wave (kr ) through
the spectrum of the wave slopes (k2r S(kr )). Typical wind-wave slope spectra exhibit a peak
depending on the degree of sea-state development (e.g. spatial fetch, as modelled in Donelan
et al. 1985; Elfouhaily et al. 1997), and almost vanish for waves below 1 m (corresponding
to kr ∼ 10m−1). For waves larger than the spectral peak (e.g. 60 m for a fetch of 100 km in
the Donelan et al. 1985, model), k2r S(kr ) quickly vanishes. Eddy stretching thus reflects the
impact of intermediate to long wind-waves (of the order of tenths of metres) on atmospheric
turbulence, through the increase of the air–sea interface area (related to the sea surface mean
slope). This is consistent with remote sensing measurements indicating a sensitivity of air–
sea fluxes to the air–sea interface area (similar to radar backscatter, e.g. Kitaigorodskii 1973;
Brown 1979; Vandemark et al. 1997). The range of the spectrum contributing the most to
sea-surface slope (long wind-waves) can be highly variable for a given 10-m mean wind
speed, sensitive to fetch, rising/decaying winds, surface currents, modulating longer swells,
thus introducing variability into the wind-wave equilibrium (e.g. see Zhang et al. 2009, where
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surface currents caused long wind-waves to deviate from the mean wind direction, impacting
surface stress).

Eddy stretching also depends on the probability distribution of the different events p(χ)

and the bandwidth coefficient �k . Variations of p(χ) can induce an eddy stretching smaller
or greater than one. As shown in Fig. 1b, for probability distributions where predominant
configurations are for phases smaller than π/2, the horizontal extent of the eddy is reduced
with respect to the wall bounded case, and hence eddy stretching is smaller than one (see
Eq. 14). Conversely, when predominant configurations are for phases greater than π/2, eddy
stretching is larger than one. Both quantities p(χ) and �k are related to the physical process
inducing eddy stretching (the modulation of short wind-wave stress by long wind-waves)
whose magnitude can vary for a given 10-m mean wind speed (Gent and Taylor 1976; Dulov
et al. 2013; Kudryavtsev and Chapron 2016).

For a given 10-m mean wind speed, eddy stretching can thus vary due to, (i) variations of
the wave-slope spectrum, and (ii) variation of the magnitude of the physical process causing
eddy stretching. However, as described in Sect. 4, in order to obtain a realistic wind-wave
spectrum and the associated wind-over-waves equilibrium (i.e. matching observations), we
use the wind-over-waves model of Kudryavtsev et al. (2014). Within this particular model,
the only parameter controlling the long wind-wave spectrum is spatial fetch, following
the parametrization of Donelan et al. (1985). To simply account for deviations from this
parametrization, as well as for the sources of variability mentioned above, Eq. 20 is rewritten
as

g̃e(kr , ζ ) =
⎧⎨
⎩
1 − γ

fa(ζ )

π
[k2r S(kr )]1/2 for Hr (kr ) < z

1 for Hr (kr ) ≥ z
, (21)

where

γ = 2�k
1/2

∫ π

0
p(χ) cosχdχ. (22)

The newparameter γ contains all the dependencies to p(χ) and�k . Implicitly, it also contains
variations in thewind-wave slope spectrum not described by thewind-over-wavesmodel (e.g.
non-stationary winds, surface currents, etc.).

Variations of spatial fetch in the Donelan et al. (1985) parametrization only change the
spectrum of wind-waves greater than about 60 m (by causing a shift of the peak of the
wind-wave slope spectra towards larger waves). From Eq. 21, this induces a change in eddy
stretching at heights he (proportional to thewave size) too large to impact the surfacemomen-
tum flux u∗ (not shown). On the other hand, variations of γ in Eq. 21 induce a global change
in the eddy-stretching magnitude. This includes a change in the eddy-stretching magnitude
corresponding to 10-m waves, describing a change in the wave energy not described by the
Donelan et al. (1985) parametrization. This corresponds to changes in eddy stretching at
heights around 10 m having a significant impact on momentum fluxes, as will be shown
numerically in Sect. 5.

The condition Hr (kr ) < z in Eq. 21 sets upper and lower bounds on g̃e: since Hr (kr ) is
related to k2r S(kr ), this condition sets an upper bound on k2r S(kr ), implying that g̃e cannot be
too large or too small relative to one for γ < 0 or γ ≥ 0 respectively. In practice, evaluating
this condition would require evaluating Hr (kr ) through Eq. 16, and hence choosing a value
for �k . This is not compatible with the choice, made in this work, to use only one free
parameter in the description of eddy stretching (the parameter γ ). Hence, in the following,
the condition Hr (kr ) < z is replaced by setting bounds on ge, i.e. by the condition that
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g̃e < 102 or g̃e > 10−2 for γ < 0 or γ ≥ 0, respectively. This choice of bounds covers two
orders of magnitude of g̃e around one. It also ensures that g̃e is positive, and hence that the
TKE dissipation is positive.

4 Wind-Over-Waves Model

In the previous sections, we proposed a mechanism accounting for the impact of long wind-
waves on TKE dissipation within an SBL model where a wave spectrum was prescribed. We
now briefly describe the wind-over-waves model introduced in Kudryavtsev et al. (2014),
predicting the generation of wind-waves by turbulent motions within a wind-and-waves
equilibrium. This wind-over-waves model is then used in the following sections to explore
the sensitivity of the wind-and-waves equilibrium to the proposed mechanism.

The wind-over-waves model couples an atmospheric TKE equation with an equation
describing a wind-wave field. Low-level turbulent motions lose energy to short wind-waves,
which in turn generate atmospheric fluctuations enhancing TKE by extracting energy from
the mean flow. Wave-wave non-linear interactions then result in an equilibrium wind-and-
waves state, where TKE is enhanced with respect to flow over a smooth surface, reproducing
the mean observed momentum flux in open-ocean measurements for a given mean wind
under neutral conditions. At the core of this coupling is thus the transfer of energy between
atmospheric turbulent motions and atmospheric wave-induced motions, the latter being cou-
pled to the wind-wave field (e.g. Makin and Kudryavtsev 1999; Hara and Belcher 2002;
Kudryavtsev et al. 2014). The atmospheric flow is thus decomposed into a mean component,
a turbulent component and a wave-induced component which decays with height.

The first implication of this triple decomposition is that, as opposed to a standard SBL,
the turbulent momentum flux −u′w′ = (ul∗)2 is no longer constant with height, due to the
presence of wave-induced stress τw = ρ(uw∗ )2 associated to wave-induced motions. The
sum of both wave-induced and turbulent contributions is however constant and equal to u2∗,
defined as the normalized turbulent momentum flux on top of the WBL (defined as the SBL
sub-layer where wave-induced stress is non-zero, e.g. Makin and Mastenbroek 1996)

(ul∗)2(z) + (uw∗ )2(z) = u2∗. (23)

From this equation, we introduce the coupling coefficient

αc(z) =
[
uw∗ (z)

u∗

]2
, (24)

which quantifies the relative impact of wave-induced stress in the SBL. Equation 23 can then
be rewritten as

ul∗ = (1 − αc)
1/2u∗. (25)

The second implication of the triple decomposition is that the TKE balance in the presence
of wave-induced stress reads

[(uw∗ )2 + (ul∗)2]
∂U

∂z
− (1 + β2)

gH

ρCpθh
= ε. (26)

With respect to the wall-bounded case (Eq. 2), the TKE balance now contains an additional
term (uw∗ )2∂U/∂z, describing the extraction of energy from the mean flow by its interaction
with wave-induced stress. Equation 26 is a straightforward generalization of the Kudryavtsev
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et al. (2014) balance (derived in, e.g., Kudryavtsev andMakin 2004; Hara and Sullivan 2015)
where stratification has been included (through the term gH/Cpθh). In this balance, the
presence of waves enhances TKE through the so-called wake production term, as found in
numerical simulations over idealized sinusoidal waves (Hara and Sullivan 2015) and over a
breaking-wave field (Suzuki et al. 2013).

Note that other balances could be considered. In particular, Janssen (1999) and Cifuentes-
Lorenzen et al. (2018) consider that (uw∗ )2∂U/∂z acts directly as a source ofwave energy (and
hence does not appear in Eq. 26), leading to a decrease in TKE in the presence of wind-waves.
This balance describes TKE decrease observed very close to the surface in numerical simula-
tions (Hara and Sullivan 2015). This region is not described by the Kudryavtsev et al. (2014)
model, which is written in Cartesian coordinates, hence losing validity when approaching
wave crests.

Using Eqs. 3 and 25 in Eq. 26, the TKE balance in dimensionless form reads

− (1 − αc)
−1 κz

ul∗
∂U

∂z
+ (1 + β2)ζ + κz

(ul∗)3
ε = 0. (27)

The atmospheric component of the Kudryavtsev et al. (2014) wind-over-waves model is
recovered for a neutral stratification (i.e. ζ 	= 0). The standard TKE equation describing
stratified turbulence in absence of waves is recovered in its dimensionless form (Eq. 5) for
αc = 0.

Using the expression for TKE dissipation Eq. 18 in Eq. 27 further yields

− (1 − αc)
−1 κz

ul∗
∂U

∂z
+ (1 + β2)ζ + (ul∗)3

(κz)3

(
∂U

∂z

)−3

f −1
a g−1

e = 0, (28)

where eddy anisotropy fa depends on stratification ζ , and eddy stretching ge depends on γ ,
height z, and the wave spectrum (through Eqs. 19 and 21). Equation 28 can thus be solved
for the dimensionless shear [(κz)/ul∗]∂U/∂z, given ζ , αc, fa , and ge.

The wave-induced stress τw , and thus αc, is required to solve Eq. 28. As presented in
Kudryavtsev et al. (2014), the coupling parameter αc describes not only the wave-induced
stress in the WBL resulting from the smooth deformation of the airflow above waves (losely
called “form drag” in the following), but also the stress induced by airflow separation events
on top of breakingwaves (Reul et al. 1999;Husain et al. 2019). For a givenwave ofwavelength
k, both these effects act over a shallow atmospheric layer, up to heights h(k) ∼ 0.1k−1 and
ha(k) ∼ 0.3k−1 respectively. Note that this is at variance with eddy stretching, acting at
greater heights (i.e. he ∼ 1/k, see Sect. 3).

Furthermore, both form drag and airflow separation are, unlike eddy stretching, mostly
confined to the short wind-wave range (waves of the order of 1 m, following Plant 1982)
and thus couple Eq. 28 to a stationary short wind-wave spectrum (described by Eq. 34 in
Appendix 1). The full wind-wave spectrum is described, in the Kudryavtsev et al. (2014)
model, as a superposition of the aforementioned short wind-wave part and a prescribed long-
wave part, mostly governed by the degree of sea-state development (i.e. fetch and wave age,
following Donelan et al. 1985; Elfouhaily et al. 1997, and discussed in Sect. 3.2). Details
on both the wind-wave spectrum and the parametrization of the coupling coefficient can be
found in Appendix 1.

The resulting wind-and-waves equilibrium matches atmospheric measurements (see
Sect. 5.2) and wave measurements (Yurovskaya et al. 2013). It is not sensitive to varia-
tions in the long wind-wave spectrum (i.e. variations in fetch), since it does not contribute to
form drag nor airflow separation.
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Fig. 2 Flow chart of the wind-over-waves model. The left panel shows the input parameters of the model
and how they impact the different steps of model (dotted-dashed arrows). The parameters used in standard
bulk formulae are called “bulk parameters”, as opposed to the “external parameters”. Note in particular the
different quantities impacting the proxy eddy-stretching parameter γ (dashed box, Eq. 21). Right panel shows
the structure of the wind-over-waves model. The equilibrium solution is obtained by iteratively solving the
two model components (the atmospheric model, Eq. 28 and the wave model, Eq. 34), using a bulk formula as
a first guess for the momentum flux

5 Momentum Fluxes Variability Under ModerateWind Speeds

In this section, we first describe how the new physical mechanism (described in Sects. 2
and 3) can be incorporated in the wind-over-waves model described in Sect. 4 (Sect. 5.1). The
resulting new wind-and-waves equilibrium is then compared to open-ocean measurements
(Sect. 5.2).

5.1 The CoupledModel

As summarized in Fig. 2, the coupled wind-over-waves model solves the TKE balance (28).
The equation depends on the short wind-wave spectrum (through αc) obtained by solving
a budget equation (Eq. 34 in Appendix 1). It also depends on the parameter γ through
ge, introduced in Eq. 21. The coupled system is solved by iterations, given a 10-m wind
speed U10, a heat flux H , fetch (for the prescribed long wind-wave spectrum), and the
parameter γ . It returns a friction velocity on top of the WBL (u∗), a mean wind profile
U (z), and a wind-wave spectrum S(k), characterizing the wind-and-waves equilibrium.
The inclusion of eddy stretching introduces a sensitivity of the wind-and-waves equilib-
rium to long wind-waves, absent in the Kudryavtsev et al. (2014) model and discussed
below.

Note that even thoughEq. 28 is valid for any stability condition, only unstable stratification
conditions can be simulated by the coupled model (i.e. when αc is determined recursively
by solving Eq. 34 in Appendix 1). When the atmosphere is stably stratified, the TKE model
yields unrealisticallyweak turbulence. It is out of the scope of the present paper to describe the
coupled stably-stratified case, that would require the introduction of other physical processes
such as gravity waves or a total kinetic energy balance (e.g. Zilitinkevich et al. 2008).
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5.2 Comparison to Experiments

Near-surface momentum fluxes (u2∗) from the wind-over-waves model and its extension
presented above were compared to measurements presented in Edson et al. (2013), compiling
data obtained from different field campaigns in open sea. The data were collected 50 km
off the southern Californian coast (Hristov et al. 2003), 10 km off the coast of Denmark
(Mahrt et al. 1996), south of Martha’s Vineyard (Edson et al. 2007), and on the northern
wall of the Gulf Stream (Marshall et al. 2009), and were filtered to retain only young seas
(i.e. with presumably no swell). This dataset covers a wide range of winds speeds (up to
25m s−1) and stability conditions (stability parameter from−1.2 to 0.8). These observations
are of particular relevance since they were used to calibrate the COARE parametrization (e.g.
Fairall et al. 2003).

Figure 3a shows the observed bin-averaged values of momentum fluxes as a function
of the neutral 10-m wind speed (U10N , black dots). In the observations, the neutral wind
speed is obtained by applying a MOST stability correction to the wind speed extrapolated
from direct measurements. It corresponds to the expected wind speed at equilibrium with
the measured momentum flux in neutral stability conditions (e.g. Liu and Tang 1996). In
the following, measurements will be compared with the wind-over-waves model in neutral
conditions (ζ = 0) leading to an eddy anisotropy factor fa = 1.

The solid line in Fig. 3a shows the equilibrium solution of the coupled model includ-
ing wave-induced stress and without eddy stretching (i.e. γ = 0), for a fetch of 100 km. As
expected fromKudryavtsev et al. (2014), the solution is in good agreement with observations.
On the contrary, without wave-induced stress (i.e. uw∗ = 0 or αc = 0), the modelled momen-
tum fluxes are smaller than those observed for wind speeds greater than about 10 m s−1

(dashed line in Fig. 3a). The effect of short waves on the SBL (through form drag and airflow
separation, which increase TKE) is thus an essential physical process to explain the mean
dependency of wind stress on U10N . In fact, for the considered range of wind speeds, the
coupling coefficient αc varies between 0 and 0.6, and increases with wind speed (solid line
in Fig. 3b, which shows the maximal coupling coefficient for a given wind speed, located
very near the surface). For wind speeds above 15m s−1, wave-induced stress is larger than
the turbulent momentum stress (i.e. αc > 0.5).

In the wind-over-waves model, to each value of U10N corresponds a short wind-wave
spectrum. Long wind-waves depend on fetch and on wave age (u∗/cp , with cp the phase
speed of the spectral-peak wave component), following the parametrization of Donelan et al.
(1985). The correspondence between U10N and wave age in the model is shown in Fig. 3b
(dashed line). The modelled range (between 0.6 and 1.2) is consistent with the range of
observed values in Edson et al. (2013), which are interpreted as young seas. Note that even
though there is a one-to-one correspondence betweenU10N and wave age, there is no reason
for such a relation betweenwave age and the near-surfacemomentumflux, which is discussed
below by showing other sources of variability of momentum flux independent of wave age.

The momentum fluxes measurements exhibit a significant scatter (black error bars in
Fig. 3a), which may be attributed to the influence of local processes on the wind-and-waves
equilibrium (Edson et al. 2013). In the present work we investigate the possibility that this
variability is caused by eddy stretching, through a change in the long wind-wave spectrum
(and particularly 10-m waves), or through a change in the intensity of the modulation of
short wind-waves by long wind-waves. To this end, we use the simplified expression of eddy
stretching (Eq. 21) in which a single parameter, γ , is varied as a proxy for these two effects.
Variation of γ between −20 and 8 yields the grey shading in Fig. 3a. This corresponds to
values of eddy stretching between 10−2 and 101, as shown in Fig. 4. The range of variation
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Fig. 3 a Surface momentum fluxes (divided by air density) vs neutral 10-m wind speed. Dots indicate bin-
averaged measurements from Edson et al. (2013), vertical error bars are the associated standard deviations, the
dashed line is the model result without accounting for the impact of waves on the SBL, and the solid line is the
model result with wave-induced stress. Grey shading is the range of values obtained varying eddy stretching
around its neutral value of one (corresponding to γ = 0). b Maximal (i.e. surface) coupling parameter αc
(solid line), and wave age (dashed line) vs 10-m neutral wind speed. For the range of observed wind speeds,
the coupling parameter varies between 0 and 0.6

Fig. 4 Magnitude of eddy
stretching ge at its spectral peak
(from Eq. 21) as function of the
coefficient γ and 10-m wind

in momentum flux resulting from the variation of eddy stretching covers the scatter that is
observed in the data (compare shadings and error bars in Fig. 3a). Note that the lower part of
the grey shading in Fig. 3 corresponds to values of ge greater than one, and conversely. Other
factors could be invoked to explain the scatter in themeasurements, in particular fetch. To this
end, fetch was varied in the coupled model between 10 and 1000km, with fixed γ in Eq. 21.
The resulting variability was not sufficient to explain the observed scatter (not shown). This
is consistent with the fact that fetch variations induce a change in eddy stretching at heights
which do not significantly affect the surface momentum flux (as discussed in Sect. 3.2).
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Fig. 5 TKE dissipation versus 10-m wind speed at different heights. Note the differences in vertical-axis
ranges. The dashed line is the model result without accounting for the impact of waves on the SBL and the
solid line is the model result with wave-induced stress. Grey shading is the range of values obtained varying
eddy stretching around its neutral value of one (corresponding to γ = 0)

Wave-induced stress and eddy stretchingwere shown above to have a significant impact on
surfacemomentumfluxes. Figure 5 further showshowboth processes changeTKEdissipation
(Eq. 18) at different heights. As expected from the wind-over-waves model, TKE dissipation
is enhanced when waves are included in the model (compare the dashed and the solid lines):
the additional TKE production arising from wave-induced stress is locally balanced by an
enhanced TKE dissipation. It is then interesting to focus on the sensitivity of TKE dissipation
to variations of eddy stretching (grey shadings). The sensitivity of TKE dissipation to eddy
stretching first decreases with height for heights below 5 m (compare grey shadings between
Figs. 5a and b), and then increases with height above 5 m (compare grey shadings between
Figs. 5c and d). This highlights two different causes of the sensitivity of TKE dissipation to
changes in eddy stretching. Let us first recall that eddy stretching magnitude at a height z (g̃e)
depends on the slope of waves whose wavenumber kr is such that kr ∝ 1/z, called “resonant
waves”. This follows from Eqs. 12 and 21, where the resonant waves slope is k2r S(kr ).
Furthermore, the slope of wind-waves decreases with their wavenumber, since S(k) ∝ k−3

(in the “saturation range” of wind-waves, see, e.g. Phillips 1977, p. 148). Hence, near the
surface (below 5m), the resonant waves (which are small) are not steep, and hence g̃e is close
to one. At those heights, the observed sensitivity of TKE dissipation to eddy stretching thus
results from the changes in the turbulent momentum flux ul∗ (first factor in Eq. 18), caused
by changes in TKE dissipation over the whole atmospheric column. As height increases, so
does the slope of the resonant waves, and hence for heights above 5 m, the sensitivity of
TKE to eddy stretching results from ge being significantly different from one. Those two
mechanisms show that the impact of long wind-waves on TKE dissipation can both directly
and indirectly affect the whole atmospheric column.

Coming back to momentum fluxes, two effects can be invoked to explain their sensitivity
to eddy stretching. First, as discussed above, stretching ge could directly affect atmospheric
turbulence through its (direct or indirect) effect on TKE dissipation ε (Eq. 18). Second, as the
wave growth rate depends on atmospheric turbulence through ul∗ (Eq. 35 in Appendix 1), the
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Fig. 6 a Modelled saturation spectrum (k4S(k)) for a 10-m wind speed of 15m s−1 and an eddy stretching
parameter γ of−10 (dashed line), 0 (solid line), and 5 (dotted line); b Relative impact on momentum fluxes of
a change in the wind-wave spectrum due to eddy stretching change represented as function of the coefficient
γ and 10-m wind. Black dots indicate the three values of U10 and γ presented in (a)

aforementionedmodification, through a change in the wind-wave spectrum S(k), could affect
wave-induced stress τw , ultimately leading to a change in atmospheric turbulence. Figure 6a
shows three examples of modelled wind-wave spectra for the same value of 10-m wind and
different values of γ . It reveals that the short wind-wave spectrum on which wave-induced
stress depends (i.e. k of the order of 103 m−1) is not significantly sensitive to variations in eddy
stretching. To further assess if these variations are significant, we quantified their impact on
atmospheric turbulence. Runs of an uncoupled version of the wind-over-waves model were
performed and compared to coupled runs. A set of wave spectra were first computed by
running a coupled wind-over-waves model with no eddy stretching (γ = 0) and different
values ofU10N . The uncoupled model was then run, meaning that the wind-wave dependent
coupling variables αc and ge in Eq. 28 were derived from the previous coupled runs at the
same wind. The resulting momentum flux was then compared to the result of a coupled run
with the same values of γ andU10N . Over all the ranges ofU10N and γ , the relative difference
between the momentum fluxes obtained from the coupled and uncoupled runs is lower than
0.4 %, as shown on Fig. 6b, indicating that the variations in wind-wave spectrum due to
eddy stretching do not significantly affect atmospheric turbulence. Thus, variations in eddy
stretching do not significantly impact the short wind-wave spectrum, which was calibrated in
Kudryavtsev et al. (2014) to fit observations (Yurovskaya et al. 2013). The short wind-wave
spectrum is indeed determined by the coupling between low-level flow and short waves,
occurring at heights where eddy stretching is negligible (i.e. at around 1 m).

6 Effects of Stability on the Surface Boundary Layer

As discussed in Sect. 4, Kudryavtsev et al. (2014) did not include atmospheric stratification
in their wind-over-waves model. However, the atmospheric turbulence model presented in
Sect. 2.1 includes atmospheric stratification effects in the TKE balance. In Katul et al. (2011)
it was further compared toMonin–Obukhov similarity theory (MOST). Based on dimensional
arguments, MOST represents the impact of stratification on near surface momentum fluxes
by means of a universal function (called the MOST momentum function), determined from
measurements. Katul et al. (2011) computed an analytical form of the MOST momentum
function matching measurements. In this section we discuss how inclusion of waves into the
Katul et al. (2011) framework changes the analytical MOSTmomentum function (Sect. 6.1),
and how this compares to measurements (Sect. 6.2).

123



482 A. Ayet et al.

Fig. 7 Inverse universal momentum function φ−1
m (proportional to turbulent diffusion) as a function of a

stability and the coupling coefficient for eddy stretching set to one, b stability and eddy stretching for a
coupling coefficient set to zero

6.1 Dependence of theMonin–Obukhov Similarity Theory Momentum Function on
Wind-Waves

One of the main outcomes of the Katul et al. (2011) work was to recover the MOST uni-
versal momentum function from the TKE budget (Eq. 5) and eddy anisotropy ( fa). The
authors recovered the O’KEYPS equation (Panofsky 1963; Businger 1988), which was
originally derived based on heuristic and dimensional arguments to recover the empirical
MOSTmomentum function over land (see Foken 2006), such as the Businger–Dyer function
(Businger 1988, Eq. 39 in Appendix 2).

Defining the MOST momentum universal function (or dimensionless shear) as

φm = κz

ul∗
∂U

∂z
, (29)

Eq. 28 can be rewritten as

(1 − αc)
−1φ4

m − (1 + β2)ζφ3
m = f −1

a g−1
e , (30)

assuming that (1 − αc)u4∗ 	= 0.
The resulting equation reveals that φm depends on the wind-wave spectrum through αc

and ge, unlike standard MOST which assumes that the universal momentum function only
depends on ζ . Furthermore, it extends the O’KEYPS equation and the results of Katul et al.
(2011) who considered the case of a flat boundary (i.e. αc = 0 and ge = 1).

Equation 30 can be solved analytically (solutions, presented in the supporting information
ofKatul et al. 2011, canbe easily extended to the present case), yielding theMOSTmomentum
function φm . Note that in the following, we take αc and ge as parameters of the model, unlike
the coupled case where they are determined recursively by the wave model (Sect. 5.1). This
allows exploration of all the range of stability conditions (in particular stable conditions
ζ > 0).

The inverse of the solution of Eq. 30 as a function of ζ , αc, and ge is shown in Fig. 7. The
inverse of the MOST momentum function is of particular interest since φ−2

m proportional to
the turbulent diffusion coefficient (K , defined as (ul∗)2 = K ∂zU ). Note first that the expected
dependence of the turbulent diffusion coefficient with atmospheric stability is observed: tur-
bulent diffusion is higher for an unstable atmosphere (z/L < 0) than for a stable atmosphere
(z/L > 0). Second, an increase in wave-induced stress (i.e. in αc in Fig. 7a) for a fixed
stability induces an increase in turbulent diffusion. This is consistent with enhanced turbu-
lent motions due to enhanced wake production. Third, eddy stretching greater (respectively
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Fig. 8 Monin–Obukhov universal momentum function as a function of stability. Dots indicate bin-averaged
measurements from Edson et al. (2013) and vertical error bars are the associated standard deviations. Red
and black lines are the Businger–Dyer function (Businger 1988) and the present model result, respectively.
Grey shading and dashed lines are the range of values obtained varying the wave coupling parameter and eddy
stretching respectively

lower) than one causes an increase (respectively a decrease) in turbulent diffusion, for a given
stability (Fig. 7b). Since eddy stretching larger than one implies reduced TKE dissipation,
the observed increase in turbulent energy is consistent with an increase in the production
term in the TKE equation, balanced by a constant energy-transfer term from wave motions
and buoyancy, and a decreasing dissipation.

Figures 7a, b show how the sensitivity of atmospheric turbulence (i.e. the diffusion coeffi-
cient) to stability is modulated by wave-induced stress and eddy stretching. Figure 7a reveals
that increasing wave-induced stress causes an increase in this sensitivity. This is also the
case for ge < 1, while eddy stretching larger than one causes a decrease in this sensitiv-
ity (Fig. 7b). The sensitivity of atmospheric turbulence to stability is an important feature
since, as mentioned in the introduction, the first source of variability of turbulent momentum
fluxes is atmospheric stability. These results indicate that short and long wind-waves play an
important role in this variability.

6.2 Comparison to Measurements

Figure 8 shows the bin-averagedMOSTmomentum function as a function of stability for the
measurements over open ocean from Edson et al. (2013) described in Sect. 5.2 (black dots).
The measurements were performed above or close to the expected height of the WBL (of the
order of 5 m) where MOST is expected to work (since wave-induced stress vanishes).

The solid black line in Fig. 8 represents the solution of Eq. 30 excluding the effect of
waves (i.e. αc = 0 and ge = 1) using the expression of eddy anisotropy fa from Katul et al.
(2011) (Eq. 40 in Appendix 2). The values of fa are based on observed turbulent statistics
over land (Kaimal et al. 1972). There is a good qualitative agreement between the model
solution and the data, consistent with the measurements being at the expected height of the
WBL. The Businger–Dyer function (red line) is also shown in Fig. 8 and fits similarly to the
measurements, even though it differs from the Katul et al. (2011) solution in the stable case.

The scatter observed in the measurements (black error bars) contains contributions from
both eddy-covariance sampling uncertainties and variations in surface wave conditions. To
investigate the contribution of the second effect on the scatter, Eq. 30 was solved for different
values of the coupling coefficient αc and eddy stretching ge.
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We first varied the coupling coefficient αc to test the importance of wave-induced stress
on atmospheric turbulence (through its effect on MOST) at heights above 5 m. Even though
it is usually assumed that this is not the case, airflow separation events on top of breaking
waves could, for instance, extend higher in the SBL (see e.g. the numerical simulations
of Suzuki et al. 2013). The range of variation of αc (between 0 and 0.6) is inferred from
the range obtained with the coupled wind-over-waves model in Sect. 5.2, and shown in
Fig. 3b. It captures the range of observed short wind-wave conditions, neglecting atmospheric
stratification effects. The resulting variation in modelled MOST functions (grey shading)
shows that αc might explain some scatter in the data, but the scatter is smaller than that found
in observations. In particular, the data scatter in the stable case (z/L > 0) is not explained.
Provided that waves are significant in explaining the measured scatter, this result indicates
that sources of variability ofφm other than short wind-wave variability should be investigated,
such as eddy stretching.

Eddy stretching impacts TKE dissipation at heights above 5 m (being supported by 10-
m waves, see Sect. 3.2), and can thus impact MOST momentum function (from Eq. 30).
Variation of eddy stretching ge between 0.3 and 3 (dashed lines) covers the data scatter. This
variation range is consistent with the one used in Sect. 5 (and shown in Fig. 4), showing
that eddy stretching, and thus long wind-wave variability, seems to be able to explain the
variability of MOST momentum function. Note however that the variation range required
to explain the observed scatter is smaller than the one required to explain the scatter of
momentum fluxes under neutral conditions, and that this range could be even smaller if eddy
covariance sampling uncertainties are deduced from the observed scatter.

Comparison of the wind-over-waves model with measurements thus shows that (i)
observed stratification effects on MOST momentum function are consistent with the the-
oretical SBL model; (ii) Monin–Obukhov similarity theory quantities are less sensitive to
the presence of wind-waves than momentum fluxes, as found in Hristov and Ruiz-Plancarte
(2014) by only considering wave-induced motions within the momentum WBL.

6.3 Dimensionless Dissipation

Similarly to Fig. 5, we now investigate the sensitivity of TKE dissipation ε to stability.
Following MOST, we define dimensionless dissipation φε as

φε = κzε

(ul∗)3
, (31)

which can be computed from Eqs. 28 and 29 as

φε = φm − (1 + β2)ζ. (32)

The solid black line in Fig. 9 is the dimensionless dissipation computed with φm from
Eqs. 30, excluding the effect of waves (i.e. αc = 0 and ge = 1). As expected, there is a good
agreement between this value and the Businger–Dyer function (red line). Values of ge larger
(resp. smaller) than one cause a decrease (resp. an increase) in φε , consistent with Eq. 18
(dashed lines, which correspond to ge = 0.3 and 3 respectively). Finally, as also shown in
Fig. 5 for neutral conditions, an increase of wave-induced stress causes an increase of TKE
dissipation (grey shading), consistent with the additional production term in the TKE balance
equation. Overall, waves have a significant impact on the dimensionless TKE dissipation,
consistent with previous studies (e.g. Cifuentes-Lorenzen et al. 2018).
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Fig. 9 Dimensionless TKE
dissipation as a function of
stability. Red line is the
Businger–Dyer function
(Businger 1988) and black line is
the model result. Grey shading
and dashed lines are the range of
values obtained varying the wave
coupling parameter or eddy
stretching respectively. The inset
shows the same quantities, but for
a different choice of
normalization velocity

In deriving the dimensionless equations (30) and (32), ul∗ has been chosen as the nor-
malizing velocity in the definition of φm , φε , and ζ . This choice is physically sound, since
in this case φ−2

m is proportional to the turbulent diffusion. In measurements, however, it is
difficult to disentangle wave-induced stresses from turbulent stresses (see e.g. Hristov et al.
2003), and the only measurable quantity could then be u∗, the total momentum flux. Hence,
we must discuss the differences between choosing u∗ instead of ul∗ as a normalizing velocity
in MOST, i.e. by considering the following alternative forms of the universal momentum
function, dimensionless dissipation, and stability parameter

φt
m = κz

u∗
∂U

∂z
, φt

ε = κzε

u3∗
, ζ t = κzgH

ρCpθhu3∗
. (33)

First, there is no qualitative difference in the behaviour of φt
m with respect to φm (not

shown). However, the behaviour of φt
ε , is qualitatively different from φε . As shown in the

inset of Fig. 9, an increase in wave-induced stress now causes a decrease in dimensionless
dissipation (the grey shading is below the solid black line in the inset), inconsistent with the
conclusions drawn earlier (in the main figure, the grey shading as above the black curve).
This shows that MOST is sensitive to the choice of the normalization in the presence of
waves. This could have important implications for the interpretation of measurements.

7 Conclusion

We investigated the role of wind-waves and atmospheric stratification on atmospheric
turbulence and momentum fluxes. The geometry of the ocean surface, resulting from
the superposition of (periodic) surface wind-waves, is assumed to change the shape of
energy-containing turbulent structures (conceptually viewed as attached eddies). Extend-
ing a wall-bounded turbulence model proposed by Katul et al. (2011) allowed to model
the impact of this deformation on TKE dissipation, for a surface whose height follows a
wind-wave spectrum.

Itwas further argued that for an attached eddy of a given horizontal length scale,most of the
deformation of its shape is due to surface waves with a similar horizontal extension. This was
based on the assumption that the eddy deformation is caused by the surface wave periodically
modulating the surface roughness induced by shorter waves, on a length scale resonant with
that of the attached eddy. The overall result is a modification of TKE dissipation by long
wind-waves (of the order of 10 m), at heights above 5 m, where the impact of wind-waves on
atmospheric turbulence has been observed but was unexplained by wind-over-waves models.
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The impact of the new mechanism on surface momentum fluxes was quantified by its
inclusion in a wind-over-waves model (Kudryavtsev et al. 2014), which predicts a wind-and-
waves equilibrium by coupling a TKE budget to a wind-wave energy budget. The wind-and-
waves equilibrium, normally defined solely by 10-m wind speed and atmospheric stability, is
now also dependent on a single parameter linked to the long wind-wave spectrum and to the
intensity of the modulation of short wind-wave roughness by long wind-waves (i.e. related to
the deformation of attached eddies bywind-waves). The variability observed over open ocean
for both momentum flux (for a given 10-m wind speed) and MOST momentum function (for
a given stability), was explained by variation of this parameter. If existent, the distortion of
atmospheric eddies by the geometry of 10-m wind-waves is thus an important process in the
determination of surface momentum fluxes. This analysis also revealed that the sensitivity of
MOST momentum functions to stability is impacted by the presence of both short and long
wind-waves. Both processes should be included in momentum flux parametrizations.

Wind-waves longer than 10 m were found to modify TKE dissipation at a height too
high to impact surface momentum fluxes. However, if the assumptions of stationarity and
horizontal homogeneity were relaxed (i.e. the SBL is no longer a constant-stress layer, which
can occur, e.g., when the boundary-layer height decreases significantly), their impact on TKE
could significantly affectmomentumfluxes in thewhole surface layer. This process could then
play an important role in the coupling of wind-waves with large scale atmospheric structures.

This theoretical work is based on the idea that surface waves are able to distort atmo-
spheric eddies. However it does not rely on experimental evidence, and the expression of the
distortion includes a free parameter. Katul andManes (2014) linked the shape of the attached
eddies to properties of the vertical turbulent velocity spectra. This link could be further inves-
tigated within open-ocean measurements in order to test the present theory. The proposed
framework thus opens new paths for numerical and experimental investigations of turbulence
on top a realistic sea surface. Those would require the joint analysis of atmospheric vertical
velocity and sea surface elevation/slope signals to infer the expected changes in turbulence
spectral properties.

More generally, our study is a step towards a more precise description of multi-scale
interactions within the WBL, linking the shape of large atmospheric structures with macro-
scopic properties of the surface wave field. By showing the importance of atmospheric eddy
distortions for air–sea fluxes, we emphasize that this description is essential in order to
advance our understanding of the wind-and-waves coupled system and to improve air–sea
flux parametrizations.
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Appendix1:CouplingBetweenShortWind-WavesandAtmosphericTur-
bulence

Details are provided on the coupling between short wind-waves and atmospheric turbulence,
following the wind-over-waves model presented in Kudryavtsev et al. (2014) and references
therein. The short wind-wave model is first described, and expressions for wave-induced
stress are then presented.

123



On the Impact of Long Wind-Waves on Near-Surface Turbulence… 487

Waves are described by their wavenumber k, frequency ω, phase speed c, and direction
of propagation ψ , and follow the dispersion relation ω2 = gk + Tswk3 where Tsw is the
dynamical surface water tension. The wave field is specified by means of the directional
spectrum Sd(k, ψ).We also introduce the saturation spectrum B(k, ψ) = k4Sd(k, ψ), which
will be used in the following.

As proposed by Kudryavtsev et al. (2014), the full wave spectrum can be defined as a
composition of a short-wave spectrum Bsw and a long-wave spectrum Blw (in this study,
the fetch-dependent spectrum of Donelan et al. 1985, is used). The weighted sum between
Blw and Bsw represents a wind-driven sea spectrum, without the presence of non-local waves
(swell). It is in a one-to-one relationwith the local atmospheric state. The short-wave spectrum
is coupled to atmospheric turbulence through form drag, and further affects the momen-
tum WBL through airflow separation stresses. The long-wave part is prescribed given some
parameters (here spatial fetch).

The short-wave component Bsw describes both gravity waves and parasitic capillary
waves. The latter are generated on the forward face of shorter gravity waves (in the wave-
length range 0.03–0.3 m), as they approach their maximum steepness, which, for longer
gravity waves, would lead to breaking (Longuet-Higgins 1963).

The gravity short wind-wave spectrum results from a balance between wind forcing (β),
non-linear energy losses due to wave breaking (or generation of parasitic capillary waves
for shorter waves), and generation of short waves by large breakers (or of parasitic capillary
waves by steep and shorter waves, Qb). The balance equation reads

βv(k, ψ)B(k, ψ) − B(k, ψ)

(
B(k, ψ)

a

)ng
+ Qb(k, ψ) = 0, (34)

with βv(k, ψ) = β(k, ψ) − 4νk2/ω the effective growth rate (with ν air viscosity), and
a = 2.2 × 10−3 and ng = 10 two tuning constants fitted to observations (from Yurovskaya
et al. 2013). Expression for the source term Qb can be found in Appendix A of Kudryavtsev
et al. (2014).

The short parasitic capillary waves, corresponding to waves of wavelengths of 3×10−4 m
or less, follow the balance Eq. 34 without the wind input term, and with modified constants
a and ng . For this range of waves for which wave breaking does not occur, the non-linear
term is associated to a non-linear saturation of the wave spectrum.

Both equations are solved by iterations, given a wind forcing resulting from the WBL
model (Eq. 28), and expressed as

β(k, ψ) =

⎧⎪⎨
⎪⎩
cβ

{
ul∗[h(k)]

c

}2

cosψ | cosψ | for U [h(k)] > c

0 for U [h(k)] < c

(35)

where cβ = 3× 10−2 is Plant’s constant and h(k) = 0.1 k−1 is the inner region height. Note
that since wind input depends on the ratio between friction velocity and wave phase speed,
it is supported mostly by slow (and short) waves (Plant 1982).

To solve Eq. 28, the wave-induced stress must be specified. Let T̃ and T̃a be the intensity
of form drag and airflow separation induced by a wave component of wavenumber k. Both
these effects act over a shallow atmospheric layer, up to heights h(k) ∼ 0.1k−1 and ha(k) ∼
0.3k−1, respectively (Kudryavtsev et al. 2014). We further assume, for simplicity, that form
drag (respectively airflow separation) is constant up to h (resp. ha) and cancels for z > h
(resp. z > ha). This yields the following expression for the total wave-induced stress
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(uw∗ )2(z) =
∫

T̃ (k)He[h(k) − z]dk

+
∫

T̃a(k)He[ha(k) − z]dk (36)

where He(x) is the Heaviside step function (He(x) = 1 for x > 0 and 0 otherwise). This
expression couples the short wind-wave model (Eq. 34) to the SBL model (Eq. 28).

Form drag describes the impact of the wind-to-waves energy transfer on atmospheric
turbulence, and is expressed as

T̃ (k) =
⎧⎨
⎩

cβ

k

ρw

ρa
{ul∗[h(k)]}2

∫
B(k, ψ) (cosψ)3 dψ for U [h(k)] > c

0 for U [h(k)] < c
, (37)

where ρw and ρa are the density of water and air respectively.
Waves of wavelength greater than 0.3 m generate an additional stress due to airflow

separation on top of breaking waves (Reul et al. 1999). The expression for airflow separation
stress for a given wavenumber depends on wave-breaking statistics. However, following
Phillips (1985), wave-breaking statistics can be related towave energy dissipation (the second
term from the left in Eq. 34). For waves in the equilibrium range, on top of which most of
airflow separation events occur, the spectral balance (Eq. 34) is further assumed to be reduced
only to a balance between wind input and dissipation. This results in the following expression
for airflow separation for U [ha(k)] > c

Ta(k) = 2cdbcβ

a
ha(k)k fg(k)

(
U [ha(k)]

c
− 1

)2 ∫
B(k, ψ)(cosψ)5 dψ (38)

where fg(k) is a cut-off function restricting airflow separation in the equilibrium range, and
cdb is the local roughness on top of breaking crests, which has a mean value of 0.35 (see
Kudryavtsev and Makin 2001). For U [ha(k)] < c, airflow separation is assumed to vanish
(i.e. Ta = 0) which limits airflow separation to slow (short) waves (similar to form drag).

Appendix2: Expressions for theEddyAnisotropyand theBusinger–Dyer
Momentum Function

The Businger–Dyer universal momentum function (Businger 1988), derived from the Kansas
measurements, reads

φB
m (ζ ) =

{
1 + 4.7ζ for ζ > 0

(1 − 15ζ )−1/4 for ζ < 0
. (39)

This empirical function was recovered by Katul et al. (2011), by considering an eddy
anisotropy of the form

fa(ζ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − 0.38

0.55
[1 − exp(15ζ )]

)−1

for ζ ≤ 0

(
1 + 1

0.55
ζ

)−6

for ζ > 0

. (40)

This expression was obtained frommeasurements of turbulent vertical velocity spectra (from
Kaimal et al. 1972).
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