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The model

We consider a discrete-time Markov chain (X, J), taking values in
Z+ × {1, . . . , κ}, such that the X component is nonincreasing.

Intuition : this describes a particle which undergoes some evolution :

• X is the mass of the particle.
• J is its type.

Notation :
((
X

(i)
n (k), J (i)

n (k)
)
, k > 0

)
is a version of the process

starting at (n, i).
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Aim and main idea

We want to find a scaling limit for (X(i)
n (k), k > 0) as n tends to

infinity.

Basic principle : assume that the macroscopic jumps are rare, i.e.
that there exists γ > 0 such that

P[X(i)
n (1) 6 (1− ε)n] ∼

n→∞
c(i)
ε n
−γ , ∀ε > 0,∀i ∈ {1, . . . , κ}

Then (X(i)
n (bnγtc)

n
, t > 0

) (d)−→
(
X(i)
∞ (t), t > 0

)
where X(i)

∞ is some kind of self-similar Markov process.
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Previous work

• Haas & Miermont (2011) : the monotype case (K = 1).

• Bertoin & Kortchemski (2015) : still monotype case, but X is
not assumed to be nonincreasing.
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The monotype case
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Positive self-similar Markov processes (pssMp)

(Lamperti 1962)

We say that (X(t), t > 0) is a positive self-similar Markov process
if one can write

X(t) = e−ξτ(t)

where :
ξ is a Lévy process.
τ is the time-change defined by

τ(t) = inf
{
s > 0 :

∫ s

0
e−αξrdr > t

}
.

α is a real parameter called the index of self-similarity.
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The result

Theorem (Haas-Miermont)
Assume that, for any continuous function f on [0, 1],

nγE
[(

1− Xn(1)
n

)
f
(Xn(1)

n

)] (d)−→
n→∞

∫
[0,1]

f(x)dµ(x),

where γ > 0 and µ is a finite and nontrivial measure on [0, 1].

Then (Xn(bnγtc)
n

, t > 0
) (d)−→

(
X∞(t), t > 0

)
where X∞ is a pssMp with index of self-similarity γ, and the
underlying Lévy process ξ is a subordinator with Laplace exponent
ψ such that

ψ(λ) = µ({0}) + µ({1})λ+
∫

(0,1)

(
1− xλ

)dµ(x)
1− x .
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The result

The underlying topology is the Skorokhod topology on the space of
càdlàg functions on [0,∞).
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Death times

Theorem
Moreover, under the same assumption, jointly with the previous
convergence, the death time of Xn, rescaled, converges to that of
X :

if we call

An = inf{k ∈ N : ∀l,Xn(k + l) = Xn(k)}

and
σ = inf{t > 0 : X(t) = 0},

then (Xn(bnγ ·c)
n

,
An
n

) (d)−→
(
X∞(·), σ

)
.
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The limiting processes : Markov Additive
Processes and their Lamperti transforms
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Markov Additive Processes (MAP)

Let ((ξt,Kt), t > 0) be a Markov process on R × {1, . . . , κ}, such
that the ξ component is nondecreasing. We write P(x,i) for its dis-
tribution when starting at a point (x, i),

and say that it is a MAP
if, for all t ∈ R+, conditionally on the past up to time t,((

ξt+s − ξt,Kt+s
)
, s > 0

)
has distribution P0,Kt .
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In practice - parametrisation

We think of (ξ,K) as a "typed subordinator" :
K is a continuous-time Markov chain on {1, . . . , κ}, with
transition rates (λi,j)(i,j)∈{1,...,κ}2,i 6=j .

On the intervals of constancy of K, ξ is a subordinator with
Laplace exponent ψi.

Each jump of K induces a jump of ξ, and we call Bi,j its
distribution if we jump from i to j 6= i.
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Lamperti transforms

Let α ∈ R, we call the Lamperti transform of (ξ,K) the process
(X, J) defined by

Xt = e−ξτ(t) , Jt = Kτ(t),

where
τ(t) = inf

{
s > 0 :

∫ s

0
e−αξrdr > t

}
.

Note that, if α > 0, the death time σ = inf{t > 0 : X(t) = 0} =∫∞
0 e−αξsds is finite. (X, J) is càdlàg on [0, σ), but J does not have
a limit at σ.
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Main results
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Three regimes

The nature of the limiting process depends on the rate of change of
the type J : assume that there is some β > 0 such that

∀j 6= i,P[J (i)
n (1) = j] ∼ pi,jn−β.

Critical regime : if β = γ then X(i)
∞ is (the first component

of) the Lamperti transform of a MAP.
Mixing regime : if 0 6 β < γ then the types "mix" and
disappear in the limit, X(i)

∞ is then a pssMp which doesn’t
depend on i.
Solo regime : if β > γ, the type does not change in the limit,
and X(i)

∞ is a pssMp which depends on i.
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Critical regime : assumption (Hcr)

Assume that, for all i, j ∈ {1, . . . , κ}, there exists finite measures
µ(i,j) on (0, 1], such that for all continuous functions f : [0, 1]→ R,

nγE
[(

1− X
(i)
n (1)
n

1{j=i}
)
f
(X(i)

n (1)
n

)] (d)−→
n→∞

∫
[0,1]

f(x)dµ(i,j)(x),

Moreover, for all i ∈ {1, . . . , κ}, at least one of the measure µ(i,j), j ∈
{1, . . . , κ} is not trivial.
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Critical regime : main convergence

Theorem (Haas-S.)
Assume (Hcr). Then, for all i ∈ {1, . . . , κ},

(X(i)
n (bnγ ·c)
n

) (d)−→ X(i)
∞ (·),

where X(i)
∞ is the first component of a Lamperti MAP with the

following parameters :

The self-similarity index is γ.
ψi(λ) = µ(i,i)({0}) + µ(i,i)({1})λ+

∫
(0,1)

(
1− xλ

)dµ(i,i)(x)
1−x .

λi,jBi,j = µ(i,j) ◦ (− log)−1.

The initial type is i.
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Critical regime : death times

Theorem (Haas-S.)
Assume moreover that, for all i ∈ {1, . . . , κ}, there exists j such
that µ(i,j)([0, 1)) > 0.

Then, calling A(i)
n the death time of X(i)

n and σ(i) that of X∞(i),
we have, jointly with the previous convergence,

A
(i)
n

n

(d)−→ σ(i).
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Mixing regime : assumption (Hmix)
Assume that there exists β > 0 with β < γ for which :
(i) There exist finite measures (µ(i), i ∈ {1, . . . , κ}) on [0, 1],

such that, for all continuous functions f : [0, 1]→ R,

nγE
[
f

(
X

(i)
n (1)
n

)(
1− X

(i)
n (1)
n

)]
−→
n→∞

∫
[0,1]

f(x)dµ(i)(x).

(ii) Moreover, there exists a Q-matrix Q = (qi,j)i,j∈{1,...,κ} having
a unique irreducible component, such that, for all types i 6= j

nβP[J (i)
n (1) = j] ∼

n→∞
n−βqi,j

and
nβ(P[J (i)

n (1) = i]− 1) ∼
n→∞

n−βqi,i.

We call π = (πi)i∈{1,...,κ} the irreducible distribution on {1, . . . , κ}
associated to Q.
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Mixing regime : main convergence

Theorem (Haas-S.)
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(
X∞(·)

)
,

where X∞ is a pssMp with the following parameters :

The self-similarity index is γ.
ψ(λ) =∑κ
i=1 πi

(
µ(i)({0}) + µ(i)({1})λ+

∫
(0,1)

(
1− xλ

)dµ(i)(x)
1−x

)
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Mixing regime : death times

Theorem (Haas-S.)

Assume now that all the measures µ(i) are nonzero.

Then, with similar notation to earlier, jointly with the previous
convergence,

A
(i)
n

n

(d)−→ σ.
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Solo regime : assumption (Hsol)

We fix a type i and assume the following :
(i) There exists a nontrivial finite measure µ(i) on [0, 1], such

that, for all continuous functions f : [0, 1]→ R,

nγE
[
f

(
X

(i)
n (1)
n

)(
1− X

(i)
n (1)
n

)]
−→
n→∞

∫
[0,1]

f(x)dµ(i)(x).

(ii) Moreover,
nγP(J (i)

n (1) 6= i) −→
n→∞

0.
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Solo regime : assumption (Hsol)
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Solo regime : main convergence

Theorem (Haas-S.)
Assume (Hsol). Then

(X(i)
n (bnγ ·c)
n

) (d)−→
(
X(i)
∞ (·)

)
,

where X∞ is a pssMp with the following parameters :

The self-similarity index is γ.
ψ(λ) = µ(i)({0}+ µ(i)({1})λ+

∫
(0,1)

(
1− xλ

)dµ(i)(x)
1−x .
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Solo regime : death times

Theorem (Haas-S.)
Assume moreover to (Hsol) that, for some a < 1 and for all types j,

lim inf
n→∞

n−γP
[
X(j)
n (1) 6 an

]
> 0.

Then, with similar notation to earlier, jointly with the previous

convergence,
A

(i)
n

n

(d)−→ σ.
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Multi-type Markov branching trees
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Definition

A Markov branching tree is a multi-type Galton-Watson tree (not
plane), where the "types" are in fact a pair (size,type) and the total
size of the offspring of an individual is at most the individual’s own
size.

8

6

2 1 3
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Definition

Offspring distribution : for all n and i, q(i)
n is the distribution

of the offspring of an individual of size n and type i. It is a
probability measure on

Pn =
{

((n1, t1), . . . , (nk, tk)) : n1 > n2 > nk,
∑

ni 6 n, ti ∈ {1, . . . , κ}
}
,

We call T (i)
n a version of the tree with an ancestor of size n

and type i
Sometimes it is convenient for the tree to be planted : an
extra untyped vertex is added below the root
The monotype trees were studied by Haas and Miermont
(2012)
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Example 1 : Contioned multi-type Galton-Watson trees

Conditioning Galton-Watson trees yields Markov branching trees, for
example if we condition by :

the total number of vertices. The size of a vertex is then the
number of vertices in the descending subtree.

the number of vertices of fixed type i. The size of a vertex is
then the number of vertices of type i in the descending
subtree.
more generally, we can condition on

∑κ
i=1 αi|T |i, where |T |i is

the number of vertices of type i...
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Example 2 : Recursively growing trees

Let S be a fixed rooted tree. Consider the following algorithm for
building random trees :

T0 is the tree with a single edge and two vertices, a root and
a leaf.
given Tn, to make Tn+1, choose uniformly at random one of
its edges, add a new vertex in the middle, thus splitting this
edge in two, and then graft a copy of S the new vertex.

If S has a single edge, then this is known as Rémy’s algorithm (1985).

The case where S is a star is the subject of previous work (2015).
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Example 2 : Recursively growing trees

This yields a (planted) Markov branching tree if :
Each vertex of S has a type, with 1 for its root.
The size of a vertex is the number of vertices of type 1 in its
descending subtree.

(with eventual “superfluous" types which we can identify if we want
to.)
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The scaling limits of multi-type Markov
branching trees : multi-type self-similar

fragmentation trees



Introduction Monotype case MAPs and Lamperti Main results Markov branching trees Convergence to fragmentation trees

The monotype case (Haas-Miermont, 2012), informally

We assume that the Markov branching structure is conservative :
for n 6= 1, the sum of the sizes of the children of an individual with
size n is exactly n.
Call Xn the biggest element of the first generation of a Tn. Assume
that

P[Xn 6 (1− ε)n] ∼
n→∞

cεn
−γ , ∀ε > 0.

Equip Tn with the uniform measure on its leaves µn. We then have
the following convergence for the Gromov-Hausdorff-Prokhorov to-
pology :

1
nγ
Tn

(d)−→ T

where T is a self-similar fragmentation tree with explicit distribution.
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Multi-type self-similar fragmentation processes and trees

Let, for i ∈ {1, . . . , κ}, νi be a σ-finite measure on

S↓ =
{

s = (si, ti)i∈N : s1 > s2 > . . . > 0,
∑

si 6 1, ti ∈ {1, . . . , κ}
}

which satisfies ∫
S↓

(1− s11{t1=i})ν(i)(ds) <∞.

A multi-type self-similar fragmentation process with self-similarity
index α ∈ R and dislocation measures (νi) is a S↓-valued process
such that a particle (x, i) transforms into a set of particles with
masses and types xs = (xsi, ti)i∈N at rate xαdνi(s).

When α < 0, a multi-type self-similar fragmentation tree with the
same parameters is, informally, the family tree of the above process.
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Upcoming theorem
Let X(i)

n be the largest element of the first generation of T (i)
n , and

Jn(i) its type. Assume that, for some γ > 0 and β > 0,

P[X(i)
n 6 (1− ε)n] ∼

n→∞
c(i)
ε n
−γ , ∀ε > 0, i ∈ {1, . . . , κ}

and
∀j 6= i,P[J (i)

n = j] ∼ pi,jn−β.

Then
1
nγ
T (i)
n

(d)−→ T (i)

for the Gromov-Hausdorff-Prokhorov topology, where T (i) is a frag-
mentation tree with self-similarity index −γ and explicit dislocation
measures, and which is :

multi-type if β = γ.

monotype, not depending on i if 0 6 β < γ.

monotype, depending on i if β > γ.
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Scaling limits for our two examples

It is already known (Miermont, 2008) that, conditioned on the
number of vertices of one type, GW trees with finite variance
rescaled by n−1/2 converge to the brownian CRT.
Our method will let us obtain this convergence for more
general conditionings if the offspring distributions have
exponential moments
We will also obtain convergence to the stable trees, at least
when conditioning on the number of vertices of one type.
For the recursively growing trees, n−1/|S|Tn converges in
distribution, and maybe in probability, to a multi-type
fragmentation tree.
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Thank you for your attention
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