Introduction to model theoretic techniques

Pierre Simon

Université Lyon 1, CNRS and MSRI

Introductory Workshop: Model Theory, Arithmetic Geometry and Number Theory

Introductory Workshop: Model Theory, Arithm / 36

Pierre Simon (Université Lyon 1, CNRS and I Introduction to model theoretic techniques

Basic definitions

- structure $\mathcal{M} = (M; R_1, R_2, ..., f_1, f_2, ..., c_1, c_2, ...)$
- formula $\exists x \forall y R_1(x, y) \lor \neg R_2(x, y)$
- language L
- satisfaction $\mathcal{M} \models \varphi$ $\bar{a} \in M, \quad \mathcal{M} \models \psi(\bar{a})$
- theory T: (consistent) set of sentences
- model $\mathcal{M} \models \mathcal{T}$
- definable set ψ(x̄) → ψ(M) = {ā ∈ M^{|x̄|} : M ⊨ ψ(ā)} usually definable set means definable with parameters: θ(x̄; b̄) → θ(M; b̄) = {ā ∈ M^{|x̄|} : M ⊨ θ(ā; b̄)}

Introductory Workshop: Model Theory, Arithr / 36

Compactness

Theorem (Compactness theorem)

If all finite subsets of T are consistent, then T is consistent.

Introductory Workshop: Model Theory, Arithm / 36

Uses of compactness

- Transfer from finite to infinite.
- From infinite to finite:

Approximate subgroups (see tutorial on multiplicative combinatiorics)

Szemeredí's theorem (Elek-Szegedy, Towsner ...)

• Obtaining uniform bounds

Understanding definable sets of M

Th(M): set of sentences true in the structure M.

- Elementary equivalence: M ≡ N if Th(M) = Th(N).
 Example: If K and L are two algebraically closed fields of the same characteristic, then K ≡ L.
- A theory T is *complete* if it is of the form Th(M).
- Elementary extension: $M \leq N$ if $M \subseteq N$ and for all $\varphi(\bar{x})$ and $\bar{a} \in M$, $M \models \varphi(\bar{a}) \iff N \models \varphi(\bar{a}).$

Theorem (Löwenheim-Skolem)

Assume that L is countable, M infinite.

- Let $\kappa \ge |M|$, then there is an elementary extension $M \prec N$, where $|N| = \kappa$.
- If $A \subseteq M$, then there is $M_0 \preceq M$ containing A, $|M_0| = |A| + \aleph_0$.
- Monster model $\mathcal{U}, \mathbb{C}, \mathbb{M}, ...$

Types

Let $B \subset M$ and $\bar{a} \in M^k$.

Definition

The *type* of \bar{a} over B is the set of formulas

$$\{ arphi(ar{x};ar{b}):ar{b}\in B^{|ar{b}|}, M\models arphi(ar{a};ar{b}) \}.$$

Fact

The tuples $\bar{a}, \bar{b} \in \mathcal{U}^k$ have the same type over $B \subset \mathcal{U}$ iff there is an automorphism $\sigma : \mathcal{U} \to \mathcal{U}$ fixing B pointwise such that $\sigma(\bar{a}) = \bar{b}$.

The set of types over *B* (in a given variable \bar{x}) is denoted by $S_{\bar{x}}(B)$. It is a totally disconnected compact space.

Quantifier elimination

Definition

A theory T eliminates quantifiers in a language L if every L-formula is equivalent modulo T to a formula without quantifiers.

Examples:

- $Th(\mathbb{C}; 0, 1, +, -, *)$ eliminates quantifiers;
- $Th(\mathbb{R}; 0, 1, +, -, *)$ does not eliminate quantifiers:

$$\varphi(x) \equiv \exists y(x^2 = y)$$

- $Th(\mathbb{R}; 0, 1, +, -, *, \leq)$ eliminates quantifiers.
- If T eliminates quantifiers and $M, N \models T$, then

$$M \subseteq N \Longrightarrow M \preceq N.$$

Examples

- ($\mathbb{N};\leq$);
- (C; 0, 1, +, -, *);
- ($\mathbb{R}; 0, 1, +, -, *, \leq$).

Introductory Workshop: Model Theory, Arithmy / 36

Imaginaries

Let $X \subseteq M^k$ be a definable set and $E \subseteq X^2$ a definable equivalence relation. Then X/E is an *imaginary sort* of M.

We say that M eliminates imaginaries if every imaginary sort is definably isomorphic to a definable set.

Examples: \mathbb{C} , \mathbb{R} eliminate imaginaries.

Codes of definable sets

End of talk 1.

Introductory Workshop: Model Theory, Arithm / 36 Let $A \subseteq M$.

- Definable closure dcl(A):
 e ∈ dcl(A) if there is φ(x; ā) ∈ tp(e/A) such that e is the only element in M satisfying φ(x; ā).
 Equivalently, e ∈ dcl(A) if and only if e = f(ā) for some definable function f and tuple ā of elements of A.
- Algebraic closure acl(A):
 e ∈ acl(A) if there is φ(x; ā) ∈ tp(e/A) such that there are finitely many elements in M satisfying φ(x; ā).

Definable types

Definition

A type tp (\bar{a}/M) is *definable* if for every formula $\varphi(\bar{x}; \bar{y})$, there is a formula $d\varphi(\bar{y})$ with parameters in M, such that for any tuple $\bar{b} \in M$:

$$M \models \varphi(\bar{a}; \bar{b}) \iff M \models d\varphi(\bar{b})$$

Examples: ACF, (\mathbb{Q}, \leq) . Pushforward f_*p .

Stable theories

Definition

A theory T is *stable* if all types over all models of T are definable.

Examples:

- ACF;
- abelian groups;
- DCF₀: differentially closed fields of char 0;
- SCP_{p,n}: separably closed fields.

Some unstable theories:

- $Th(\mathbb{R}, 0, 1, +, -, *, \leq);$
- valued fields.

Independence (non-forking)

Definition

(*T* is stable) We say that \bar{a} is independent from \bar{b} over *M*, or tp($\bar{a}/M\bar{b}$) does not fork over *M*, written

$$ar{a} igcup_M ar{b}$$

if tp $(\bar{a}/M\bar{b})$ is according to the definition scheme of tp (\bar{a}/M) .

Examples: ACF, divisible torsion free abelian groups.

In stable theories, we can generalize this definition to an arbitrary base set A instead of M.

Some properties of independence

Existence Let $p \in S(A)$ and $A \subseteq B$, then there is $q \in S(B)$ extending p and non-forking over A. Algebraic closure $c \, \bigcup_{A} c$ if and only if $c \in acl(A)$. Transitivity $\bar{a} \perp_{A} \bar{b}, \bar{c}$ iff $\bar{a} \perp_{A} \bar{b}$ and $\bar{a} \perp_{A} \bar{b}$ Symmetry $\bar{a} \perp_{A} \bar{b}$ iff $\bar{b} \perp_{A} \bar{a}$ Uniqueness if M is a model, $p \in S(M)$ and $M \subseteq B$, then p has a unique non-forking extension to a type over B. If we replace M by an aribtrary subset A, then p may have up to 2^{\aleph_0} non-forking extensions over *B*.

Stable formulas

Definition

A formula $\varphi(\bar{x}; \bar{y})$ has the order property if for every *n*, we can find tuples $\bar{a}_1, \ldots, \bar{a}_n$ and $\bar{b}_1, \ldots, \bar{b}_n$ such that:

$$\varphi(\bar{a}_i, \bar{b}_j) \iff i \leq j.$$

Fact

Let M be a structure (in a countable language), T = Th(M) and $M \prec U$ a monster model. The following are equivalent:

- T is stable;
- no formula $\varphi(\bar{x}; \bar{y})$ has the order property;
- for any $\bar{a} \in \mathcal{U}$, $B \subset \mathcal{U}$, $tp(\bar{a}/B)$ is definable;
- for any $B \subset U$, there are at most $|B|^{\aleph_0}$ types over B.

Example: Separably closed fields.

Geometric stability theory

Definition

A definable set X is *strongly minimal* if any definable subset of X is finite or cofinite.

Examples:

- An infinite set with no structure;
- A k-vector space V;
- An algebraically closed field.

If X is a strongly minimal set, the algebraic closure operator acl(A) satisfies exchange and therefore gives rise to a dimension function dim(A) on subsets of X.

We classify such sets X according to the behavior of *acl*:

Disintegrated $acl(A) = \bigcup_{a \in A} acl(\{a\});$ Locally modular $\dim(A \cup B) + \dim(A \cap B) = \dim(A) + \dim(B)$ for A, Bclosed, $\dim(A \cap B) \ge 1;$

Not locally modular The condition above does not hold.

Definition

A type p(x) is minimal if for every formula $\varphi(x)$, either $p(\mathcal{U}) \cap \varphi(\mathcal{U})$ or $p(\mathcal{U}) \setminus \varphi(\mathcal{U})$ is finite.

If p(x) is a minimal type, then as in the case of strongly minimal formulas, one considers the algebraic closure operator acl(A) on subsets $A \subset p(U)$ and the associated dimension function.

End of talk 2.

Introductory Workshop: Model Theory, Arithm / 36

Pierre Simon (Université Lyon 1, CNRS and I Introduction to model theoretic techniques

VC-dimension

Let X be a set and $C \subseteq \mathfrak{P}(X)$ a family of subsets of X. Let $A \subseteq X$, then C shatters A if $C \cap A = \mathfrak{P}(A)$.

Definition

The family C has VC-dimension d if it shatters some subset $A \subseteq X$ of size d, but no subset of size d + 1.

If C shatters subsets of arbitrary large (finite) size, we say that it has infinite VC-dimension.

Examples: The family of intervals of (\mathbb{R}, \leq) has VC-dimension 2. The family of half-spaces of \mathbb{R}^2 has VC-dimension 3. Define the *shatter function* $\pi_{\mathcal{C}}$ of \mathcal{C} as

$$\pi_{\mathcal{C}}(n) = \max_{A \subseteq X, |A| \le n} |\mathcal{C} \cap A|.$$

Note that $\pi_{\mathcal{C}}(n) = 2^n$ if and only if VC-dim $(\mathcal{C}) \ge n$.

Fact (Sauer-Shelah lemma) Either : • $\pi_{\mathcal{C}}(n) = 2^n$ for all n (infinite VC-dimension) or • $\pi_{\mathcal{C}}(n) = O(n^d)$ (one can take d = VC-dim(\mathcal{C})).

The VC-density of C defined as the infimum of r such that $\pi_{\mathcal{C}}(n) = O(n^r)$ is often more meaningful than the VC-dimension.

Introductory Workshop: Model Theory, Arithm

NIP theories

Let *M* be a structure and T = Th(M).

$$\varphi(\bar{x};\bar{y}) \longrightarrow \mathcal{C}_{\varphi} = \{\varphi(M;\bar{b}): \bar{b} \in M^{|\bar{y}|}\} \subseteq \mathfrak{P}(M^{|\bar{x}|}).$$

Definition

The formula $\varphi(\bar{x}; \bar{y})$ is *NIP* (No Independence Property) if the family C_{φ} has finite VC-dimension. The theory T is NIP if all formulas are.

In other words, the formula $\varphi(\bar{x}; \bar{y})$ has IP if for all n, one can find $\bar{a}_1, \ldots, \bar{a}_n \in M^{|\bar{x}|}$ and a family $(\bar{b}_J : J \in \mathfrak{P}(\{1, \ldots, n\}))$ such that:

$$M\models\varphi(\bar{a}_i;\bar{b}_J)\iff i\in J.$$

Introductory Workshop: Model Theory, Arithr

Examples:

- The formula $x \leq y$, where \leq is a linear order is NIP;
- The formula x|y (x divides y) in \mathbb{N} has IP.
- Every stable theory is NIP;
- $Th(\mathbb{R}; 0, 1, +, -, *, \leq)$ is NIP;
- Some theories of valued fields: ACVF, $Th(\mathbb{Q}_p)$ are NIP.

Lemma (VC-duality)

A formula $\varphi(\bar{x}; \bar{y})$ is NIP if and only if the opposite formula $\varphi^{opp}(\bar{y}; \bar{x})$ is NIP.

Indiscernible sequences

Definition

Let $(I, <_I)$ be a linear order and $A \subset M$. A sequence $(a_i : i \in I)$ of tuples of M is *indiscernible* over A if for all $i_1 <_I \cdots <_I i_k$ and $j_1 <_I \cdots <_I j_k$, we have

$$\operatorname{tp}(a_{i_1}\ldots a_{i_k}/A) = \operatorname{tp}(a_{j_1}\ldots a_{j_k}/A).$$

Fact (Ramsey+Compactness)

Given any sequence $(a_i : i < \omega)$ of tuples and a linear order $(I, <_I)$, there is an indiscernible sequence $(b_i : i \in I)$ in \mathcal{U} such that for any $i_1 <_I \cdots <_I i_k$ if

$$\mathcal{U}\models\varphi(b_{i_1},\ldots,b_{i_k}),$$

then there are $j_1 < \cdots < j_k < \omega$ such that

$$\mathcal{U}\models\varphi(a_{j_1},\ldots,a_{j_k}).$$

Lemma

T is NIP if and only if for any indiscernible sequence $(a_i : i < \omega)$ and any model M, the sequence of types $(tp(a_i/M) : i < \omega)$ converges.

More generally:

Lemma

The theory T is NIP if and only if for any set $A \subseteq U$, any sequence of types over A has a converging subsequence.

Theorem

If all formulas $\varphi(x; \bar{y})$, x a singleton, are NIP, then T is NIP.

o-minimality

Assume that the language L contains a distinguished binary relation \leq which defines a linear order on M.

Definition

The structure $(M, \leq, ...)$ is o-minimal if any definable subset of M is a finite union of intervals and points.

Fact

Assume that M is o-minimal, $a, b \in M \cup \{\pm \infty\}$ and let $f : (a, b) \to M$ be a definable function, then there are

$$a = a_0 < a_1 < \cdots < a_k = b$$

such that for each *i*, $f|_{(a_i,a_{i+1})}$ is either constant or a continuous monotonic bijection to an interval.

Fact (Cell decomposition)

Assume that M is o-minimal, then any definable subset of M^k is a finite union of cells.

Uniform finiteness

Fact

Let M be o-minimal. Let $\phi(x, \bar{y})$ be a formula, then there is some integer n such that any $\phi(x, \bar{b})$, $\bar{b} \in M$, defines a union of at most n intervals.

Corollary

Assume that M is o-minimal, then any structure elementarily equivalent to M is o-minimal. Hence o-minimiality is a property of the theory Th(M).

Examples of o-minimal structures

- \mathbb{R} , with the field structure;
- \mathbb{R}_{exp} : the field \mathbb{R} with the exponential function;
- \mathbb{R}_{an} : the field \mathbb{R} along with restricted analytic functions;
- $\mathbb{R}_{an,exp}$.

Back to definable types

Let $p \in S_{\bar{x}}(\mathcal{U})$ be definable over a model $M \prec \mathcal{U}$. Recall that this means that we have a mapping

$$\varphi(\bar{x};\bar{y}) \longrightarrow d_{\rho}\varphi(\bar{y}), \qquad d_{\rho}\varphi(\bar{y}) \in L_{M}$$

such that for all $ar{b} \in \mathcal{U}^{|ar{y}|}$;

$$\varphi(\bar{x};\bar{b})\in p\iff \mathcal{U}\models d_p\varphi(\bar{b}).$$

Product of definable types

Let p(x) and q(y) in S(M) be definable, then one can define the product $p \otimes q(x, y)$ as tp(a, b/M), where

$$b \models q$$
 and $a \models p | Mb$.

A Morley sequence of p over M is a sequence $(a_i : i < \omega)$ such that:

$$a_0 \models p \upharpoonright M$$
 $a_{k+1} \models p \upharpoonright Ma_0...a_k.$

Such a sequence is indiscernible over M.

Generically stable types

Definition

A type $p \in S(M)$ is generically stable if:

• p is definable;

• some/any Morley sequence $(a_i : i < \omega)$ of p is totally indiscernible (*i.e.*, every permutation of it is indiscernible).

Fact

A generically stable type commutes with any definable type.

Example: (ACVF) the generic type of a closed ball.

End of talk 3.

Introductory Workshop: Model Theory, Arithm / 36