Measures in NIP Theories

P. Simon

P. Simon Measures in NIP Theories

æ

Fact

A theory T is NIP iff for all $I = (a_i)_{i < \omega}$ indiscernible and all b, the types $tp(a_i/b)$ converge to a type Lim(I/b).

Fact

(NIP) A global type p does not fork over A iff it is Lstp(A)-invariant.

In particular : p does not fork over $M \iff p$ is M-invariant.

伺 ト イヨト イヨト

Let p_x, q_y be global *M*-invariant types. Let $a \models p$, $b \models q|_{\bar{M}a}$. Define $p_x \rtimes q_y = \operatorname{tp}(a, b/\bar{M})$.

● ▶ ★ 臣 ▶ ★ 臣 ▶

Let p be M-invariant.

$$p^{(1)}=p$$

 $p^{(n+1)}=p^{(n)}
times p$

 $p^{(\omega)}$ is the Morley sequence of p. Proposition The M-invariant type p is uniquely determined by $p^{(\omega)}I_M$. Proof.

Let
$$b \in \overline{M}$$
, then $pI_{Mb} = Ev(p^{(\omega)}I_M/Mb)$.

- ∢ ⊒ →

Let $p \in S(\overline{M})$ be A-invariant, then p is Borel-definable over A.

Proof. Let $b \in \overline{M}$, $\phi(x; y) \in L$.

$$(A_n) : \text{There is } (a_1, \dots, a_n) \models p^{(n)} \text{ such that } :$$
$$\models \neg (\phi(a_i; b) \leftrightarrow \phi(a_{i+1}; b)), \text{ for all } i < n,$$
$$\models \phi(a_n; b).$$
$$(B_n) : \text{Same, with } \models \neg \phi(a_n; b).$$

Then $p \models \phi(x; b)$ iff, for some n, (A_n) holds, but (B_{n+1}) does not.

Assume :

- ► For every A, no type over A forks over A,
- For every A, Lascar strong types on A coincide with strong types.

Then, every type over A = acl(A) extends to an A-invariant type.

ex. o-minimal, C-minimal (ACVF).

Let $p_x \in S(\bar{M})$ be A-invariant. TFAE :

- ▶ p is definable and finitely satisfiable in any $M \supseteq A$,
- $p^{(\omega)}$ is totally indiscernible,
- For any invariant $q_y \in S(\overline{M})$, $p_x \rtimes q_y = q_y \rtimes p_x$,
- ▶ For any $A \subseteq B$, $p|_B$ has a unique global non-forking extension.

We say that p is generically stable.

A Keisler measure (of arity n) over A is a finitely additive function $\mu: L_n(A) \rightarrow [0, 1].$

$$egin{aligned} \mu(\phi(x)\wedge\psi(x))+\mu(\phi(x)ee\psi(x))&=\mu(\phi(x))+\mu(\psi(x)),\ \mu(op)&=1, \mu(ot)&=0 \end{aligned}$$

Let $\mathcal{M}_n(A)$ denote the space of Keisler measures on A in n variables. It is a closed subspace of $[0,1]^{L_n(A)}$, so it is compact.

 $S_n(A) \subset \mathcal{M}_n(A)$ is a closed subspace.

Keisler measure on A

$$\longleftrightarrow$$

Regular Borel probability measure on
$$S_n(A)$$
.

< 口 > < 回 > < 回 > < 回 > < 回 > <

æ

For X, Y definable sets, write $X \sim Y$ if $\mu(X \triangle Y) = 0$ Definition Let $\mu \in \mathcal{M}_n(A)$, a type p is random for μ if

$$p \vdash \phi(x) \rightarrow \mu(\phi(x)) > 0.$$

Let $S(\mu)$ be the set of random types for μ . It is a closed subset of $S_n(A)$.

Proposition

- $Def(A)/ \sim is bounded.$
- $S(\mu)$ is bounded.

御 と く ヨ と く ヨ と

A measure μ is smooth over M (or realized in M), if $\mu|_M$ has a unique extension to any $M \prec N$.

Theorem (Keisler)

(NIP) Let $\mu \in \mathcal{M}(M)$ be a measure. Then there exists an extension $\mu \subset \nu$ to a global measure and $M \prec N$ such that ν is smooth over N.

A global measure is *fim* (over *M*) if : for all $\phi(x; y)$, and all $\epsilon > 0$, there is $a_1, \ldots, a_n \in M$ s.t.

For all
$$b\in ar{M}, |\mu(\phi(x;b))-Av(a_i)(\phi(x;b))|\leq \epsilon.$$

Where $Av(a_i)$ is the average measure of (a_1, \ldots, a_n) : $Av(a_i) = \frac{1}{n} (tp(a_1/\bar{M}) + \ldots + tp(a_n/\bar{M})).$

Example

A type is fim iff it is generically stable.

A global measure μ is definable over M if it is M-invariant, and if for all $\phi(x; y)$, and all $\alpha \in [0, 1]$, the set $F_{\alpha} = \{b \in \overline{M} : \mu(\phi(x; b)) \leq \alpha\}$ is a closed set of S(M).

We say the measure is *Borel-definable* If the F_{α} are Borel subsets of S(M).

Definition

A global measure μ is finitely satisfiable over M if all types in $S(\mu)$ are finitely satisfiable in M.

Proposition

An fim measure is definable and finitely satisfiable.

If μ is smooth over *M*, then μ is fim.

Corollary

A smooth measure is definable and finitely satisfiable.

Let $\mu_{(x,y)}$ be a measure in two variables. The two variables x and y are *separated* if, for all $\phi(x)$ and $\psi(y)$:

$$\mu(\phi(x) \land \psi(y)) = \mu(\phi(x)).\mu(\psi(y)).$$

Proposition

Let $\mu_x \in \mathcal{M}(M)$ be smooth over M, and let $\nu_y \in \mathcal{M}(M)$ be any measure.

Then there is a unique $\lambda_{(x,y)} \in \mathcal{M}(M)$ extending μ_x and ν_y and such that the variables x and y are separated.

Let $\mu \in \mathcal{M}(M)$, and take $\phi(x; y)$ and $\epsilon > 0$. There is $p_1, \ldots, p_n \in S(M)$ such that :

For all
$$b \in M$$
, $|\mu(\phi(x; b)) - Av(p_i)(\phi(x; b))| \le \epsilon$.

Proof.

Let $\mu \subset \nu$ a smooth extension of μ to some $M \prec N$. Take $x_1, \ldots, x_n \in N$ given by the previous theorem for ν . Let $p_i = tp(x_i/M)$.

Corollary

Any M-invariant measure is Borel-definable over M.

Let μ_x, ν_y be global *M*-invariant measures. Then we can define $(\mu \rtimes \nu)_{(x,y)}$ by :

$$\mu \rtimes \nu(\phi(x,y)) = \int_{p \in S_x(M)} \nu(\phi(p,y)) d\mu.$$

Where $\nu(\phi(p, y)) = \nu(\phi(a, y))$, for any $a \in \overline{M}$, $a \models p$.

If μ is *M*-invariant, define :

$$\mu^{(1)} = \mu$$
$$\mu^{(n+1)} = \mu^{(n)} \rtimes \mu$$

白 と く ヨ と く ヨ と …

Let $\mu_{(x_1, x_2,...)}$ be a measure in ω variables.

Definition

 μ is an *indiscernible sequence* (over A) if, for all $i_1 < i_2 < \cdots < i_n$, $j_1 < j_2 < \cdots < j_n$, all formula $\phi \in L(A)$, we have :

$$\mu(\phi(x_{i_1},\ldots,x_{i_n}))=\mu(\phi(x_{j_1},\ldots,x_{j_n})).$$

御 と く ぼ と く ほ と …

Let $\mu_{(x_1,x_2,...,y)}$ be a measure in $\omega + 1$ variables over a set A.

Proposition

Assume that μ , restricted to the variables $(x_1, x_2, ...)$, is an indiscernible sequence. Assume that $(x_i)_{i < \omega}$ and y are separated. Then, for all formula $\phi(x; y)$, the sequence $\mu(\phi(x_i, y))$ converges.

If μ is a global *M*-invariant measure, then $\mu^{(\omega)}$ is an indiscernible sequence.

The analogues of results for types hold :

- An *M*-invariant measure μ is uniquely determined by $\mu^{(\omega)}|_{M}$,
- For any $b \in \overline{M}$, $\mu|_{Mb} = Ev(\mu^{(\omega)}/Mb)$.

Let μ_x be an M-invariant global measure. TFAE :

- µ is definable and finitely satisfiable,
- $\mu^{(\omega)}$ is totally indiscernible,
- $\mu_x \rtimes \nu_y = \nu_y \rtimes \mu_x$ for all invariant measures ν_y ,
- μ is fim,
- ▶ For all $M \subset N$, $\mu|_N$ has a unique global non-forking extension.

Let $p \in S(A)$ be a type, non forking over A. Then, there exists a global A-invariant Keisler measure μ extending p.

Definition

A type $p \in S(A)$ is fsg if it has a global extension $p' \in S(\overline{M})$ s.t. for any $|A|^+$ -saturated model N containing A, and every formula $\phi(x; b)$ such that $p' \models \phi(x; b)$, there is $a \in p(N)$ s.t. $\models \phi(a; b)$.

Proposition

For $p \in S(A)$, non-forking over A, the following are equivalent :

- p is fsg
- The invariant measure μ is generically stable.

・日・ ・ ヨ・ ・ ヨ・

Let G be a definable group.

Definition

The group *G* is *definably amenable* if *G* admits a global *G*-invariant Keisler measure.

Examples :

- G abelian
- ▶ G stable and connected

Assume $\mu \in \mathcal{M}(M)$ is G-invariant. Then, μ extends to a global generically stable G(M)-invariant measure μ' .

In particular, $Stab(\mu') = \{g \in G : g.\mu' = \mu'\}$ is a type definable subgroup of G.

Proposition

Assume μ is a generically stable G-invariant measure, then μ is the unique G-invariant measure on G.

Application

Let G be an abelian group, assume G has no non trivial type-definable subgroup. Then G has an invariant generically stable type.

通 と く ヨ と く ヨ と

A group G it f.s.g. if there is a global type p and a small model M_0 such that every translate of p is finitely satisfiable in M_0 .

Proposition

An f.s.g. group admits a G-invariant generically stable Keisler measure.

In particular, it is the unique G-invariant measure on G.

Let T be an o-minimal theory.

Fact

In dimension 1, any atomless measure is smooth.

Proposition

Any generically stable measure is smooth.

Theorem

Let G be a definable, definably compact group, then G is f.s.g. In particular, it has a unique G-invariant Keisler measure, which is moreover smooth.

Let T be an o-minimal expansion of a real closed field, **R** a model of T, expansion of the standard model. Take any Borel measure on \mathbf{R}^n . Then the Keisler measure defined by it is smooth.