Modern Cryptology: from public key cryptography to homomorphic encryption 2015/12 – Yaoundé, Cameroun

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest Institut de Mathématiques de Bordeaux Équipe MACISA, Laboratoire International de Recherche en Informatique et Mathématiques Appliquées

RSA ●○○○			RLWE O
RSA			

- Fermat, Euler: if $x \in (\mathbb{Z}/N\mathbb{Z})^*$ then $x^{\varphi(n)} = 1$.
- RSA: n = pq. $\varphi(n) = (p-1)(q-1)$.
- If N is a product of disjoint primes, then for all $x \in \mathbb{Z}/N\mathbb{Z}$, $x^{1+\varphi(n)} = x$.

Proof.

If N = p, then Fermat shows this work for all $x \neq 0$, and 0 is trivial to check. If $N = \prod p_i$, by the CRT $\mathbb{Z}/N\mathbb{Z} \simeq \prod \mathbb{Z}/p_i\mathbb{Z}$ as a ring and we are back to the prime case.

- In RSA, if *e* is prime to $\varphi(n)$ and *d* is its inverse, then for all $x \in \mathbb{Z}/N\mathbb{Z}$, $x^{ed} = x$.
- Encryption: $x \mapsto x^e$; Decryption: $y \mapsto y^d$.
- Signature: $x \mapsto x^d$; Verification: $y \mapsto y^e$.

Given the public key (N, e)

- RSADP (Decryption Problem): from $y = x^e$ find x;
- RSAKRP (Key Recovery Problem): find d such that $x^{ed} = x$ for all $x \in \mathbb{Z}/N\mathbb{Z}^*$
- RSAEMP (Exponent Multiple Problem): find k such that $x^k = 1$ for all $x \in \mathbb{Z}/N\mathbb{Z}^*$ (so k is a multiple of $(p-1) \lor (q-1)$);
- RSAOP (Order Problem): find $\varphi(n)$;
- RSAFP (Factorisation Problem): recover p and q.

Theorem

 $RSAKRP \Leftrightarrow RSAEMP \Leftrightarrow RSAFP \Leftrightarrow RSAOP \Rightarrow RSADP$

Proof.

RSAFP \Rightarrow RSAOP \Rightarrow RSAKRP \Rightarrow RSAEMP. The hard part is to show that RSAEMP \Rightarrow RSAFP. The goal is to find $x \neq \pm 1$ such that $x^2 = 1$. Then $x - 1 \land n$ gives a prime factor. Write $k = 2^s t$, and look for a random y at $x = y^t$, x^2 , x^{2^2} , ... x^{2^j} until we find 1, say $x^{2^{j_0+1}} = 1$. Then x^{2^j} is a square root. The bad cases are when $x = y^t = 1$ (but this has probability less than 1/4) and when $x^{2^{j_0}} = -1$ (but this has probability less than 1/2).

RSA 0000				
Mallea	bility of R	SA		

- $(m_1 \cdot m_2)^e = m_1^e \cdot m_2^e$ so from several ciphertexts we can generate a lot more;
- As is, RSA is OW-CPA (if factorisation is hard) but malleable.
- Example of CCA2 attack: we know $c = m^e$; we ask to decipher a random $r: m_r = r^d$ and $c/r: m_{c/r} = (c/r)^d$ (c/r looks random). We recover $m = m_r m_{c/r}$.
- We want IND-CCA2 so we need to add padding.
- RSA-OAEP: The padding is $M \oplus G(r) || r \oplus H(M \oplus G(r))$ where r is random and H and G are two hash functions.

RSA ○○○●				
Attack	s on RSA			

- Best algorithm for factorisation is NFS: $2^{O(n^{1/3})}$;
- Subexponential: Factor 2 in security needs factor 8 in key length.
- Small exponent: if $N > m^e$ finding *m* is easy. This can happen if the same message is sent to several user with public keys (N_i, e) ; by the CRT we recover $m^e \mod N = \prod N_i$.
- If e has a small order in $(\mathbb{Z}/\varphi(N)\mathbb{Z})^*$ iterating the encryption yields the decryption.
- If d is small, for instance let p < q < 2p, and suppose that $d < n^{1/4}/3$. Write $ed - 1 = k\varphi(n)$; then for n big enough

$$|\frac{e}{n}-\frac{k}{d}|<\frac{1}{2d^2}.$$

k/d can then be recovered from the continued fraction of e/n which is computed using Euclide's algorithm.

- Let p > 2 be a prime. $(\mathbb{Z}/p\mathbb{Z}^*, \times)$ is a cyclic group of order p-1;
- There are (p-1)/2 squares and (p-1)/2 non squares;
- If $x \in \mathbb{Z}/p\mathbb{Z}^*$ then x is a square if and only if $x^{\frac{p-1}{2}} = 1$ (by Fermat $x^{p-1} = 1$ for all $x \in \mathbb{Z}/p\mathbb{Z}^*$);
- Legendre symbol:

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & x \text{ is a square} \\ -1 & x \text{ is not a square} \\ 0 & x = 0 \mod p; \end{cases}$$

•
$$\left(\frac{x}{p}\right) = x^{\frac{p-1}{2}} \pmod{p};$$

- Multiplicativity: $\left(\frac{xy}{p}\right) = \left(\frac{x}{p}\right) \left(\frac{x}{q}\right);$
- Quadratic reciprocity: *p*, *q* primes > 2:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

• Jacobi symbol: if *n* is odd, define the Jacobi symbol by extending the Legendre symbol multiplicatively on the bottom argument:

$$\left(\frac{x}{n_1n_2}\right) = \left(\frac{x}{n_1}\right)\left(\frac{x}{n_2}\right);$$

• Extension of quadratic reciprocity:

$$\left(\frac{m}{n}\right) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}}\left(\frac{n}{m}\right)$$
 (*m* and *n* odd and coprime)

with the extra relations
$$\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}, \left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}};$$

- \Rightarrow The Jacobi symbol can be computed in polynomial time;
- Primality test: if $\left(\frac{x}{n}\right) \neq x^{\frac{n-1}{2}}$ then *n* is not prime (and if *n* is not prime at least half the *x* coprime to *n* will be witnesses).

Miller-Rabin primality test

- If *n* is prime and $n-1 = d2^t$, then for all *a* prime to *n* either
- $a^d = 1 \mod n$
- or $a^{d2^{u}} = -1 \mod n$ (for $0 \le u \le t 1$)
- for any odd composite *n*, at least 3/4 of the bases *a* are witnesses for the compositeness of *n*.

	ZK 00000			
Heads	or tails			

- Let n = pq be an RSA number, by the CRT $(\mathbb{Z}/n\mathbb{Z}^*, \times) = (\mathbb{Z}/p\mathbb{Z}^* \times \mathbb{Z}/q\mathbb{Z}^*, \times);$
- $\left(\frac{x}{n}\right) = \left(\frac{x}{p}\right) \left(\frac{x}{q}\right)$ so if x is prime to n, $\left(\frac{x}{n}\right) = 1$ when x is a square modulo n (=square modulo p and square modulo q) or when x is neither a square modulo p and q;

• Computing
$$\left(\frac{x}{n}\right)$$
: polynomial time;

- Deciding if x is a real square (and computing the square root) or false square: factorisation of n
- $x \mapsto x^2$ is a one way trapdoor function!

Heads or tails:

- Bob choose n = pq and sends x such that $\left(\frac{x}{n}\right) = 1$;
- Alice answers "real square" or "false square";
- Bob sends p and q so Alice can verify if she was right or not.

Zero Knowledge identification

ZK

- Secret key of Alice: *p*, *q*, *s* mod *n* = *pq*;
- Public key of Alice: n = pq, $r = s^2$;

Zero Knowledge identification:

- Alice chooses a random $u \mod n$, computes $z = u^2$ and sends $t = zr = u^2s^2$ to Bob;
- Bob either chooses
 - To check z: he asks u to Alice and checks that $z = u^2$;
 - To check t: he asks us to Alice and checks that $t = (us)^2$.
- A liar will either produce a false *u* or a false *t* and has 1/2 chances to be catched, Bob will ask for several rounds (30);
- To always give the correct answer mean that Alice knows the secret s or is very lucky (probability $1/2^{30}$).

		NFS ●○○○		
Ferma	t			

- We want to get a factor of a composite number *n* (see primality tests);
- If $n = x^2 y^2$ then n = (x y)(x + y);
- More generally if $x^2 = y^2 \mod n$ then $x y \wedge n$ may be a non trivial factor (Exercice: if n = pq what is the probability to get a non trivial factor?)

RSA 0000		NFS OOOO		
Smoot	h number	S		

- *n* is *B*-smooth if *n* can be written as a product of integer ≤ *B*;
- Canfield-Erdös-Pomerance: The probability that a number $x \le n$ is *B*-smooth is

 $u^{-u(1+o(1))}$

where $u = \frac{\log n}{\log B}$ and when $\log n^{\varepsilon} < u < \log n^{1-\varepsilon}$.

- Subexponential functions: $L_x(\alpha, \beta) = \exp(\beta \log^{\alpha} x \log \log^{1-\alpha} x);$
- The probability for a number of size $L_x(\alpha,\beta)$ to be $L_x(\gamma,\delta)$ -smooth is $L_x(\alpha-\gamma,-\beta(\alpha-\gamma)/\mu+o(1))$.
- Example: a number of size $n = L_n(1)$ is $L_n(1/2)$ smooth with probability $L_n(1/2)$;

- Dixon Linear Sieve: Generate squares modulo $n: y = x^2 \mod n$ where y is *B*-smooth with $B = L_n(1/2) \Rightarrow$ time $L_n(1/2)$ to find them;
- Collect enough relations to use linear algebra so that a suitable product of *y* is a square;
- Pomerance Quadratic Sieve: let $m = \lfloor n^{1/2} \rfloor$. Generate the y by $(m+a)^2 = (m^2 n) + a^2 + 2am \mod n$. The y are of size \sqrt{n} rather than n so the probability to be *B*-smooth is much higher;
- A detailed complexity analysis give a complexity of $L_n(1/2, \sqrt{2})$ ($B = L_n(1/2, 1/\sqrt{2})$) for the linear sieve and $L_n(1/2, 1)$ ($B = L_n(1/2, 1/2)$) for the quadratic field.

- Invented by Pollard and Lenstra;
- Generate smooth numbers in two number fields to get relations (see commutative diagram);
- Linear algebra on the relations to get two squares;
- Use sieves (lattice sieving or line sieving) to generate the smooth numbers;
- In practice very complex (obstructions from the class group and the group of unity, taking square roots in number fields)...
- Heuristic Complexity $L_n(1/3, (64/9)^{1/3});$
- See for example CADO-NFS for an open-source implementation.

			DLP		
			000000		
Discret	te Logarit	hm			
Disciel	le loganti				

Definition (DLP)

Let $G = \langle g \rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h = g^x$. The discrete logarithm $\log_g(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\tilde{O}(\sqrt{p})$ (in a generic group). So we can use the DLP for public key cryptography.
- ⇒ We want to find secure groups with efficient addition law and compact representation.

Discrete logarithm problem

Given a cyclic group $G = \langle g \rangle$.

• Exponentiation $x \mapsto h = g^x$ (via fast exponentiation algorithm); DLP $h = g^x \mapsto x$.

0000000

- Shanks: the DLP in *G* can be done in time $n = \sqrt{\#G}$ via the Baby Steps, Giant Steps algorithm (time/memory tradeoff). Let $c = \sqrt{N}$ and write x = y + cz, $y, z \le c$. Compute the intersection of $\{1, g, \dots, g^c\}$ and $\{hg^{-c}, hg^{-2c}, \dots, hg^{-cc}\}$ to find $g^z = hg^{-cy}$.
- Pollard: take a random path of s_i = g^{u_i} h^{v_i} (typically find a a suitable function and compute s_{i+1} = f(s_i)) until a collision is found: s_i = s_j.
 Then h = g^{u_i-u_j}/_{v_i-v_j}. Birthday paradox: a collision is found in time √n.
- Pohlig-Helman: the DLP inside G can be reduced to the DLP inside subroups of side p_i | n.
 - First reduction: CRT. $\mathbb{Z}/N\mathbb{Z} = \prod \mathbb{Z}/p_i^{e_i}\mathbb{Z}$, so to recover x we need to recover $x_i = x \mod p_i^{e_i}$; via $h_i = g_i^{x_i}$ where $h_i = h^{N/p_i^{e_i}}$, $g_i = g^{N/p_i^{e_i}}$.
 - Second reduction: Hensel lift. Write $x_i = x_0 + x_1p$; and solve $h_i^{p^{e_i-1}} = g_i^{p^{e_i-1}x_0}$ to recover x_0 ; write $x_i x_0 = p(x_1 + px_2)$ and find x_1 and so on.

			DLP 000000		
Securi	ty of the L	DLP			

Theorem

On a generic group, the complexity of the DLP is of complexity the square root of its largest prime divisor.

- But effective groups are not generic!
- $G = (\mathbb{Z}/N\mathbb{Z}, +)$, the DLP is trivial (Euclide algorithm);
- G = (ℤ/pℤ)*, same methods and subexponential complexity as for factorisation: 2^{O(n^{1/3})};
- $G = \mathbb{F}_{2^n}^*$, quasi polynomial algorithm: $n^{\log n}$;
- Generic ordinary elliptic curve over \mathbb{F}_p : the generic algorithm is the best available;
- ⇒ To get 128 bits of security find an elliptic curve E/\mathbb{F}_p where p has 256 bits and $E(\mathbb{F}_p)$ is prime (or almost prime).

RSA 0000			DLP 0000000		
Diffie-	Helman K	ey Exchar	nge	 	_

- How to share a secret key across a non confidential channel?
- ⇒ Encrypt it via an asymmetric scheme;
- Or use the Diffie-Helman Key Exchange algorithm (predates asymmetric cryptography).
- Alice sends g^a to Bob
- Bob sends g^b to Alice
- The secret key is g^{ab} .
- Diffie-Helman Problem: Eve has to recover g^{ab} from only g, g^a and g^b .
- DLP \Rightarrow DHP

RSA 0000			DLP			
El Gam	al encryp	tion	_	_	_	

- Public key: $(g, p = g^a)$, Private key: *a*;
- Encryption: $m \mapsto (g^k, s = p^k.m)$ (k random);
- Decryption: $m = s/(g^k)^a$.
- Warning: Never reuse k.

RSA 0000			DLP 0000000		
DSA (S	ignature)	_		 	

- Public key: $(g, p = g^a)$, Private key: *a*;
- $\Phi: G \to \mathbb{Z}/n\mathbb{Z};$
- Signature: $m \mapsto (u = \Phi(g^k), v = (m + a\Phi(g^k))/k) \in (\mathbb{Z}/n\mathbb{Z})^2$;
- Verification: $u = \Phi(g^{m\nu^{-1}}p^{u\nu^{-1}})$.

RSA 0000			DLP 000000		
Zero K	nowledge	_		 	

- Alice publish $(g, p = g^a)$, her secret is *a*.
- Alice choose a random x and sends $q = g^x$;
- Either Bob asks for x and checks that $q = g^x$;
- Either Bob asks for a + x and checks that $q \cdot p = g^{a+x}$.

Definition (char $k \neq 2, 3$)

An elliptic curve is a plane curve with equation

$$y^2 = x^3 + ax + b$$
 $4a^3 + 27b^2 \neq 0.$

ln ría_

Inria-

In via

				Elliptic curves					
				00000000000					
FCC (F	ECC (Elliptic curve cryptography)								

cosi apriy)

Example (NIST-p-256)

• *E* elliptic curve $y^2 = x^3 - 3x + x^3 + x^3 - 3x + x^3 + x^3$

 $\begin{array}{l} {}^{41058363725152142129326129780047268409114441015993725554835256314039467401291} \text{ over}\\ {}^{F_{115792089210356248762697446949407573530086143415290314195533631308867097853951}\end{array}$

- Public key:
 - $P = (48439561293906451759052585252797914202762949526041747995844080717082404635286, \\ 36134250956749795798585127919587881956611106672985015071877198253568414405109),$
 - Q = (76028141830806192577282777898750452406210805147329580134802140726480409897389, 85583728422624684878257214555223946135008937421540868848199576276874939903729)
- Private key: ℓ such that $Q = \ell P$.
- Used by the NSA;
- Used in Europeans biometric passports.

ECC vs RSA for 128 bits of security

• ECC (Curve25519) 256 bits:

AAAAC3NzaC11ZDI1NTE5AAAAIMoNrNYhU7CY1Xs6v4Nm1V6oRHs/FEE8P+XaZ0PcxPzz

Elliptic curves

Inria-

• RSA 3248 bits:

MIIHRgIBAAKCAZcAv1GW+b5L2tmgb5bUJMrfLHgr2jga/0/8IJ50JgeSsB7xLVT/ ODN3KNSPxyjaHmDNdDTwgsikZvPYeyZWWFLP0B0vgwDqQugUGHVfg4c73ZolqZk6 1nA45XZGHUPt98p4+ghPag5JyvAVsf1cF/VlttBHbu/noyIAC4F3tHP81nn+lOnB eilEALbdmvGTTZ5jcRrt4IDT5a4IeI9yTe0aVdTsUJ6990hpKrVzyTOu1eoxp5eV KQ7aIX6es9Xjnr8widZunM8rghBW9EMmLgabnXZItPQoV3rUAnwKzDLV7E56viJk S2xU5+95IctYu/RTTbf3wTxnkDOqxId0MONHyBJsukXgYKxVB1fWhBKZ4tWui1gw UCIiKTaLm12zJhLn4WovaxrvvTx0082S0xncEfYDXYu4xbRnJn+ZsTTguaufwC1M U4MYRdWv7ui+H1EmIGu169Fw9NkuCitWI9dFpcDtSP+/1eEN7wc2F1xhDIRwer0F 6I1P4StWn1uOvHzsTLVdcP+rgA1AsvbWBCKL4ravE02CE0IDA0ABAoIB11Wt5YoJ YZzk4RXbkSX/LvmWICfdmkiTKW6F1w+P4TnotCr0WPG00bDoANJoUcnbSaNGMgCu 01SF8a9+UuDwZx4KBZm0i8IPOPzJ2nYcK5dYDhvMHzDa1LJ4zJfgPOG05WWa2BWm 2RHDhADdTth6YZArs/z9hAatA9gaMPnMPcdOpIv1sHSOn06zBJD8sJOA+k0xG+Y2 GS8NakLcUV1DpNd/0+0Hkv4AW1ge2EF80vmKtU/9rek0BgWNm2Tapd6RtAhZwPJX UhD9yiesTF6rjZ1ZcMGXUaN5Rt0zD3D4zowRz2JLtCe4GkiJmtc3waN6hu1IaIqz boI11evanbatanC4rCa8sf21vZaaLUIbwH41W2G3K8xMJNh3iv8cgHTYneNYa+/d 7xyNW1M09SK1HsyaPcWv98BdD+At0x/6R6YPYkeR+qXJ9ETGFKW4U6iNbBQX0Mbh kZb1Rv8vfMH8vsYIzh8Edg6aq00ScU57KiDS/Gc8KuqI6vmf2leCdCa487kVCgw6 cGX02bLZGYBiMZFf001pC0ECgcwA5ZUh3/8vS0duNhsDz3sgC2u40HwHUbxuS0Ua a5t4CoUY9iuF7b7ghBEcvdLgI0iXA5xo+r4p0xgbLvDUTsRR1mrDM2+wRciiwXcW pFaMFR12Rr72yLUC7N0WNcoUshrNL4X/1j8T4WLRcannpXcor+/kn1rwdLEbRCC+ zRTAdJlgMPt4kwJeHtE9Mzw2/03GX3MeLvzvJklzvpCGw20N/2Yqjs++V5hXoHPs 21v6v6/FV097dvFctf7NahS04Jsiubfni0Mx89AUNZsCgcwA1DfabCGJSCkmO+mg 2a91DPJz6r29wmBtYvT20oZ2kd40BHr0p0t59vG4bvdRacZG/Dr5LiuVDWMPvetV dksK7hVYOz2B7Nzv7W3waPVrhA0N4fgbIFGxih50iSFG7/oroZ8PdZDcfVRKroh1 /JJ7rIz/ZBOCLRS5t7/G2B0kBDOMMM+02wR60CTmxUhmgvsoDZWRp5KKha5PSvZa WAu2CN3mXNK72RLF3RFUvuhNYnkOEj5Oau1RaGgpZoB0JTKYI9nffbe8up+DV8MC gcwA18be28Ti5FXyg+/IGQ3EBHfucCTiTDQqA2Ew/8pTfK+z0kr9yYISsKXUuaSk +skghkhPcrugW8LgabH4GT/zGu+1H4btyekSBxeCtFqTtpED1WJOWD2ozi7NXSjd YrhF+VCcMCWA7ekOqSHjkmT4XMO/wPab4VFEKzgLnHzQlcZB3ke7/4/OHnDScIE7 vWVNeRCdYdRggT+wBX+Y6bxp142Smj8uyu1oDmpmR5ZUCnTdqT408K/RT0x4jCeC CUhGv5rVill07bS4CdkCgctXvnQwCzmwvVrV744TfTuhu8lTwHnqGWaA/LKU3wW9 T/x9ba1uHFXkaWvRba61LIcDGPsYM4hwTYokgYnfbC2rvOWOf6rtnX1P1An3y61V ovOfgDeNiFmIyvnviPPEm0JZA+OnburLYwOx4DgwYvyBnpa18WPo8c3L/J4hkwLm De 20D Toy blum Lov And VOctor (RNon S) (Fau V Kaptaka Doni (FTT III) DA 70 V (6+D Addition law on the Weierstrass model

 $E: y^2 = x^3 + ax + b$ (short Weierstrass form).

• Distinct points *P* and *Q*:

$$P + Q = -R = (x_R, -y_R)$$
$$\alpha = \frac{y_Q - y_P}{x_Q - x_P}$$
$$x_R = \alpha^2 - x_P - x_Q \quad y_R = y_P + \alpha(x_R - x_P)$$

(If $x_P = x_Q$ then P = -Q and $P + Q = \mathbf{0}_E$).

• If P = Q, then α comes from the tangent at P:

$$\alpha = \frac{3x_P^2 + b}{2y_P}$$
$$x_R = \alpha^2 - 2x_P \qquad y_R = y_P + \alpha(x_R - x_P)$$

Elliptic curves

- Indeed write $l_{P,Q}: y = \alpha x + \beta$ the line between *P* and *Q* (or the tangent to *E* at *P* when *P* = *Q*). Then $y_{-R} = \alpha x_{-R} + \beta$ and $y_P = \alpha x_P + \beta$ so $y_{-R} = \alpha (x_R x_P) + y_P$. Furthemore x_R, x_P, x_Q are the three roots of $x^3 + ax + b (\alpha x + \beta)^2$ so $x_P + x_Q + x_R = \alpha^2$.
- \Rightarrow Avoid divisions by working with projective coordinates (X : Y : Z):

$$E: Y^2 Z = X^3 + a X Z^2 + b Z^3.$$

- The scalar multiplication $P \mapsto n.P$ is computed via the standard double and add algorithm;
- On average log *n* doubling and 1/2log *n* additions;
- Standard tricks to speed-up include NAF form, windowing ...
- The multiscalar multiplication $(P,Q) \mapsto n.P + m.Q$ can also be computed via doubling and the addition of P, Q or P + Q according to the bits of n and m;
- On average $\log N$ doubling and $3/4 \log N$ additions where $N = \max(n, m)$;
- GLV idea: if there exists an efficiently computable endomorphism α such that $\alpha(P) = u.P$ where $u \approx \sqrt{n}$, then replace the scalar multiplication n.P by the multiscalar multiplication $n_1P + n_2\alpha(P)$;
- One can expect n_1 and n_2 to be half the size of $n \Rightarrow$ from $\log n$ doubling and $1/2\log n$ additions to $1/2\log n$ doubling and $3/8\log n$ additions.

			Elliptic curves	
Edwar	ds curves			

$$E: x^2 + y^2 = 1 + dx^2y^2, d \neq 0, -1.$$

• Addition of $P = (x_1, y_1)$ and $Q = (x_2, y_2)$:

$$P + Q = \left(\frac{x_1 y_2 + x_2 y_1}{1 + d x_1 x_2 y_1 y_2}, \frac{y_1 y_2 - x_1 x_2}{1 - d x_1 x_2 y_1 y_2}\right)$$

- When d = 0 we get a circle (a curve of genus 0) and we find back the addition law on the circle coming from the sine and cosine laws;
- Neutral element: (0,1); -(x, y) = (x, y); T = (1,0) has order 4, 2T = (0,1).
- If d is not a square in K, then there are no exceptional points: the denominators are always nonzero ⇒ complete addition laws;
- \Rightarrow Very useful to prevent some Side Channel Attacks.

RSA ZK		Elliptic curves	
	wards curves		

- $E: ax^2 + y^2 = 1 + dx^2y^2$;
- Extensively studied by Bernstein and Lange;
- Addition of $P = (x_1, y_1)$ and $Q = (x_2, y_2)$:

$$P + Q = \left(\frac{x_1 y_2 + x_2 y_1}{1 + d x_1 x_2 y_1 y_2}, \frac{y_1 y_2 - a x_1 x_2}{1 - d x_1 x_2 y_1 y_2}\right)$$

- Neutral element: (0, 1); -(x, y) = (x, y); T = (0, -1) has order 2;
- Complete addition if *a* is a square and *d* not a square.

			Elliptic curves	
Montg	omery			

- $E: By^2 = x^3 + Ax^2 + x;$
- Birationally equivalent to twisted Edwards curves;
- The map $E \to \mathbb{A}^1, (x, y) \mapsto (x)$ maps E to the Kummer line $K_E = E/\pm 1$;
- We represent a point $\pm P \in K_E$ by the projective coordinates (X : Z) where x = X/Z;
- Differential addition: Given $\pm P_1 = (X_1 : Z_1), \pm P_2 = (X_2 : Z_2)$ and $\pm (P_1 P_2) = (X_3 : Z_3)$; then one can compute $\pm (P_1 + P_2) = (X_4 : Z_4)$ by

$$\begin{aligned} X_4 &= Z_3 \left((X_1 - Z_1) (X_2 + Z_2) + (X_1 + Z_1) (X_2 - Z_2) \right)^2 \\ Z_4 &= X_3 \left((X_1 - Z_1) (X_2 + Z_2) - (X_1 + Z_1) (X_2 - Z_2) \right)^2 \end{aligned}$$

• The scalar multiplication $\pm P \mapsto \pm n.P$ can be computed through differential additions if we can construct a differential chain;

• If
$$\pm [n]P = (X_n - Z_n)$$
, then

$$X_{m+n} = Z_{m-n} \left((X_m - Z_m)(X_n + Z_n) + (X_m + Z_m)(X_n - Z_n) \right)^2$$

$$Z_{m+n} = X_{m-n} \left((X_m - Z_m)(X_n + Z_n) - (X_m + Z_m)(X_n - Z_n) \right)^2$$

- Montgomery's ladder use the chain nP, (n+1)P;
- From $nP_n(n+1)P$ the next iteration computes $2nP_n(2n+1)P$ or (2n+1)P, (2n+2)P via one doubling and one differential addition.

RSA ZK NFS DLP Elliptic curves Pairings 00000 000000 00000000 0000000000 0000000000 Side channel resistant scalar multiplication

• Start with $T_0 = 0_E$ and $T_1 = P$. At each step do

• If
$$k_i = 1$$
, $T_0 = T_0 + T_1$, $T_1 = 2T_1$

- Else $T_1 = T_0 + T_1$, $T_0 = 2T_0$
- Constant time execution, but vulnerable to branch prediction attacks. Remove the branch:

$$T_{1-k_i} = T_0 + T_1$$
, $T_{k_i} = 2 T_{k_i}$

• The memory access pattern depend on the secret bit $k_i \Rightarrow$ vulnerable to cache attacks. Use bit masking to mask the memory access pattern:

•
$$M = (k_i \dots k_i)_2$$
 the bitmask

- $R = T_0 + T_1$, $S = 2((\overline{M} \& T_0) | (M \& T_1))$
- $T_0 = (\overline{M} \& S) | (M \& R)$
- $T_1 = (\overline{M} \& R) | (M \& S)$

Definition

A pairing is a non-degenerate bilinear application $e: G_1 \times G_1 \rightarrow G_2$ between finite abelian groups.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_1 reduces to the difficulty of the DLP in G_2 .
- \Rightarrow MOV attacks on supersingular elliptic curves.
- Identity-based cryptography [BF03].
- Short signature [BLS04].
- One way tripartite Diffie-Hellman [Jou04].
- Self-blindable credential certificates [Ver01].
- Attribute based cryptography [SW05].
- Broadcast encryption [GPS+06].

Tripartite Diffie-Helman

Alice sends g^a , Bob sends g^b , Charlie sends g^c . The common key is

$$e(g,g)^{abc} = e(g^b,g^c)^a = e(g^c,g^a)^b = e(g^a,g^b)^c \in G_2$$

Example (Identity-based cryptography)

- Master key: (P, sP), s. $s \in \mathbb{N}, P \in G_1$.
- Derived key: Q, sQ. $Q \in G_1$.
- Encryption, $m \in G_2$: $m' = m \oplus e(Q, sP)^r$, rP. $r \in \mathbb{N}$.
- Decryption: $m = m' \oplus e(sQ, rP)$.

			Pairings	RLWE O
Divisor	'S			

- Let C be a projective smooth and geometrically connected curve;
- A divisor D is a formal finite sum of points on C: $D = n_1[P_1] + n_2[P_2] + \cdots n_e[P_e]$. The degree deg $D = \sum n_i$.
- If $f \in k(C)$ is a rational function, then

$$\operatorname{Div} f = \sum_{P} \operatorname{ord}_{P}(f)[P]$$

 $((O_C)_P$ the stalk of functions defined around P is a discrete valuation ring since C is smooth and $\operatorname{ord}_P(f)$ is the corresponding valuation of f at P).

Example

If $C = \mathbb{P}_k^1$ then $\operatorname{Div} \frac{\prod(X-\alpha_i^{e_i})}{\prod(X-\beta_i^{f_i})} = \sum e_i[\alpha_i] - \sum f_i[\beta_i] + (\sum \beta_i - \sum \alpha_i)\infty$. In particular deg $\operatorname{Div} f = 0$ and conversely any degree 0 divisor comes from a rational function.

- For a general curve, if $f \in k(C)$, Div(f) is of degree 0 but not any degree 0 divisor D comes from a function f;
- A divisor which comes from a rational function is called a principal divisor. Two divisors D_1 and D_2 are said to be linearly equivalent if they differ by a principal divisor: $D_1 = D_2 + \text{Div}(f)$.
- Pic $C = \text{Div}^0 C / \text{Principal Divisors}$
- A principal divisor D determines f such that D = Div f up to a multiplicative constant (since the only globally regular functions are the constants).

Theorem

Let $D = \sum n_i[P_i]$ be a divisor of degree 0 on an elliptic curve E. Then D is the divisor of a function $f \in \overline{k}(E)$ (ie D is a principal divisor) if and only if $\sum n_i P_i = 0_E \in E(\overline{k})$ (where the last sum is not formal but comes from the addition on the elliptic curve). In particular $P \in E(\overline{k}) \rightarrow [P] - [0_E] \in \text{Jac}(E)$ is a group isomorphism between the points in E and the linear equivalence classes of divisors;

- Let $E: y^2 = x^3 + ax + b$ be an elliptic curve over a field k (char $k \neq 2,3$, $4a^3 + 27b^2 \neq 0$.)
- Let $P, Q \in E[\ell]$ be points of ℓ -torsion.
- Let f_P be a function associated to the principal divisor $\ell(P) \ell(0)$, and f_Q to $\ell(Q) \ell(0)$. We define:

$$e_{W,\ell}(P,Q) = \frac{f_P((Q) - (0))}{f_Q((P) - (0))}.$$

• The application $e_{W,\ell}: E[\ell] \times E[\ell] \rightarrow \mu_{\ell}(\overline{k})$ is a non degenerate pairing: the Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number such that $\ell \mid q^d - 1$; \mathbb{F}_{q^d} is then the smallest extension containing $\mu_{\ell}(\overline{k})$.

Definition

The Tate pairing is a non degenerate bilinear application given by

$$e_T \colon E_0[\ell] \times E(\mathbb{F}_q) / \ell E(\mathbb{F}_q) \longrightarrow \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell}$$

$$(P,Q) \longmapsto f_P((Q) - (0))$$

where

$$E_0[\ell] = \{ P \in E[\ell](\mathbb{F}_{q^d}) \mid \pi(P) = [q]P \}.$$

• On \mathbb{F}_{q^d} , the Tate pairing is a non degenerate pairing

$$e_T \colon E[\ell](\mathbb{F}_{q^d}) \times E(\mathbb{F}_{q^d}) / \ell E(\mathbb{F}_{q^d}) \to \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^* \stackrel{\ell}{\simeq} \mu_{\ell};$$

- If $\ell^2 \nmid E(\mathbb{F}_{q^d})$ then $E(\mathbb{F}_{q^d})/\ell E(\mathbb{F}_{q^d}) \simeq E[\ell](\mathbb{F}_{q^d})$;
- We normalise the Tate pairing by going to the power of $(q^d-1)/\ell$.

				Pairings	
Miller'	s function	IS			_

• We need to compute the functions f_P and f_Q . More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda,X} \in k(E)$ to be a function thus that:

 $(f_{\lambda,X}) = \lambda(X) - ([\lambda]X) - (\lambda - 1)(0).$

• We want to compute (for instance) $f_{\ell,P}((Q)-(0))$.

• The key idea in Miller's algorithm is that

 $f_{\lambda+\mu,X} = f_{\lambda,X} f_{\mu,X} \mathfrak{f}_{\lambda,\mu,X}$

where $f_{\lambda,\mu,X}$ is a function associated to the divisor

 $([\lambda]X) + ([\mu]X) - ([\lambda + \mu]X) - (0).$

• We can compute $f_{\lambda,\mu,X}$ using the addition law in *E*: if $[\lambda]X = (x_1, y_1)$ and $[\mu]X = (x_2, y_2)$ and $\alpha = (y_1 - y_2)/(x_1 - x_2)$, we have

$$f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}$$

RSA 0000				Pairings	
Miller	's algorith	m			

 $[\lambda]X = (x_1, y_1) \quad [\mu]X = (x_2, y_2)$

$$f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}.$$

Algorithm (Computing the Tate pairing)

Input: $\ell \in \mathbb{N}$, $P = (x_1, y_1) \in E[\ell](\mathbb{F}_q), Q = (x_2, y_2) \in E(\mathbb{F}_{q^d})$. Output: $e_T(P,Q)$.

• Compute the binary decomposition: $\ell := \sum_{i=0}^{I} b_i 2^i$. Let $T = P, f_1 = 1, f_2 = 1$.

- For i in [1..0] compute
 - (1) α , the slope of the tangent of *E* at *T*.

2
$$T = 2T$$
. $T = (x_3, y_3)$.

$$f_1 = f_1^2 (y_2 - \alpha (x_2 - x_3) - y_3), f_2 = f_2^2 (x_2 + (x_1 + x_3) - \alpha^2).$$

- If $b_i = 1$, then compute
 - (1) α , the slope of the line going through *P* and *T*.
 - 2 T = T + Q. $T = (x_3, y_3)$.

Return

$$\left(\frac{f_1}{f_2}\right)^{\frac{q^d-1}{\ell}}$$

- $R = \mathbb{Z}/q\mathbb{Z}[x]/\Phi_{2^n}$ where $\Phi_{2^n} = x^{2^n} + 1$;
- RLWE assumption: from (a_i, b_i = a_is + e_i) where s is secret and e_i are small Gaussian error terms, the b_i look random;
- Encryption: fix t a power of two and $m \mapsto P = (as + te + m) aX$. We have $P(s) = m \mod t$;
- Decryption: $P \mapsto P(s) \mod t$;
- Homomorphic addition: $P_m + P_{m'} = P_{m+m'}$;
- Homomorphic multiplication: $P_m \times P_{m'} = P_{m \times m'}$;
- The homomorphic properties are valid as long as the coefficient of P_m , $P_{m'}$ are small enough (to not overflow q) and in the case of multiplication when deg P_m + deg $P_{m'} < 2^n$;
- Optimisations: when $q = 1 \mod 2^{n+1}$, then $x^{2^{n+1}} 1$ and hence $x^{2^n} + 1$ split totally modulo q;
- Modulus switching to reduce noise;
- Security: based on assumptions about ideal lattices (beware recent attacks on these kinds of lattices).