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INTRODUCTION

M is an ω-categorical structure (with elimination of quantifiers
in a relational language L).

• fn(M)=number of orbits of Aut(M) on unordered sets of size n
= number of non-isomorphic substructures of M of size n.

Examples:

I M = (Q;≤): fn = 1
I M = (S1,C(x, y, z)): circular order; fn = 1

I random/Rado graph: (G,R); fn ∼ 2(n
2)/n! ≈ cn2

I (M;≤1,≤2), homogeneous permutation: fn = n! ≈ cn log n

I C-relation/tree: fn ≈ cn.
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Theorem (Cameron)

I The function fn(M) is non-decreasing with n.
I If fn(M) = 1 for all n, then M is one of 5 structures: pure set,

dense linear order, betweenness relation, circular order or
separation relation.

Theorem (Macpherson ’85)
There is some c > 1 such that if M is primitive either fn(M) = 1 for
all n, or fn(M) ≥ cn/p(n) for some polynomial p.
Macpherson obtains c ≈ 1.148. This was improved to c ≈ 1.324
by Merola (2001). The result is false for c > 2.

Conjecture (Macpherson)
One can take c = 2.
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Cameron and Macpherson have observed that all known
(primitive) structures with fn of exponential growth are tree-like
or order-like and have raised the question of classifying them.
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NIP STRUCTURES

• A structure M has the independence property if there is a
formula φ(x̄; ȳ) and sets of tuples A = {āi : i < ω} and
B = {b̄j : j < ω} such that φ(x̄; ȳ) induces a random bipartite
graph on A× B.
Otherwise, we say M is NIP.
• By the Sauer-Shelah theorem, a finitely homogeneous M is
NIP if and only if the number of types over a finite set A is
bounded by p(|A|) for some polynomial p(X).

Theorem (Macpherson)

I If M has the independence property, then there is a polynomial p
of degree at least 2 such that fn ≥ 2p(n).

I If M is finitely homogeneous and there is some ε > 0 such that
fn > 2n1+ε , then M has the independence property.
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NIP STRUCTURES

Conjecture / Hope
NIP finitely homogeneous structures are classifiable. At least, there
are only countably many of them.

The stable case (more generally ω-categorical ω-stable) is well
understood by work of Zilber, Lachlan, Cherlin, Harrington,
Hrushovski, Evans.
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KEY THEOREM: CONSTRUCTION OF LINEAR ORDERS

Theorem
Let M be ω-categorical, NIP and unstable. Then (over parameters)
there is a definable equivalence relation E on M with infinitely many
classes, and a definable linear order on the quotient M/E.
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Theorem
If M is primitive, then one of the following occurs:

I fn ≥ 2n/p(n) for some polynomial p;
I M is one of the 5 reducts of DLO;
I M is strictly stable (stable, not ω-stable).

Corollary
1. Macpherson’s conjecture is true for finitely homogeneous

structures.
2. One can improve the bound in Macpherson’s theorem to

c ≈ 1.57.

Theorem
Assume fn(M) = o(cn) for some c < 1.57, then there is a reduct M∗

of M such that:
I M∗ is ω-stable;
I fn(M) = fn(M∗) for all n.
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TOWARDS A CLASSIFICATION OF NIP HOMOGENEOUS

STRUCTURES

Two parameters of interest:

I The “pseudo-arity”: minimal arity of a structure in which
M can be interpreted.
(I expect this to be equal the minimal arity of a Ramsey
expansion of M.)

I The dimension: number of independent linear orders.
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CLASSIFICATION OF (PSEUDO-)BINARY STRUCTURES

I If M is binary, there is a notion of rank on definable subsets
of Mk (and definable quotients), which measures the
maximal depth of a chain of definable equivalence
relations with infinitely many classes.

I We start by classifying the primitive rank 1 structures.

Theorem
Given n < ω, there are finitely many structures M (up to
bi-definability) which are ω-categorical, NIP, rank 1, primitive and
have at most n 4-types.
One can give an explicit list.
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SOME APPLICATIONS

I Homogeneous multi-orders.

Proposition
If (M;≤1, . . . ,≤n) is a primitive homogeneous multi-order such that
no two orders are equal, up to reversal, then M is the Fraı̈ssé limit of
sets with n orders.

(The case n = 2 was done by Cameron, and n = 3 by Braunfeld.)
In joint work with Samuel Braunfeld, we classify the
imprimitive multi-orders.

I Reducts: one can easily determine the reducts of any
structure in the catalog. There are always finitely many.

I Reducts of (M;≤1,≤2) were classified by Linman and
Pinsker: there are 39 of them.

I Quotients of circular orders by an equivalence relation with
finite classes have no non-trivial proper reducts.
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SKETCH OF THE PROOF

Step 1 Linear orders interpretable in a binary structure are very
constrained.

Proposition
Let (V;≤) be a transitive ω-categorical linear order. Assume that one
cannot define (with parameters) a C-structure with convex, bounded,
balls on V. Then any ∅-definable closed subset of Vn is a boolean
combination of inequalities between variables xi ≤ xj.

Conjecture
The same is true if V does not admit a ∅-definable C-structure with
convex bounded balls.



Introduction NIP Binary structures Higher arity

SKETCH OF THE PROOF

Step 1 Linear orders interpretable in a binary structure are very
constrained.

Proposition
Let (V;≤) be a transitive ω-categorical linear order. Assume that one
cannot define (with parameters) a C-structure with convex, bounded,
balls on V. Then any ∅-definable closed subset of Vn is a boolean
combination of inequalities between variables xi ≤ xj.

Conjecture
The same is true if V does not admit a ∅-definable C-structure with
convex bounded balls.



Introduction NIP Binary structures Higher arity

SKETCH OF THE PROOF

Step 2 If M is unstable, we find a linear order on some V ⊆M,
definable over parameters. By glueing together all
definable linear orders in the structure, we obtain a finite
cover M̃ of M composed of linear and circular orders.

Step 3 Any extra structure on M̃ can be defined locally by stable
relations. Because of the rank 1 assumption, such relations
have to be finite equivalence relations.
By standard topological arguments, local finite equivalence
relations are classified by finite covers of the space.
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SPECULATIONS ON HIGHER ARITIES

I Possible structures of closed definable sets on ω-categorical
linear orders can be completely classified.

I In arity 3, there are interpretable trees, but the structure on
their branches is binary. One can then prove similar things
as in the binary cases with trees instead of linear orders.

I In arity n, one can find a tree with structure on the
branches of arity n− 1 and one can classify the structures
by induction.

I Some of those ideas might be interesting outside of the
NIP context.
Question: If M is finitely homogeneous and does not have
a formula φ(x̄, ȳ, z̄) which induces a (non-degenerate)
C-structure on an infinite set, is M interpretable in a
ternary structure?
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