# Algorithmic number theory and cryptography 2016/01/07 - Inria Bordeaux 

## Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest

## Elliptic curves

## Definition (char $k \neq 2,3$ )

An elliptic curve is a plane curve with equation

$$
y^{2}=x^{3}+a x+b \quad 4 a^{3}+27 b^{2} \neq 0 .
$$



Exponentiation:

$$
(\ell, P) \mapsto \ell P
$$

Discrete logarithm:

$$
(P, \ell P) \mapsto \ell
$$

## Scalar multiplication on an elliptic curve



## Scalar multiplication on an elliptic curve



## Scalar multiplication on an elliptic curve



## ECC (Elliptic curve cryptography)

## Example (NIST-p-256)

- E elliptic curve
$y^{2}=x^{3}-3 x+41058363725152142129326129780047268409114441015993725554835256314039467401291$
over $\mathbb{F}_{115792089210356248762697446949407573530086143415290314195533631308867097853951}$
- Public key:
$P=(48439561293906451759052585252797914202762949526041747995844080717082404635286$, $36134250956749795798585127919587881956611106672985015071877198253568414405109)$,
$Q=(76028141830806192577282777898750452406210805147329580134802140726480409897389$, 85583728422624684878257214555223946135008937421540868848199576276874939903729)
- Private key: $\ell$ such that $Q=\ell P$.
- Used by the NSA;
- Used in Europeans biometric passports.


## Higher dimension

## Dimension 2:

Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

$$
\begin{aligned}
& D=P_{1}+P_{2}-2 \infty \\
& D^{\prime}=Q_{1}+Q_{2}-2 \infty
\end{aligned}
$$



## Higher dimension

Dimension 2:
Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$



## Higher dimension

Dimension 2:
Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$



## Higher dimension

## Dimension 3

Jacobians of hyperelliptic curves of genus 3 .


Jacobians of quartics.


## Abelian surfaces

- For the same level of security, abelian surfaces need fields half the size as for elliptic curves (good for embedded devices);
- The moduli space is of dimension 3 compared to $1 \Rightarrow$ more possibilities to find efficient parameters;
- Potential speed record (the record holder often change between elliptic curves and abelian surfaces);
- But lot of algorithms still lacking compared to elliptic curves!


## Security of elliptic curves cryptography

The security of an elliptic curve $E / \mathbb{F}_{q}$ depends on its number of points $\# E\left(\mathbb{F}_{q}\right)$. But

- Endomorphisms acts on (the points of) $E$;
- Isogenies map an elliptic curve to another one;
- Pairings map an elliptic curve to $\mathbb{F}_{q^{e}}^{*}$;
- $E$ can be lifted to an elliptic curve over a number field (where we can compute elliptic integrals);
- The Weil restriction maps $E / \mathbb{F}_{q^{d}}$ to an abelian variety over $\mathbb{F}_{q}$ of higher dimension.


## Security of elliptic curves cryptography

## Most important question

How to assess the security of a particular elliptic curve?

- Point counting;
- Endomorphism ring computation (finer, more expensive);
- Relations to surrounding (isogenous) elliptic curves.


## Main research theme

Consider elliptic curves and higher dimensional abelian varieties as families, via their moduli spaces.

## Remark

- The geometry of the moduli space of elliptic curves is incredibly rich (Wiles' proof of Fermat's last theorem);
- This rich structure explain why elliptic curve cryptography is so powerful.


## Moduli spaces

- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, its isomorphism class is given by the $j$-invariant

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}} .
$$

The (coarse) moduli space of elliptic curves is isomorphic via the $j$-invariant to the projective line $\mathbb{P}^{1}$;

- The modular curve $X_{0}(3) \subset \mathbb{P}^{2}$ cut out by the modular polynomial

$$
\begin{gathered}
\varphi_{3}(X, Y)=X^{4}+Y^{4}-X^{3} Y^{3}+2232 X^{2} Y^{3}+2232 X^{3} Y^{2}-1069956 X^{3} Y-1069956 X Y^{3} \\
+36864000 X^{3}+36864000 Y^{3}+2587918086 X^{2} Y^{2}+8900222976000 X^{2} Y \\
+8900222976000 X Y^{2}+452984832000000 X^{2}+452984832000000 Y^{2}
\end{gathered}
$$

$-770845966336000000 X Y+1855425871872000000000 X+1855425871872000000000 Y$
describes the pairs of 3-isogenous elliptic curves $\left(j_{E_{1}}, j_{E_{2}}\right)$;

- The moduli space of abelian surfaces is of dimension 3;
- The class polynomials

$$
\begin{gathered}
128 i_{1}^{2}+4456863 i_{1}-7499223000=0 \\
\left(256 i_{1}+4456863\right) i_{2}=580727232 i_{1}-1497069297000 \\
\left(256 i_{1}+4456863\right) i_{3}=230562288 i_{1}-421831293750
\end{gathered}
$$

describe the (dimension 0) moduli space of abelian surfaces with complex multiplication by $\mathbb{Q}(X) /\left(X^{4}+13 X^{2}+41\right)$.

## Isogeny graphs on elliptic curves

## Definition

Isogenies are morphisms between elliptic curves.

Isogenies give links between

- arithmetic;
- endomorphism rings;
- class polynomials;
- modular polynomials;
- point counting;
- canonical lifting;
- moduli spaces;
- transfering the discrete logarithm problem.


## Isogeny graphs on elliptic curves

|  | Dimension 1 | Dimension 2 |
| :---: | :---: | :---: |
| $\# \mathbb{F}_{q}$ | $2^{256}$ | $2^{128}$ |
| $\# \mathscr{M}_{g}\left(\mathbb{F}_{q}\right)$ | $2^{256}$ | $2^{384}$ |
| \#Isogeny graph | $2^{128}$ | $2^{192}$ |

Table: Orders of magnitudes for 128 bits of security

## Isogeny graphs on elliptic curves



## Isogeny graphs in dimension 2



## Isogeny graphs in dimension 2



Algorithmic number theory and cryptography

Isogeny graphs in dimension 2


## Isogeny graphs in dimension 2



