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We study HMG(X), an extension of the constraint-based type system HM(X) with deep pat-
tern matching, polymorphic recursion, and guarded algebraic data types. Guarded algebraic data
types subsume the concepts known in the literature as indexed types, guarded recursive datatype
constructors, (first-class) phantom types, and equality qualified types, and are closely related to
inductive types. Their characteristic property is to allow every branch of a case construct to
be typechecked under different assumptions about the type variables in scope. We prove that
HMG(X) is sound and that, provided recursive definitions carry a type annotation, type inference
can be reduced to constraint solving. Constraint solving is decidable, at least for some instances
of X, but prohibitively expensive. Effective type inference for guarded algebraic data types is left
as an issue for future research.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—Abstract data types; Data types and structures; Patterns; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs—Functional constructs; Type struc-
ture

General Terms: Languages, Theory

1. INTRODUCTION

Members of the ML family of programming languages offer type inference in the
style of Hindley [1969] and Milner [1978], making type annotations optional. Type
inference can be decomposed into constraint generation and constraint solving
phases, where constraints are, roughly speaking, systems of type equations. This
remark has led to the definition of a family of constraint-based type systems, known
as HM(X) [Odersky et al. 1999; Pottier and Rémy 2005], whose members exploit
potentially more complex constraint languages, achieving greater expressiveness
while still enjoying type inference in the style of Hindley and Milner.

These programming languages also provide high-level facilities for defining and
manipulating data structures, namely algebraic data types and pattern matching. In
the setting of an explicitly typed calculus, Xi, Chen, and Chen [2003] have recently
introduced guarded algebraic data types, an extension that offers significant new
expressive power to programmers.

The purpose of the present paper is to study how these two lines of research
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2 · V. Simonet and F. Pottier

can be brought together. In order to introduce guarded algebraic data types into
mainstream programming languages such as Haskell [Peyton Jones 2003] or Ob-
jective Caml [Leroy et al. 2005], it is necessary to study their interaction with
Hindley-Milner-style type inference. Furthermore, because type inference is best
understood in a constraint-based setting, and because constraint-based type sys-
tems are more general than Hindley and Milner’s original type system, we believe
it is worth studying an extension of HM(X) with guarded algebraic data types.

We proceed as follows. First, we present an untyped call-by-value λ-calculus fea-
turing data constructors and pattern matching (§2). (We believe that our results
could be transferred to a call-by-name calculus without difficulty.) Then, we define
the type system HMG(X), which extends HM(X) with pattern matching, polymor-
phic recursion, and guarded algebraic data types, and establish subject reduction
and progress theorems (§3). Last, we show that, provided recursive definitions carry
a type annotation, type inference reduces to constraint solving (§4).

The design of HMG(X) and the development of its basic theory are the main
contributions of this paper. By studying arbitrary constraints, including subtyping
constraints, as well as pattern matching against deep patterns, we address issues
that most other treatments of guarded algebraic data types avoid. In spite of these
complications, we provide concise proofs of type soundness and of the reduction of
type inference to constraint solving. In addition to the basic subject reduction and
progress results, we discuss a few subtle aspects of type soundness. In particular, we
study a type-based criterion for determining whether a case analysis is exhaustive,
and prove that it preserves type soundness. We also prove that, even though our
(standard) dynamic semantics implicitly assumes that values can be distinguished
at runtime based on their nature (for instance, a λ-abstraction does not match
a pair pattern), well-typed programs do not exploit this assumption, and do not
require values to carry runtime type information. This theoretical framework is
shared between all instances of HMG(X).

This work does not fully resolve the issue of combining guarded algebraic data
types with type inference in the style of Hindley and Milner. Because HMG(X) is
parameterized over the syntax and interpretation of constraints, we do not provide
a constraint solver. Yet, constraint solving raises difficult issues. Because our
constraints involve the implication connective, constraint solving is likely to be
computationally expensive, and solved forms are likely to be complex. In fact,
even in the simplest possible case, that of unification constraints, the complexity of
constraint solving is nonelementary.

Thus, although HMG(X) is a safe type system, it must probably be restricted in
order to ensure feasible type inference. We and other authors have begun studying
such restrictions. We briefly discuss these works below (§1.5), but, because we
believe that no definitive solution has emerged yet, we leave this issue open in the
present paper.

The remainder of this introduction presents guarded algebraic data types (§1.1),
reviews some of their applications (§1.2–§1.4), and discusses related work (§1.5).

1.1 From algebraic data types to guarded algebraic data types

Let us first recall how algebraic data types are defined, and explain the more general
notion of guarded algebraic data types.
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Algebraic data types. Let ε be an algebraic data type, parameterized by a vector
of distinct type variables ᾱ. Let K be one of the data constructors associated
with ε. The (closed) type scheme assigned to K, which can be derived from the
declaration of ε, is of the form

K :: ∀ᾱ.τ1 × · · · × τn → ε(ᾱ) (1)

where n is the arity of K. (This form includes so-called nested algebraic data
types [Bird and Meertens 1998].) Then, the typing discipline for pattern matching
can be summed up as follows: if the pattern K x1 · · ·xn matches a value of type
ε(ᾱ), then the variable xi becomes bound to a value of type τi.

For instance, here is the definition of an algebraic data type tree(α), describing
binary trees whose internal nodes are labeled with values of type α. It consists of
the following data constructors:

Leaf :: ∀α.tree(α),
Node :: ∀α.tree(α)× α× tree(α) → tree(α).

The arity of Leaf is 0; the arity of Node is 3. Matching a value of type tree(α)
against the pattern Leaf binds no variables. Matching such a value against the
pattern Node(l, v, r) binds the variables l, v, and r to values of types tree(α), α,
and tree(α), respectively.

Läufer-Odersky-style existential types. Some extensions of ML allow more liberal
algebraic data type declarations. Consider, for instance, Läufer and Odersky’s
extension of ML with existential types [1994]. There, the type scheme associated
with a data constructor is of the form

K :: ∀ᾱβ̄.τ1 × · · · × τn → ε(ᾱ) (2)

The novelty resides in the fact that the argument types τ1 × · · · × τn may contain
type variables, namely β̄, that are not parameters of the algebraic data type con-
structor ε. Then, the typing discipline for pattern matching becomes: if the pattern
K x1 · · ·xn matches a value of type ε(ᾱ), then there exist unknown types β̄ such
that the variable xi becomes bound to a value of type τi.

For instance, an algebraic data type key , describing pairs of a key and a function
from keys to integers, where the type of keys remains abstract, might be declared
as follows:

Key :: ∀β.β × (β → int) → key

The values Key (3, λx.x+5) and Key ([1; 2; 3], length) both have type key . Matching
either of them against the pattern Key (v, f) binds the variables v and f to values
of type β and β → int , for an abstract β, which allows, say, evaluating (f v), but
prevents viewing v as an integer or as a list of integers—either of which would be
unsafe.

Guarded algebraic data types. Let us now go one step further by allowing data
constructors to receive constrained type schemes:

K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ) (3)
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



4 · V. Simonet and F. Pottier

Here, D is a constraint, that is, a first-order formula built out of a fixed set of
predicates on types. The value K (v1, . . . , vn), where every vi has type τi, is well-
typed, and has type ε(ᾱ), only if the type variables ᾱβ̄ satisfy the constraint D.
In return for this restricted construction rule, the typing discipline for destruc-
tion—that is, pattern matching—becomes more flexible: if the pattern K x1 · · ·xn

matches a value of type ε(ᾱ), then there exist unknown types β̄ such that D is
satisfied and the variable xi becomes bound to a value of type τi. Thus, the success
of a dynamic test, namely pattern matching, now allows extra static type informa-
tion, expressed by D, to be recovered within the scope of a branch. We refer to
this flavor of algebraic data types as guarded, because their data constructors have
guarded (constrained) type schemes.

Guarded algebraic data types are a fairly general concept, due, in particular, to
the fact that the constraint language in which D is expressed is not fixed a priori.
On the contrary, many choices are possible: in the following, we suggest a few.

1.2 Applications with unification constraints

In the simplest case, types are interpreted as finite trees, and constraints are uni-
fication constraints, made up of type equations, conjunction, and existential quan-
tification.

An alternative form. In that case, the data constructors associated with guarded
algebraic data types can in fact be assigned unconstrained type schemes of the form

K :: ∀β̄.τ1 × · · · × τn → ε(τ̄) (4)

where every type variable that appears free in τ1, . . . , τn, τ is a member of β̄. In
this form, no constraint is specified, but the type constructor ε can be applied to
a vector of arbitrary types τ̄ , instead of a vector of distinct type variables ᾱ. It
is not difficult to check that the forms (3) and (4) offer equivalent expressiveness.
Indeed, a declaration of the form (4) can be written

K :: ∀ᾱβ̄[ᾱ = τ̄ ].τ1 × · · · × τn → ε(ᾱ)

which is an instance of (3). Conversely, since every satisfiable unification constraint
admits a most general unifier, a declaration of the form (3) either has no instance
at all (making K inapplicable, a pathological case) or can be written under the
form (4). We omit the details.

Appearances of this concept in the literature. Declarations of the form (4) are
strongly reminiscent of the way inductive types are declared in the Calculus of
Inductive Constructions [Paulin-Mohring 1992; Werner 1994]. The main difference
lies in the fact that inductive types come with a positivity restriction, which ensures
logical consistency, whereas guarded algebraic data types carry no such restriction.
In a programming-language setting, logical consistency is not a concern: programs
that do not terminate are considered acceptable.

Hanus [1988; 1989] designed a typed logic programming language where “func-
tions” (data constructors, in our terminology) are introduced by declarations of the
form (4). (In fact, in Hanus’ system, it is even possible for the result type to be a
type variable; it does not have to be an application of a data constructor ε.) This
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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yields expressiveness comparable to, and even in excess of, that of guarded alge-
braic data types. For instance, Hanus is able to typecheck programs that have been
defunctionalized in the style of Warren [1982], while Pottier and Gauthier [2004]
exploit guarded algebraic data types for the same purpose. However, Hanus’ type
system does not deal with pattern matching in a special way: that is, it does not ex-
ploit the fact that a successful match provides extra static type information. Hanus
compensates for this weakness by performing dynamic type tests and backtracking
when they fail. A programming language equipped with true guarded algebraic
data types, on the other hand, statically checks that programs are safe, and re-
quires no dynamic type tests. As a result, Hanus’ approach is more expressive, but
offers fewer static guarantees. It is also more costly at run time, although Hanus
describes an optimization for types that adhere to a certain form.

One particular guarded algebraic data type, known as R, is exploited by Crary,
Weirich and Morrisett [2002] to encode intensional type analysis into a program-
ming language equipped with a type-erasure semantics. The examples that follow
illustrate this idea.

Types introduced by declarations of the form (4) are referred to as guarded re-
cursive datatype constructors by Xi et al. [2003], as first-class phantom types by
Cheney and Hinze [2002; 2003] and by Hinze [2003], and as equality qualified types
by Sheard [2004] and by Sheard and Pasalic [2004]. These works present a wealth of
applications of guarded algebraic data types in the case of unification constraints.

Examples. We assume that type constructors for integers and binary pairs, int
and ×, are available. (They too can be viewed as algebraic data type constructors.)
Following Crary et al. [2002], we introduce a unary algebraic data type constructor
ty , and declare the following data constructors for it:

Int :: ∀α[α = int ].ty(α)
Pair :: ∀αβ1β2[α = β1 × β2].ty(β1)× ty(β2) → ty(α)

These declarations are of the form (3), which we use in our theoretical development.
In concrete syntax, one could (and should) allow programmers to use the form (4),
that is, to write:

Int :: ty(int)
Pair :: ∀β1β2.ty(β1)× ty(β2) → ty(β1 × β2)

For the sake of brevity, we associate only two data constructors, Int and Pair , with
the type constructor ty . In a practical application, it could have more.

The motivation for this definition is the following: ty(τ) can be interpreted as a
singleton type whose only value is a runtime representation of τ [Crary et al. 2002].
The constraints carried by the above declarations capture the relationship between
the structure of a value v whose type is ty(τ) and that of the type τ . Indeed, if v
is Int , then τ must be int ; if v is Pair v1 v2, then τ must be of the form τ1 × τ2,
where vi has type ty(τi). Thus, by examining v, one gains knowledge about τ .
This is particularly useful when τ is a type variable, or has free type variables: the
branches of a match construct that examines v are typechecked under additional
assumptions about these type variables. This is illustrated by the definition of
print, a generic printing function:
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let rec print : ∀α.ty(α) → α → unit = fun t ->

match t with

| Int ->

fun x -> print_int x

| Pair (t1, t2) ->

fun (x1, x2) -> print t1 x1; print_string " * "; print t2 x2

(The syntax of our examples mimics that of Objective Caml. We assume that a few
standard library functions, such as print_int and print_string, are available.)
For an arbitrary α, print accepts a runtime representation of the type α, that is, a
value t of type ty(α), as well as a value x of type α, and prints out a human-readable
representation of x. The function first examines the structure of t, so as to gain
knowledge about α. Indeed, each branch is typechecked under additional static
knowledge. For instance, in the first branch, the assumption α = int is available,
so that x can be passed to the standard library function print_int, which has type
int → unit . Similarly, in the second branch, we have α = β1× β2, where β1 and β2

are abstract, so that x is in fact a pair (x1, x2).
In the second branch, print recursively invokes itself in order to display x1

and x2. There is a need for polymorphic recursion: the recursive calls to print
use two different instances of its type scheme, namely ty(βi) → βi → unit , for
i ∈ {1, 2}. In the presence of polymorphic recursion, type inference is known to
be undecidable, unless an explicit type annotation is given [Henglein 1993]. For
this reason, it is natural to expect the type scheme ∀α.ty(α) → α → unit to be
explicitly supplied by the programmer.

Let us go on with a generic comparison function, which is similar to print, but
simultaneously analyzes two runtime type representations:

let rec equal : ∀αβ.ty(α) → ty(β) → α → β → bool = fun t u ->

match t, u with

| Int, Int ->

fun x y -> x = y

| Pair (t1, t2), Pair (u1, u2) ->

fun (x1, x2) (y1, y2) -> (equal t1 u1 x1 y1) && (equal t2 u2 x2 y2)

| _, _ ->

false

The values x and y are structurally compared if they have the same type, otherwise
they are considered different. More generally, it is possible to define a type conver-
sion operator that relies on a dynamic comparison between type representations:

let rec convert : ∀αβ.ty(α) → ty(β) → α → β = fun t u ->

match t, u with

| Int, Int ->

fun x -> x

| Pair (t1, t2), Pair (u1, u2) ->

fun (x1, x2) -> (convert t1 u1 x1, convert t2 u2 x2)

| _, _ ->

raise ConvertException

If the type representations t and u match, then convert t u x returns a copy
of the value x, otherwise it raises the exception ConvertException. Because it
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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copies its argument, convert is not quite a cast operator. More elaborate and
more satisfactory versions of this idea have been studied by Weirich [2000] and by
Cheney and Hinze [2002].

1.3 Applications with arithmetic constraints

We now assume that, in addition to type equations, the constraint language con-
tains a decidable fragment of first-order arithmetic, such as Presburger arithmetic.
Then, constraints contain variables of two kinds: variables that stand for types and
variables that stand for integers.

One can then declare the type of lists, list , as a binary algebraic data type
constructor, whose parameters are respectively of type and integer kinds:

Nil :: ∀αγ[γ = 0].list(α, γ)
Cons :: ∀αγ1γ2[γ1 ≥ 0 ∧ 1 + γ1 = γ2].α× list(α, γ1) → list(α, γ2)

The idea is that, while the parameter α is the type of the elements of the list, the
parameter γ reflects the length of the list, so that only lists of length k have type
list(τ, k). Type systems that allow dealing with lists in this manner include Zenger’s
indexed types [1997; 1998] and Xi and Pfenning’s so-called dependent types [Xi 1998;
Xi and Pfenning 1999]. Both are constraint-based type systems, where typechecking
relies on the decidability of constraint entailment, as opposed to true dependent
type systems, where typechecking involves deciding term equality.

Examples. In the following examples, the data constructors Nil and Cons are
written [] and :: (infix). Our first example is combine, a function that transforms
a pair of lists of matching length into a list of pairs:

let rec combine : ∀αβγ.list(α, γ) → list(β, γ) → list(α× β, γ) = fun l1 l2 ->

match l1, l2 with

| [], [] -> []

| a1 :: l1, a2 :: l2 -> (a1, a2) :: (combine l1 l2)

The type scheme supplied by the programmer specifies that the two input lists
must have the same length, represented by the variable γ, and that the list that is
returned has the same length as well.

It is worth noting that the implementation of combine in Objective Caml’s stan-
dard library includes an additional safety clause:

| [], _ :: _

| _ :: _, [] ->

invalid_arg "List.combine"

This clause is executed when combine is applied to lists of differing lengths. Here,
it is unnecessary, because the type scheme ascribed to combine guarantees that
combine is applied only to lists of matching length. If we added this clause anyway,
it would be typechecked under the inconsistent assumption γ = 0 ∧ γ1 ≥ 0 ∧ γ =
1 + γ1. That is, the type system would be able to prove that this clause is dead
code. This explains why it can be omitted without compromising safety and without
causing any compiler warning to be emitted. More details are given in §3.7.

Our second example is rev_map, a function that reverses a list and at the same
time applies a transformation to each of its elements.
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let rev_map f l =

let rec rmap_f : ∃αβ.∀γ1γ2.list(β, γ1) → list(α, γ2) → list(β, γ1 + γ2) =

fun accu -> function

| [] -> accu

| a :: l -> rmap_f ((f a) :: accu) l

in

rmap_f [] l

The principal type scheme of rev_map is ∀αβγ.(α → β) → list(α, γ) → list(β, γ),
which reflects that the function’s input and output lists have the same length.
The auxiliary function rmap_f must be explicitly annotated because it involves
polymorphic recursion.

In practice, the length of a list is often unknown or only partially known, so a
possibly bounded existential type is required. For instance, the type scheme of a
filter function over lists might be:

∀αγ1.(α → bool) → list(α, γ1) → ∃γ2[0 ≤ γ2 ≤ γ1].list(α, γ2)

Xi [1998] has studied partial type inference for existential types, so as to allow
existential quantifiers to be implicitly introduced and eliminated. We do not address
this issue: HMG(X) only has explicit (Läufer-Odersky-style) bounded existential
types.

1.4 Applications with subtyping constraints

Guarded algebraic data types subsume the bounded existential types studied by the
first author [Simonet 2003] with information flow analysis in mind. In this case,
types contain atomic security levels, which belong to a fixed lattice, and induce a
structural subtyping relation. Guarded algebraic data types allow defining a sin-
gleton type for dynamic security levels, that is, runtime representations of security
levels. Examining dynamic security levels at runtime allows recovering ordering
constraints between static level variables—just as, in §1.2, examining runtime type
representations allowed recovering equations between static type variables. Some
more details appear in a technical report [Simonet and Pottier 2005, Section 2.3]. A
similar approach is followed by Tse and Zdancewic [2004], who introduce dynamic
principals into an information flow analysis.

1.5 Related work

1.5.1 Related type systems. Although we choose HM(X) [Odersky et al. 1999]
as the foundation for our work, because of its elegance, it is by no means the only
constraint-based type system in existence. Many others have been defined and
studied [Mitchell 1984; Curtis 1990; Aiken and Wimmers 1993; Jones 1994; Smith
1994; Trifonov and Smith 1996; Pottier and Rémy 2005], of which it would be
difficult to give a comprehensive list. One could in principle add guarded algebraic
data types to any of them.

The usefulness of guarded algebraic data types is twofold. On the one hand, in-
creasing the expressiveness of the type system means accepting more programs. On
the other hand, it also allows writing more precise type specifications, thus rejecting
some (safe, but incorrect) programs, in the spirit of refinement types [Freeman and
Pfenning 1991].
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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One point should perhaps be stressed. Guarded algebraic data types yield a strict
extension of ML, in the sense that every well-typed ML program remains well-typed
in their presence, and some new programs become well-typed. Refinement types
refine ML, in the sense that every program that is well-typed in their presence is
also a well-typed ML program. These properties are of course mutually exclusive.
The type system presented in this paper subsumes indexed types in the style of
Zenger [1997; 1998] and dependent types in the style of Xi and Pfenning [Xi 1998;
Xi and Pfenning 1999], two type systems that refine ML. Nevertheless, it does not
refine ML—on the contrary, it extends ML. This point is further clarified in the
next paragraphs, which relate our work to Zenger’s.

In Zenger’s work [1997; 1998], there is an important distinction between indices,
which are taken from some abstract domain, and types, which are first-order terms
that carry indices. The logical interpretation of constraints is defined in a careful
way so as to ensure that the type system restricts ML. More specifically, with every
constraint, Zenger associates two interpretations [Zenger 1998, Definition 19]. One
tells whether the constraint is satisfied, as usual, while the other tells whether it is
structurally consistent, that is, roughly speaking, whether it would be satisfied if all
indices were erased. The former depends on the latter, as follows: for an implication
C1 ⇒ C2 to be satisfied, the satisfaction of C1 must imply that of C2, as usual, and
the constraint C2 be structurally consistent, regardless of whether C1 is satisfied.
As a result of this definition, a constraint of the form C ⇒ α1 = list(α2, γ) is
equivalent to ∃α′2γ′.(α1 = list(α′2, γ

′)∧ (C ⇒ (α2 = α′2 ∧ γ = γ′))). In other words,
this constraint requires α1 to be a list, regardless of whether C is satisfied. Zenger’s
interpretation of implication is chosen so that the structure of types can be first
discovered using unification, as in ML, and so that, thereafter, there only remains
to solve a constraint over indices.

In the present paper, we cannot follow Zenger’s approach: we must interpret
implication in a standard way. Indeed, in our case, there is no distinction be-
tween indices and types. In the particular case of unification constraints (§1.2),
for instance, there are no indices at all: we are dealing with equations between
standard ML types. As a result, we cannot, like Zenger, distinguish satisfiability
and structural consistency. Instead, we must interpret implication in terms of sat-
isfiability alone. Therefore, we adopt the standard interpretation of implication.
Because this interpretation is more liberal than Zenger’s, more programs become
well-typed. This explains why our type system does not refine ML, but extends it.
Every program that is well-typed in Zenger’s system is well-typed in ours, with the
same type and possibly also with additional types.

Some other differences between Zenger’s work and ours is that Zenger does not
consider subtyping or nested patterns, while we do. In spite of these differences,
Zenger’s work remains very close in spirit to ours: in particular, type inference is
reduced to constraint solving.

The type system DML(C) [Xi 1998; Xi and Pfenning 1999], which we believe was
developed independently of Zenger’s type system, is a close cousin of it. It main-
tains a similar distinction between indices and types, and interprets implication in a
similar manner [Xi 1998, Section 4.1.1], so as to refine ML. Its implementation, De-
pendent ML [Xi 2001], includes a type inference process, known as elaboration [Xi
1998, Section 4.2]. Because Dependent ML features first-class universal and exis-
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tential types, the elaboration algorithm isn’t an extension of ML’s type inference
algorithm. Instead, it is bidirectional : it alternates between type verification and
type synthesis phases. For this reason, some well-typed ML programs appear to
require extra type annotations before they can be accepted by Dependent ML. Like
Zenger’s, Xi’s elaboration algorithm does, in the end, produce a constraint, whose
satisfiability must then be determined.

In contrast with DML(C), HMG(X) does not have first-class existential or uni-
versal types with implicit introduction and elimination forms. HMG(X) does have
first-class existential types, since they can be encoded using guarded algebraic data
types (§1.1). In this encoding, creating an existential package amounts to applying
a data constructor, while opening it amounts to performing case analysis; both op-
erations must be made explicit in the program. Furthermore, as noted by Odersky
and Läufer [1996, p. 62], this encoding is not local, making it difficult to use in
modular programs.

First-class universal types with explicit introduction and elimination forms could
be added to HMG(X) in the same manner as existential types; see, for instance,
Rémy [1994], Jones [1995], Odersky and Läufer [1996], or Simonet [2003].

Several previous accounts of guarded algebraic data types only describe type
checking, as opposed to type inference. This includes Xi et al.’s [2003], Cheney and
Hinze’s [2003], as well as Xi’s applied type system [2004]. The latter, which was
written concurrently with the present paper, is nevertheless interesting, because
of its generality: it removes the distinction between indices and types, and keeps
only (multiple sorts of) types; furthermore, it is parameterized with an arbitrary
constraint domain, where constraint satisfiability and entailment must be decidable.
These are also features of the type system presented in this paper.

1.5.2 Towards type inference. Some authors have attempted to fully address
the pragmatic issue of introducing guarded algebraic data types into Haskell or
ML without abandoning type inference. These include the present authors, in a
previous version of this paper [Simonet and Pottier 2005], Peyton Jones, Washburn,
and Weirich [2004], Peyton Jones, Vytiniotis, Weirich, and Washburn [2005], Pottier
and Régis-Gianas [2006], and Stuckey and Sulzmann [2005]. Sheard’s interpreter
for the Ωmega programming language [Sheard 2005] also seems to perform type
inference in the presence of guarded algebraic data types, but its algorithm is
undocumented.

Simonet and Pottier [2005, Section 6] focus on the case of unification constraints
and require every function that performs case analysis over a guarded algebraic data
type to be explicitly annotated with a closed type scheme. Under these assumptions,
they show that it is possible to generate so-called tractable constraints, which can
be efficiently solved and admit most general unifiers. Unfortunately, the details of
their constraint generation process are somewhat involved. Furthermore, requiring
type annotations to be closed leads to a loss of expressive power that could be
problematic in practice. rmap_f (§1.3) is an instance of a function that performs
case analysis over a guarded algebraic data type and whose type scheme is not
closed.

Peyton Jones et al. [2004] describe a working system that has been implemented
in the Glasgow Haskell compiler. Although not stated in terms of constraints,
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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their approach appears to rest on the basic insight that a constraint of the form
C1 ⇒ C2 can safely be simplified to φ(C2), where φ is a most general unifier of
C1. Performing this simplification on the fly allows producing constraints that
do not involve implications and are thus standard unification constraints. Unfor-
tunately, this simplification step is not meaning-preserving: C1 ⇒ C2 is not in
general equivalent to φ(C2). In fact, different choices of φ can produce different
residuals: for instance, α = β ⇒ α = int can be simplified to α = int or to β = int .
Furthermore, it does not commute with other constraint solving steps inside C2:
for instance, β = α ∧ (α = int ⇒ β = int) can be either directly simplified to
β = α ∧ β = int or first rewritten to β = α ∧ (α = int ⇒ α = int) which then
simplifies to β = α ∧ int = int , that is, β = α. For these reasons, one must be
careful to exploit this simplification rule only in a principled and predictable way.
To this end, Peyton Jones et al. distinguish wobbly types, which are inferred and
should not participate in simplification steps, because more might become known
about them in the future, and rigid types—our terminology—which are explic-
itly provided by the programmer, can be relied upon, and can thus participate in
simplification steps. Although these intuitions are good, Peyton Jones et al.’s for-
malization is complex and lacks a formal explanation for the need to distinguish
wobbly and rigid types. Peyton Jones et al. [2005] describe a simplified version of
the wobbly types system, which accepts slightly fewer programs, but is easier to
implement and explain.

Inspired by Peyton Jones et al.’s original paper [2004], Pottier and Régis-Gianas
develop a so-called stratified type inference system. The system combines an initial
program transformation phase, known as local shape inference, with a traditional
type inference phase, in the style of Hindley and Milner. Local shape inference gath-
ers type information that is “evident” in the source program (such as that found
in user-provided type annotations), propagates this information, and inserts new
type annotations into the program, so that more information becomes “evident” in
the transformed program. The transformed program is then submitted to a type
inference algorithm that decides whether it is well-typed in a conservative extension
of ML with guarded algebraic data types, known as MLGX. In short, MLGX mar-
ries type inference for ML with type checking for guarded algebraic data types: it
understands guarded algebraic data types only where enough information has been
made explicit, either by the programmer or during local shape inference. MLGX
could be viewed as an instance of HMG(X) with unification constraints (as in §1.2),
equipped with extra syntactic restrictions that guarantee that the implication con-
nective never appears within constraints. As a result, type inference in MLGX
is purely unification-based. It can be presented in terms of constraint generation
and constraint solving, where constraints are made up of equations, conjunctions,
and existential and universal quantifiers: implication is not required. The strength
of stratified type inference is to separate a local shape inference algorithm, which
possibly makes many ad hoc decisions about how type information should be propa-
gated, and a clean, constraint-based type inference algorithm, which can be proven
correct and complete with respect to the specification of MLGX. Several local shape
inference algorithms, varying in precision and sophistication, can be used. One of
them emulates wobbly types quite faithfully.
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p ::= 0 | 1 | x | p ∧ p | p ∨ p | K p̄
e ::= x | λc̄ | K ē | e e | µx.v | let x = e in e
c ::= p.e
v ::= λc̄ | K v̄

Fig. 1: Syntax of the calculus

dpv(0) = ?
dpv(1) = ?
dpv(x) = {x}

dpv(p1 ∧ p2) = dpv(p1) ] dpv(p2)
dpv(p1 ∨ p2) = dpv(p1) if dpv(p1) = dpv(p2)

dpv(K p1 · · · pn) = dpv(p1) ] · · · ] dpv(pn)

Fig. 2: The variables defined by a pattern

Stuckey and Sulzmann’s approach [2005] is explicitly constraint-based: their typ-
ing and constraint generation rules are close to those of HMG(X). Like Peyton
Jones et al. [2004], they rely on rewriting C1 ⇒ C2 to φ(C2), where φ is a most
general unifier of C1, in order to eliminate implications. Thus, their constraint
solving technique is sound, but incomplete. Unlike Peyton Jones et al., they set
up no machinery to tame the undesirable behaviors described above. Instead, they
note that their constraint solver finds better solutions when more type annotations
are available, and suggest a technique for pointing out where more type annotations
might be needed. They also suggest another, more ambitious, constraint solving
technique. Both of these techniques involve disjunctions, which means that they
can produce multiple, incomparable answers, and that their cost may be high.

2. THE UNTYPED CALCULUS

We now introduce a call-by-value λ-calculus featuring data constructors and deep
pattern matching.

We believe that the type system presented in §3 is also sound with respect to
a call-by-name semantics. However, in order to keep things simple, we have not
attempted to prove type soundness with respect to a semantics that captures both
call-by-value and call-by-name.

We include nested patterns in the language, even though tests against deep pat-
terns can be compiled down to cascades of tests against shallow patterns. Indeed,
this compilation scheme is not unique: compilation can be performed left-to-right,
right-to-left, or yet in other ways. We do not wish the typing rules for deep patterns
to reflect a particular compilation scheme, because we do not wish to commit to
one such scheme. The type system presented in §3 is independent of the way deep
patterns are compiled: it cannot be viewed as the composition of some compilation
scheme for deep patterns with some type system for shallow patterns. We come
back to this issue at the end of §3.6.

2.1 Syntax

Let x and K range over disjoint denumerable sets of variables and data construc-
tors, respectively. For every data constructor K, we assume a fixed nonnegative
arity. The syntax of patterns, expressions, clauses, and values is given in Figure 1.
Patterns include the empty pattern 0, the wildcard pattern 1, variables, conjunction
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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[0 7→ v] = (undefined)
[1 7→ v] = ?

[p1 ∧ p2 7→ v] = [p1 7→ v]⊗ [p2 7→ v]
[p1 ∨ p2 7→ v] = [p1 7→ v]⊕ [p2 7→ v]

[K p1 · · · pn 7→ K v1 · · · vn] = [p1 7→ v1]⊗ · · · ⊗ [pn 7→ vn]

Fig. 3: Extended substitution

and disjunction patterns, and data constructor applications. The empty pattern
does not normally appear in source programs: it is used when normalizing pat-
terns (§2.3). To a pattern p, we associate a set of defined program variables dpv(p),
as specified in Figure 2. (The operator ] stands for set-theoretic union ∪, but is
defined only if its operands are disjoint.) The pattern p is considered ill-formed if
dpv(p) is undefined, thus ruling out nonlinear patterns. Expressions include vari-
ables, functions, data constructor or function applications, recursive definitions, and
local variable definitions. Functions are defined by cases: a λ-abstraction, written
λ(c1, . . . , cn), consists of a sequence of clauses. This construct is reminiscent of
Peyton Jones’ “fat bar” operator [1987]. A clause c is made up of a pattern p
and an expression e and is written p.e; the variables in dpv(p) are bound within
e. We occasionally use ce to stand for a clause or an expression. Values include
functions and applications of a data constructor to values. Within patterns, ex-
pressions, and values, all applications of a data constructor must respect its arity:
data constructors cannot be partially applied.

2.2 Semantics

Whether a pattern p matches a value v is defined by an extended substitution
[p 7→ v] that is either undefined, which means that p does not match v, or a
mapping of dpv(p) to values, which means that p does match v and describes
how its variables become bound. Of course, when p is a variable x, the extended
substitution [x 7→ v] coincides with the ordinary substitution [x 7→ v], which justifies
our abuse of notation. Extended substitution for other pattern forms is defined in
Figure 3. Let us briefly review the definition. The pattern 0 matches no value, so
[0 7→ v] is always undefined. Conversely, the pattern 1 matches every value, but
binds no variables, so [1 7→ v] is the empty substitution. In the case of conjunction
patterns, ⊗ stands for (disjoint) set-theoretic union, so that the bindings produced
by p1 ∧ p2 are the union of those independently produced by p1 and p2. The
operator ⊗ is strict—that is, its result is undefined if either of its operands is
undefined—which means that a conjunction pattern matches a value if and only
if both of its members do. In the case of disjunction patterns, ⊕ stands for a
nonstrict, angelic choice operator with left bias: when o1 and o2 are two possibly
undefined mathematical objects that belong to the same space when defined, o1⊕o2

stands for o1 if it is defined and for o2 otherwise. As a result, a disjunction pattern
matches a value if and only if either of its members does. The set of bindings thus
produced is that produced by p1, if defined, otherwise that produced by p2. Last,
the pattern K p1 · · · pn matches values of the form K v1 · · · vn only; it matches such
a value if and only if pi matches vi for every i ∈ {1, . . . , n}.

The call-by-value small-step semantics, written →, is defined by the rules of Fig-
ure 4. It is standard. Rule (β) governs function application and pattern-matching:
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λ(p1.e1 · · · pn.en) v →
nM

i=1

[pi 7→ v]ei (β)

µx.v → [x 7→ µx.v]v (µ)

let x = v in e → [x 7→ v]e (let)

E[e] → E[e′] if e → e′ (context)

E ::= K v̄ [] ē | [] e | v [] | let x = [] in e

Fig. 4: Operational semantics

K p̄ (p1 ∨ p2) p̄′ ; K p̄ p1 p̄′ ∨K p̄ p2 p̄′

(p1 ∨ p2) ∧ p ; (p1 ∧ p) ∨ (p2 ∧ p)
K p1 · · · pn ∧K p′1 · · · p′n ; K (p1 ∧ p′1) · · · (pn ∧ p′n)

K p1 · · · pn ∧K′ p′1 · · · p′n′ ; 0 if K 6= K′

Kp̄ 0 p̄′ ; 0
p ∨ 0 ; p
0 ∨ p ; p
0 ∧ p ; 0

Fig. 5: Normalizing patterns

λ(p1.e1 · · · pn.en) v reduces to [pi 7→ vi]ei, where i is the least element of {1, . . . , n}
such that pi matches v. Note that this expression is stuck (does not reduce) when
no such i exists. The last rule lifts reduction to arbitrary evaluation contexts.

2.3 Properties of patterns

We define a notion of equivalence between patterns as follows: p1 and p2 are equiv-
alent, which we write p1 ≡ p2, if and only if they give rise to the same extended
substitutions, that is, if and only if the functions [p1 7→ ·] and [p2 7→ ·] coincide.

It is possible to normalize a pattern using the reduction rules given in Fig-
ure 5, applied modulo associativity and commutativity of ∧, modulo associativity
of ∨, and under arbitrary contexts. (Note that ∨ cannot be considered commuta-
tive, since its semantics has left bias.) This process is terminating and meaning-
preserving:

Proof on
page 38 Lemma 2.1. The relation ; is strongly normalizing. ¦

Proof on
page 38 Lemma 2.2. p1 ; p2 implies p1 ≡ p2. ¦

Normalization can be exploited to decide whether a pattern is empty:
Proof on
page 38 Lemma 2.3. p ≡ 0 holds if and only if p ;? 0 holds. ¦

Thus, if a pattern is empty, then one of its normal forms is 0. (In fact, the previous
lemmas imply that it then has no normal form other than 0.) The interaction
between pattern normalization and typechecking is discussed in §3.7.

3. THE TYPE SYSTEM

We now equip our core calculus with a constraint-based type system featuring
guarded algebraic data types. It is a conservative extension of HM(X) [Odersky
et al. 1999], which we refer to as HMG(X).
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Constraint-Based Type Inference for Guarded Algebraic Data Types · 15

As argued, for instance, by Pottier and Rémy [2005], explaining type inference in
terms of constraints is beneficial for at least two reasons. First, constraints provide
a formal language for reasoning and computing about a program’s type-correctness.
A logical interpretation gives meaning to sentences in this language. As a result,
it is pleasant to reduce type inference to constraint solving: indeed, this allows
stating what problem must be solved, without making an early commitment as to
how it should be solved. This holds even when working within the simple setting
of ML, where constraints are standard unification constraints. Second, working
with constraints allows moving to much more general settings, where constraints
may involve type class membership predicates, as in Haskell [Wadler and Blott
1989; Jones 1994], Presburger arithmetic, as in DML [Xi 1998], polynomials, as
in Zenger’s work [1997], subtyping, etc. Of course, in each case, one must write a
different constraint solver, which can be hard work; but, at least, the theoretical
framework and the type soundness proofs are shared.

In §3.1, we introduce the syntactic objects involved in the definition of the type
system, namely type variables, types, constraints, type schemes, environments, and
environment fragments. All but the last are inherited from HM(X). Environment
fragments are a new entity, used to describe the static knowledge that is gained
by successfully matching a value against a pattern. In §3.2, we explain how these
syntactic objects are interpreted in a logical model.

In order to guarantee type soundness, some requirements must be placed on the
model: they are expressed in §3.3. Some of them concern the (guarded) algebraic
data types defined by the programmer, so the syntax of algebraic data type defini-
tions is also made precise in §3.3.

In §3.4, we introduce a few tools that allow manipulating environment fragments.
Then, we review the typing judgments (§3.5) and typing rules (§3.6) of HMG(X),
and establish type soundness (§3.7).

3.1 Syntax

In keeping with the HM(X) tradition, the type system is parameterized by a first-
order logic X, whose variables, terms, and formulas are respectively called type
variables, types, and constraints.

Type variables α, β, γ are drawn from a denumerable set. Given two sets of
variables ᾱ and β̄, we write ᾱ # β̄ for ᾱ∩ β̄ = ∅. If o is a syntactic object, we write
ftv(o) for the free type variables of o. We say that ᾱ is fresh for o if and only if
ᾱ # ftv(o) holds.

In some proofs, we use renamings θ, which are total, bijective mappings from type
variables to type variables with finite domain. The domain dom(θ) of a renaming θ
is the set of type variables α such that α and θ(α) differ. We say that θ is fresh
for an object o if and only if dom(θ) # ftv(o) holds, or equivalently, if θ(o) is o.
When proving a theorem T , we say that a hypothesis H can be assumed without
loss of generality (w.l.o.g.) if the theorem T follows from the theorem H ⇒ T via
a renaming argument, which is usually left implicit.

We assume a fixed, arbitrary set of algebraic data type constructors ε, each of
which is equipped with a nonnegative arity. Then, types τ are built out of type
variables using a distinguished arrow type constructor → and algebraic data type
constructors (whose arity must be obeyed). In many applications, it is necessary
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to partition types into several sorts. Doing so does not introduce any fundamental
complication, so, for the sake of simplicity, we ignore this aspect and assume that
there is only one sort.

Constraints C, D are built out of types using basic predicates π and the standard
first-order connectives.

τ ::= α | τ → τ | ε(τ, . . . , τ)
π ::= ≤ | . . .

C, D ::= π τ̄ | C ∧ C | C ∨ C | ∃α.C | ∀α.C | C ⇒ C

The set of basic predicates π is left unspecified, which allows the system to be
instantiated in many ways. Every predicate is assumed to have a fixed arity. For
instance, in an application to indexed types in the style of §1.3, equality with an
integer constant would be a predicate of arity 1; the usual ordering of integers
would be a predicate of arity 2; the usual binary operations over integers would be
predicates of arity 3. We assume that a distinguished binary predicate ≤ is given,
and write τ1 ≤ τ2 (read: τ1 is a subtype of τ2) for ≤ τ1 τ2. Via some syntactic sugar,
it is possible to view equality τ = τ , truth true, falsity false, universal quantification
∀α.C, disjunction C∨C, and implication C ⇒ C as part of the constraint language.
By convention, ⇒ binds tighter than ∃ and ∀, which bind tighter than ∧ and ∨.

As in HM(X), a (constrained) type scheme σ is a pair of a constraint C and a
type τ , wrapped within a set of universal quantifiers ᾱ:

σ ::= ∀ᾱ[C].τ

By abuse of notation, a type τ may be viewed as the type scheme ∀∅[true].τ , so
types form a subset of type schemes.

An environment Γ is a finite mapping from variables to type schemes. An environ-
ment is simple if it maps variables to types. We write • for the empty environment.
We write dom(Γ) for the domain of Γ.

An environment fragment ∆ is a pair of a constraint D and a simple environment
Γ, wrapped within a set of existential quantifiers β̄; we write

∆ ::= ∃β̄[D]Γ

The domain of ∆ is that of Γ. This notion is new in HMG(X). Environment
fragments appear in judgments about patterns (§3.5) and are meant to describe
the static knowledge that is gained by successfully matching a value against a
pattern.

3.2 Interpretation

The logic is interpreted in a fixed model (T,≤). T is a nonempty set whose elements
t are referred to as ground types. It is equipped with a partial pre-order ≤, which
is used to interpret the basic predicate ≤. Keep in mind that this pre-order may in
fact be equality: in such a case, the type system does not have subtyping.

Because syntactic objects may have free type variables, they are interpreted under
a ground assignment ρ, a total mapping of the type variables to ground types. The
interpretation of a type variable α under ρ is simply ρ(α). The interpretation of
a type τ under ρ, written ρ(τ), is then defined in a compositional manner. For
instance, ρ(τ1 → τ2) is ρ(τ1) → ρ(τ2), where the second → symbol denotes a
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fixed, unspecified total mapping of T 2 into T . The interpretation of every type
constructor ε is defined similarly.

The interpretation of a constraint C under ρ is a truth value: we write ρ ` C
when ρ satisfies C. The partial pre-order on T is used to interpret subtyping
constraints: that is, ρ ` τ1 ≤ τ2 is defined as ρ(τ1) ≤ ρ(τ2). The interpretation
of the other basic predicates π is unspecified. The interpretation of the first-order
connectives is standard. We write C1 ° C2 (read: C1 entails C2) if and only if, for
every ground assignment ρ, ρ ` C1 implies ρ ` C2. We write C1 ≡ C2 (read: C1

and C2 are equivalent) if and only if both C1 ° C2 and C2 ° C1 hold.
In order to guarantee type soundness, the model must satisfy a number of require-

ments, which we state in §3.3. Before doing so, however, we interpret type schemes
and environment fragments, and explain how this gives rise to partial pre-orders on
these objects.

As in HM(X), a type scheme is interpreted as an upward-closed set of ground
types. This is standard: see Trifonov and Smith [1996] or Sulzmann [2000].

Definition 3.1. The interpretation ρ(∀ᾱ[D].τ) of the type scheme ∀ᾱ[D].τ under ρ
is the set of ground types {t | ∃t̄ ρ[ᾱ 7→ t̄] ` D ∧ ρ[ᾱ 7→ t̄](τ) ≤ t}. It can also be
written ↑{ρ[ᾱ 7→ t̄](τ) | ρ[ᾱ 7→ t̄] ` D}, where ↑ is the upward closure operator. ¦

This definition gives rise to a partial pre-order on type schemes, which extends
the ordering on types. It is defined as follows: given two type schemes σ and σ′, we
consider σ ≤ σ′ to be a valid constraint, which we interpret by defining ρ ` σ ≤ σ′

as ρ(σ) ⊇ ρ(σ′).
As a sanity check, one can verify that the type scheme ∀α.α is a least element

in this pre-order: indeed, its interpretation under every ground assignment is the
full model T , so every constraint of the form (∀α.α) ≤ σ is a tautology. One can
also check that ∀α.σ is more general than σ, that is, every constraint of the form
(∀α.σ) ≤ σ is a tautology. Thus, the pre-order allows a universally quantified type
variable to be instantiated (to become free).

The following property is used in a couple of proofs:
Proof on
page 39Lemma 3.2. D ° (∀ᾱ[D].τ) ≤ τ . ¦

Ordering constraints on type schemes can also be expressed in terms of ordering
constraints on types. This is stated as follows:

Proof on
page 39Lemma 3.3. Let σ and σ′ stand for ∀ᾱ[D].τ and ∀ᾱ′[D′].τ ′, respectively. Let

ᾱ′ # ftv(σ). Then, σ ≤ σ′ ≡ ∀ᾱ′.D′ ⇒ σ ≤ τ ′ holds. Furthermore, let ᾱ # ftv(τ ′).
Then, σ ≤ τ ′ ≡ ∃ᾱ.(D ∧ τ ≤ τ ′) holds. ¦

We write ∃σ for ∃α.(σ ≤ α), where α is fresh for σ. This constraint, which
requires σ to denote a nonempty set of ground types, is used in Var (§3.6).

The pre-order on type schemes can be extended pointwise to an ordering on
environments. Thus, when Γ and Γ′ are environments with a common domain,
we consider Γ′ ≤ Γ to be syntactic sugar for the conjunction of the constraints
Γ′(x) ≤ Γ(x), where x ranges over the domain of Γ and Γ′.

Let us now turn to the interpretation of environment fragments. Let a ground
environment g be a finite mapping from variables to ground types. Given a ground
assignment ρ and a simple environment Γ, let ρ(Γ) stand for the ground environment
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that maps every x ∈ dom(Γ) to ρ(Γ(x)). The pre-order on ground types is extended
pointwise to ground environments with a common domain. Then, an environment
fragment is interpreted as a downward-closed set of ground environments, as follows:

Definition 3.4. The interpretation of the environment fragment ∃β̄[D]Γ under
the ground assignment ρ, written ρ(∃β̄[D]Γ), is the set of ground environments
{g | ∃t̄ ρ[β̄ 7→ t̄] ` D ∧ g ≤ ρ[β̄ 7→ t̄](Γ)}. It can also be written ↓{ρ[β̄ 7→ t̄](Γ) |
ρ[β̄ 7→ t̄] ` D}, where ↓ is the downward closure operator. ¦

Again, this definition gives rise to a partial pre-order on environment fragments,
which extends the ordering on simple environments. Given two environment frag-
ments ∆ and ∆′ with a common domain, we consider ∆′ ≤ ∆ to be a valid con-
straint, which we interpret by defining ρ ` ∆′ ≤ ∆ as ρ(∆′) ⊆ ρ(∆).

As a sanity check, one can verify that the environment fragment ∃β.(x : β) is a
greatest element among the environment fragments of domain {x}. We also prove
below (see rule f-Hide in Figure 6) that ∆ is more general than ∃α.∆, that is,
every constraint of the form ∆ ≤ ∃α.∆ is a tautology. Thus, the pre-order allows
a free type variable to become abstract (existentially quantified).

The interpretation of environment fragments, and the definition of their pre-
order, are dual to those of type schemes: ↑ and ⊇ are replaced with ↓ and ⊆,
respectively. These changes reflect the dual nature of the ∀ and ∃ quantifiers.

As in the case of type schemes, ordering constraints on environment fragments
can be be expressed in terms of ordering constraints on types. This is stated by
the following lemma:

Proof on
page 39 Lemma 3.5. Let ∆ and ∆′ stand for ∃β̄[D]Γ and ∃β̄′[D′]Γ′, respectively. Let

β̄ # ftv(Γ′) and β̄′ # ftv(∆). Then, we have ∆′ ≤ ∆ ≡ ∀β̄′.D′ ⇒ ∃β̄.(D∧Γ′ ≤ Γ).
As a corollary, if, in addition, β̄′ # ftv(C) holds, then C ° ∆′ ≤ ∆ is equivalent
to C ∧D′ ° ∃β̄.(D ∧ Γ′ ≤ Γ). ¦
3.3 Requirements on the model

So far, the pre-order ≤ on ground types, as well as the interpretation of the type
constructors → and ε, have been left unspecified. This is intended to offer a great
deal of flexibility when defining instances of HMG(X). However, in order to estab-
lish type soundness, we must make a few assumptions about them.

First, subtyping assertions that involve an arrow type and an algebraic data type,
or two algebraic data types with distinct head symbols, must be unsatisfiable. This
is required for progress to hold (Lemma 3.28 and Theorem 3.30).

Requirement 3.6. Every constraint of the form τ1 → τ2 ≤ ε(τ̄) or ε(τ̄) ≤ τ1 → τ2

or ε(τ̄) ≤ ε′(τ̄ ′), where ε and ε′ are distinct, is unsatisfiable. ¦
Next, the arrow type constructor must be contravariant in its domain and covari-

ant in its codomain. This is required for subject reduction to hold (Lemma 3.23).
This requirement appears in all type systems equipped with subtyping.

Requirement 3.7. τ1 → τ2 ≤ τ ′1 → τ ′2 entails τ ′1 ≤ τ1 ∧ τ2 ≤ τ ′2. ¦
Last, we must make similar variance requirements about every algebraic data

type constructor ε. The requirements that bear on ε depend on its definition, how-
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ever; so, before stating these requirements, we must recall how (guarded) algebraic
data types are defined.

In keeping with the ML tradition, algebraic data types are explicitly defined, as
part of the program text. As a simplifying assumption, we assume that all such
definitions are placed in a prologue, so that they are available to the typechecker
when it starts examining the program’s body (an expression). A prologue consists
of a series of data constructor declarations, each of which assigns a closed type
scheme to a (distinct) data constructor K, as follows:

K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ)

This is the form (3) of §1.1. Here, n must be the arity of K, and ᾱ must be a
vector of distinct type variables. When K is declared in such a way, we say that it
is associated with the algebraic data type constructor ε.

We now state the variance requirements that bear on algebraic data type con-
structors. They are necessary to establish subject reduction and progress (Lem-
mas 3.26 and 3.28), and are standard in type systems featuring both subtyping and
isorecursive types: see, for instance, Pottier and Rémy [2005] or Simonet [2003].

Requirement 3.8. For every data constructor K, if K :: ∀ᾱβ̄[D].τ1 × · · · × τn →
ε(ᾱ) and K :: ∀ᾱ′β̄′[D′].τ ′1 × · · · × τ ′n → ε(ᾱ′) are two α-equivalent versions of K’s
declaration, and if β̄ is fresh for every τ ′i , then D′∧ε(ᾱ′) ≤ ε(ᾱ) ° ∃β̄.(D∧i τ

′
i ≤ τi)

must hold. ¦
(Throughout the paper, we write C ∧i Ci for C ∧ C1 ∧ . . . ∧ Cn.) Although

these requirements are standard, they may conceivably seem cryptic. Here is a
brief and informal attempt at explaining them. Assigning K the type scheme
∀ᾱβ̄[D].τ1× · · ·× τn → ε(ᾱ) amounts to declaring that the abstract data type ε(ᾱ)
is isomorphic to a sum type of the form (∃β̄[D] τ1×· · ·×τn)+. . . A similar statement
can be made about the α-equivalent declaration K :: ∀ᾱ′β̄′[D′].τ ′1×· · ·×τ ′n → ε(ᾱ′).
Now, for this isomorphism, which is declared as part of the prologue, to be consistent
with the model, which defines the interpretation of ε and of ≤, the existence of
a subtyping relationship between the abstract types ε(ᾱ′) and ε(ᾱ) must entail
the existence of an analogous relationship between their concrete representations
∃β̄′[D′] τ ′1 × · · · × τ ′n + . . . and ∃β̄[D] τ1 × · · · × τn + . . . In other words, since the
sum type constructor + is covariant, the law

ε(ᾱ′) ≤ ε(ᾱ) ° ∃β̄′[D′] τ ′1 × · · · × τ ′n ≤ ∃β̄[D] τ1 × · · · × τn

must hold. In fact, Requirement 3.8 could conceivably be stated in this manner.
Under the hypothesis that β̄ is fresh for every τ ′i , one proves, using Lemma 3.5,
that a consequence of this law is D′ ∧ ε(ᾱ′) ≤ ε(ᾱ) ° ∃β̄.(D ∧i τ ′i ≤ τi). This more
basic formulation is the one adopted in the above statement.

We have stated several requirements about the model, but have not explained
how to construct a model. This is straightforward. Ground types are usually de-
fined as finite trees, that is, types without variables. If subtyping is interpreted
as equality, then Requirements 3.6–3.8 are trivially satisfied. If subtyping is inter-
preted as a nontrivial pre-order, one must check that its definition satisfies all three
requirements.
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3.4 Environment fragments

Before we attack the definition of the type system, we must introduce a few op-
erations on environment fragments. The first operation enriches an environment
fragment ∆ with a constraint C, yielding a (more precise) environment fragment
[C]∆. The second one abstracts a set of type variables ᾱ out of an environment frag-
ment ∆, yielding a (less precise) environment fragment ∃ᾱ.C. The two operations
are defined at once below.

Definition 3.9. If ∆ is ∃β̄[D]Γ and β̄ # ftv(ᾱ, C) holds, then we write ∃ᾱ[C]∆
for the environment fragment ∃ᾱβ̄[C∧D]Γ. We write ∃ᾱ.∆ for ∃ᾱ[true]∆ and [C]∆
for ∃∅[C]∆. ¦

The next lemma provides an interpretation of the composite operation. This is
a low-level result, used only in the proof of more elaborate laws (see Lemma 3.15
and Figure 6).

Proof on
page 39 Lemma 3.10. ρ(∃ᾱ[C]∆) = ∪{ρ[ᾱ 7→ t̄](∆) | ρ[ᾱ 7→ t̄] ` C}. ¦

The next two operations are binary. Given two environment fragments ∆1

and ∆2, they produce a new environment fragment. They are intended to reflect
the effect of conjunction and disjunction patterns, respectively. Although their syn-
tactic definitions, which follow, are rather heavy, their interpretations, given by the
next two lemmas, are simple.

Definition 3.11. Given two simple environments Γ1 and Γ2 with disjoint domains,
their conjunction Γ1×Γ2 is their set-theoretic union. (Recall that a simple environ-
ment is a partial mapping of variables to types.) Given two environment fragments
∆1 and ∆2 with disjoint domains, their conjunction ∆1 × ∆2 is the environment
fragment

∃β̄1β̄2[D1 ∧D2](Γ1 × Γ2)

provided that, for every i ∈ {1, 2}, ∆i is ∃β̄i[Di]Γi, and provided that β̄1 # β̄2,
β̄1 # ftv(∆2), and β̄2 # ftv(∆1) hold. ¦

Definition 3.12. Given two environment fragments ∆1 and ∆2 with a common
domain, their disjunction ∆1 + ∆2 is the environment fragment

∃β̄1β̄2ᾱ[(D1 ∧ Γ ≤ Γ1) ∨ (D2 ∧ Γ ≤ Γ2)]Γ

provided ∆i is ∃β̄i[Di]Γi, provided β̄1 # β̄2, β̄1 # ftv(∆2), and β̄2 # ftv(∆1) hold,
and provided the environment Γ, whose domain is that of Γ1 and Γ2, maps every
variable to a distinct type variable in ᾱ, where ᾱ # ftv(β̄1, β̄2,∆1, ∆2) holds. ¦

The next two lemmas are also low-level results, used only in the proof of the
laws in Figure 6. To state the first of these lemmas, we must define conjunction of
ground environments and of sets thereof. (The disjunction of two sets of ground
environments is simply their set-theoretic union.) Given two ground environments
g1 and g2 of disjoint domains, we let g1×g2 stand for their set-theoretic union, that
is, the ground environment g of domain dom(g1)∪ dom(g2) that maps x to gi(x) if
x ∈ dom(gi) and i ∈ {1, 2}. If G1 and G2 are two sets of ground environments, we
let G1 ×G2 stand for {g1 × g2 | g1 ∈ G1 ∧ g2 ∈ G2}.
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true  ∆ ≤ ∃ᾱ.∆ (f-Hide)
C1 ⇒ C2  [C1]∆ ≤ [C2]∆ (f-Imply)

C ⇒ ∆1 ≤ ∆2  [C]∆1 ≤ [C]∆2 (f-Enrich)
∀ᾱ.(∆1 ≤ ∆2)  ∃ᾱ.∆1 ≤ ∃ᾱ.∆2 (f-Ex)

∆1 ≤ ∆2  ∆×∆1 ≤ ∆×∆2 (f-And)
∆1 ≤ ∆2  ∆ + ∆1 ≤ ∆ + ∆2 (f-Or)

∆1 ≤ ∆ ∧∆2 ≤ ∆  ∆1 + ∆2 ≤ ∆ (f-Glb)
true  ∆1 ≤ ∆1 + ∆2 (f-Lub)

Fig. 6: Some properties of subsumption between environment fragments

Proof on
page 39Lemma 3.13. ρ(∆1 ×∆2) = ρ(∆1)× ρ(∆2). ¦

Proof on
page 40Lemma 3.14. ρ(∆1 + ∆2) = ρ(∆1) ∪ ρ(∆2). ¦

The previous lemmas allow establishing a number of laws about environment
fragments, which are useful when reasoning about the correctness and completeness
of the constraint generation rules (§4).

Proof on
page 40Lemma 3.15. The entailment laws in Figure 6 are valid. ¦

3.5 Typing judgments

The type system features three distinct judgment forms, corresponding to patterns,
expressions, and clauses.

Judgments about patterns are written C ` p : τ Ã ∃β̄[D]Γ, where the domain
of Γ is dpv(p). Such a judgment can be read: under assumption C, it is legal to
match a value of type τ against p; furthermore, if successful, this test guarantees
that there exist types β̄ that satisfy D such that Γ is a valid description of the values
that the variables in dpv(p) receive.

If the system only had ordinary (as opposed to guarded) algebraic data types,
then there would be no need for β̄ and D. In other words, it would be possible
to identify environment fragments ∆ with simple environments Γ. For instance,
assuming K :: ∀ᾱ.τ1 × · · · × τn → ε(ᾱ), the familiar judgment true ` K x1 · · ·xn :
ε(ᾱ) Ã (x1 7→ τ1, . . . , xn 7→ τn) holds: when matching a value of type ε(ᾱ),
the pattern K x1 · · ·xn binds the variable xi to a value of type τi, for every i ∈
{1, . . . , n}.

If the system only had existential types in the style of Läufer and Odersky [1994],
then environment fragments would be of the form ∃β̄.Γ. For instance, imagine we
have K :: ∀ᾱβ̄.τ1 × · · · × τn → ε(ᾱ). Then, because the type variables β̄ do not
appear in the data constructor’s result type, the type constructor ε behaves as
an existential type: applying K amounts to creating an existential package, while
matching against K amounts to opening such a package. Thus, matching against K
locally introduces β̄ as a vector of abstract types. In our system, this is reflected
by the judgment true ` K x1 · · ·xn : ε(ᾱ) Ã ∃β̄.(x1 7→ τ1, . . . , xn 7→ τn).

In the full system, the declaration of a data constructor K may involve a con-
straint D, which bears on the type variables ᾱ and β̄. Then, a successful match
against K not only introduces the abstract types β̄, but also guarantees that D
holds. To keep track of this information, we allow fragments to carry a con-
straint. For instance, if K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ) holds, then we have
true ` K x1 · · ·xn : ε(ᾱ) Ã ∃β̄[D](x1 7→ τ1, . . . , xn 7→ τn).
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Patterns (syntax-directed)

p-Empty
C ` 0 : τ  ∃?[false]•

p-Wild
C ` 1 : τ  ∃?[true]•

p-Var
C ` x : τ  ∃?[true](x 7→ τ)

p-And
∀i C ` pi : τ  ∆i

C ` p1 ∧ p2 : τ  ∆1 ×∆2

p-Or
∀i C ` pi : τ  ∆

C ` p1 ∨ p2 : τ  ∆

p-Cstr
∀i C ∧D ` pi : τi  ∆i K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ) β̄ # ftv(C)

C ` K p1 · · · pn : ε(ᾱ) ∃β̄[D](∆1 × · · · ×∆n)

Patterns (non-syntax-directed)

p-EqIn
C ` p : τ ′  ∆

C  τ = τ ′

C ` p : τ  ∆

p-SubOut
C ` p : τ  ∆′

C  ∆′ ≤ ∆

C ` p : τ  ∆

p-Hide
C ` p : τ  ∆
ᾱ # ftv(τ, ∆)

∃ᾱ.C ` p : τ  ∆

Expressions (syntax-directed)

Var
Γ(x) = σ C  ∃σ

C, Γ ` x : σ

Cstr
∀i C, Γ ` ei : τi

K :: ∀ᾱβ̄[D].τ1 · · · τn → ε(ᾱ) C  D

C, Γ ` K e1 · · · en : ε(ᾱ)

Abs
∀i C, Γ ` ci : τ

C, Γ ` λ(c1 · · · cn) : τ

App
C, Γ ` e1 : τ ′ → τ

C, Γ ` e2 : τ ′

C, Γ ` e1 e2 : τ

Fix
C, Γ[x 7→ σ] ` v : σ

C, Γ ` µx.v : σ

Let
C, Γ ` e1 : σ′ C, Γ[x 7→ σ′] ` e2 : σ

C, Γ ` let x = e1 in e2 : σ

Expressions (non-syntax-directed)

Gen
C ∧D, Γ ` e : τ
ᾱ # ftv(Γ, C)

C ∧ ∃ᾱ.D, Γ ` e : ∀ᾱ[D].τ

Inst
C, Γ ` e : ∀ᾱ[D].τ

C  D

C, Γ ` e : τ

Sub
C, Γ ` e : τ ′

C  τ ′ ≤ τ

C, Γ ` e : τ

Hide
C, Γ ` e : σ

ᾱ # ftv(Γ, σ)

∃ᾱ.C, Γ ` e : σ

Clauses

Clause
C ` p : τ ′  ∃β̄[D]Γ′ C ∧D, ΓΓ′ ` e : τ β̄ # ftv(C, Γ, τ)

C, Γ ` p.e : τ ′ → τ

Fig. 7: Typing rules

Judgments about expressions retain the same form as in HM(X): they are written
C, Γ ` e : σ, where C represents an assumption about the judgment’s free type
variables, Γ assigns type schemes to variables, and σ is the type scheme assigned
to e. Judgments about clauses, of the form C, Γ ` c : τ , are interpreted in a similar
way.

As in HM(X), all judgments are identified up to constraint equivalence: for in-
stance, the judgments C1,Γ ` e : σ and C2,Γ ` e : σ are considered interchangeable
when C1 ≡ C2 holds. In a valid judgment C, Γ ` e : σ, the constraint C may well
be unsatisfiable. A closed expression e is well-typed if and only if C, • ` e : σ holds
for some satisfiable constraint C.
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3.6 Typing rules

Whether a judgment is valid is defined by the rules in Figure 7, which we now
review, beginning with the rules that concern patterns.

p-Empty and p-Wild tell that the patterns 0 and 1 can be used at any type,
and bind no variables. Because matching against 0 never succeeds, the environment
fragment produced in p-Empty includes the absurd constraint false. Conversely,
because matching against 1 always succeeds, it provides no information; hence, the
environment fragment produced in p-Wild includes the tautology true.

p-Var is similar to p-Wild, except the environment fragment has nonempty
domain. The rule can be read: if the pattern x matches a value of type τ , then the
variable x becomes bound to a value of type τ .

p-And requires both p1 and p2 to match values of type τ , producing two envi-
ronment fragments ∆1 and ∆2 of disjoint domains, because the pattern p1 ∧ p2 is
well-formed; thus, the conjunction ∆1 ×∆2 is defined.

Similarly, p-Or requires both p1 and p2 to match values of type τ . Furthermore,
it requires both to produce the same environment fragment ∆, so that it becomes
possible to state that the pattern p1 ∨ p2 gives rise to ∆, without knowing which
of p1 or p2 leads to a successful match. One could define another version of p-Or,
whose premises produce two distinct environment fragments ∆1 and ∆2, and whose
conclusion produces the disjunction ∆1 + ∆2. By reflexivity of +, by f-Lub, and
by p-SubOut, the two formulations are equivalent. Disjunction is explicitly used
in the constraint generation rules (§4).

p-Cstr looks up the declaration of the data constructor K and introduces the
type variables β̄. These type variables are chosen fresh (indeed, they cannot ap-
pear free in the rule’s conclusion), so as to play the role of abstract types. Every
pi is typechecked under a hypothesis augmented with D, a constraint that bears
on ᾱ and β̄, and is found in the declaration of K. Thus, the type information
gained by ensuring that the value at hand is indeed an application of K becomes
available when checking that every subpattern is well-typed. In other words, new
type information is propagated top-down through the pattern. The environment
fragment associated with the entire pattern is obtained by fusing the environment
fragments associated with its subpatterns, as in the case of conjunction, and by
wrapping them within the guarded (bounded) existential quantifier ∃β̄[D], which
ensures that the abstract type variables β̄ remain local.

p-EqIn allows replacing the type τ with an arbitrary type τ ′, provided they are
provably equal under C. We require τ = τ ′, rather than τ ≤ τ ′ only: although the
latter condition does not compromise type safety, it appears to create complications
with type inference.

p-SubOut allows weakening the environment fragment produced by a pattern,
in accordance with the subsumption ordering defined earlier.

p-Hide makes some type variables local to a subderivation, which helps manage
names; it is analogous to Hide.

Example 3.16. The following is a valid derivation:

Int :: ∀α[α = int ].ty(α)
true ` Int : ty(α) Ã ∃∅[α = int ]• p-Cstr
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Its conclusion can be read as follows. First, it is valid to match a value of type
ty(α) against the pattern Int . Furthermore, if successful, this test guarantees that
α is int . The pattern Int does not introduce any abstract type variables or bind
any variables. This derivation is referred to as (d1) in Example 3.17.

Here is another valid derivation:

∀i ∈ {1, 2} α = β1 × β2 ` ti : ty(βi) Ã (ti 7→ ty(βi))
p-Var

Pair :: ∀αβ1β2[α = β1 × β2].ty(β1)× ty(β2) → ty(α)
true ` Pair (t1, t2) : ty(α)

Ã ∃β1β2[α = β1 × β2](t1 7→ ty(β1); t2 7→ ty(β2))

p-Cstr

Its conclusion can be read as follows. First, it is valid to match a value of type ty(α)
against the pattern Pair (t1, t2). Furthermore, if successful, this test guarantees
that there exist types β1 and β2 such that α is β1 × β2 and the variables t1 and
t2 are bound to values of types ty(β1) and ty(β2), respectively. This derivation is
referred to as (d2) in Example 3.17. ¦

Let us now briefly review the rules that concern expressions. They are standard,
that is, identical to those of HM(X), up to minor cosmetic differences; see, for
instance, Odersky et al. [1999] or Pottier and Rémy [2005]. The premise C ° ∃σ in
Var is a minor technicality: it allows establishing Lemma 3.20 without requiring
a hypothesis on Γ. Cstr typechecks a data constructor application exactly as if
it were an application of a variable to n arguments. The only difference resides
in the fact that the type scheme associated with K is fixed instead of found in
the environment Γ. Abs requires all clauses to have the same (function) type.
Fix allows polymorphic recursion, an essential feature in programs that involve
guarded algebraic data types, as illustrated in §1. Gen performs generalization,
turning a type into a type scheme, while Inst performs the converse operation. Sub
allows replacing a type τ ′ with an arbitrary type τ , provided the latter is provably
a supertype of the former under C. Hide makes some type variables local to a
subderivation, which helps manage names.

There remains to explain Clause, which assigns a function type τ ′ → τ to a
clause p.e. The pattern p is checked against the argument type τ ′, yielding an
environment fragment ∃β̄[D]Γ′. Then, the expression e is required to have type τ ,
under an assumption augmented with D and an environment augmented with Γ′.
By requiring the type variables β̄ to be fresh, the third premise ensures that they
remain abstract within e; this condition is identical to that found in the elimination
construct for existential types [Läufer and Odersky 1994]. A key point, here, is the
fact that e is typechecked under the augmented constraint C ∧D. In other words,
the type system exploits the presence of a dynamic check, namely pattern matching,
to obtain new static information. As a result, in a function defined by cases, each
clause may be typechecked assuming different constraints.

Example 3.17. Here is a valid derivation for the first clause in the definition of
print , the generic printing function defined in §1.2. We assume that the environment
Γ assigns type int → unit to the variable print int and exploit the derivation (d1)
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of Example 3.16. We write e1 for λx.print int x.

(d1)

. . .

α = int , Γ ` e1 : int → unit
α = int ° int → unit ≤ α → unit

α = int , Γ ` e1 : α → unit
Sub

true,Γ ` Int .e1 : ty(α) → α → unit
Clause

The assumption α = int , which appears in the conclusion of (d1), is made available
in the second premise of Clause, and is exploited by Sub. The derivation concludes
that the clause Int .e1 has type ty(α) → α → unit , where α is unconstrained : indeed,
the hypothesis α = int , which is necessary to typecheck the right-hand side of the
clause, is local.

Here is a valid derivation for the second clause that defines print . We assume that
the environment Γ assigns type scheme ∀α.ty(α) → α → unit to print , so as to be
able to typecheck the recursive calls to print . We let Γ′ stand for the environment
(t1 7→ ty(β1); t2 7→ ty(β2)). We write e2 for λ(x1, x2).(print t1 x1; . . . ; print t2 x2).

(d2)

. . .

α = β1 × β2,ΓΓ′ ` e2 : β1 × β2 → unit
α = β1 × β2 ° β1 × β2 → unit ≤ α → unit

α = β1 × β2, ΓΓ′ ` e2 : α → unit
Sub

true,Γ ` Pair (t1, t2).e2 : ty(α) → α → unit
Clause

This derivation has identical structure. The type variables β1 and β2 do not appear
in its conclusion: they are local to the subderivation rooted at Clause’s second
premise. The hypothesis α = β1 × β2 is also local to this subderivation.

By starting with the above two derivations and applying Abs, Gen, and Fix,
it is straightforward to derive true,Γ0 ` µprint . . . . : ∀α.ty(α) → α → unit , where
Γ0 assigns type int → unit to print int and where the dots stand for the body of
print ’s definition. Thus, the function print , as defined in §1.2, is well-typed in (all
instances of) HMG(X). ¦

Remark 3.18. It is interesting to study how the type system degenerates when all
data types are ordinary (as opposed to guarded) algebraic data types, that is, when
every data constructor has a declaration of the form K :: ∀ᾱ.τ1 × · · · × τn → ε(ᾱ).
Then, in every instance of p-Cstr, β̄ and D must be ∅ and true, respectively, so
that the rule may be written:

p-Cstr
∀i C ` pi : τi Ã ∆i K :: ∀ᾱ.τ1 × · · · × τn → ε(ᾱ)

C ` K p1 · · · pn : ε(ᾱ) Ã (∆1 × · · · ×∆n)

Then, one proves that p-SubOut and p-Hide can be suppressed from the type
system without affecting the set of valid judgments about expressions.

Let us also remove the pattern 0 from the language, since it does not exist in
ML. Then, in the absence of 0 and of p-SubOut, and under the simplified version
of p-Cstr above, all environment fragments must have the form ∃∅[true]Γ. Thus,
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judgments about patterns take the simplified form C ` p : τ Ã Γ, where Γ is a
simple environment. This in turn allows simplifying Clause as follows:

Clause
C ` p : τ ′ Ã Γ′ C, ΓΓ′ ` e : τ

C, Γ ` p.e : τ ′ → τ

This is a standard rule in HM(X): the expression e is typechecked in an environment
extended with new bindings, but no fresh type variables are introduced, and the
constraint assumption remains unchanged. ¦

It is worth noting that p-Cstr propagates type information in a top-down man-
ner, as previously pointed out, but not sideways. That is, the information gained
by ensuring that p1, . . . , pi match cannot be exploited to prove that pi+1, . . . , pn

are well-typed. This is apparent in the fact that every pi is checked under the same
assumption, namely C ∧D.

As a result of this decision, some programs that might seem natural are ill-typed.
Consider, for instance, the following uncurried version of print :

let rec print : ∀α.ty(α)× α → unit = fun tx ->

match tx with

| (Int, x) ->

print_int x

| (Pair (t1, t2), (x1, x2)) ->

print t1 x1; print_string " * "; print t2 x2

This function expects a pair of a runtime type representation and a value. If the
first component of the pair is Int , then the second component must be an integer
value x; if the first component is an application of Pair , then the second component
must be a pair (x1, x2). At first sight, this code seems to make perfect sense.

It is, however, ill-typed in our system, because, in the absence of any hypotheses
about α, a value of type α cannot be matched against the pair pattern (x1, x2). Our
type system only accepts the following variant, where it is clear that the runtime
type representation must be examined before x can be deemed to be a pair:

| (Pair (t1, t2), x) ->

let (x1, x2) = x in

...

This design may seem surprising. Instead, we could make p-Cstr more liberal
and allow type information to propagate in a left-to-right fashion. The first un-
curried version of print would then be considered well-typed, since the hypothesis
α = β1 × β2 would be available when the pattern (x1, x2) is typechecked. Fur-
thermore, adopting such a relaxed version of p-Cstr would not compromise type
safety. So, why stick with a stricter rule?

Our reason is as follows. Suppose we adopt the relaxed rule, and view the first
uncurried version of print as well-typed. Then, we must ensure that the compiler
does not generate code that begins by examining the second component of the pair
tx and blindly dereferences it, without checking whether it is an integer or a pair,
to access x1 and x2. There seem to be two ways of guaranteeing this:

—either specify, in some way, that tuples are examined in a left-to-right manner;
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—or allow integers and pairs to be distinguished at runtime.

The first option appears ad hoc: why left-to-right, rather than right-to-left, or
some other strategy? In some call-by-value programming languages, such as Ob-
jective Caml [Leroy et al. 2005], the evaluation order of pattern matching is un-
specified. This is a good thing, because the compiler is free to schedule tests in
whichever order appears most efficient. It would be undesirable for the type system
to impose tight constraints on the compilation strategy. In a call-by-name language
such as Haskell [Peyton Jones 2003], the evaluation strategy is already specified as
left-to-right, so it makes sense to adopt a relaxed version of p-Cstr, as indeed
Peyton Jones et al. [2004] do.

The second option requires every value to carry a type tag at runtime, which
is unnecessary in ML, and undesirable for efficiency reasons. One should perhaps
point out that the semantics of pattern matching given in §2 does assume that
values have unambiguous runtime representations, since (for instance) it specifies
that K1 does not match K2, even if these (distinct) data constructors belong to
distinct algebraic data types. In ML, however, the type system enjoys the often
unstated property that one never attempts, at runtime, to match K1 against K2

unless both are associated with the same algebraic data type. This property, which
is stated by Lemma 3.28 in the present paper, is the reason why values need not
carry runtime tags that identify their type. Although adopting the second option
would preserve type safety, it would violate this property, leading to a less efficient
compilation scheme.

One should point out that this problem does not arise if the language does not
have nested patterns. Indeed, in a language where patterns are shallow, the above
versions of print cannot be written. Instead of a single, complex test, the program-
mer is forced to write a cascade of simple tests, where the sequencing is explicit.
This eliminates the problem. Bringing this problem to light and explicitly address-
ing it is the reason why we include nested patterns in our calculus.

3.7 Type soundness

We now establish several properties of the type system HMG(X), beginning with
some standard weakening and normalization lemmas, and culminating with subject
reduction and progress theorems.

Proof on
page 40Lemma 3.19 (Weakening). Assume C1 ° C2. If C2 ` p : τ Ã ∆ (resp.

C2, Γ ` ce : σ) is derivable, then there exists a derivation of C1 ` p : τ Ã ∆ (resp.
C1, Γ ` ce : σ) of the same structure. ¦

Proof on
page 40Lemma 3.20. C,Γ ` e : σ implies C ° ∃σ. ¦

Next come three auxiliary normalization lemmas. They are standard: they come
unmodified from the theory of HM(X). A shape is a term whose nodes are names of
typing rules and whose leaves are holes. We say that a shape can be replaced with
a new shape if and only if, for every typing derivation that ends with an instance
of the former, there exists a derivation of the same judgment that ends with an
instance of the latter and otherwise has the same structure.

Proof on
page 40Lemma 3.21. The shape Inst(Gen(·)) can be replaced with Hide(Sub(·)). ¦
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Proof on
page 41 Lemma 3.22. The shape Hide(Gen(·)) can be replaced with Gen(Hide(·)). ¦

Proof on
page 41 Lemma 3.23. The shape App(Sub(Abs(·1)), ·2) can be replaced with the shape

Sub(App(Abs(·1), Sub(·2))). ¦
Building upon these lemmas, we now establish the main normalization result.

An instance of Inst or Gen is trivial if its conclusion is identical to its premise. A
typing derivation is normal if and only if (a) there are no trivial instances of Inst
or Gen; (b) every instance of Gen appears either at the root of the derivation or
as a premise of a syntax-directed rule; (c) every instance of Hide appears either at
the root of the derivation or as a premise of Gen; and (d) at every subexpression
of the form (λc̄) e, Abs and App are consecutive, that is, they are never separated
by an instance of a non-syntax-directed rule.

Proof on
page 41 Lemma 3.24 (Normalization). Every valid typing judgment admits a normal

derivation. ¦
We now prove that HMG(X) is sound, following Wright and Felleisen’s syntactic

approach [1994]. We establish a few technical results, then give subject reduction
and progress theorems. We begin with a basic substitution lemma, whose proof is
straightforward:

Proof on
page 41 Lemma 3.25 (Substitution). C, Γ[x 7→ σ′] ` ce : σ and C, • ` e : σ′ imply

C, Γ ` [x 7→ e]ce : σ. ¦
Next comes the key technical lemma that helps establishing subject reduction for
pattern matching. We state it first, and explain it next.

Proof on
page 42 Lemma 3.26. Assume v matches p and C, • ` v : τ and C ` p : τ Ã ∆ hold.

Write ∆ as ∃β̄[D]Γ, where β̄ # ftv(C). Then, there exists a constraint H such that
H ° D and C ≡ ∃β̄.H and, for every x ∈ dpv(p), H, • ` [p 7→ v]x : Γ(x) holds. ¦
To explain this complex statement, it is best to first consider the simple case where β̄
is empty and D is true. In that case, we have C ≡ H. Thus, the lemma’s statement
can be specialized as follows: if v matches p and C, • ` v : τ and C ` p : τ Ã Γ
hold, then, for every x ∈ dpv(p), C, • ` [p 7→ v]x : Γ(x) holds. In other words, the
value that x receives when matching v against p does indeed have the type that
was predicted.

In the general case, the idea remains the same, but the statement must account
for the abstract types β̄. It still holds that [p 7→ v]x has type Γ(x), albeit under
a constraint H, which extends C with information about the type variables β̄, as
stated by the property C ≡ ∃β̄.H. The exact amount of extra information carried
by H is unknown, but is strong enough to guarantee that D holds, as stated by the
property H ° D.

Using the previous lemmas, it is possible to give a reasonably concise proof of
subject reduction.

Proof on
page 45 Theorem 3.27 (Subject reduction). C, • ` e : σ and e → e′ imply C, • `

e′ : σ. ¦
We now turn to the proof of the progress theorem. In programming languages

equipped with pattern matching, such as ML, it is well-known that well-typedness
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¬0 = 1
¬1 = 0
¬x = 0

¬(K p1 · · · pn) = (∨i∈[1,n] K 1 · · · 1 · ¬pi · 1 · · · 1)

∨ (∨K′∼K,K′ 6=K K′ 1 · · · 1)
¬(p1 ∨ p2) = ¬p1 ∧ ¬p2

¬(p1 ∧ p2) = ¬p1 ∨ ¬p2

Fig. 8: Computing the complement of a pattern

alone does not ensure progress: indeed, a well-typed β-redex (λp1.e1 · · · pn.en) v
may still be irreducible if none of p1, . . . , pn matches v. For this reason, we first
establish progress under the assumption that every case analysis is exhaustive, as
determined by a simple syntactic criterion. Then, we show how, in the presence
of guarded algebraic data types, this criterion can be refined so as to take type
information into account.

Our syntactic criterion for exhaustiveness is standard: it is, in fact, identical
to that of ML. It uses almost no type information: it only requires being able to
determine whether two data constructors K and K ′ are associated with the same
algebraic data type ε. (We write K ∼ K ′ when they are.) It relies on the notion
of complement of a pattern, which is standard [Xi 2003] and whose definition is
recalled in Figure 8. A case analysis λ(p1.e1 · · · pn.en) is said to be exhaustive if
and only if the pattern ¬(p1 ∨ · · · ∨ pn) is empty. How to determine whether a
pattern is empty was discussed in §2.3.

It is important to note that the pattern p ∨ ¬p is in general not equivalent to 1:
this is due to the definition of ¬(K p1 · · · pn), where only the data constructors
compatible with K are enumerated. For instance, because the two data constructors
associated with the algebraic data type constructor ty are Int and Pair (§1.2), we
have Int ∨ ¬Int = Int ∨ Pair 1 · 1 6= 1. For the same reason, an exhaustiveness
condition of the form ¬p ≡ 0 is not equivalent to p ≡ 1.

The next lemma uses the type system to work around this difficulty. It guarantees
that, if p has type τ , then p∨¬p matches every value of type τ . In other words, in
a well-typed program, the values that are matched against a pattern p cannot be
arbitrary: they are guaranteed to match p ∨ ¬p. This property allows dispensing
with runtime type tags; this issue was discussed in §3.6.

The hypotheses of the lemma are analogous to those of Lemma 3.26. It is,
however, oriented towards proving progress, rather than subject reduction.

Proof on
page 45Lemma 3.28. If C, • ` v : τ and C ` p : τ Ã ∆ hold, where C is satisfiable,

then v matches p ∨ ¬p. ¦
It is now straightforward to establish progress, under the hypothesis that every case
analysis is exhaustive.

Proof on
page 46Lemma 3.29. If E[e] is well-typed, then so is e. ¦

Proof on
page 47Theorem 3.30 (Progress). If e is well-typed and contains exhaustive case

analyses only, then it is either reducible or a value. ¦
A closed expression e is stuck if it is neither reducible nor a value; it is said to
go wrong if it reduces to a stuck expression. We now state a first type soundness
result:
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Proof on
page 47 Theorem 3.31 (Type soundness). If e is well-typed and contains exhaustive

case analyses only, then it does not go wrong. ¦
As promised earlier, we now turn to the definition of a more precise exhaustiveness

criterion. In ML, nonexhaustive case analyses are either rejected or silently made
exhaustive by extending them with a default clause whose right-hand side triggers
a runtime error. In the presence of guarded algebraic data types, however, this
purely syntactic criterion becomes unsatisfactory: although it remains correct, one
can do better.

Indeed, the type assigned to a function may allow determining that some branches
can never be taken: this is what Xi [1999] refers to as dead code elimination.
For instance, the function λInt .3 is not exhaustive, as per our syntactic criterion,
because ¬Int is Pair 1 · 1, which is nonempty. However, if the function is declared
to have type ty(int) → int , then pattern matching cannot fail, because no value
of type ty(int) matches Pair 1 · 1. If we were to extend the function with a clause
guarded by the pattern Pair 1 · 1, then the right-hand side of that clause would be
typechecked under the assumption ∃β1β2.(int = β1 × β2), which is absurd, that is,
equivalent to false. This allows the typechecker to recognize that such a clause is
superfluous.

Thus, we proceed as follows: prior to typechecking, we automatically complete ev-
ery case analysis with a default clause, so as to make it exhaustive. The right-hand
side of every default clause consists of a special expression ⊥, which is irreducible,
but not a value: it is stuck, and models a runtime error. To statically prevent these
runtime errors and preserve type safety, we ensure that ⊥ is never well-typed: its
associated typing rule is

Dead

false,Γ ` ⊥ : σ

Thus, checking that the completed case analysis, as a whole, is well-typed, guar-
antees that the newly inserted default clause can never be selected at runtime.
This in turn means that no code needs be generated for it: it only exists in the
typechecker’s eyes, not in the compiler’s.

To formalize this discussion, let b·c be the procedure that completes every case
analysis with a default clause, defined by letting

bλ(p1.e1 · · · pn.en)c = λ(p1.be1c · · · pn.benc · ¬(p1 ∨ · · · ∨ pn).⊥)

and letting b·c be a homomorphism with respect to all other expression forms.
Then, we revisit the type soundness result as follows:

Proof on
page 47 Theorem 3.32 (Progress revisited). If bec is well-typed, then e is either

reducible or a value. ¦
Proof on
page 48 Theorem 3.33 (Type soundness revisited). If bec is well-typed, then e does

not go wrong. ¦
Let us stress that, according to Theorem 3.33, typechecking the modified program
bec, where every case analysis has been completed with a default clause, guarantees
type soundness for the original program e. The syntactic notion of exhaustiveness
defined earlier is no longer involved in this statement.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Constraint-Based Type Inference for Guarded Algebraic Data Types · 31

The ideas presented here are not new: see Xi [1999; 2003]. However, a formal
type soundness statement for a type system equipped with guarded algebraic data
types and pattern matching does not seem to exist in the literature; Theorem 3.33
fills this gap.

Remark 3.34. One issue was left implicit in the above discussion: is our new,
type-based criterion always at least as precise as the previous, syntactic one? The
answer is positive, provided the pattern ¬(p1 ∨ · · · ∨ pn), which guards the de-
fault clause in the definition of b·c, is normalized as per the rules of Figure 5.
Indeed, consider a function e = λ(p1.e1 · · · pn.en), and assume it is exhaustive,
that is, ¬(p1 ∨ · · · ∨ pn) is empty. Then, we have ¬(p1 ∨ · · · ∨ pn) ;∗ 0, so bec is
λ(p1.be1c · · · pn.benc · 0.⊥). Then, because C, Γ ` 0.⊥ : τ1 → τ2 holds for all C, Γ,
τ1 and τ2, one can check that e and bec admit the same typings. ¦

4. TYPE INFERENCE

We now turn to type inference, with the aim of reducing type inference to constraint
solving.

Due to the presence of polymorphic recursion, well-typedness in HMG(X) is un-
decidable [Henglein 1993]. Thus, to begin, we restrict the language by requiring
every µ-bound variable to be explicitly annotated with a type scheme. This re-
striction is not necessary for type soundness, which explains why it was not made
earlier.

Thus, the language of expressions becomes:

e ::= x | λc̄ | K ē | e e | µ(x : ∃β̄.σ).e | letx = e in e

We do not require σ to be closed. Instead, σ may have free type variables, which
must be included in β̄, so that the type annotation ∃β̄.σ is closed.

In practice, one usually requires type annotations of the form µ(x : σ).e, where
σ possibly contains free type variables, and one introduces the expression forms
∃β̄.e and ∀β̄.e to allow programmers to explicitly bind these type variables. This
more general treatment is well understood—see, for instance, Peyton Jones and
Shields [2004]—and is orthogonal to guarded algebraic data types, so we omit it.

Not requiring σ to be closed is important, for a couple of different reasons. The
main reason is that this allows defining µx.e as syntactic sugar for µ(x : ∃β.β).e.
In other words, unannotated fixpoints are still part of the language. They carry
the uninformative type annotation ∃β.β, which means some (monomorphic) type.
Note, however, that fixpoints that exploit polymorphic recursion must carry a truly
explicit, nontrivial type annotation. The second reason is that some fixpoints do
not admit a closed type scheme. This is often the case for recursive functions that
are nested inside another, larger function: see, for instance, rmap_f in §1.3.

The typing rule Fix is replaced with the following new rule, a combination of
Gen and Fix, where the type scheme assigned to x is taken from the annotation
instead of being guessed. This makes type inference decidable again.

FixAnnot
C ∧D, Γ[x 7→ σ] ` e : τ ᾱ # ftv(C, Γ) σ = ∀ᾱ[D].τ

C ∧ ∃ᾱ.D, Γ ` µ(x : ∃β̄.σ).e : σ
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Patterns (constraint generation)

L0 ↓ τM = true

L1 ↓ τM = true

Lx ↓ τM = true

Lp1 ∧ p2 ↓ τM = Lp1 ↓ τM ∧ Lp2 ↓ τM
Lp1 ∨ p2 ↓ τM = Lp1 ↓ τM ∧ Lp2 ↓ τM

LK p1 · · · pn ↓ τM = ∃ᾱ.(ε(ᾱ) = τ ∧ ∀β̄.D ⇒ ∧iLpi ↓ τiM)
where K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ)

Patterns (environment fragment generation)

L0 ↑ τM = ∃?[false]•
L1 ↑ τM = ∃?[true]•
Lx ↑ τM = ∃?[true](x 7→ τ)

Lp1 ∧ p2 ↑ τM = Lp1 ↑ τM× Lp2 ↑ τM
Lp1 ∨ p2 ↑ τM = Lp1 ↑ τM + Lp2 ↑ τM

LK p1 · · · pn ↑ τM = ∃ᾱβ̄[ε(ᾱ) = τ ∧D](×iLpi ↑ τiM)
where K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ)

Fig. 9: Type inference for patterns

Because the modified type system is a restriction of the original one, it is still sound.
In the following, we show that type inference for it can be reduced to constraint
solving.

4.1 Patterns

We begin our treatment of type inference by defining a procedure that computes
principal typing judgments for patterns. It consists of two functions of a pattern p
and a type τ , given in Figure 9. As usual, the type variables that are bound in the
right-hand side of an equation must be chosen fresh for the parameters that appear
on its left-hand side. Here, in the last equation of each group, ᾱ and β̄ must be
fresh for τ .

The constraint Lp ↓ τM asserts that it is legal to match a value of type τ against p,
while the environment fragment Lp ↑ τM represents knowledge about the bindings
that arise when such a test succeeds. (Note that our use of ↓ and ↑ has nothing to
do with bidirectional type inference [Pierce and Turner 2000].)

The first three rules of each group directly reflect p-Empty, p-Wild, and p-Var.
The fourth rules of the first and second groups directly reflect p-And. The former

states that it is legal to match a value of type τ against p1 ∧ p2 if and only if it
is legal to match such a value against p1 and against p2 separately. The latter
rule states that the knowledge thus obtained is the conjunction of the knowledge
obtained by matching against p1 and p2 separately.

The fifth rules of the first and second groups reflect p-Or. The latter states that
the knowledge obtained by matching a value against p1 ∨ p2 is the disjunction of
the knowledge obtained by matching against p1 and p2 separately. This is our first
use of the fragment disjunction operator +.
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The last rule of the first group can be read as follows: it is legal to match a value
of type τ against K p1 · · · pn if and only if, for some types ᾱ, τ is of the form ε(ᾱ)
and, for all types β̄ that satisfy D and for every i ∈ {1, . . . , n}, it is legal to match
a value of type τi against pi. The use of universal quantification and of implication
encodes the fact that the types β̄ must be considered abstract, but can safely be
assumed to satisfy D.

The last rule of the second group records the knowledge that, if K p1 · · · pn

matches a value of type τ , then, for some types ᾱ and β̄, τ is of the form ε(ᾱ)
and D is satisfied. This knowledge is combined, using the fragment conjunction
operator, with that obtained by successfully matching the value against the sub-
patterns pi.

The last two rules can be simplified when the expected type τ happens to be of
the desired form, that is, of the form ε(ᾱ). This is stated by the next lemma.

Proof on
page 48Lemma 4.1. Assume K :: ∀ᾱβ̄[D].τ1×· · ·×τn → ε(ᾱ). Then, the two constraints

LK p1 · · · pn ↓ ε(ᾱ)M and ∀β̄.D ⇒ ∧iLpi ↓ τiM are equivalent. Furthermore, the two
environment fragments LK p1 · · · pn ↑ ε(ᾱ)M and ∃β̄[D](×iLpi ↑ τiM) are equivalent.¦

Example 4.2. It is easy to check that the constraint LInt ↓ ty(α)M is equivalent to
true. Thus, it is legal to match a value of type ty(α) against the pattern Int , for an
arbitrary α. Furthermore, the environment fragment LInt ↑ ty(α)M is ∃α′[ty(α′) =
ty(α)∧α′ = int ]•, which is equivalent to ∃∅[α = int ]•. These results are consistent
with the first derivation given in Example 3.16.

Here is another example. By Lemma 4.1, we find that LPair(t1, t2) ↓ ty(α)M is
equivalent to

∀β1β2.(α = β1 × β2) ⇒ (Lt1 ↓ ty(β1)M ∧ Lt2 ↓ ty(β2)M)
Since every Lti ↓ ty(βi)M is true, the whole constraint is equivalent to true. Thus, it
is valid to match a value of type ty(α) against the pattern Pair (t1, t2). Similarly,
LPair(t1, t2) ↑ ty(α)M is equivalent to ∃β1β2[α = β1 × β2](t1 : ty(β1); t2 : ty(β2)).
These results are, again, consistent with the second derivation in Example 3.16. ¦

Lemmas 4.3 and 4.5 state that the rules give rise to judgments that are both
correct and complete (that is, principal), respectively. To establish completeness,
we exploit the auxiliary Lemma 4.4, which states that, under the assumption that τ
and τ ′ are equal, they are interchangeable for the purposes of constraint generation.

Proof on
page 48Lemma 4.3 (Correctness). Lp ↓ τM ` p : τ Ã Lp ↑ τM. ¦

Proof on
page 48Lemma 4.4. τ = τ ′ ∧ Lp ↓ τM ° Lp ↓ τ ′M and τ = τ ′ ° Lp ↑ τM ≤ Lp ↑ τ ′M hold. ¦

Proof on
page 48Lemma 4.5 (Completeness). C ` p : τ Ã ∆ implies C ° Lp ↓ τM and C °

Lp ↑ τM ≤ ∆. ¦
4.2 Expressions and clauses

Let us now turn to expressions and clauses. Given an environment Γ, an expression e
and an expected type τ , the constraint LΓ ` e : τM is intended to represent a
necessary and sufficient condition for e to have type τ under environment Γ. Its
definition appears in Figure 10. Again, the type variables that are bound in the
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Expressions

LΓ ` x : τM = Γ(x) ≤ τ

LΓ ` λc̄ : τM = ∃α1α2.(LΓ ` c̄ : α1 → α2M ∧ α1 → α2 ≤ τ)

LΓ ` e1 e2 : τM = ∃α.(LΓ ` e1 : α → τM ∧ LΓ ` e2 : αM)
LΓ ` K e1 · · · en : τM = ∃ᾱβ̄.(∧iLΓ ` ei : τiM ∧D ∧ ε(ᾱ) ≤ τ)

where K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ)

LΓ ` µ(x : ∃β̄.σ).e : τM = ∃β̄.(LΓ[x 7→ σ] ` e : σM ∧ σ ≤ τ)

LΓ ` e : ∀γ̄[C].τM = ∀γ̄.C ⇒ LΓ ` e : τM
LΓ ` let x = e1 in e2 : τM = LΓ[x 7→ ∀α[C].α] ` e2 : τM ∧ ∃α.C

where C is LΓ ` e1 : αM
Clauses

LΓ ` p.e : τ1 → τ2M = Lp ↓ τ1M ∧ ∀β̄.D ⇒ LΓΓ′ ` e : τ2M
where ∃β̄[D]Γ′ is Lp ↑ τ1M

Fig. 10: Type inference for expressions and clauses

right-hand side of an equation must be chosen fresh for the parameters that appear
on its left-hand side. Note that τ can be a type variable, so we do “infer types”,
even though an “expected type” has to be provided in this formulation.

The rules that govern expressions are standard: see, for instance, Sulzmann et
al. [1999], Simonet [2003], or Pottier and Rémy [2005].

The first rule, which deals with a variable x, requires the expected type τ to be
an instance of the type scheme Γ(x).

The second rule, which deals with a λ-abstraction λc̄, requires the expected type
τ to be (a supertype of) an arrow type α1 → α2, and requires every clause to have
type α1 → α2. We write LΓ ` c̄ : α1 → α2M for the conjunction ∧iLΓ ` ci : α1 → α2M
when c̄ is (c1, . . . , cn).

The third rule, which deals with an application e1 e2, ensures that the domain
type of the function e1 matches the type of the argument e2 by using the fresh type
variable α to stand for both of them.

The fourth rule deals with a data constructor application exactly as if it were an
application of a variable to n arguments. The only difference resides in the fact that
the type scheme associated with K is fixed instead of found in the environment Γ.

The fifth rule implements polymorphic recursion by ensuring that the body e
admits the type scheme σ under the hypothesis that x has type scheme σ. (The
sixth rule defines the notation LΓ ` e : σM.) The expected type τ is required to be
an instance of σ. The type variables β̄, whose value was not specified by the user,
are existentially bound, so it is up to the constraint solver to determine their value.
For unannotated fixpoints of the form µx.e, which were defined to be syntactic
sugar for µ(x : ∃β.β).e, this gives rise to the following derived rule:

LΓ ` µx.e : τM = ∃β.(LΓ[x 7→ β] ` e : βM ∧ β ≤ τ)

This is a standard rule for monomorphic fixpoints.
The seventh rule deals with let-polymorphism. It typechecks e2 in an environment

extended with a binding of x to the type scheme ∀α[LΓ ` e1 : αM].α, which is a
principal type scheme for e1.
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We now turn to the last rule, which deals with clauses. This is where the novelty
resides. First, the function’s domain type is required to match the pattern’s type,
via the constraint Lp ↓ τ1M. Then, the clause’s right-hand side e is required to
have type τ2 under a context extended with new abstract types β̄ and a new typing
hypothesis D and under an extended environment Γ′, all three of which are obtained
by evaluating Lp ↑ τ1M.

Example 4.6. Here is the constraint generated for the first clause in the definition
of print , at type ty(α) → α → unit . As in Example 3.17, we assume that the
environment Γ assigns type int → unit to the variable print int . We implicitly
exploit the results of Example 4.2. We write e1 for λx.print int x.

LΓ ` Int .e1 : ty(α) → α → unitM
≡ true ∧ α = int ⇒ LΓ ` e1 : α → unitM

It is easy to check that the subconstraint LΓ ` e1 : α → unitM is equivalent to
α ≤ int . Indeed, for x to be a valid argument to print int , its type must be a
subtype of int . So, the above constraint reduces to α = int ⇒ α ≤ int , which is
equivalent to true.

Next, here is the constraint generated for the second clause in the definition of
print , at type ty(α) → α → unit . (As in Example 3.17, the intermediate call to
print string is omitted for brevity.) We assume that the environment Γ assigns type
scheme ∀α.ty(α) → α → unit to print , so as to be able to typecheck the recursive
calls to print , and again implicitly exploit the results of Example 4.2. We write e2

for λ(x1, x2).(print t1 x1; . . . ; print t2 x2).

LΓ ` Pair (t1, t2).e2 : ty(α) → α → unitM
≡ true ∧ ∀β1β2.α = β1 × β2 ⇒ LΓ ` e2 : α → unitM

Again, it can be checked that this constraint is equivalent to true.
The constraint generated for the entire function µ print . . . ., in the environ-

ment Γ0 of Example 3.17 and at a fresh type variable γ, is the following:

LΓ0 ` µ print . . . . : γM ≡ ∀α.( α = int ⇒ LΓ ` e1 : α → unitM
∧ ∀β1β2.α = β1 × β2 ⇒ LΓ ` e2 : α → unitM)

∧ ∃α.ty(α) → α → unit ≤ γ

The first part of the constraint, delimited by the universal quantifier ∀α, ensures
that the function admits the type scheme provided by the programmer, that is,
∀α.ty(α) → α → unit . Each implication corresponds to one clause of the func-
tion. The second part of the constraint, delimited by the existential quantifier ∃α,
constrains the expected type γ to be an instance of this type scheme. ¦

There remains to prove that the constraint generation rules for expressions and
clauses are correct and complete. Correctness is straightforward:

Proof on
page 49Theorem 4.7 (Correctness). LΓ ` ce : τM, Γ ` ce : τ . ¦

The next two auxiliary lemmas state that LΓ ` ce : τM is contravariant in Γ and
covariant in τ . In other words, if the expected type is less precise, or if the envi-
ronment is more precise, then the generated constraint is less restrictive.

Proof on
page 50Lemma 4.8. LΓ ` ce : τM ∧ τ ≤ τ ′ ° LΓ ` ce : τ ′M. ¦
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Proof on
page 50 Lemma 4.9. Γ′ ≤ Γ ∧ LΓ ` ce : τM ° LΓ′ ` ce : τM. ¦

The next auxiliary lemma states that the rule that deals with clauses exploits the
environment fragment generated by invoking Lp ↑ τ1M in a contravariant manner.
In other words, if the environment fragment is more precise, then the generated
constraint is less restrictive.

Proof on
page 50 Lemma 4.10. Assume β̄1β̄2 # ftv(Γ, τ). We have ∃β̄1[D1]Γ1 ≤ ∃β̄2[D2]Γ2 ∧

∀β̄2.D2 ⇒ LΓΓ2 ` e : τM ° ∀β̄1.D1 ⇒ LΓΓ1 ` e : τM. ¦
These lemmas allow establishing completeness:

Proof on
page 50 Theorem 4.11 (Completeness). C, Γ ` ce : ∀ᾱ[D].τ and ᾱ # ftv(Γ) imply

C ° ∀ᾱ.D ⇒ LΓ ` ce : τM. ¦
Using Theorems 4.7 and 4.11, as well as Lemma 3.20, it is easy to prove that e is

well-typed under environment Γ if and only if the constraint ∃α.LΓ ` e : αM, where
α is fresh for Γ, is satisfiable. Thus, we have reduced type inference to constraint
solving.

It is worth noting that the type inference rules are much simpler and clearer
than the typing rules of §3. This was true in HM(X) already, and is even more
so in HMG(X). In fact, one of the anonymous referees found this state of affairs
to be “quite frustrating.” One might be tempted to abandon the typing rules
altogether and to adopt the type inference rules as the sole definition of the type
system. However, defining both sets of rules, and proving that they are equivalent,
is a useful “sanity check,” which helps ensure that the type system is defined in a
sensible way. Also, some proofs, such as type soundness, are probably more easily
carried out in terms of the typing rules of §3 rather than in terms of the constraint
production rules.

Type inference for HM(X) is usually reduced to constraint solving for a logic that
includes basic predicates (such as subtyping), conjunction, and existential quan-
tification. Here, we make use of more first-order connectives, including universal
quantification and implication.

Nevertheless, this is enough to show that type inference for some instances of
HMG(X) is decidable. For instance, assuming that no basic predicates other than
equality are available, and assuming that types receive their standard interpretation
as elements of a free algebra of (finite or infinite) terms, constraint solving is decid-
able [Maher 1988; Comon and Lescanne 1989]. More generally, assuming that no
basic predicates other than subtyping are available, and assuming that subtyping
receives a structural interpretation, constraint solving remains decidable [Kuncak
and Rinard 2003].

Unfortunately, these decidability results are only of theoretical interest, because
the complexity of constraint solving for the first-order theory of term equality is
nonelementary [Vorobyov 1996]. In other words, even in the simplest case above,
where no basic predicates other than equality are available, the constraints that
we produce belong to a class whose satisfiability problem is intractable. Of course,
this lower complexity bound also applies to cases where more predicates, such as
structural subtyping, are introduced.
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This fact may come as a surprise. Indeed, for simple program fragments such
as print , the constraints that we produce are so simple as to appear “obviously”
satisfiable to a human observer. Is the problem really so difficult in the general
case? Do the constraints that we produce really exploit the full expressive power
of the first-order theory of term equality?

Roughly speaking, one may identify three sources of complexity in the constraints
that we generate.

One is that we have made the entire constraint language available to the pro-
grammer. Indeed, the constraints supplied by the programmer as part of data
constructor declarations or type annotations eventually become components of the
constraint generated by the type inference algorithm. Of course, it is reasonable to
restrict the constraint language that is available to the programmer, so this source
of complexity is easily eliminated.

Another is our use of logical disjunction ∨, hidden inside the fragment disjunction
operator +, in the treatment of disjunction patterns. By construction, every such
use of disjunction appears inside the left component of an implication. As a result,
it is possible to lift it up and out of the implication, turning it into a conjunction:
∀β̄.(D1 ∨D2) ⇒ C is equivalent to (∀β̄.D1 ⇒ C) ∧ (∀β̄.D2 ⇒ C). This operation,
which duplicates the constraint C, corresponds to eliminating disjunction patterns
in the source program, at the cost of some (possibly exponential) code duplication,
as done by Xi [2003]. In our constraint-based approach, the worst-case behavior
is still exponential; however, an efficient constraint solver might simplify C before
duplicating it, thus sharing much of the work. In an approach based on textual
duplication of source expressions, every copy must be typechecked separately.

The last source of complexity, which is most problematic, is our use of implica-
tion. If uncontrolled, implication allows encoding negation, since ¬D is D ⇒ false.
Taming implication is an issue that we leave open in the present paper. As men-
tioned in §1.5, several potential answers have been suggested in the particular case
of equality constraints. In a technical report [Simonet and Pottier 2005], we sug-
gest exploiting only rigid implication, of the form ∀β̄.C1 ⇒ C2, where ftv(C1) ⊆ β̄.
Stuckey and Sulzmann [2005] suggest replacing C1 ⇒ C2 with φ(C2), where φ is
C1’s most general unifier—a correct but incomplete simplification step. Peyton
Jones et al. [2004; 2005] and Pottier and Régis-Gianas [2006] adopt approaches
that can be understood as the combination of an incomplete (but hopefully pre-
dictable) local inference algorithm with a complete, unification-based type inference
algorithm. We believe that more experience is needed before a definitive answer
emerges.

5. CONCLUSION

We have extended the constraint-based type system HM(X) with deep pattern
matching, polymorphic recursion, and guarded algebraic data types, in an at-
tempt to study, in a general setting, the interaction between guarded algebraic
data types and type inference in the style of Hindley and Milner. We have proved
that HMG(X) is sound and that, provided recursive definitions carry a type an-
notation, type inference can be reduced to constraint solving. This provides a
solid theoretical foundation for many applications involving equality constraints,
arithmetic constraints, subtyping constraints, and so on.
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The main issue left unanswered in this paper is how to efficiently solve a constraint
that encodes a type inference problem. Our philosophy is that one should not de-
velop an incomplete solver—that is, a solver that sometimes rewrites a constraint to
a more restrictive constraint—because this means abandoning the primary benefit
of constraints, namely the fact that the logical meaning of a constraint, regardless of
its syntax, is enough to tell whether a program is type-correct. We believe that one
should, instead, strive to produce simpler constraints, whose satisfiability can be
efficiently determined by a (correct and complete) solver. Inspired by Peyton Jones
et al.’s wobbly types [2004; 2005], recent work by Pottier and Régis-Gianas [2006]
proposes one way of doing so, by relying on explicit, user-provided type annota-
tions and on an ad hoc local shape inference phase. It would be interesting to know
whether it is possible to do better, that is, not to rely on an ad hoc preprocessing
phase.
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A. PROOFS

Proof of Lemma 2.1. Define the weight of a pattern as follows:

w(0) = w(1) = w(x) = 3
w(p1 ∧ p2) = w(p1)× w(p2)
w(p1 ∨ p2) = w(p1) + 2 + w(p2)

w(K p1 · · · pn) = 3(1 + w(p1)× · · · × w(pn))

It is straightforward to check that every pattern has weight at least 3 and that each
of the rules in Figure 5 is weight-decreasing. Furthermore, weight is preserved by
associativity and commutativity of ∧, by associativity of ∨, and is monotone with
respect to arbitrary contexts. This proves that the length of any reduction sequence
for ; is bounded by the weight of its initial term. We note that the weight of a
pattern is at most exponential in its size. ¤

Proof of Lemma 2.2. By examination of each normalization rule (Figure 5)
and by definition of extended substitution (Figure 3). ¤

Proof of Lemma 2.3. We begin with an analysis of the structure of the nor-
mal forms for ;. It is straightforward to check that every normal form must be
either 0 or a (multi-way) disjunction of one or more definite patterns, where a def-
inite pattern is a (multi-way) conjunction of variables, 1’s, and at most one data
constructor pattern, whose subpatterns are again definite.

By structural induction, it is immediate that every definite pattern matches at
least one value. Similarly, so does every disjunction of one or more definite patterns.

Now, assume p ≡ 0 holds. By Lemma 2.1, p has a normal form p′. By Lemma 2.2,
p′ ≡ 0 holds as well, so p′ matches no value. By the previous paragraph, p′ cannot
be a disjunction of one or more definite patterns. So, by the first paragraph, p′
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must be 0. This proves that p ;? 0 holds. (In fact, it proves that every normal
form for p is 0, which is stronger and more useful, since ; is not confluent.)

Conversely, by Lemma 2.2, p ;? 0 implies p ≡ 0. ¤

Proof of Lemma 3.2. Let ρ satisfy D. Then, by Definition 3.1, ρ(∀ᾱ[D].τ) is
a superset of ↑{ρ(τ)}. Thus, ρ satisfies (∀ᾱ[D].τ) ≤ τ . ¤

Proof of Lemma 3.3. Left to the reader. The proof of Lemma 3.5, which
follows, is dual. ¤

Proof of Lemma 3.5. We have

ρ ` ∆′ ≤ ∆
⇐⇒ ↓{ρ[β̄′ 7→ t̄′](Γ′) | ρ[β̄′ 7→ t̄′] ` D′} ⊆ ↓{ρ[β̄ 7→ t̄](Γ) | ρ[β̄ 7→ t̄] ` D}

by definition of ρ ` ∆′ ≤ ∆, of ρ(∆′), and of ρ(∆)
⇐⇒ {ρ[β̄′ 7→ t̄′](Γ′) | ρ[β̄′ 7→ t̄′] ` D′} ⊆ ↓{ρ[β̄ 7→ t̄](Γ) | ρ[β̄ 7→ t̄] ` D}

by definition of ↓
⇐⇒ ∀t̄′ ρ[β̄′ 7→ t̄′] ` D′ ⇒ ∃t̄ (ρ[β̄ 7→ t̄] ` D) ∧ (ρ[β̄′ 7→ t̄′](Γ′) ≤ ρ[β̄ 7→ t̄](Γ))
⇐⇒ ∀t̄′ ρ[β̄′ 7→ t̄′] ` D′ ⇒ ∃t̄ ρ[β̄′ 7→ t̄′][β̄ 7→ t̄] ` (D ∧ Γ′ ≤ Γ)

by exploiting β̄ # ftv(Γ′) and β̄′ # ftv(∆)
⇐⇒ ρ ` ∀β̄′.D′ ⇒ ∃β̄.(D ∧ Γ′ ≤ Γ)

As a corollary, C ° ∆′ ≤ ∆ is equivalent to C ° ∀β̄′.D′ ⇒ ∃β̄.(D ∧ Γ′ ≤ Γ). If
β̄′ # ftv(C) holds, then, by lifting the ∀β̄′ quantifier up through the entailment
symbol °, this can be written C ° D′ ⇒ ∃β̄.(D ∧ Γ′ ≤ Γ), that is, C ∧ D′ °
∃β̄.(D ∧ Γ′ ≤ Γ). ¤

Proof of Lemma 3.10. Assume ∆ is ∃β̄[D]Γ (1), where β̄ # ftv(ᾱ, C) (2).
We have

ρ(∃ᾱ[C]∆)
= ρ(∃ᾱβ̄[C ∧D]Γ)

by (1), (2), and Definition 3.9
= ↓{ρ[ᾱ 7→ t̄, β̄ 7→ t̄′](Γ) | ρ[ᾱ 7→ t̄, β̄ 7→ t̄′] ` C ∧D}

by Definition 3.4
= ↓{ρ[ᾱ 7→ t̄][β̄ 7→ t̄′](Γ) | ρ[ᾱ 7→ t̄][β̄ 7→ t̄′] ` D ∧ ρ[ᾱ 7→ t̄] ` C}

by (2)
= ∪{ρ[ᾱ 7→ t̄](∆) | ρ[ᾱ 7→ t̄] ` C}

by (1) and Definition 3.4 ¤

Proof of Lemma 3.13. Assume ∆1 and ∆2 have disjoint domains, so that
∆1 ×∆2 is defined. Assume ∆1 is ∃β̄1[D1]Γ1 (1) and ∆2 is ∃β̄2[D2]Γ2, (2) where
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β̄1 # β̄2 (3), β̄1 # ftv(D2,Γ2) (4), and β̄2 # ftv(D1,Γ1) (5) hold. We have

ρ(∆1 ×∆2)
= ρ(∃β̄1β̄2[D1 ∧D2](Γ1 × Γ2))

by (1)-(5) and Definition 3.11
= ↓{ρ[β̄1 7→ t̄1, β̄2 7→ t̄2](Γ1 × Γ2) | ρ[β̄1 7→ t̄1, β̄2 7→ t̄2] ` D1 ∧D2}

by Definition 3.4
= ↓{ρ[β̄1 7→ t̄1](Γ1)× ρ[β̄2 7→ t̄2](Γ2) | ρ[β̄1 7→ t̄1] ` D1 ∧ ρ[β̄2 7→ t̄2] ` D2}

by (4) and (5)
= ↓{ρ[β̄1 7→ t̄1](Γ1) | ρ[β̄1 7→ t̄1] ` D1} × ↓{ρ[β̄2 7→ t̄2](Γ2) | ρ[β̄2 7→ t̄2] ` D2}

by definition of × and by distributivity of ↓ with respect to ×
= ρ(∆1)× ρ(∆2)

by (1), (2), and Definition 3.4 ¤

Proof of Lemma 3.14. Assume ∆1 and ∆2 have a common domain, so that
∆1 + ∆2 is defined. Assume ∆1 is ∃β̄1[D1]Γ1 (1) and ∆2 is ∃β̄2[D2]Γ2 (2), where
β̄1 # β̄2 (3), β̄1 # ftv(D2, Γ2) (4), and β̄2 # ftv(D1,Γ1) (5) hold. Let Γ map every
variable in the domain of ∆1 and ∆2 to a distinct type variable in ᾱ (6), where
ᾱ # ftv(β̄1, β̄2, D1, D2, Γ1, Γ2) (7) holds. We have

ρ(∆1 + ∆2)
= ρ(∃β̄1β̄2ᾱ[(D1 ∧ Γ ≤ Γ1) ∨ (D2 ∧ Γ ≤ Γ2)]Γ)

by (1)-(7) and Definition 3.12
= ↓{ρ′(Γ) | ρ′ ` ∨i(Di ∧ Γ ≤ Γi)}

where ρ′ stands for ρ[β̄1 7→ t̄1, β̄2 7→ t̄2, ᾱ 7→ t̄]
by Definition 3.4

= ∪i ↓{ρ′(Γ) | ρ′ ` Di ∧ Γ ≤ Γi}
by the interpretation of disjunction
by distributivity of ↓ with respect to ∪

= ∪i ↓{t̄ | ρ[β̄i 7→ t̄i] ` Di ∧ t̄ ≤ ρ[β̄i 7→ t̄i](Γi)}
by (4), (5), (6), and (7)

= ∪i ↓ ↓{ρ[β̄i 7→ t̄i](Γi) | ρ[β̄i 7→ t̄i] ` Di}
by definition of ↓

= ∪i ρ(∆i)
by idempotency of ↓, then by (1), (2), and Definition 3.4 ¤

Proof of Lemma 3.15. By Lemmas 3.10, 3.13, and 3.14. ¤

Proof of Lemma 3.19. By structural induction. ¤

Proof of Lemma 3.20. By structural induction. ¤

Proof of Lemma 3.21. Consider a derivation that ends with Inst(Gen(·)).
Its conclusion is C, Γ ` e : τ (1). The premises of Inst are C, Γ ` e : ∀ᾱ[D].τ (2)
and C ° D (3). The derivation of (2) ends with an instance of Gen whose premises
are C ′ ∧ θD, Γ ` e : θτ (4) and θᾱ # ftv(Γ, C ′) (5), where C ≡ C ′ ∧∃ᾱ.D (6) holds
and the renaming θ is fresh for ∀ᾱ[D].τ (7). (By introducing θ, we account for the
fact that Gen’s conclusion might mention an arbitrary α-variant of the type scheme
∀ᾱ[D].τ , namely ∀(θᾱ)[θD].θτ .) Up to a renaming of Gen’s premises, we can
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require θᾱ # ftv(D, τ) (8). By Lemma 3.19, (4) yields C ′ ∧ θD∧ θᾱ = ᾱ, Γ ` e : θτ
(9). By (7), we have (θD ∧ θᾱ = ᾱ) ≡ (D ∧ θᾱ = ᾱ) (10) and θᾱ = ᾱ ° θτ = τ
(11). By (9), (10), (11), and by Sub, we obtain C ′∧D∧θᾱ = ᾱ, Γ ` e : τ (12). By
(5), (8), and Hide, (12) leads to C ′∧D∧∃(θᾱ).(θᾱ = ᾱ),Γ ` e : τ (13). Because θ
is a renaming, the conjunct ∃(θᾱ).(θᾱ = ᾱ) is a tautology. Furthermore, according
to (3) and (6), C ≡ C ′ ∧D holds. Thus, (13) is the goal (1). ¤

Proof of Lemma 3.22. Consider a derivation that ends with Hide(Gen(·)).
Its conclusion is ∃ᾱ1.C1, Γ ` e : σ (1). The premises of Hide are C1, Γ ` e : σ (2)
and ᾱ1 # ftv(Γ, σ) (3). The derivation of (2) ends with an instance of Gen whose
premises are C ′1 ∧ D, Γ ` e : τ (4) and ᾱ # ftv(Γ, C ′1) (5) with C1 ≡ C ′1 ∧ ∃ᾱ.D
and σ = ∀ᾱ[D].τ . Up to a renaming of Gen’s premises, we can require ᾱ1 # ᾱ
(6). By (3) and (6), we have ᾱ1 # ftv(Γ, τ) (7). By Hide, (4) and (7) imply
∃ᾱ1.(C ′1∧D),Γ ` e : τ (8). By (3) and (6) again, we have ᾱ1 # ftv(D), so (8) can be
written ∃ᾱ1.C

′
1∧D, Γ ` e : τ . By (5) and Gen, this yields ∃ᾱ1.C

′
1∧∃ᾱ.D, Γ ` e : σ

(9). The constraint ∃ᾱ1.C
′
1∧∃ᾱ.D can be written ∃ᾱ1.(C ′1∧∃ᾱ.D), that is, ∃ᾱ1.C1.

Thus, (9) is the goal (1). ¤
Proof of Lemma 3.23. Consider a derivation of shape App(Sub(Abs(·1)), ·2).

Its conclusion is C, Γ ` (λc̄) e : τ (1). The premises of App are C, Γ ` λc̄ : τ ′ →
τ (2) and C, Γ ` e : τ ′ (3). The derivation of (2) ends with an instance of Sub
whose premises are C, Γ ` λc̄ : τ ′1 → τ1 (4) and C ° τ ′1 → τ1 ≤ τ ′ → τ (5).
(Because the judgment (4) is a consequence of Abs, it must exhibit an arrow type
τ ′1 → τ1.) By Requirement 3.7, (5) implies C ° τ ′ ≤ τ ′1 (6) and C ° τ1 ≤ τ (7).
By (3), (6), and Sub, we have C, Γ ` e : τ ′1 (8). By (4), (8), and App, we obtain
C, Γ ` (λc̄) e : τ1 (9). By (9), (7), and Sub, we reach the goal (1). ¤

Proof of Lemma 3.24. Let us consider an arbitrary typing derivation. Of
course, every trivial instance of Gen or Inst can be suppressed, yielding a deriva-
tion that satisfies (a). Now, a nontrivial instance of Gen must be followed by
either a syntax-directed rule or one of Inst, Hide. Furthermore, by Lemmas 3.21
and 3.22, Gen can be suppressed when it appears above Inst and pushed down
when it appears above Hide. As a result, the derivation can be rewritten so as to
satisfy (a) and (b). Next, by inspection of the rules in Figure 7, it is straightfor-
ward to check that, up to renamings of subderivations, Hide can be pushed down
through every rule other than Gen while preserving (a) and (b). Furthermore, any
number of consecutive instances of Hide can be collapsed into a single one. As a
result, the derivation can be rewritten so as to satisfy (a), (b), and (c). At this
point, one can check that, at every subexpression of the form (λc̄) e, Abs and App
can be separated only by zero or more instances of Sub. If there is one or more,
then, by transitivity of subtyping, they may be collapsed to a single instance of
Sub, which, by Lemma 3.23, can be eliminated without compromising (a), (b), or
(c). Thus, the final derivation satisfies all four criteria. ¤

Proof of Lemma 3.25. By structural induction. All cases are straightfor-
ward. We give one of them, for the sake of illustration.
◦ Case Clause. ce is p.e′ and σ is τ ′ → τ . We can assume, w.l.o.g., that

x 6∈ dpv(p) (1), so that [x 7→ e]ce is p.[x 7→ e]e′. Clause’s premises are C ` p : τ ′ Ã
∃β̄[D]Γ′ (2) and C ∧D, Γ[x 7→ σ′]Γ′ ` e′ : τ (3) and β̄ # ftv(C, Γ, σ, τ) (4). By (1),
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Γ[x 7→ σ′]Γ′ is ΓΓ′[x 7→ σ′], so (3) can be written C ∧D, ΓΓ′[x 7→ σ′] ` e : τ (5).
By Lemma 3.19, the hypothesis C, • ` e : σ′ yields C ∧D, • ` e : σ′ (6). Applying
the induction hypothesis to (5) and (6), we obtain C ∧D, ΓΓ′ ` [x 7→ e]e′ : τ (7).
The goal follows by Clause from (2), (7), and (4). ¤

Proof of Lemma 3.26. To begin, let us prove that, if the above statement
holds for a particular choice of β̄, D, and Γ, then it holds for every such choice,
that is, for every β̄′, D′, and Γ′ such that ∃β̄[D]Γ and ∃β̄′[D′]Γ′ are α-equivalent
and β̄′ # ftv(C) holds. Indeed, let θ be the renaming that swaps β̄ with β̄′. θ maps
D and Γ to D′ and Γ′, respectively. Thus, the property H ° D implies θH ° D′.
Furthermore, thanks to our freshness hypotheses, θ is fresh for C. Thus, we have
C ≡ θC ≡ ∃(θβ̄).θH ≡ ∃β̄′.θH, where the central step is permitted by applying θ
to both sides of the property C ≡ ∃β̄.H. Similarly, by applying θ to the property
H, • ` [p 7→ v]x : Γ(x), we obtain θH, • ` [p 7→ v]x : Γ′(x). Thus, we have proved
that the statement holds for β̄′, D′, and Γ′, with θH as a witness. This initial
remark is used several times later in the proof.

Next, we note that, since the proof of the present lemma is constructive, the
witness H must satisfy, by construction, ftv(H) ⊆ ftv(C, τ, ∆, β̄). This fact is used
below to control the free type variables of the witnesses produced by invocations of
the induction hypothesis.

By Lemma 3.24, we can assume, w.l.o.g., that the derivation of C, • ` v : τ is
normal. The proof proceeds with a structural induction on this derivation, where
Hide forms the inductive case and all other cases are base cases.
◦ Case Hide. Our hypotheses are ∃ᾱ.C, • ` v : τ (1) and ∃ᾱ.C ` p : τ Ã ∆ (2).

The judgment (1) follows from an instance of Hide whose premises are C, • ` v : τ
(3) and ᾱ # ftv(τ) (4). We can assume, w.l.o.g., ᾱ # ftv(D, Γ) (5). Because C
entails ∃ᾱ.C, applying Lemma 3.19 to (2) yields C ` p : τ Ã ∆ (6). Then, applying
the induction hypothesis to (3) and (6) yields a constraint H such that H ° D (7)
and C ≡ ∃β̄.H (8) and, for every x ∈ dpv(p), H, • ` [p 7→ v]x : Γ(x) (9) holds.
By placing (7) within the context ∃ᾱ.[] and exploiting (5), we obtain ∃ᾱ.H ° D.
Furthermore, (8) implies ∃ᾱ.C ≡ ∃β̄.∃ᾱ.H. Last, by applying Hide to (9) and (5),
we obtain ∃ᾱ.H, • ` [p 7→ v]x : Γ(x). Thus, ∃ᾱ.H is the desired witness.

We now reach the base case, where the derivation of C, • ` v : τ is normal and
does not end with Hide. We proceed by induction on the derivation of C ` p : τ Ã
∆.
◦ Case p-Empty. Because the first hypothesis states that v matches p, this case

cannot arise.
◦ Case p-Wild. Our hypotheses are C, • ` v : τ and C ` p : τ Ã ∃∅[true]•. Let

our witness be C; then, it is immediate to check that the goal holds.
◦ Case p-Var. Our hypotheses are C, • ` v : τ and C ` x : τ Ã ∃∅[true](x 7→ τ).

Let our witness be C; then, it is immediate to check that the goal holds. In
particular, the third goal is the hypothesis C, • ` v : τ .
◦ Case p-And. Our hypotheses are C, • ` v : τ (1) and C ` p1 ∧ p2 : τ Ã ∆

(2). The derivation (2) ends with an instance of p-And whose premises are, for
all i ∈ {1, 2}, C ` pi : τ Ã ∆i (3) where ∆ is ∆1 × ∆2 (4). Let us write ∆i as
∃β̄i[Di]Γi (5), where β̄i # ftv(C, τ, ∆1,∆2) (6) and β̄1 # β̄2 (7); according to (4),
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and by (6) and (7), ∆ is ∃β̄1β̄2[D1 ∧ D2](Γ1 × Γ2) (8). According to our initial
remark, it is sufficient to establish the statement for this particular representation
of ∆. By (5), applying the induction hypothesis to (1), (3) and (6), we obtain,
for every i ∈ {1, 2}, a constraint Hi such that Hi ° Di (9), C ≡ ∃β̄i.Hi (10)
and, for every x ∈ dpv(pi), Hi, • ` [pi 7→ v]x : Γi(x) (11). We also have, by
construction, ftv(Hi) ⊆ ftv(C, τ, ∆i, β̄i), which by (6) and (7) implies β̄j # ftv(Hi)
when {i, j} = {1, 2} (12).

Let us define H as H1 ∧H2 and check that all three goals are met. The first goal
is H ° D1 ∧D2, which follows from (9). The second goal is C ≡ ∃β̄1β̄2.(H1 ∧H2),
which follows from (10) and (12). Last, consider x ∈ dpv(p1 ∧ p2). There exists
a unique i in {1, 2} such that x ∈ dpv(pi). Then, [v 7→ x]p is [v 7→ x]pi and
(Γ1 × Γ2)(x) is Γi(x). Applying Lemma 3.19 to (11), we obtain H1 ∧H2, • ` [p 7→
v]x : Γ(x), which is the third goal.
◦ Case p-Or. Our hypotheses are C, • ` v : τ (1) and C ` p1 ∨ p2 : τ Ã ∆

(2). Because v matches p1 ∨ p2, there exists i ∈ {1, 2} such that v matches pi

and [p1 ∨ p2 7→ v] is [pi 7→ v]. The derivation (2) ends with an instance of p-Or
among whose premises we have C ` pi : τ Ã ∆ (3). Then, applying the induction
hypothesis to (1) and (3) yields the result.
◦ Case p-Cstr. Because a value that matches K p1 · · · pn must be of the form

K v1 · · · vn, our hypotheses are C, • ` K v1 · · · vn : ε(ᾱ) (1) and C ` K p1 · · · pn :
ε(ᾱ) Ã ∆ (2).

Because the derivation of (1) is normal and does not end with Hide, it must end
with the shape Sub(Cstr(·)). (Indeed, any number of consecutive occurrences of
Sub can be expanded or collapsed to a single one.) Then, a straightforward analysis
shows that Sub’s second premise must be C ° ε(ᾱ′) ≤ ε(ᾱ) (3), while Cstr’s
premises are C, • ` vi : τ ′i (4), for every i ∈ {1, . . . , n}, K :: ∀ᾱ′β̄′[D′].τ ′1×· · ·×τ ′n →
ε(ᾱ′) (5), and C ° D′ (6).

The derivation of (2) ends with an instance of p-Cstr whose premises are C∧D `
pi : τi Ã ∆i (7), for every i ∈ {1, . . . , n}, K :: ∀ᾱβ̄[D].τ1×· · ·× τn → ε(ᾱ) (8), and
β̄ # ftv(C) (9), where ∆ is ∃β̄[D](∆1 × · · · ×∆n). Up to a renaming of p-Cstr’s
premises, we can assume β̄ # ᾱ′β̄′ (10). Let us write ∆i as ∃β̄i[Di]Γi, where
β̄i # ftv(C, ᾱ, β̄, ᾱ′, β̄′, ∆j , β̄j) (11) holds when i 6= j. Then, ∆ is ∃β̄β̄1 · · · β̄n[D ∧i

Di](∪iΓi) (12). According to our initial remark, it is sufficient to establish the
statement for this particular representation of ∆.

By Lemma 3.19 and Sub, (4) yields C ∧ D ∧ τ ′i ≤ τi, • ` vi : τi (13). By
Lemma 3.19 again, (7) yields C ∧ D ∧ τ ′i ≤ τi ` pi : τi Ã ∆i (14). Applying the
induction hypothesis to (13) and (14), we obtain a constraint Hi such that Hi ° Di

(15) and C ∧D ∧ τ ′i ≤ τi ≡ ∃β̄i.Hi (16) and, for every x ∈ dpv(pi), Hi, • ` [pi 7→
vi]x : Γi(x) (17). We also have, by construction, ftv(Hi) ⊆ ftv(C, D, τ ′i , τi,∆i, β̄i) ⊆
ftv(C, ᾱ, β̄, ᾱ′, β̄′,∆i, β̄i), which by (11) implies β̄j # ftv(Hi) when i 6= j (18). By
Requirement 3.8, (5), (8), and (10) imply D′ ∧ ε(ᾱ′) ≤ ε(ᾱ) ° ∃β̄.(D ∧i τ ′i ≤ τi)
(19). Together with (6) and (3), this implies C ° ∃β̄.(D ∧i τ ′i ≤ τi) (20). Let us
now define H as D ∧i Hi and check that all three goals are met.

According to (12), the first goal is H ° D∧i Di. It follows immediately from the
definition of H and from (15).
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According to (12), the second goal is C ≡ ∃β̄β̄1 · · · β̄n.H. Indeed, we have

C ≡ ∃β̄.(C ∧D ∧i τ ′i ≤ τi) (21)
≡ ∃β̄.(D ∧i ∃β̄i.Hi) (22)
≡ ∃β̄β̄1 · · · β̄n.H (23)

where (21) follows from (20) and (9); (22) follows from (16); (23) follows from (11),
(18), and from the definition of H.

Last, consider x in dpv(p). There exists a unique i such that x ∈ dpv(pi). Then,
[p 7→ v]x is [pi 7→ vi]x and (∪iΓi)(x) is Γi(x). Applying Lemma 3.19 to (17), we
obtain H, • ` [p 7→ v]x : (∪iΓi)(x), which is the third goal.
◦ Case p-EqIn. Our hypotheses are C, • ` v : τ (1) and C ` p : τ Ã ∆ (2).

p-EqIn’s premises are C ` p : τ ′ Ã ∆ (3) and C ° τ = τ ′ (4). Applying Sub to
(1) and (4) yields a derivation of C, • ` v : τ ′ (5), which still is normal and does not
end with Hide. There remains to apply the induction hypothesis to (5) and (3).
◦ Case p-SubOut. Our hypotheses are C, • ` v : τ (1) and C ` p : τ Ã ∆ (2).

p-SubOut’s premises are C ` p : τ Ã ∆′ (3) and C ° ∆′ ≤ ∆ (4). By hypothesis,
∆ is written ∃β̄[D]Γ, where β̄ # ftv(C) (5). Thanks to our initial remark, we can
further require, w.l.o.g., β̄ # ftv(τ, ∆′) (6). Let us write ∆′ as ∃β̄′[D′]Γ′, where
β̄′ # ftv(C, ∆, β̄) (7). Note that (6) and (7) imply β̄ # ftv(Γ′) (8), β̄′ # ftv(D)
(9), and β̄′ # ftv(Γ) (10).

The induction hypothesis, applied to (1) and (3), yields a constraint H ′ such that
H ′ ° D′ (11) and C ≡ ∃β̄′.H ′ (12) and, for every x ∈ dpv(p), H ′, • ` [p 7→ v]x :
Γ′(x) (13) holds. We also have, by construction, ftv(H ′) ⊆ ftv(C, τ, ∆′, β̄′), which
by (5), (6), and (7) implies β̄ # ftv(H ′) (14). Note also that (11) and (12) imply
H ′ ° C ∧D′ (15).

Let us now define H as D ∧ ∃β̄′.(H ′ ∧ Γ′ ≤ Γ) and check that all three goals are
met. The first goal, namely H ° D, is immediate. Second, by Lemma 3.5, (4), (7),
and (8) imply C ∧D′ ° ∃β̄.(D ∧ Γ′ ≤ Γ) (16). So, we have

C ≡ ∃β̄′.H ′ (17)
≡ ∃β̄′.(H ′ ∧ ∃β̄.(D ∧ Γ′ ≤ Γ)) (18)
≡ ∃β̄.(D ∧ ∃β̄′.(H ′ ∧ Γ′ ≤ Γ)) (19)
≡ ∃β̄.H (20)

where (17) is exactly (12); (18) follows from (15) and (16); (19) is by (14) and (9);
(20) is by definition of H. Thus, the second goal is met. Last, by Lemma 3.19 and
Sub, (13) implies H ′ ∧ Γ′ ≤ Γ, • ` [p 7→ v]x : Γ(x). By (10) and Hide, this implies
∃β̄′.(H ′ ∧ Γ′ ≤ Γ), • ` [p 7→ v]x : Γ(x). The third goal follows by Lemma 3.19 and
by definition of H.
◦ Case p-Hide. Our hypotheses are ∃ᾱ.C, • ` v : τ (1) and ∃ᾱ.C ` p : τ Ã ∆

(2). By hypothesis, ∆ is written ∃β̄[D]Γ, where β̄ # ftv(∃ᾱ.C) (3). The judgment
(2) follows from an instance of p-Hide whose premises are C ` p : τ Ã ∆ (4) and
ᾱ # ftv(τ, ∆) (5). We can assume, w.l.o.g., that ᾱ is fresh for β̄ (6). Together, (3)
and (6) imply β̄ # ftv(C) (7), while (5) and (6) imply ᾱ # ftv(D, Γ) (8). Because
C entails ∃ᾱ.C, applying Lemma 3.19 to (1) yields C, • ` v : τ (9). Then, applying
the induction hypothesis to (9), (4), and (7) yields a constraint H such that H ° D
(10) and C ≡ ∃β̄.H (11) and, for every x ∈ dpv(p), H, • ` [p 7→ v]x : Γ(x)
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(12) holds. By placing (10) within the context ∃ᾱ.[] and exploiting (8), we obtain
∃ᾱ.H ° D. Furthermore, (11) implies ∃ᾱ.C ≡ ∃β̄.∃ᾱ.H. Last, by applying Hide
to (12) and (8), we obtain ∃ᾱ.H, • ` [p 7→ v]x : Γ(x). Thus, ∃ᾱ.H is the desired
witness. ¤

Proof of Theorem 3.27. By Lemma 3.24, we can assume that the derivation
of C, • ` e : σ (1) is normal. Moreover, we can restrict our attention to the case
where it ends with an instance of a syntax-directed rule; indeed, the general case
follows immediately. We proceed by induction on the derivation of e → e′.
◦ Case (β). e is λ(p1.e1 · · · pn.en) v and e′ is [pi 7→ v]ei, for some i ∈ {1, . . . , n}.

The derivation of (1) ends with an instance of App whose premises are C, • `
λ(p1.e1 · · · pn.en) : τ ′ → τ (2) and C, • ` v : τ ′ (3), where σ is τ . The derivation
of (2) must end with an instance of Abs, whose premises include C, • ` pi.ei :
τ ′ → τ (4). The derivation of (4) ends with an instance of Clause whose premises
are C ` pi : τ ′ Ã ∃β̄[D]Γ (5) and C ∧ D,Γ ` ei : τ (6) and β̄ # ftv(C, τ)
(7). By (3), (5), (7), and Lemma 3.26, there exists H such that H ° D (8) and
C ≡ ∃β̄.H (9) and, for every x ∈ dpv(pi), H, • ` [pi 7→ vi]x : Γ(x) (10) holds. By
(9), we have H ° C; together with (8), this implies H ° C ∧ D. Thus, applying
Lemma 3.19 to (6), we find H, Γ ` ei : τ (11). By Lemma 3.25, (10) and (11) imply
H, • ` [pi 7→ vi]ei : τ (12). Applying Hide to (12) and (7) and exploiting (9), we
obtain C, • ` [pi 7→ vi]ei : τ .
◦ Case (µ). e is µx.v and e′ is [x 7→ µx.v]v. The derivation of (1) ends with

an instance of Fix whose premise is C, (x 7→ σ) ` v : σ. The result follows by
Lemma 3.25.
◦ Case (let). e is letx = v in e1 and e′ is [x 7→ v]e1. The derivation of (1) must end

with an instance of Let, whose premises are C, • ` v : σ′ and C, (x 7→ σ′) ` e1 : σ.
The result follows by Lemma 3.25.
◦ Case (context). By the induction hypothesis. ¤

Proof of Lemma 3.28. By Lemma 3.24, we can assume, w.l.o.g., that the
derivation of C, • ` v : τ is normal. The proof proceeds with a structural induction
on this derivation, where Hide forms the inductive case and all other cases are base
cases.
◦ Case Hide. Our hypotheses are ∃ᾱ.C, • ` v : τ (1) and ∃ᾱ.C ` p : τ Ã ∆ (2),

where ∃ᾱ.C is satisfiable. The judgment (1) follows from an instance of Hide whose
first premise is C, • ` v : τ (3). Because C entails ∃ᾱ.C, applying Lemma 3.19 to
(2) yields C ` p : τ Ã ∆ (4). Because ∃ᾱ.C is satisfiable, C is satisfiable as well.
Applying the induction hypothesis to (3) and (4) yields the result.

We now reach the base case, where the derivation of C, • ` v : τ is normal and
does not end with Hide. We proceed by induction on the derivation of C ` p : τ Ã
∆.
◦ Case p-Empty. Then, p is 0, ¬p is 1, so v matches ¬p.
◦ Cases p-Wild, p-Var. Then, v matches p.
◦ Case p-And. Our hypotheses are C, • ` v : τ (1) and C ` p1 ∧ p2 : τ Ã ∆ (2).

The derivation of (2) ends with an instance of p-And whose premises are, for every
i ∈ {1, 2}, C ` pi : τ Ã ∆i (3), where ∆ is ∆1 ×∆2. By the induction hypothesis,
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applied to (1) and (3), v matches pi ∨ ¬pi, for every i ∈ {1, 2}. We conclude that
v must match ¬p1 ∨ ¬p2 ∨ (p1 ∧ p2), that is, (p1 ∧ p2) ∨ ¬(p1 ∧ p2).
◦ Case p-Or. Our hypotheses are C, • ` v : τ (1) and C ` p1 ∧ p2 : τ Ã ∆

(2). The derivation of (2) ends with an instance of p-Or whose premises are, for
every i ∈ {1, 2}, C ` pi : τ Ã ∆ (3). By the induction hypothesis, applied to (1)
and (3), v matches pi ∨ ¬pi, for every i ∈ {1, 2}. We conclude that v must match
p1 ∨ p2 ∨ (¬p1 ∧ ¬p2), that is, (p1 ∨ p2) ∨ ¬(p1 ∨ p2).
◦ Case p-Cstr. Then, p is K p1 · · · pn and τ is ε(ᾱ). Because the derivation of

C, • ` v : ε(ᾱ) is normal and does not end with Hide, it must end with a syntax-
directed rule, followed by Sub. (Indeed, any number of consecutive occurrences of
Sub can be expanded or collapsed to a single one.) However, it cannot end with
Sub(Abs(·)), because then an assertion of the form C ° τ1 → τ2 ≤ ε(ᾱ) would
hold—a contradiction, by Requirement 3.6, since C is satisfiable. So, it must end
with Sub(Cstr(·)). As a result, v must be of the form K ′ v1 · · · vn′ . The data
constructors K and K ′ cannot be associated with distinct data type declarations,
because then an assertion of the form C ° ε′(ᾱ′) ≤ ε(ᾱ), where ε and ε′ are distinct,
would hold—again, a contradiction. So, K ′ is associated with the data type ε.

If K and K ′ are distinct, then the pattern K ′ 1 · · · 1 appears among the disjuncts
in the definition of ¬p, so v matches ¬p.

Otherwise, K and n coincide with K ′ and n′. Sub’s second premise is C ° ε(ᾱ′) ≤
ε(ᾱ) (1), while Cstr’s premises are C, • ` vi : τ ′i (2), for every i ∈ {1, . . . , n}, K ::
∀ᾱ′β̄′[D′].τ ′1×· · ·×τ ′n → ε(ᾱ′) (3), and C ° D′ (4). The derivation of C ` p : τ Ã ∆
ends with an instance of p-Cstr whose premises are C ∧ D ` pi : τi Ã ∆i (5),
for every i ∈ {1, . . . , n}, K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ) (6), and β̄ # ftv(C)
(7). We can further require, w.l.o.g., β̄ # ᾱ′β̄′ (8). By Requirement 3.8, (3), (6),
and (8) imply D′ ∧ ε(ᾱ′) ≤ ε(ᾱ) ° ∃β̄.(D ∧i τ ′i ≤ τi) (9). Together, (4), (1), (9),
and (7) yield C ° ∃β̄.(C ∧D ∧i τ ′i ≤ τi). Because C is satisfiable, this proves that
C ∧D∧i τ

′
i ≤ τi is satisfiable as well. Now, by Lemma 3.19 and by Sub, (2) and (5)

yield C ∧D ∧i τ ′i ≤ τi, • ` vi : τi and C ∧D ∧i τ ′i ≤ τi ` pi : τi Ã ∆i, respectively.
Applying the induction hypothesis to these judgments, we find that vi matches
pi ∨ ¬pi, for every i ∈ {1, . . . , n}. Thus, v matches K (p1 ∨ ¬p1) · · · (pn ∨ ¬pn),
which is contained in p ∨ ¬p.
◦ Case p-EqIn. Our hypotheses are C, • ` v : τ (1) and C ` p : τ Ã ∆ (2).

p-EqIn’s premises are C ` p : τ ′ Ã ∆ (3) and C ° τ = τ ′ (4). Applying Sub to
(1) and (4) yields a derivation of C, • ` v : τ ′ (5), which still is normal and does not
end with Hide. There remains to apply the induction hypothesis to (5) and (3).
◦ Case p-SubOut. Our hypotheses are C, • ` v : τ (1) and C ` p : τ Ã ∆

(2). p-SubOut’s first premise is C ` p : τ Ã ∆′ (3). There remains to apply the
induction hypothesis to (1) and (3).
◦ Case p-Hide. Our hypotheses are ∃ᾱ.C, • ` v : τ (1) and ∃ᾱ.C ` p : τ Ã ∆

(2), where ∃ᾱ.C is satisfiable. The judgment (2) follows from an instance of p-
Hide whose first premise is C ` p : τ Ã ∆ (3). Because C entails ∃ᾱ.C, applying
Lemma 3.19 to (1) yields C, • ` v : τ (4). Because ∃ᾱ.C is satisfiable, C is satisfiable
as well. Applying the induction hypothesis to (4) and (3) yields the result. ¤

Proof of Lemma 3.29. Left to the reader. ¤
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Proof of Theorem 3.30. Suppose C, • ` e : σ (1) where C is a satisfiable
constraint. We can assume, w.l.o.g., that the derivation of (1) is normal and ends
with an instance of a syntax-directed-rule. The proof is by induction on the struc-
ture of e.
◦ Case e is x. Because well-typed expressions are closed, this case cannot occur.
◦ Case e is λ(c1 · · · cn). e is a value.
◦ Case e is e1 e2. Because e is well-typed, so are e1 and e2. By the induction

hypothesis, e1 is either reducible or a value. In the former case, because [] e2 is an
evaluation context, e is reducible as well. Let us now assume the latter case. Then,
by the induction hypothesis again, e2 is either reducible or a value. In the former
case, because e1 is a value, e1 [] is an evaluation context, so e is reducible. Let us
now assume the latter case. The derivation of (1) ends with an instance of App
whose premises are of the form C, • ` e1 : τ ′ → τ (2) and C, • ` e2 : τ ′ (3) for some
satisfiable constraint C. We now reason by cases on the structure of the value e1.
¦ Sub-case e1 is x. Again, this case cannot occur.
¦ Sub-case e1 is K v1 · · · vn. Because any number of consecutive occurrences of

Sub can be expanded or collapsed to a single one, we can assume that the derivation
of (2) ends with the shape Sub(Cstr(·)). Sub’s second premise must then be of
the form C ° ε(ᾱ) ≤ τ ′ → τ , a contradiction, by Requirement 3.6, since C is
satisfiable.
¦ Sub-case e1 is λ(p1.e

′
1 · · · pn.e′n). This case analysis must be exhaustive, which

means that ¬p1 ∧ · · · ∧ ¬pn is empty. Thus, there exists i ∈ {1, . . . , n} such that
the value e2 does not match ¬pi (4). The derivation of (2) must end with an
instance of Abs, preceded by instances of Clause, among whose premises we find
C ` pi : τ ′ Ã ∆ (5) for some ∆. Then, given (3), (5), and the satisfiability of C,
Lemma 3.28 guarantees that e2 matches pi ∨ ¬pi (6). Together, (4) and (6) show
that e2 matches pi, which implies that e is reducible by (β).
◦ Case e is µx.v. e is reducible by (µ).
◦ Case e is let x = e1 in e2. Because e is well-typed, so is e1. By the induction

hypothesis, e1 is either reducible or a value. In the former case, because letx = [] in
e2 is an evaluation context, e is reducible as well. In the latter case, e is reducible
by (let). ¤

Proof of Theorem 3.31. Suppose e reduces to e′. By Theorem 3.27, e′ is
well-typed. Because reduction preserves the property that all case analyses are
exhaustive, Theorem 3.30 is applicable and guarantees that e′ is not stuck. ¤

Proof of Theorem 3.32. Let bec be well-typed. Because, for every pattern p,
¬p∧¬¬p is empty, every case analysis in bec is exhaustive. Thus, by Theorem 3.30,
bec is either reducible or a value.

If bec is reducible, then it is straightforward to check that either e itself is re-
ducible, or e is stuck and bec reduces to an expression of the form E∗[⊥], where E∗

stands for a stack of nested evaluation contexts. The latter case cannot arise, how-
ever, because bec is well-typed, while, by Lemma 3.29, E∗[⊥] is not, contradicting
the subject reduction property (Theorem 3.27). So, e is reducible.

If bec is a value, then it is straightforward to check, by induction on the definition
of b·c that e is also a value. ¤
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Proof of Theorem 3.33. Suppose e reduces to e′. In that case, it is straight-
forward to check that bec reduces to be′c, so, by Theorem 3.27, be′c is well-typed.
Then, Theorem 3.32 guarantees that e′ is not stuck. ¤

Proof of Lemma 4.1. Left to the reader. ¤
Proof of Lemma 4.3. By induction on the structure of p.
◦ Cases p is 0, 1, or x. The goal follows immediately from p-Empty, p-Wild,

or p-Var.
◦ Case p is p1 ∧ p2. By the induction hypothesis, for every i ∈ {1, 2}, we have

Lpi ↓ τM ` pi : τ Ã Lpi ↑ τM. By Lemma 3.19 and by p-And, this implies the goal
Lp1 ↓ τM ∧ Lp2 ↓ τM ` p1 ∧ p2 : τ Ã Lp1 ↑ τM× Lp2 ↑ τM.
◦ Case p is p1 ∨ p2. By the induction hypothesis, for every i ∈ {1, 2}, we have

Lpi ↓ τM ` pi : τ Ã Lpi ↑ τM. By f-Lub and p-SubOut, Lpi ↓ τM ` pi : τ Ã
Lp1 ↑ τM + Lp2 ↑ τM follows. By Lemma 3.19 and by p-Or, this implies the goal
Lp1 ↓ τM ∧ Lp2 ↓ τM ` p1 ∨ p2 : τ Ã Lp1 ↑ τM + Lp2 ↑ τM.
◦ Case p is K p1 · · · pn. Let K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ) (1), where ᾱβ̄ #

ftv(τ) (2). By the induction hypothesis, for every i ∈ {1, . . . , n}, we have Lpi ↓
τiM ` pi : τi Ã Lpi ↑ τiM (3). Let C stand for Lp1 ↓ τ1M ∧ · · · ∧ Lpn ↓ τnM. We have
D ∧ ∀β̄.D ⇒ C ° C ° Lpi ↓ τiM (4), where the left-hand entailment assertion is
a logical tautology, while the right-hand assertion is by definition of C. Applying
Lemma 3.19 to (3) and (4), we obtain D ∧ ∀β̄.D ⇒ C ` pi : τi Ã Lpi ↑ τiM (5). By
p-Cstr, (5) and (1) imply ∀β̄.D ⇒ C ` p : ε(ᾱ) Ã ∃β̄[D]∆ (6), where ∆ stands
for Lp1 ↑ τ1M × · · · × Lpn ↑ τnM. Applying Lemma 3.19 and p-EqIn to (6), we find
ε(ᾱ) = τ ∧ ∀β̄.D ⇒ C ` p : τ Ã ∃β̄[D]∆ (7).

Now, by f-Imply, we have τ = ε(ᾱ) ° [D]∆ ≤ [D ∧ τ = ε(ᾱ)]∆. By f-Hide
and by transitivity of ≤, this implies τ = ε(ᾱ) ° [D]∆ ≤ ∃ᾱ[D ∧ τ = ε(ᾱ)]∆. By
(2), β̄ does not occur free in the left-hand side of this entailment assertion, which
can thus be written τ = ε(ᾱ) ° ∀β̄.([D]∆ ≤ ∃ᾱ[D ∧ τ = ε(ᾱ)]∆). By f-Ex and by
transitivity of entailment, this implies τ = ε(ᾱ) ° ∃β̄[D]∆ ≤ ∃ᾱβ̄[D ∧ τ = ε(ᾱ)]∆,
that is, τ = ε(ᾱ) ° ∃β̄[D]∆ ≤ Lp ↑ τM (8).

By p-SubOut, (7) and (8) yield τ = ε(ᾱ)∧ ∀β̄.D ⇒ C ` p : τ Ã Lp ↑ τM. By (2)
and p-Hide, this entails ∃ᾱ.(τ = ε(ᾱ) ∧ ∀β̄.D ⇒ C) ` p : τ Ã Lp ↑ τM, that is,
Lp ↓ τM ` p : τ Ã Lp ↑ τM. ¤

Proof of Lemma 4.4. By structural induction on p. ¤
Proof of Lemma 4.5. By induction on the derivation of C ` p : τ Ã ∆ (H).
◦ Cases p-Empty, p-Wild, p-Var. Lp ↓ τM is true, so the first goal is a tautology.

Furthermore, Lp ↑ τM and ∆ coincide, so the second goal follows from the reflexivity
of ≤.
◦ Case p-And. (H) is C ` p1 ∧ p2 : τ Ã ∆1 ∧ ∆2. p-And’s premises are

C ` pi : τ Ã ∆i (1), for every i ∈ {1, 2}. By the induction hypothesis, (1) implies
C ° Lpi ↓ τM (2) and C ° Lpi ↑ τM ≤ ∆i (3). The first goal, C ° Lp1 ↓ τM ∧ Lp2 ↓ τM,
follows from (2). The second goal, namely C ° Lp1 ↑ τM × Lp2 ↑ τM ≤ ∆1 × ∆2,
follows from (3) by f-And.
◦ Case p-Or. (H) is C ` p1 ∨ p2 : τ Ã ∆. p-Or’s premises are C ` pi : τ Ã ∆

(1), for every i ∈ {1, 2}. By the induction hypothesis, (1) implies C ° Lpi ↓ τM (2)
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and C ° Lpi ↑ τM ≤ ∆ (3). The first goal, C ° Lp1 ↓ τM ∧ Lp2 ↓ τM, follows from (2).
The second goal, namely C ° Lp1 ↑ τM + Lp2 ↑ τM ≤ ∆, follows from (3) by f-Glb.
◦ Case p-Cstr. (H) is C ` K p1 · · · pn : ε(ᾱ) Ã ∃β̄[D](∆1×· · ·×∆n). p-Cstr’s

premises are C ` pi : τi Ã ∆i (1), for every i ∈ {1, . . . , n}, K :: ∀ᾱβ̄[D].τ1 ×
· · · × τn → ε(ᾱ) (2) and β̄ # ftv(C) (3). By the induction hypothesis, (1) implies
C ∧D ° Lpi ↓ τiM (4) and C ∧D ° Lpi ↑ τiM ≤ ∆i (5).

The assertions (4), where i ranges over {1, . . . , n}, imply C ∧ D ° ∧iLpi ↓ τiM.
This can be written C ° D ⇒ ∧iLpi ↓ τiM, and, by (3), C ° ∀β̄.D ⇒ ∧iLpi ↓ τiM.
By Lemma 4.1, this is exactly the first goal C ° LK p1 · · · pn ↓ ε(ᾱ)M.

The assertions (5), where i ranges over {1, . . . , n}, together with f-And, imply
C ∧ D ° ×iLpi ↑ τiM ≤ ×i∆i. By f-Enrich, this implies C ° [D](×iLpi ↑ τiM) ≤
[D](×i∆i). By (3), this can be written C ° ∀β̄.([D](×iLpi ↑ τiM) ≤ [D](×i∆i)).
By f-Ex and by transitivity of entailment, C ° ∃β̄[D](×iLpi ↑ τiM) ≤ ∃β̄[D](×i∆i)
follows. By Lemma 4.1, this is exactly the second goal C ° LK p1 · · · pn ↑ ε(ᾱ)M ≤
∃β̄[D](×i∆i).
◦ Case p-EqIn. p-EqIn’s premises are C ` p : τ ′ Ã ∆ (1) and C ° τ = τ ′ (2).

By the induction hypothesis, (1) implies C ° Lp ↓ τ ′M (3) and C ° Lp ↑ τ ′M ≤ ∆ (4).
By Lemma 4.4, we have τ = τ ′∧Lp ↓ τ ′M ° Lp ↓ τM (5) and τ = τ ′ ° Lp ↑ τM ≤ Lp ↑ τ ′M
(6). By (2), (3) and (5), we obtain the first goal C ° Lp ↓ τM. By (2) and (6), we
get C ° Lp ↑ τM ≤ Lp ↑ τ ′M, which, combined with (4), yields the second goal
C ° Lp ↑ τM ≤ ∆.
◦ Case p-SubOut. p-SubOut’s premises are C ` p : τ Ã ∆′ (1) and C ° ∆′ ≤

∆ (2). By the induction hypothesis, (1) implies C ° Lp ↓ τM (3) and C ° Lp ↑ τM ≤
∆′ (4). The first goal is precisely (3). The second goal C ° Lp ↑ τM ≤ ∆ follows
from (4) and (2).
◦ Case p-Hide. (H) is ∃ᾱ.C ` p : τ Ã ∆. p-Hide’s premises are C ` p : τ Ã ∆

(1) and ᾱ # ftv(τ, ∆) (2). By the induction hypothesis, (1) implies C ° Lp ↓ τM
(3) and C ° Lp ↑ τM ≤ ∆ (4). By (2), ᾱ does not occur free in the right-hand
sides of these entailment assertions. As a result, (3) and (4) respectively imply
∃ᾱ.C ° Lp ↓ τM and ∃ᾱ.C ° Lp ↑ τM ≤ ∆, which are the first and second goals. ¤

Proof of Theorem 4.7. By induction on the structure of ce.
◦ Case ce is x. Write Γ(x) as ∀ᾱ[D].τ ′, where ᾱ # ftv(Γ, τ) (1). By Var,

Inst, and Sub, we have D ∧ τ ′ ≤ τ, Γ ` x : τ . By (1) and Hide, this implies
∃ᾱ.(D ∧ τ ′ ≤ τ),Γ ` x : τ , which is precisely the goal Γ(x) ≤ τ, Γ ` x : τ .
◦ Case ce is λc̄. Let α1α2 # ftv(Γ, τ) (1). Applying the induction hypothesis in

turn to each member of c̄ yields LΓ ` c̄ : α1 → α2M, Γ ` c̄ : α1 → α2, which by Abs
implies LΓ ` c̄ : α1 → α2M, Γ ` λc̄ : α1 → α2 (2). By Lemma 3.19 and by Sub, (2)
implies LΓ ` c̄ : α1 → α2M ∧ α1 → α2 ≤ τ, Γ ` λc̄ : τ . By (1) and by Hide, this
implies ∃α1α2.(LΓ ` c̄ : α1 → α2M∧ α1 → α2 ≤ τ),Γ ` λc̄ : τ , which is precisely the
goal LΓ ` λc̄ : τM, Γ ` λc̄ : τ .
◦ Case ce is e1 e2. Let α # ftv(Γ, τ) (1). By the induction hypothesis, we have

LΓ ` e1 : α → τM,Γ ` e1 : α → τ and LΓ ` e2 : αM, Γ ` e2 : α. By Lemma 3.19 and
App, this yields LΓ ` e1 : α → τM ∧ LΓ ` e2 : αM,Γ ` e1 e2 : τ . The result follows by
(1) and Hide.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



50 · V. Simonet and F. Pottier

◦ Case ce is K e1 · · · en. Let K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ) (1), where
ᾱβ̄ # ftv(Γ, τ) (2). By the induction hypothesis, LΓ ` ei : τiM,Γ ` ei : τi holds for
every i ∈ {1, . . . , n}. By Lemma 3.19, ∧iLΓ ` ei : τiM ∧ D ∧ ε(ᾱ) ≤ τ, Γ ` ei : τi

(3) follows. Applying Cstr to (3), where i ranges over {1, . . . , n}, and to (1), we
obtain ∧iLΓ ` ei : τiM ∧ D ∧ ε(ᾱ) ≤ τ, Γ ` K e1 · · · en : ε(ᾱ). By Sub, (2), and
Hide, this implies ∃ᾱβ̄.(∧iLΓ ` ei : τiM ∧D ∧ ε(ᾱ) ≤ τ), Γ ` K e1 · · · en : τ , that is,
LΓ ` K e1 · · · en : τM, Γ ` K e1 · · · en : τ .
◦ Case ce is µ(x : ∃β̄.σ).e. By convention, we have β̄ # ftv(Γ, τ) (1). Write σ as

∀γ̄[C].τ1, where γ̄ # ftv(Γ) (2). By the induction hypothesis, we have LΓ[x 7→ σ] `
e : τ1M,Γ[x 7→ σ] ` e : τ1 (3). Let D stand for ∀γ̄.C ⇒ LΓ[x 7→ σ] ` e : τ1M. Then,
C ∧D entails LΓ[x 7→ σ] ` e : τ1M, so, by Lemma 3.19, (3) implies C ∧D, Γ[x 7→ σ] `
e : τ1 (4). Furthermore, we have γ̄ # ftv(D) (5). By (4), (2), (5), and FixAnnot,
we obtain ∃γ̄.C ∧D,Γ ` µ(x : ∃β̄.σ).e : σ (6). Because σ ≤ τ entails ∃γ̄.C, (6) and
Lemma 3.19 yield σ ≤ τ ∧D,Γ ` µ(x : ∃β̄.σ).e : σ (7). By Inst, Sub, and Hide,
(7) implies σ ≤ τ ∧D,Γ ` µ(x : ∃β̄.σ).e : τ (8). By (8), (1), and Hide, we obtain
∃β̄.(σ ≤ τ ∧D), Γ ` µ(x : ∃β̄.σ).e : τ , which by definition of D is the goal.
◦ Case ce is letx = e1 in e2. Let α # ftv(Γ, τ) (1). Let C and σ stand respectively

for LΓ ` e1 : αM and ∀α[C].α. By the induction hypothesis, we have C, Γ ` e1 : α (2)
and LΓ[x 7→ σ] ` e2 : τM,Γ[x 7→ σ] ` e2 : τ (3). Applying Gen to (2) and (1) yields
∃α.C, Γ ` e1 : σ (4). The goal follows from (3) and (4) by Lemma 3.19 and Let.
◦ Case ce is p.e. Then, τ is of the form τ1 → τ2. Write Lp ↑ τ1M as ∃β̄[D]Γ′, where

β̄ # ftv(Γ, τ1, τ2) (1). By the induction hypothesis, LΓΓ′ ` e : τ2M, ΓΓ′ ` e : τ2 (2)
holds. Furthermore, by Lemma 4.3, we have Lp ↓ τ1M ` p : τ1 Ã ∃β̄[D]Γ′ (3). Now,
recall that, by definition, LΓ ` ce : τM is Lp ↓ τ1M∧∀β̄.D ⇒ LΓΓ′ ` e : τ2M. As a result,
by Lemma 3.19, (2) and (3) respectively imply LΓ ` ce : τM ∧ D, ΓΓ′ ` e : τ2 (4)
and LΓ ` ce : τM ` p : τ1 Ã ∃β̄[D]Γ′ (5). By (4), (5), (1), and Clause, we obtain
the goal LΓ ` ce : τM, Γ ` p.e : τ1 → τ2. ¤

Proof of Lemma 4.8. By induction on the structure of ce. ¤

Proof of Lemma 4.9. By induction on the structure of ce. ¤

Proof of Lemma 4.10. We assume β̄1β̄2 # ftv(Γ, τ) (1). Up to a renaming
of the goal, we can assume, w.l.o.g., β̄1 # ftv(∃β̄2[D2]Γ2) (2) and β̄2 # Γ1 (3). By
Lemma 4.9, we have Γ1 ≤ Γ2 ∧ LΓΓ2 ` e : τM ° LΓΓ1 ` e : τM. By (1) and (3),
β̄2 does not appear in the right-hand-side of this entailment assertion, so it can be
existentially quantified in its left-hand-side, which yields ∃β̄2.(Γ1 ≤ Γ2 ∧ LΓΓ2 ` e :
τM) ° LΓΓ1 ` e : τM (4). By (2) and (3), we have ∃β̄1[D1]Γ1 ≤ ∃β̄2[D2]Γ2 ∧D1 °
∃β̄2.(D2 ∧Γ1 ≤ Γ2); then ∃β̄1[D1]Γ1 ≤ ∃β̄2[D2]Γ2 ∧D1 ∧∀β̄2.D2 ⇒ LΓΓ2 ` e : τM °
∃β̄2.(Γ1 ≤ Γ2 ∧ LΓΓ2 ` e : τM). By transitivity with (4), ∃β̄1[D1]Γ1 ≤ ∃β̄2[D2]Γ2 ∧
D1 ∧ ∀β̄2.D2 ⇒ LΓΓ2 ` e : τM ° LΓΓ1 ` e : τM (5) follows. By (1), (2) and (3),
β̄1 # ftv(∃β̄1[D1]Γ1 ≤ ∃β̄2[D2]Γ2∧∀β̄2.D2 ⇒ LΓΓ2 ` e : τM), so (4) can be rewritten
into ∃β̄1[D1]Γ1 ≤ ∃β̄2[D2]Γ2 ∧ ∀β̄2.D2 ⇒ LΓΓ2 ` e : τM ° ∀β̄1.D1 ⇒ LΓΓ1 ` e : τM,
which is the goal. ¤

Proof of Theorem 4.11. We proceed by induction on the derivation of
C, Γ ` ce : ∀ᾱ[D].τ (H). Let σ = ∀ᾱ[D].τ . Because ᾱ is α-convertible in the
statement of the theorem, we can assume, w.l.o.g., ᾱ # ftv(C), so that the goal is
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equivalent to C ∧D ° LΓ ` ce : τM. For the same reason, in cases FixAnnot and
Gen below, we can assume that ᾱ coincides with the vector of type variables that
appears in the rule’s premises.
◦ Case Var. Var’s first premise is Γ(x) = ∀ᾱ[D].τ . The goal C ∧D ° Γ(x) ≤ τ

follows from Lemma 3.2.
◦ Case Abs. (H) is C, Γ ` λc̄ : τ1 → τ2. Abs’ premise is C, Γ ` c̄ : τ1 → τ2,

which by the induction hypothesis implies C ° LΓ ` c̄ : τ1 → τ2M (1). Pick
α1α2 # ftv(C, τ1, τ2). Then, we have C ° ∃α1α2.(C ∧ α1 = τ1 ∧ α2 = τ2) (2).
Furthermore, by Lemma 4.8, (1) implies C ∧ α1 = τ1 ∧ α2 = τ2 ° LΓ ` c̄ : α1 →
α2M ∧ α1 → α2 ≤ τ1 → τ2 (3). Combining (2) and (3), we obtain C ° ∃α1α2.(LΓ `
c̄ : α1 → α2M ∧ α1 → α2 ≤ τ1 → τ2), that is, C ° LΓ ` λc̄ : τ1 → τ2M.
◦ Case Cstr. (H) is C, Γ ` K e1 · · · en : ε(ᾱ). Cstr’s premises are C, Γ ` ei : τi

(1), for every i ∈ {1, . . . , n}, K :: ∀ᾱβ̄[D].τ1 × · · · × τn → ε(ᾱ) (2) and C ° D
(3). By the induction hypothesis, (1) implies C ° LΓ ` ei : τiM (4). By (4) and
(3), we obtain C ° ∧iLΓ ` ei : τiM ∧ D, whence C ° ∃β̄.(∧iLΓ ` ei : τiM ∧ D) (5).
Furthermore, we let the reader check that, by definition of constraint generation,
∃β̄.(∧iLΓ ` ei : τiM ∧D) entails LΓ ` K e1 · · · en : ε(ᾱ)M (6). Combining (5) and (6)
yields the goal C ° LΓ ` K e1 · · · en : ε(ᾱ)M.
◦ Case App. (H) is C, Γ ` e1 e2 : τ . App’s premises are C, Γ ` e1 : τ ′ →

τ (1) and C, Γ ` e2 : τ ′ (2). By the induction hypothesis, (1) and (2) imply
C ° LΓ ` e1 : τ ′ → τM ∧ LΓ ` e2 : τ ′M (3). Pick α 6∈ ftv(C, τ ′) (4). By (4),
we have C ° ∃α.(C ∧ α = τ ′) (5). Furthermore, by Lemma 4.8, (3) implies
C ∧α = τ ′ ° LΓ ` e1 : α → τM∧ LΓ ` e2 : αM (6). Combining (5) and (6), we obtain
C ° ∃α.(LΓ ` e1 : α → τM ∧ LΓ ` e2 : αM), that is, C ° LΓ ` e1 e2 : τM.
◦ Case FixAnnot. (H) is C∧∃ᾱ.D, Γ ` µ(x :∃β̄.σ).e : σ. FixAnnot’s premises

are C ∧D, Γ[x 7→ σ] ` e : τ (1), ᾱ # ftv(C, Γ) (2), and σ = ∀ᾱ[D].τ (3). By the
induction hypothesis, (1) implies C ∧ D ° LΓ[x 7→ σ] ` e : τM, which, by (2), can
be written C ° ∀ᾱ.D ⇒ LΓ[x 7→ σ] ` e : τM, that is, C ° LΓ[x 7→ σ] ` e : σM (4).
Furthermore, by (3) and by Lemma 3.2, we have D ° σ ≤ τ (5). Combining
(4) and (5), we obtain C ∧ D ° LΓ[x 7→ σ] ` e : σM ∧ σ ≤ τ . This implies
C∧D ° ∃β̄.(LΓ[x 7→ σ] ` e : σM∧σ ≤ τ), that is, C∧D ° LΓ ` µ(x :∃β̄.σ).e : τM (6).
The goal C ∧ ∃ᾱ.D ° ∀ᾱ.D ⇒ LΓ ` µ(x : ∃β̄.σ).e : τM follows from (2) and (6).
◦ Case Let. (H) is C, Γ ` letx = e1 in e2 : σ. Let’s premises are C, Γ `

e1 : σ′ (1) and C, Γ[x 7→ σ′] ` e2 : σ (2). Write σ as ∀ᾱ[D].τ , where ᾱ #
ftv(Γ) (3). Write σ′ as ∀ᾱ′[D′].τ ′, where ᾱ′ # ftv(Γ, C) (4). By the induction
hypothesis, (1) and (4) imply C ∧ D′ ° LΓ ` e1 : τ ′M (5), while (2) and (3)
imply C ∧ D ° LΓ[x 7→ σ′] ` e2 : τM (6). Pick α 6∈ ftv(Γ, τ, τ ′) (7). Let H
stand for LΓ ` e1 : αM. By (7), the constraint LΓ ` e1 : τ ′M entails ∃α.(LΓ ` e1 :
τ ′M ∧ α = τ ′), which by Lemma 4.8 entails ∃α.(H ∧ α ≤ τ ′). Combining this
fact with (5), we obtain C ∧ D′ ° ∃α.(H ∧ α ≤ τ ′). By (4), this can be written
C ° ∀ᾱ′.D′ ⇒ ∃α.(H ∧α ≤ τ ′), which by (7) is C ° ∀α[H].α ≤ σ′ (8). By (6), (8),
and Lemma 4.9, we obtain C∧D ° LΓ[x 7→ ∀α[H].α] ` e2 : τM (9). By Lemma 3.20,
(1) implies C ° ∃ᾱ′.D′, which, together with (8), yields C ° ∃α.H (10). The goal
C ∧D ° LΓ ` letx = e1 in e2 : τM follows from (9) and (10).
◦ Case Clause. (H) is C, Γ ` p.e : τ1 → τ2. Clause’s premises are C ` p :

τ1 Ã ∃β̄[D]Γ′ (1), C ∧ D,ΓΓ′ ` e : τ2 (2), and β̄ # ftv(C, Γ, τ2) (3). Up to a
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renaming of Clause’s second premise, we can further assume, w.l.o.g., β̄ # ftv(τ1)
(4). By applying Lemma 4.5 to (1), we obtain C ° Lp ↓ τ1M (5) and C ° Lp ↑
τ1M ≤ ∃β̄[D]Γ′ (6). By the induction hypothesis, (2) implies C ∧D ° LΓΓ′ ` e : τ2M,
which, by (3), can be written C ° ∀β̄.D ⇒ LΓΓ′ ` e : τ2M (7). Write Lp ↑ τ1M as
∃β̄1[D1]Γ′1, where β̄1 # ftv(Γ, C, τ1, τ2, β̄) (8). By (3) and (8), β̄β̄1 # ftv(Γ, τ2) (9)
holds. Applying Lemma 4.10 to (9) and combining the result with (6) and (7), we
find C ° ∀β̄1.D1 ⇒ LΓΓ′1 ` e : τ2M (10). Combining (5) and (10), we obtain C °
Lp ↓ τ1M∧ ∀β̄1.D1 ⇒ LΓΓ′1 ` e : τ2M. By (8), this is the goal C ° LΓ ` p.e : τ1 → τ2M.
◦ Case Gen. (H) is C∧∃ᾱ.D, Γ ` ce : ∀ᾱ[D].τ . Gen’s first premise is C∧D, Γ `

ce : τ . By the induction hypothesis, this implies C ∧ D ° LΓ ` ce : τM, which is
precisely the goal.
◦ Case Inst. (H) is C, Γ ` ce : τ . Inst’s premises are C, Γ ` ce : ∀ᾱ[D].τ (1)

and C ° D (2). Let θ be a renaming of ᾱ such that θ is fresh for ∀ᾱ[D].τ (3) and
θᾱ # ftv(Γ) (4). By (3), (1) can be written C, Γ ` ce : ∀(θᾱ)[θD].θτ , which by (4)
and by the induction hypothesis implies C ° ∀θᾱ.θD ⇒ LΓ ` ce : θτM. We let the
reader check that, using (2), the goal C ° LΓ ` ce : τM follows.
◦ Case Sub. (H) is C, Γ ` ce : τ . Sub’s premises are C, Γ ` ce : τ ′ (1) and

C ° τ ′ ≤ τ (2). By the induction hypothesis, (1) implies C ° LΓ ` ce : τ ′M (3).
Combining (3) and (2) and applying Lemma 4.8 yields the goal C ° LΓ ` ce : τM.
◦ Case Hide. (H) is ∃β̄.C,Γ ` ce : σ. Hide’s premises are C, Γ ` ce : σ (1)

and β̄ # ftv(Γ, σ) (2). Write σ as ∀ᾱ[D].τ , where ᾱ # ftv(Γ). By the induction
hypothesis, (1) implies C ° ∀ᾱ.D ⇒ LΓ ` ce : τM (3). By (2), β̄ does not occur
free in the right-hand side of this entailment assertion. Thus, (3) implies the goal
∃β̄.C ° ∀ᾱ.D ⇒ LΓ ` ce : τM. ¤
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