On Shelah 900

Pierre Simon

We give an account of the type decomposition theorem of [Sh :900]. This is exactly Shelah's proof, extracted from the paper.

Let T be an NIP theory, κ a cardinal.

Theorem 0.1. Let $|\mathsf{T}| \leq \theta < cf(\kappa)$, and M a κ -saturated model. Let $\bar{d} \in \theta^{\geq} \mathbb{C}$, then there exists $C \in [\mathbb{C}]^{\theta}$ such that, letting $p = tp(\bar{d}/MC)$:

- tp(C/M) is B-invariant for some $B \subset M$ of cardinality $< \kappa$.
- For every $A \subset M$ of cardinality $< \kappa$, there is $D \subset M$, $|D| = \theta$, such that $p|_{DC} \vdash p|_{AC}$.

We let M and \overline{d} be as above.

Lemma 0.2. There does not exist a sequence $(\bar{c}_{\alpha} = (c_{\alpha}^{0}, c_{\alpha}^{1}))_{\alpha < \theta^{+}}$ of finite tuples such that, for all $\alpha < \theta^{+}$:

- 1. $\operatorname{tp}(c_{\alpha}^{0}/MC_{\alpha}) = \operatorname{tp}(c_{\alpha}^{1}/MC_{\alpha}),$
- 2. $tp(\bar{c}_{\alpha}/MC_{\alpha})$ is B_{α} -invariant for some $B_{\alpha} \subseteq M$ of size κ ,
- 3. $\operatorname{tp}(\bar{d}, c_0^{\alpha}/MC_{\alpha}) \neq \operatorname{tp}(\bar{d}, c_1^{\alpha}/MC_{\alpha}),$

Where $C_{\alpha} = \bigcup_{\beta < \alpha} \{ \bar{c}_{\beta} \}.$

Proof. Assume such a sequence exists. Notice that by the second assumption, for all $\alpha < \theta^+$, the tuples c_0^{α} and c_1^{α} have the same type over $M \cup \bigcup_{\beta \neq \alpha} \{\bar{c}_{\beta}\}$.

Without loss of generality, we may assume that there is a formula $\phi(\bar{x}; y, z)$ such that for all $\alpha < \theta^+$, there is $d_{\alpha} \in M \cup C_{\alpha}$ with $\phi(\bar{d}; c^0_{\alpha}, d_{\alpha}) \land \neg \phi(\bar{d}; c^1_{\alpha}, d_{\alpha})$. For each α , let $f(\alpha) < \alpha$ be such that $d_{\alpha} \in M \cup C_{f(\alpha)}$. By Fodor's lemma, there is $S \subset \theta^+$ cofinal and $\beta < \theta^+$ such that $f(\alpha) = \beta$ for all

By Fodor's lemma, there is $S \subset \theta^+$ cofinal and $\beta < \theta^+$ such that $f(\alpha) = \beta$ for all $\alpha \in S$.

Now, by the second hypothesis, for any function $\eta \in^{S} \{0, 1\}$, the sequence $(c_{\eta(\alpha)}^{\alpha})$ has the same type as (c_{0}^{α}) over $M \cup C_{\beta}$ (because each $c_{0}^{\alpha}, c_{1}^{\alpha}$ realizes the unique invariant extension of $tp(c_{1}^{\alpha}/M)$ to $M \cup C_{\alpha}$). Thus, the type $\bigwedge_{\alpha \in S} \varphi(\bar{x}; c_{0}^{\alpha}, d_{\alpha})^{\langle \eta(\alpha) = 0 \rangle}$ is consistent. This contradicts NIP.

Returning to the theorem, construct by induction a maximal sequence (\bar{c}_{α}) satisfying the properties of the lemma. This construction must stop at some $\lambda < \theta^+$. We can thus find a $B \subset M$, $|B| < \kappa$ containing all the B_{α} . Let C be the union of the \bar{c}_{α} , and let $p = tp(\bar{d}/MC)$.

Lemma 0.3. Let $q \in S(MC)$ be D-invariant for some $D \subset M$ of cardinality $< \kappa$. Then q is weakly orthogonal to p.

Proof. Suppose not. Then there are c_0, c_1 realizations of q such that $tp(c_0/MCd) \neq tp(c_1/MCd)$. One of these types, say $tp(c_0/MCd)$, is not the invariant extension of q (note that as M is κ -saturated, the invariant extension is uniquely defined). Now let c'_1 realize the invariant extension of q to MCc_0d . We thus have :

- $-\operatorname{tp}(c_0/MC) = \operatorname{tp}(c_1'/MC),$
- $tp(c_0, c'_1/MC)$ is D-invariant,
- $-\operatorname{tp}(c_0/MC\overline{d}) \neq \operatorname{tp}(c_1'/MC\overline{d}).$

This contradicts the maximality of C.

Let $A \subset M$ of cardinality $\langle \kappa$. By the previous lemma, p is orthogonal to all types q finitely satisfiable in A. Let $\phi(\bar{x}, y)$ be a formula with parameters in C $(\lg(\bar{x}) = \lg(\bar{d}))$. By compactness, there is $\psi(\bar{x}) \in p$ such that any $\bar{e} \models \psi(\bar{x})$, any $q \in S(MC)$ finitely satisfiable in A, and any $c \models q$, we have

$$\models \phi(\bar{\mathbf{d}}, \mathbf{c}) \leftrightarrow \phi(\bar{\mathbf{e}}, \mathbf{c}).$$

This in particular applies to any $c \in A$.

Letting $\phi(\bar{x}, y)$ vary, let $D \subset M$ be of size θ , such that $D \cup C$ contains all the parameters of the corresponding $\psi(x)$. Then D satisfies the conclusion of the theorem.

This finishes the proof.