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Random directed graph

For n ∈ N and p ∈ [0, 1], let ~G(n, p) be the random directed defined
by :

Vertices = {1, . . . , n}
Take each of the n(n− 1) possible directed edges
independently with probability p.
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Random directed graph
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We are interested in the strongly connected components : maximal
subgraphs where we can go from any vertex to any other in both
directions.
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Strongly connected components
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Notice that not all edges are part of a single strongly connected
component. Very different from undirected graphs !
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Phase transition and critical window

It is known that ~G(n, p) has the same phase transition as G(n, p) for
the size of connected components : giant component when p = c/n
with c > 1 etc.

It even has the same critical window :

Theorem (Łuczak and Seierstad ’09)

Assume p = 1
n + λn

n4/3 .

(i) If λn →∞ then the largest strongly connected component of
~G(n, p) has size ∼ 4λ2

nn
1/3 and the second largest has size

O(γ−1
n n1/3).

(ii) If λn → −∞ then the largest strongly connected component
of ~G(n, p) has size O(|λ−1

n |n1/3).

We investigate what happens within the critical window :
p = 1

n + λ
n4/3 .
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A good reference point : the scaling limit of the
Erdős–Rényi graph

Let G(n, p) be the undirected Erdős–Rényi graph. We call :
A1(n), A2(n), . . . the connected components of G(n, p).
Zn1 > Zn2 > . . . their sizes.

Theorem
(Aldous ’97)

( Z
n
i

n2/3 , i ∈ N) (d)−→
`2

(σi, i ∈ N)

(Addario-Berry, Broutin and Goldschmidt ’12)(
Ai(n)
n1/3 , i ∈ N

)
(d)−→
`4-GH

(Ai, i ∈ N),
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Graphs as metric spaces

This views the Ai(n) as metric spaces by giving each edge a
length of 1, and then rescaling everything by n1/3.

They then converge for the Gromov-Hausdorff topology

Problem : this isn’t an ideal setting for directed graphs.
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The correct setting : multigraphs with edge lengths

Let C1(n), C2(n), . . . be the strongly connected components
of ~G(n, p), ordered by decreasing sizes.

Assign to each edge a length of 1.
Remove any vertex with indegree and outdegree 1, merging its
adjacent edges.
One exception : if a component is just a cycle, keep a vertex.

This makes the Ci(n) into directed multigraphs with edge lengths.
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A metric for directed multigraphs with edge lengths

Let ~G be the set of (equivalence classes of) directed multigraphs
with edge lengths. For X and Y in ~G we let

d~G(X,Y ) =


∞ if the underlying graphs are different
inf

isomorphisms

∑
e∈{edges}

|`X(e)− `Y (e)| otherwise

For sequences, we use the `1 version : for A = (A1, A2, . . . , ) and
B = (B1, B2, . . . , ).

d(A,B) =
∞∑
i=1

d~G(Ai, Bi),
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Convergence theorem

Theorem (Goldschmidt-S. ’19)
There exists a sequence C = (Ci, i ∈ N) of random strongly
connected directed multigraphs with edge lengths such that, for
each i ≥ 1, Ci is either 3-regular or a loop, and such that(

Ci(n)
n1/3 , i ∈ N

)
(d)−→ (Ci, i ∈ N)

Remarks :
The number of degree 2 vertices of Ci(n) is of order n1/3.

The number of degree 3 vertices of Ci(n) is of order 1.
No vertices of degree > 4 with probability tending to 1.
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Using an exploration process
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Exploration and a spanning forest

We build a planar spanning forest F ~G(n,p) of ~G(n, p) by using a
variant of depth-first search.

Start by classifying 1 as "seen".
At each step, explore the leftmost seen vertex : add all of its
yet unseen outneighbours to the forest from left to right with
increasing labels, along with their linking edge, and count
them as seen.
If there are no available seen vertices, we take the unseen
vertex with smallest label, and put it in a new tree component
on the right.
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Reminder and practice
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Edge classification

There are three kinds of edges :
Edges of F ~G(n,p).

"Surplus" edges. These are edges which are not in the forest
because their target was already seen when we explored the
origin.
"Back" edges. These go backwards for the planar structure on
the forest.

The interaction between back and forward edges is what creates
strongly connected components.
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Strategy

To understand the scaling limit, all we need to do is understand
these three parts, and how they interact.
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Scaling limit of the trees
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Comparison with Erdős–Rényi

Fact : F ~G(n,p) has the same distribution as FG(n,p), the forest ob-
tained by applying the same procedure to G(n, p).

Consequence : let
Tn1 , T

n
2 , . . . the tree components of F ~G(n,p).

Zn1 > Zn2 > . . . their sizes.
We have the convergences :

n−2/3(Zni , i ∈ N) (d)−→
`2

(σi, i ∈ N)

(
Tni
n1/3 , i ∈ N

)
(d)−→(Ti, i ∈ N)
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Details (for those who know)

(σi, i ∈ N) are the excursion lengths of a drifted Brownian
motion :

W λ(t) = W (t) + λt− t2/2

Conditionally on (σi, i ∈ N), (Ti, i ∈ N) are independent
biased Brownian trees. Specifically, Ti has the distribution of
the tree encoded by the function 2ẽ(σi), where

E[g(ẽ(σ))] =
E
[
g
(√
σe(·/σ)

)
exp

(
σ3/2 ∫ 1

0 e(x)dx
)]

E
[
exp

(
σ3/2 ∫ 1

0 e(x)dx
) ]

and e is a standard brownian excursion.
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Limiting behaviour of the surplus and back
edges
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Working on a single tree

Note that any strongly connected component of ~G(n, p) is
contained within one of the trees of F ~G(n,p).

So we can focus on a single tree, with say m vertices, with
m ∼ σn2/3. Call that tree Tm.

Conditionally on Tm, all the m(m− 1)/2 back edges appear
independently with probability p, and all of the a(Tm) possible
surplus edges also do.
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Surplus edges don’t matter

We can show that

P[A strongly component in Tm features a surplus edge]→ 0.

Idea of the proof :
The number of surplus edges is of order 1.
The number of descendants of a surplus edges is of order 1.
So the number of back edges starting at a descendant of a
surplus edge is O(mp)→ 0.
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Back edges - potential problem

The number of back edges in Tm follows a Bin(m(m−1)
2 , p) distribu-

tion.

But pm(m−1)
2 ∼ σ2/2n1/3 →∞.

This is not a problem ! Because only a finite number of back edges
actually are part of strongly connected components.
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Back edges which matter, as a process

Do the contour exploration of Tm, recording back edges at their
origins.

If the first back edge is not ancestral, then it will not contribute to
a strongly connected component.

More generally, any back edge arriving before the first ancestral one
does not contribute.

After the first ancestral back edge (x1, y1), other ancestral back
edges will contribute, but also possibly those which point between
y1 and x1.

And so on. We can show that the number of back edges observed
in this stays bounded as n→∞.
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What we end up with
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What we end up with

Rescale the distances by n1/3 and this is a convergence for d ~G.
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What we end up with

Do this for each tree, and we get the Ci.
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Thank you !
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