Modern Cryptology: from public key cryptography to homomorphic encryption 2015/12 - Yaoundé, Cameroun

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest
Institut de Mathématiques de Bordeaux
Équipe MACISA, Laboratoire International de Recherche en Informatique et Mathématiques Appliquées

université
${ }^{\text {de }}$ BORDEAUX

- Fermat, Euler: if $x \in(\mathbb{Z} / N \mathbb{Z})^{*}$ then $x^{\varphi(n)}=1$.
- RSA: $n=p q . \varphi(n)=(p-1)(q-1)$.
- If N is a product of disjoint primes, then for all $x \in \mathbb{Z} / N \mathbb{Z}, x^{1+\varphi(n)}=x$.

Proof.

If $N=p$, then Fermat shows this work for all $x \neq 0$, and 0 is trivial to check. If $N=\prod p_{i}$, by the CRT $\mathbb{Z} / N \mathbb{Z} \simeq \prod \mathbb{Z} / p_{i} \mathbb{Z}$ as a ring and we are back to the prime case.

- In RSA, if e is prime to $\varphi(n)$ and d is its inverse, then for all $x \in \mathbb{Z} / N \mathbb{Z}$, $x^{e d}=x$.
- Encryption: $x \mapsto x^{e}$; Decryption: $y \mapsto y^{d}$.
- Signature: $x \mapsto x^{d}$; Verification: $y \mapsto y^{e}$.

Reductions on RSA

Given the public key (N, e)

- RSADP (Decryption Problem): from $y=x^{e}$ find x;
- RSAKRP (Key Recovery Problem): find d such that $x^{e d}=x$ for all $x \in \mathbb{Z} / N \mathbb{Z}^{*}$
- RSAEMP (Exponent Multiple Problem): find k such that $x^{k}=1$ for all $x \in \mathbb{Z} / N \mathbb{Z}^{*}$ (so k is a multiple of $(p-1) \vee(q-1)$);
- RSAOP (Order Problem): find $\varphi(n)$;
- RSAFP (Factorisation Problem): recover p and q.

Theorem

$R S A K R P \Leftrightarrow R S A E M P \Leftrightarrow R S A F P \Leftrightarrow R S A O P \Rightarrow R S A D P$

Proof.

RSAFP \Rightarrow RSAOP \Rightarrow RSAKRP \Rightarrow RSAEMP. The hard part is to show that RSAEMP
\Rightarrow RSAFP. The goal is to find $x \neq \pm 1$ such that $x^{2}=1$. Then $x-1 \wedge n$ gives a prime factor. Write $k=2^{s} t$, and look for a random y at $x=y^{t}, x^{2}, x^{2^{2}}, \ldots x^{2^{j}}$ until we find 1 , say $x^{2^{j 0+1}}=1$. Then $x^{2^{j}}$ is a square root. The bad cases are when $x=y^{t}=1$ (but this has probability less than $1 / 4$) and when $x^{2^{j_{0}}}=-1$ (but this has probability less than $1 / 2$).

- $\left(m_{1} \cdot m_{2}\right)^{e}=m_{1}^{e} \cdot m_{2}^{e}$ so from several ciphertexts we can generate a lot more;
- As is, RSA is OW-CPA (if factorisation is hard) but malleable.
- Example of CCA2 attack: we know $c=m^{e}$; we ask to decipher a random $r: m_{r}=r^{d}$ and $c / r: m_{c / r}=(c / r)^{d}(c / r$ looks random). We recover $m=m_{r} m_{c / r}$.
- We want IND-CCA2 so we need to add padding.
- RSA-OAEP: The padding is $M \oplus G(r) \| r \oplus H(M \oplus G(r))$ where r is random and H and G are two hash functions.
- Best algorithm for factorisation is NFS: $2^{O\left(n^{1 / 3}\right)}$;
- Subexponential: Factor 2 in security needs factor 8 in key length.
- Small exponent: if $N>m^{e}$ finding m is easy. This can happen if the same message is sent to several user with public keys (N_{i}, e); by the CRT we recover $m^{e} \bmod N=\prod N_{i}$.
- If e has a small order in $(\mathbb{Z} / \varphi(N) \mathbb{Z})^{*}$ iterating the encryption yields the decryption.
- If d is small, for instance let $p<q<2 p$, and suppose that $d<n^{1 / 4} / 3$. Write ed-1=k (n); then for n big enough

$$
\left|\frac{e}{n}-\frac{k}{d}\right|<\frac{1}{2 d^{2}}
$$

k / d can then be recovered from the continued fraction of e / n which is computed using Euclide's algorithm.

- Let $p>2$ be a prime. $\left(\mathbb{Z} / p \mathbb{Z}^{*}, \times\right)$ is a cyclic group of order $p-1$;
- There are $(p-1) / 2$ squares and $(p-1) / 2$ non squares;
- If $x \in \mathbb{Z} / p \mathbb{Z}^{*}$ then x is a square if and only if $x^{\frac{p-1}{2}}=1$ (by Fermat $x^{p-1}=1$ for all $x \in \mathbb{Z} / p \mathbb{Z}^{*}$);
- Legendre symbol:

$$
\left(\frac{x}{p}\right)= \begin{cases}1 & x \text { is a square } \\ -1 & x \text { is not a square } \\ 0 & x=0 \bmod p\end{cases}
$$

- $\left(\frac{x}{p}\right)=x^{\frac{p-1}{2}}(\bmod p)$;
- Multiplicativity: $\left(\frac{x y}{p}\right)=\left(\frac{x}{p}\right)\left(\frac{x}{q}\right)$;
- Quadratic reciprocity: p, q primes >2 :

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}} .
$$

Jacobi symbol

- Jacobi symbol: if n is odd, define the Jacobi symbol by extending the Legendre symbol multiplicatively on the bottom argument:

$$
\left(\frac{x}{n_{1} n_{2}}\right)=\left(\frac{x}{n_{1}}\right)\left(\frac{x}{n_{2}}\right) ;
$$

- Extension of quadratic reciprocity:

$$
\left(\frac{m}{n}\right)=(-1)^{\frac{m-1}{2} \frac{n-1}{2}}\left(\frac{n}{m}\right) \quad(m \text { and } n \text { odd and coprime })
$$

with the extra relations $\left(\frac{-1}{n}\right)=(-1)^{\frac{n-1}{2}},\left(\frac{2}{n}\right)=(-1)^{\frac{n^{2}-1}{8}}$;
\Rightarrow The Jacobi symbol can be computed in polynomial time;

- Primality test: if $\left(\frac{x}{n}\right) \neq x^{\frac{n-1}{2}}$ then n is not prime (and if n is not prime at least half the x coprime to n will be witnesses).

Digression: Miller-Rabin

Miller-Rabin primality test

- If n is prime and $n-1=d 2^{t}$, then for all a prime to n either
- $a^{d}=1 \bmod n$
- or $a^{d 2^{u}}=-1 \bmod n($ for $0 \leqslant u \leqslant t-1)$
- for any odd composite n, at least $3 / 4$ of the bases a are witnesses for the compositeness of n.
- Let $n=p q$ be an RSA number, by the CRT $\left(\mathbb{Z} / n \mathbb{Z}^{*}, \times\right)=\left(\mathbb{Z} / p \mathbb{Z}^{*} \times \mathbb{Z} / q \mathbb{Z}^{*}, \times\right)$;
- $\left(\frac{x}{n}\right)=\left(\frac{x}{p}\right)\left(\frac{x}{q}\right)$ so if x is prime to $n,\left(\frac{x}{n}\right)=1$ when x is a square modulo n ($=$ square modulo p and square modulo q) or when x is neither a square modulo p and q;
- Computing $\left(\frac{x}{n}\right)$: polynomial time;
- Deciding if x is a real square (and computing the square root) or false square: factorisation of n
- $x \mapsto x^{2}$ is a one way trapdoor function!

Heads or tails:

- Bob choose $n=p q$ and sends x such that $\left(\frac{x}{n}\right)=1$;
- Alice answers "real square" or "false square";
- Bob sends p and q so Alice can verify if she was right or not.
- Secret key of Alice: p, q, s mod $n=p q$;
- Public key of Alice: $n=p q, r=s^{2}$;

Zero Knowledge identification:

- Alice chooses a random u mod n, computes $z=u^{2}$ and sends $t=z r=u^{2} s^{2}$ to Bob;
- Bob either chooses
- To check z : he asks u to Alice and checks that $z=u^{2}$;
- To check t : he asks $u s$ to Alice and checks that $t=(u s)^{2}$.
- A liar will either produce a false u or a false t and has $1 / 2$ chances to be catched, Bob will ask for several rounds (30);
- To always give the correct answer mean that Alice knows the secret s or is very lucky (probability $1 / 2^{30}$).
- We want to get a factor of a composite number n (see primality tests);
- If $n=x^{2}-y^{2}$ then $n=(x-y)(x+y)$;
- More generally if $x^{2}=y^{2} \bmod n$ then $x-y \wedge n$ may be a non trivial factor (Exercice: if $n=p q$ what is the probability to get a non trivial factor?)
- n is B-smooth if n can be written as a product of integer $\leqslant B$;
- Canfield-Erdös-Pomerance: The probability that a number $x \leqslant n$ is B-smooth is

$$
u^{-u(1+o(1)}
$$

where $u=\frac{\log n}{\log B}$ and when $\log n^{\varepsilon}<u<\log n^{1-\varepsilon}$.

- Subexponential functions: $L_{x}(\alpha, \beta)=\exp \left(\beta \log ^{\alpha} x \log \log ^{1-\alpha} x\right)$;
- The probability for a number of size $L_{x}(\alpha, \beta)$ to be $L_{x}(\gamma, \delta)$-smooth is $L_{x}(\alpha-\gamma,-\beta(\alpha-\gamma) / \mu+o(1))$.
- Example: a number of size $n=L_{n}(1)$ is $L_{n}(1 / 2)$ smooth with probability $L_{n}(1 / 2)$;
- Dixon Linear Sieve: Generate squares modulo $n: y=x^{2} \bmod n$ where y is B-smooth with $B=L_{n}(1 / 2) \Rightarrow$ time $L_{n}(1 / 2)$ to find them;
- Collect enough relations to use linear algebra so that a suitable product of y is a square;
- Pomerance Quadratic Sieve: let $m=\left\lceil n^{1 / 2}\right\rceil$. Generate the y by $(m+a)^{2}=\left(m^{2}-n\right)+a^{2}+2 a m \bmod n$. The y are of size \sqrt{n} rather than n so the probability to be B-smooth is much higher;
- A detailed complexity analysis give a complexity of $L_{n}(1 / 2, \sqrt{2})$ $\left(B=L_{n}(1 / 2,1 / \sqrt{2})\right)$ for the linear sieve and $L_{n}(1 / 2,1)\left(B=L_{n}(1 / 2,1 / 2)\right)$ for the quadratic field.

General Number field sieve

- Invented by Pollard and Lenstra;
- Generate smooth numbers in two number fields to get relations (see commutative diagram);
- Linear algebra on the relations to get two squares;
- Use sieves (lattice sieving or line sieving) to generate the smooth numbers;
- In practice very complex (obstructions from the class group and the group of unity, taking square roots in number fields)...
- Heuristic Complexity $L_{n}\left(1 / 3,(64 / 9)^{1 / 3}\right)$;
- See for example CADO-NFS for an open-source implementation.

Definition (DLP)

Let $G=\langle g\rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h=g^{x}$. The discrete logarithm $\log _{g}(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\widetilde{O}(\sqrt{p})$ (in a generic group). So we can use the DLP for public key cryptography.
\Rightarrow We want to find secure groups with efficient addition law and compact representation.

Discrete logarithm problem

Given a cyclic group $G=\langle g\rangle$.

- Exponentiation $x \mapsto h=g^{x}$ (via fast exponentiation algorithm); DLP $h=g^{x} \mapsto x$.
- Shanks: the DLP in G can be done in time $n=\sqrt{\# G}$ via the Baby Steps, Giant Steps algorithm (time/memory tradeoff). Let $c=\sqrt{N}$ and write $x=y+c z, y, z \leqslant c$. Compute the intersection of $\left\{1, g, \ldots, g^{c}\right\}$ and $\left\{h g^{-c}, h g^{-2 c}, \ldots, h g^{-c c}\right\}$ to find $g^{z}=h g^{-c y}$.
- Pollard: take a random path of $s_{i}=g^{u_{i}} h^{v_{i}}$ (typically find a a suitable function and compute $\left.s_{i+1}=f\left(s_{i}\right)\right)$ until a collision is found: $s_{i}=s_{j}$. Then $h=g^{\frac{u_{i}-u_{j}}{v_{i}-v_{j}}}$. Birthday paradox: a collision is found in time \sqrt{n}.
- Pohlig-Helman: the DLP inside G can be reduced to the DLP inside subroups of side $p_{i} \mid n$.
- First reduction: CRT. $\mathbb{Z} / N \mathbb{Z}=\prod \mathbb{Z} / p_{i}^{e_{i}} \mathbb{Z}$, so to recover x we need to recover $x_{i}=x \bmod p_{i}^{e_{i}}$; via $h_{i}=g_{i}^{x_{i}}$ where $h_{i}=h^{N / p_{i}^{e_{i}}}, g_{i}=g^{N / p_{i}^{e_{i}}}$.
- Second reduction: Hensel lift. Write $x_{i}=x_{0}+x_{1} p$; and solve $h_{i}^{p_{i}-1}=g_{i}^{p_{i}^{e_{i}-1} x_{0}}$ to recover x_{0}; write $x_{i}-x_{0}=p\left(x_{1}+p x_{2}\right)$ and find x_{1} and so on.

Theorem

On a generic group, the complexity of the DLP is of complexity the square root of its largest prime divisor.

- But effective groups are not generic!
- $G=(\mathbb{Z} / N \mathbb{Z},+)$, the DLP is trivial (Euclide algorithm);
- $G=(\mathbb{Z} / p \mathbb{Z})^{*}$, same methods and subexponential complexity as for factorisation: $2^{O\left(n^{1 / 3}\right)}$;
- $G=\mathbb{F}_{2^{n}}^{*}$, quasi polynomial algorithm: $n^{\log n}$;
- Generic ordinary elliptic curve over \mathbb{F}_{p} : the generic algorithm is the best available;
\Rightarrow To get 128 bits of security find an elliptic curve E / \mathbb{F}_{p} where p has 256 bits and $E\left(\mathbb{F}_{p}\right)$ is prime (or almost prime).

Diffie-Helman Key Exchange

- How to share a secret key across a non confidential channel?
\Rightarrow Encrypt it via an asymmetric scheme;
- Or use the Diffie-Helman Key Exchange algorithm (predates asymmetric cryptography).
- Alice sends g^{a} to Bob
- Bob sends g^{b} to Alice
- The secret key is $g^{a b}$.
- Diffie-Helman Problem: Eve has to recover $g^{a b}$ from only g, g^{a} and g^{b}.
- DLP \Rightarrow DHP
- Public key: $\left(g, p=g^{a}\right)$, Private key: a;
- Encryption: $m \mapsto\left(g^{k}, s=p^{k} . m\right)$ (k random);
- Decryption: $m=s /\left(g^{k}\right)^{a}$.
- Warning: Never reuse k.
- Public key: $\left(g, p=g^{a}\right)$, Private key: a;
- $\Phi: G \rightarrow \mathbb{Z} / n \mathbb{Z}$;
- Signature: $m \mapsto\left(u=\Phi\left(g^{k}\right), v=\left(m+a \Phi\left(g^{k}\right)\right) / k\right) \in(\mathbb{Z} / n \mathbb{Z})^{2}$;
- Verification: $u=\Phi\left(g^{m \nu^{-1}} p^{u \nu^{-1}}\right)$.
- Alice publish $\left(g, p=g^{a}\right)$, her secret is a.
- Alice choose a random x and sends $q=g^{x}$;
- Either Bob asks for x and checks that $q=g^{x}$;
- Either Bob asks for $a+x$ and checks that $q \cdot p=g^{a+x}$.

Elliptic curves

Definition (char $k \neq 2,3$)
An elliptic curve is a plane curve with equation

$$
y^{2}=x^{3}+a x+b \quad 4 a^{3}+27 b^{2} \neq 0
$$

Exponentiation:

$$
(\ell, P) \mapsto \ell P
$$

Discrete logarithm:

$$
(P, \ell P) \mapsto \ell
$$

Scalar multiplication on an elliptic curve

Scalar multiplication on an elliptic curve

Scalar multiplication on an elliptic curve

ECC (Elliptic curve cryptography)

Example (NIST-p-256)

- E elliptic curve $y^{2}=x^{3}-3 x+$ 41058363725152142129326129780047268409114441015993725554835256314039467401291 over $\mathbb{F}_{115792089210356248762697446949407573530086143415290314195533631308867097853951}$
- Public key:
$P=(48439561293906451759052585252797914202762949526041747995844080717082404635286$, $36134250956749795798585127919587881956611106672985015071877198253568414405109)$, $Q=(76028141830806192577282777898750452406210805147329580134802140726480409897389$, 85583728422624684878257214555223946135008937421540868848199576276874939903729)
- Private key: ℓ such that $Q=\ell P$.
- Used by the NSA;
- Used in Europeans biometric passports.

ECC vs RSA for 128 bits of security

- ECC (Curve25519) 256 bits:

AAAAC3NzaC11ZDI1NTE5AAAAIMoNrNYhU7CY1Xs6v4Nm1V6oRHs/FEE8P+XaZ0PcxPzz

- RSA 3248 bits:

MIIHRgIBAAKCAZcAvlGW+b5L2tmqb5bUJMrfLHgr2jga/Q/8IJ5QJqeSsB7xLVT/ ODN3KNSPxyjaHmDNdDTwgsikZvPYeyZWWFLP0B0vgwDqQugUGHVfg4c73ZolqZk6 1nA45XZGHUPt98p4+ghPag5JyvAVsf1cF/VlttBHbu/noyIAC4F3tHP81nn+10nB eilEALbdmvGTTZ5jcRrt4IDT5a4IeI9yTe0aVdTsUJ6990hpKrVzyTOu1eoxp5eV KQ7aIX6es9Xjnr8widZunM8rqhBW9EMmLqabnXZItPQoV3rUAnwKzDLV7E56viJk S2xU5+95IctYu/RTTbf3wTxnkDOqxId日MONHyBJsukXgYKxVB1fWhBKZ4tWui1gw UCIiKTqLml2zJhLn4WovaxrvvTx0082S0xncEfYDXYu4xbRnJn+ZsTTguqufwC1M U4MYRdWy7uj+H1EmIGul69Fw9NkuCitWI9dFpcDtSP+/1eEN7wc2FlxhDIRwer0F 6I1P4StWn1uQyHzsTLVdcP+rqA1AsvbWBCKL4ravEO2CEQIDAQABAoIB1lWt5YoJ YZzk4RXbkSX/LvmWICfdmkjTKW6F1w+P4TnotCr0WPG00bDoANJoUcnbSqNGMgCu 01SF8q9+UuDwZx4KBZm0j8IPOPzJ2nYcK5dYDhyMHzDq1LJ4zJfgPQGQ5WWq2BWm 2RHDhADdTth6YZArs/z9hAqtA9gqMPnMPcdQpIvlsHSOn06zBJD8sJQA+kOxG+Y2 GS8NakLcUV1DpNd/Q+QHkv4AW1ge2EF8QvmKtU/9rekOBqWNm2Tapd6RtAhZwPJX UhD9yiesTF6rjZ1ZcMGXUaN5Rt0zD3D4zowRz2JLtCe4GkiJmtc3waN6hu1IaIqz boI11evqnbatqnC4rCq8sf21yZqaLUIbwH41W2G3K8xMJNh3iy8cgHTYneNYa+/d 7xyNW1MO9SK1HsyaPcWv98BdD+At0x/6R6YPYkeR+qXJ9ETGFKW4U6iNbBQXOMbh kZb1Ry8vfMH8vsYIzh8Edg6aq00ScU57KiDS/Gc8KuqI6vmf2leCdCa487kVCgw6 cGXQ2bLZGYBiMZFfOOlpCQECgcwA5ZUh3/8yS0duNhsDz3sgC2u40HwHUbxuSOUa a5t4CoUY9iuF7b7qhBEcvdLgIOiXA5xo+r4p0xgbLvDUTsRR1mrDM2+wRcjjwXcW pFaMFR12Rr72yLUC7N0WNcoUshrNL4X/1j8T4WLRcannpXcor+/kn1rwdLEbRCC+ zRTAdJlgMPt4kwJeHtE9Mzw2/O3GX3MeLvzvJklzvpCGw20N/2Yqjs++V5hXoHPs 21y6y6/FV097dvFctf7NahS04JsjubfnjOMx89AUNZsCgcwA1DfabCGJSCkmQ+mg 2q91DPJz6r29wmBtYyT20oZ2kd4QBHrOp0t59yG4bvdRqcZG/Dr5LjuVDWMPyetV dksK7hVYQz2B7Nzy7W3waPVrhA0N4fqbIFGxih5QiSFG7/oroZ8PdZDcfVRKroh1 /JJ7rIz/ZBQCLRS5t7/G2B0kBDOMMM+02wR60CTmxUhmgvsoDZWRp5KKha5PSvZa WAu2CN3mXNK72RLF3RFUvuhNYnkOEj50au1RaGgpZoB0JTKYI9nffbe8up+DV8MC gcwA18be28Ti5FXyg+/IGQ3EBHfucCTiTDQqA2Ew/8pTfK+z0kr9yYISsKXUuaSk +skghkhPcrugW8LgabH4GT/zGu+lH4btyekSBxeCtFqTtpED1WJOWD2ozi7NXSjd YrhF+VCcMCWA7ekOqSHjkmT4XMO/wPab4VFEKzgLnHzQlcZB3ke7/4/OHnDScIE7 vWVNeRCdYdRggT+wBX+Y6bxp142Smj8uyu1oDmpmR5ZUCnTdqT408K/RT0x4jCeC CUhGv5rVill07bS4CdkCgctXvnQwCzmwvVrV744TfTuhu81TwHnqGWaA/LKU3wW9 T/x9ba1uHFXkaWvRba61LIcDGPsYM4hwTYokqYnfbC2rvOWOf6rtnXlP1An3y6lV ovQfgDeNiFmIyvnviPPEm@JZA+QnburLYwOx4DgwYvyBnpal8WPo8c3L/J4hkwLm

Addition law on the Weierstrass model

$E: y^{2}=x^{3}+a x+b$ (short Weierstrass form).

- Distinct points P and Q :

$$
\begin{gathered}
P+Q=-R=\left(x_{R},-y_{R}\right) \\
\alpha=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} \\
x_{R}=\alpha^{2}-x_{P}-x_{Q} \quad y_{R}=y_{P}+\alpha\left(x_{R}-x_{P}\right)
\end{gathered}
$$

(If $x_{P}=x_{Q}$ then $P=-Q$ and $P+Q=0_{E}$).

- If $P=Q$, then α comes from the tangent at P :

$$
\begin{gathered}
\alpha=\frac{3 x_{P}^{2}+b}{2 y_{P}} \\
x_{R}=\alpha^{2}-2 x_{P} \quad y_{R}=y_{P}+\alpha\left(x_{R}-x_{P}\right)
\end{gathered}
$$

- Indeed write $l_{P, Q}: y=\alpha x+\beta$ the line between P and Q (or the tangent to E at P when $P=Q$). Then $y_{-R}=\alpha x_{-R}+\beta$ and $y_{P}=\alpha x_{P}+\beta$ so $y_{-R}=\alpha\left(x_{R}-x_{P}\right)+y_{P}$. Furthemore x_{R}, x_{P}, x_{Q} are the three roots of $x^{3}+a x+b-(\alpha x+\beta)^{2}$ so $x_{P}+x_{Q}+x_{R}=\alpha^{2}$.
\Rightarrow Avoid divisions by working with projective coordinates $(X: Y: Z)$:

$$
E: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}
$$

- The scalar multiplication $P \mapsto n . P$ is computed via the standard double and add algorithm;
- On average $\log n$ doubling and $1 / 2 \log n$ additions;
- Standard tricks to speed-up include NAF form, windowing ...
- The multiscalar multiplication $(P, Q) \mapsto n \cdot P+m \cdot Q$ can also be computed via doubling and the addition of P, Q or $P+Q$ according to the bits of n and m;
- On average $\log N$ doubling and $3 / 4 \log N$ additions where $N=\max (n, m)$;
- GLV idea: if there exists an efficiently computable endomorphism α such that $\alpha(P)=u . P$ where $u \approx \sqrt{n}$, then replace the scalar multiplication $n . P$ by the multiscalar multiplication $n_{1} P+n_{2} \alpha(P)$;
- One can expect n_{1} and n_{2} to be half the size of $n \Rightarrow$ from $\log n$ doubling and $1 / 2 \log n$ additions to $1 / 2 \log n$ doubling and $3 / 8 \log n$ additions.
$E: x^{2}+y^{2}=1+d x^{2} y^{2}, d \neq 0,-1$.
- Addition of $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$:

$$
P+Q=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- When $d=0$ we get a circle (a curve of genus 0) and we find back the addition law on the circle coming from the sine and cosine laws;
- Neutral element: $(0,1) ;-(x, y)=(x, y) ; T=(1,0)$ has order $4,2 T=(0,1)$.
- If d is not a square in K , then there are no exceptional points: the denominators are always nonzero \Rightarrow complete addition laws;
\Rightarrow Very useful to prevent some Side Channel Attacks.
- $E: a x^{2}+y^{2}=1+d x^{2} y^{2}$;
- Extensively studied by Bernstein and Lange;
- Addition of $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$:

$$
P+Q=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-a x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- Neutral element: $(0,1) ;-(x, y)=(x, y) ; T=(0,-1)$ has order 2 ;
- Complete addition if a is a square and d not a square.
- $E: B y^{2}=x^{3}+A x^{2}+x$;
- Birationally equivalent to twisted Edwards curves;
- The map $E \rightarrow \mathbb{A}^{1},(x, y) \mapsto(x)$ maps E to the Kummer line $K_{E}=E / \pm 1$;
- We represent a point $\pm P \in K_{E}$ by the projective coordinates $(X: Z)$ where $x=X / Z$;
- Differential addition: Given $\pm P_{1}=\left(X_{1}: Z_{1}\right), \pm P_{2}=\left(X_{2}: Z_{2}\right)$ and $\pm\left(P_{1}-P_{2}\right)=\left(X_{3}: Z_{3}\right)$; then one can compute $\pm\left(P_{1}+P_{2}\right)=\left(X_{4}: Z_{4}\right)$ by

$$
\begin{aligned}
& X_{4}=Z_{3}\left(\left(X_{1}-Z_{1}\right)\left(X_{2}+Z_{2}\right)+\left(X_{1}+Z_{1}\right)\left(X_{2}-Z_{2}\right)\right)^{2} \\
& Z_{4}=X_{3}\left(\left(X_{1}-Z_{1}\right)\left(X_{2}+Z_{2}\right)-\left(X_{1}+Z_{1}\right)\left(X_{2}-Z_{2}\right)\right)^{2}
\end{aligned}
$$

Montgomery's scalar multiplication

- The scalar multiplication $\pm P \mapsto \pm n . P$ can be computed through differential additions if we can construct a differential chain;
- If $\pm[n] P=\left(X_{n}-Z_{n}\right)$, then

$$
\begin{aligned}
& X_{m+n}=Z_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)+\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2} \\
& Z_{m+n}=X_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)-\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2}
\end{aligned}
$$

- Montgomery's ladder use the chain $n P,(n+1) P$;
- From $n P,(n+1) P$ the next iteration computes $2 n P,(2 n+1) P$ or $(2 n+1) P,(2 n+2) P$ via one doubling and one differential addition.

Side channel resistant scalar multiplication

- Start with $T_{0}=0_{E}$ and $T_{1}=P$. At each step do
- If $k_{i}=1, T_{0}=T_{0}+T_{1}, T_{1}=2 T_{1}$
- Else $T_{1}=T_{0}+T_{1}, T_{0}=2 T_{0}$
- Constant time execution, but vulnerable to branch prediction attacks. Remove the branch:

$$
T_{1-k_{i}}=T_{0}+T_{1}, \quad T_{k_{i}}=2 T_{k_{i}}
$$

- The memory access pattern depend on the secret bit $k_{i} \Rightarrow$ vulnerable to cache attacks. Use bit masking to mask the memory access pattern:
- $M=\left(k_{i} \ldots k_{i}\right)_{2}$ the bitmask
- $R=T_{0}+T_{1}, S=2\left(\left(\bar{M} \& T_{0}\right) \mid\left(M \& T_{1}\right)\right)$
- $T_{0}=(\bar{M} \& S) \mid(M \& R)$
- $T_{1}=(\bar{M} \& R) \mid(M \& S)$

Pairing-based cryptography

Definition

A pairing is a non-degenerate bilinear application $e: G_{1} \times G_{1} \rightarrow G_{2}$ between finite abelian groups.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_{1} reduces to the difficulty of the DLP in G_{2}.
\Rightarrow MOV attacks on supersingular elliptic curves.
- Identity-based cryptography [BF03].
- Short signature [BLS04].
- One way tripartite Diffie-Hellman [Jou04].
- Self-blindable credential certificates [Veroi].
- Attribute based cryptography [SW05].
- Broadcast encryption [GPS+06].

Example of applications

Tripartite Diffie-Helman

Alice sends g^{a}, Bob sends g^{b}, Charlie sends g^{c}. The common key is

$$
e(g, g)^{a b c}=e\left(g^{b}, g^{c}\right)^{a}=e\left(g^{c}, g^{a}\right)^{b}=e\left(g^{a}, g^{b}\right)^{c} \in G_{2}
$$

Example (Identity-based cryptography)

- Master key: $(P, s P), s . \quad s \in \mathbb{N}, P \in G_{1}$.
- Derived key: $Q, s Q . \quad Q \in G_{1}$.
- Encryption, $m \in G_{2}: m^{\prime}=m \oplus e(Q, s P)^{r}, r P . \quad r \in \mathbb{N}$.
- Decryption: $m=m^{\prime} \oplus e(s Q, r P)$.
- Let C be a projective smooth and geometrically connected curve;
- A divisor D is a formal finite sum of points on C :
$D=n_{1}\left[P_{1}\right]+n_{2}\left[P_{2}\right]+\cdots n_{e}\left[P_{e}\right]$. The degree $\operatorname{deg} D=\sum n_{i}$.
- If $f \in k(C)$ is a rational function, then

$$
\operatorname{Div} f=\sum_{P} \operatorname{ord}_{P}(f)[P]
$$

$\left(\left(O_{C}\right)_{P}\right.$ the stalk of functions defined around P is a discrete valuation ring since C is smooth and $\operatorname{ord}_{P}(f)$ is the corresponding valuation of f at P).

Example

If $C=\mathbb{P}_{k}^{1}$ then $\operatorname{Div} \frac{\prod^{\left(X-\alpha_{i}^{e_{i}}\right)}}{\prod^{\left(X-\beta_{i}^{f_{i}}\right)}}=\sum e_{i}\left[\alpha_{i}\right]-\sum f_{i}\left[\beta_{i}\right]+\left(\sum \beta_{i}-\sum \alpha_{i}\right) \infty$. In particular $\operatorname{deg} \operatorname{Div} f=0$ and conversely any degree 0 divisor comes from a rational function.

Linear equivalence class of divisors

- For a general curve, if $f \in k(C), \operatorname{Div}(f)$ is of degree 0 but not any degree 0 divisor D comes from a function f;
- A divisor which comes from a rational function is called a principal divisor. Two divisors D_{1} and D_{2} are said to be linearly equivalent if they differ by a principal divisor: $D_{1}=D_{2}+\operatorname{Div}(f)$.
- Pic $C=$ Div $^{0} C /$ Principal Divisors
- A principal divisor D determines f such that $D=\operatorname{Div} f$ up to a multiplicative constant (since the only globally regular functions are the constants).

Divisors on elliptic curves

Theorem

Let $D=\sum n_{i}\left[P_{i}\right]$ be a divisor of degree 0 on an elliptic curve E. Then D is the divisor of a function $f \in \bar{k}(E)$ (ie D is a principal divisor) if and only if $\sum n_{i} P_{i}=0_{E} \in E(\bar{k})$ (where the last sum is not formal but comes from the addition on the elliptic curve).
In particular $P \in E(\bar{k}) \rightarrow[P]-\left[0_{E}\right] \in \operatorname{Jac}(E)$ is a group isomorphism between the points in E and the linear equivalence classes of divisors;

The Weil pairing on elliptic curves

- Let $E: y^{2}=x^{3}+a x+b$ be an elliptic curve over a field k ($\operatorname{char} k \neq 2,3$, $4 a^{3}+27 b^{2} \neq 0$.)
- Let $P, Q \in E[\ell]$ be points of ℓ-torsion.
- Let f_{P} be a function associated to the principal divisor $\ell(P)-\ell(0)$, and f_{Q} to $\ell(Q)-\ell(0)$. We define:

$$
e_{W, \ell}(P, Q)=\frac{f_{P}((Q)-(0))}{f_{Q}((P)-(0))}
$$

- The application $e_{W, \ell}: E[\ell] \times E[\ell] \rightarrow \mu_{\ell}(\bar{k})$ is a non degenerate pairing: the Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number such that $\ell \mid q^{d}-1 ; \mathbb{F}_{q^{d}}$ is then the smallest extension containing $\mu_{\ell}(\bar{k})$.

The Tate pairing on elliptic curves over \mathbb{F}_{q}

Definition

The Tate pairing is a non degenerate bilinear application given by

$$
\begin{aligned}
& e_{T}: E_{0}[\ell] \times E\left(\mathbb{F}_{q}\right) / \ell E\left(\mathbb{F}_{q}\right) \longrightarrow \\
&(P, Q) \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{* \ell} \\
& f_{P}((Q)-(0))
\end{aligned}
$$

where

$$
E_{0}[\ell]=\left\{P \in E[\ell]\left(\mathbb{F}_{q^{d}}\right) \mid \pi(P)=[q] P\right\}
$$

- On $\mathbb{F}_{q^{d}}$, the Tate pairing is a non degenerate pairing

$$
e_{T}: E[\ell]\left(\mathbb{F}_{q^{d}}\right) \times E\left(\mathbb{F}_{q^{d}}\right) / \ell E\left(\mathbb{F}_{q^{d}}\right) \rightarrow \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{*} \simeq \mu_{\ell} ;
$$

- If $\ell^{2} \nmid E\left(\mathbb{F}_{q^{d}}\right)$ then $E\left(\mathbb{F}_{q^{d}}\right) / \ell E\left(\mathbb{F}_{q^{d}}\right) \simeq E[\ell]\left(\mathbb{F}_{q^{d}}\right)$;
- We normalise the Tate pairing by going to the power of $\left(q^{d}-1\right) / \ell$.

Miller's functions

- We need to compute the functions f_{P} and f_{Q}. More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda, X} \in k(E)$ to be a function thus that:

$$
\left(f_{\lambda, X}\right)=\lambda(X)-([\lambda] X)-(\lambda-1)(0)
$$

- We want to compute (for instance) $f_{\ell, P}((Q)-(0))$.
- The key idea in Miller's algorithm is that

$$
f_{\lambda+\mu, X}=f_{\lambda, X} f_{\mu, X} f_{\lambda, \mu, X}
$$

where $\mathfrak{f}_{\lambda, \mu, X}$ is a function associated to the divisor

$$
([\lambda] X)+([\mu] X)-([\lambda+\mu] X)-(0)
$$

- We can compute $\mathfrak{f}_{\lambda, \mu, X}$ using the addition law in E : if $[\lambda] X=\left(x_{1}, y_{1}\right)$ and [μ] $X=\left(x_{2}, y_{2}\right)$ and $\alpha=\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right)$, we have

$$
\mathfrak{f}_{\lambda, \mu, X}=\frac{y-\alpha\left(x-x_{1}\right)-y_{1}}{x+\left(x_{1}+x_{2}\right)-\alpha^{2}} .
$$

$$
[\lambda] X=\left(x_{1}, y_{1}\right) \quad[\mu] X=\left(x_{2}, y_{2}\right)
$$

$$
\mathfrak{f}_{\lambda, \mu, X}=\frac{y-\alpha\left(x-x_{1}\right)-y_{1}}{x+\left(x_{1}+x_{2}\right)-\alpha^{2}} .
$$

Miller's algorithm on elliptic curves

Algorithm (Computing the Tate pairing)

Input: $\ell \in \mathbb{N}, P=\left(x_{1}, y_{1}\right) \in E[\ell]\left(\mathbb{F}_{q}\right), Q=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q^{d}}\right)$.
Output: $e_{T}(P, Q)$.
(1) Compute the binary decomposition: $\ell:=\sum_{i=0}^{I} b_{i} 2^{i}$. Let $T=P, f_{1}=1, f_{2}=1$.
(2) For i in [I..O] compute
(1) α, the slope of the tangent of E at T.
(2) $T=2 T . T=\left(x_{3}, y_{3}\right)$.
(3) $f_{1}=f_{1}^{2}\left(y_{2}-\alpha\left(x_{2}-x_{3}\right)-y_{3}\right), f_{2}=f_{2}^{2}\left(x_{2}+\left(x_{1}+x_{3}\right)-\alpha^{2}\right)$.
(9) If $b_{i}=1$, then compute
(1) α, the slope of the line going through P and T.
(2) $T=T+Q$. $T=\left(x_{3}, y_{3}\right)$.
(3) $f_{1}=f_{1}^{2}\left(y_{2}-\alpha\left(x_{2}-x_{3}\right)-y_{3}\right), f_{2}=f_{2}\left(x_{2}+\left(x_{1}+x_{3}\right)-\alpha^{2}\right)$.

Return

$$
\left(\frac{f_{1}}{f_{2}}\right)^{\frac{q^{d}-1}{\ell}}
$$

- $R=\mathbb{Z} / q \mathbb{Z}[x] / \Phi_{2^{n}}$ where $\Phi_{2^{n}}=x^{2^{n}}+1$;
- RLWE assumption: from $\left(a_{i}, b_{i}=a_{i} s+e_{i}\right)$ where s is secret and e_{i} are small Gaussian error terms, the b_{i} look random;
- Encryption: fix t a power of two and $m \mapsto P=(a s+t e+m)-a X$. We have $P(s)=m \bmod t$;
- Decryption: $P \mapsto P(s) \bmod t$;
- Homomorphic addition: $P_{m}+P_{m^{\prime}}=P_{m+m^{\prime}}$;
- Homomorphic multiplication: $P_{m} \times P_{m^{\prime}}=P_{m \times m^{\prime}}$;
- The homomorphic properties are valid as long as the coefficient of P_{m}, $P_{m^{\prime}}$ are small enough (to not overflow q) and in the case of multiplication when $\operatorname{deg} P_{m}+\operatorname{deg} P_{m^{\prime}}<2^{n}$;
- Optimisations: when $q=1 \bmod 2^{n+1}$, then $x^{2^{n+1}}-1$ and hence $x^{2^{n}}+1$ split totally modulo q;
- Modulus switching to reduce noise;
- Security: based on assumptions about ideal lattices (beware recent attacks on these kinds of lattices).

