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RSA

Fermat, Euler: if x � (Z/NZ)∗ then xϕ(n ) = 1.

RSA: n = p q . ϕ(n ) = (p −1)(q −1).

If N is a product of disjoint primes, then for all x � Z/NZ, x 1+ϕ(n ) = x .

Proof.

If N = p , then Fermat shows this work for all x 6= 0, and 0 is trivial to check.
If N =
∏

pi , by the CRT Z/NZ'
∏

Z/piZ as a ring and we are back to the
prime case.

In RSA, if e is prime to ϕ(n ) and d is its inverse, then for all x � Z/NZ,
x e d = x .

Encryption: x 7→ x e ; Decryption: y 7→ y d .

Signature: x 7→ x d ; Verification: y 7→ y e .
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Reductions on RSA

Given the public key (N , e )
RSADP (Decryption Problem): from y = x e find x ;
RSAKRP (Key Recovery Problem): find d such that x e d = x for all
x � Z/NZ∗

RSAEMP (Exponent Multiple Problem): find k such that x k = 1 for all
x � Z/NZ∗ (so k is a multiple of (p −1)∨ (q −1));
RSAOP (Order Problem): find ϕ(n );
RSAFP (Factorisation Problem): recover p and q .

Theorem

RSAKRP⇔ RSAEMP⇔ RSAFP⇔ RSAOP⇒RSADP

Proof.

RSAFP⇒RSAOP⇒RSAKRP⇒RSAEMP. The hard part is to show that RSAEMP
⇒RSAFP. The goal is to find x 6=±1 such that x 2 = 1. Then x −1∧n gives a
prime factor. Write k = 2s t , and look for a random y at x = y t , x 2, x 22

, …x 2 j

until we find 1, say x 2 j0+1 = 1. Then x 2 j
is a square root. The bad cases are

when x = y t = 1 (but this has probability less than 1/4) and when x 2 j0 =−1
(but this has probability less than 1/2).
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Malleability of RSA

(m1 ·m2)e =m e
1 ·m

e
2 so from several ciphertexts we can generate a lot

more;

As is, RSA is OW-CPA (if factorisation is hard) but malleable.

Example of CCA2 attack: we know c =m e ; we ask to decipher a random
r : mr = r d and c /r : mc /r = (c /r )d (c /r looks random). We recover
m =mr mc /r .

We want IND-CCA2 so we need to add padding.

RSA-OAEP: The padding is M ⊕G (r ) || r ⊕H (M ⊕G (r )) where r is random
and H and G are two hash functions.
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Attacks on RSA

Best algorithm for factorisation is NFS: 2O (n1/3);

Subexponential: Factor 2 in security needs factor 8 in key length.

Small exponent: if N >m e finding m is easy. This can happen if the
same message is sent to several user with public keys (Ni , e ); by the CRT
we recover m e mod N =

∏

Ni .

If e has a small order in (Z/ϕ(N )Z)∗ iterating the encryption yields the
decryption.

If d is small, for instance let p < q < 2p , and suppose that d < n 1/4/3.
Write e d −1= kϕ(n ); then for n big enough

|
e

n
−

k

d
|<

1

2d 2
.

k/d can then be recovered from the continued fraction of e /n which is
computed using Euclide’s algorithm.
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Squares in finite fields

Let p > 2 be a prime. (Z/pZ∗,×) is a cyclic group of order p −1;

There are (p −1)/2 squares and (p −1)/2 non squares;

If x � Z/pZ∗ then x is a square if and only if x
p−1

2 = 1 (by Fermat x p−1 = 1
for all x � Z/pZ∗);
Legendre symbol:

�

x

p

�

=











1 x is a square

−1 x is not a square

0 x = 0 mod p ;

�

x

p

�

= x
p−1

2 (mod p );

Multiplicativity:
�

x y

p

�

=
�

x

p

��

x

q

�

;

Quadratic reciprocity: p , q primes > 2:
�

p

q

��

q

p

�

= (−1)
p−1

2
q−1

2 .
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Jacobi symbol

Jacobi symbol: if n is odd, define the Jacobi symbol by extending the
Legendre symbol multiplicatively on the bottom argument:

�

x

n1n2

�

=
�

x

n1

��

x

n2

�

;

Extension of quadratic reciprocity:
�m

n

�

= (−1)
m−1

2
n−1

2

� n

m

�

(m and n odd and coprime)

with the extra relations
�−1

n

�

= (−1)
n−1

2 ,
�

2

n

�

= (−1)
n2−1

8 ;

⇒ The Jacobi symbol can be computed in polynomial time;

Primality test: if
� x

n

�

6= x
n−1

2 then n is not prime (and if n is not prime

at least half the x coprime to n will be witnesses).
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Digression: Miller-Rabin

Miller-Rabin primality test

If n is prime and n −1= d 2t , then for all a prime to n either

a d = 1 mod n

or a d 2u =−1 mod n (for 0¶ u ¶ t −1)

for any odd composite n , at least 3/4 of the bases a are witnesses for
the compositeness of n .
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Heads or tails

Let n = p q be an RSA number, by the CRT (Z/nZ∗,×) = (Z/pZ∗×Z/qZ∗,×);
� x

n

�

=
�

x

p

��

x

q

�

so if x is prime to n ,
� x

n

�

= 1 when x is a square

modulo n (=square modulo p and square modulo q ) or when x is
neither a square modulo p and q ;

Computing
� x

n

�

: polynomial time;

Deciding if x is a real square (and computing the square root) or false
square: factorisation of n

x 7→ x 2 is a one way trapdoor function!

Heads or tails:

Bob choose n = p q and sends x such that
� x

n

�

= 1;

Alice answers “real square” or “false square”;

Bob sends p and q so Alice can verify if she was right or not.
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Zero Knowledge identification

Secret key of Alice: p , q , s mod n = p q ;

Public key of Alice: n = p q , r = s 2;

Zero Knowledge identification:

Alice chooses a random u mod n , computes z = u 2 and sends
t = z r = u 2s 2 to Bob;
Bob either chooses

To check z : he asks u to Alice and checks that z = u 2;
To check t : he asks u s to Alice and checks that t = (u s )2.

A liar will either produce a false u or a false t and has 1/2 chances to be
catched, Bob will ask for several rounds (30);

To always give the correct answer mean that Alice knows the secret s
or is very lucky (probability 1/230).
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Fermat

We want to get a factor of a composite number n (see primality tests);

If n = x 2− y 2 then n = (x − y )(x + y );

More generally if x 2 = y 2 mod n then x − y ∧n may be a non trivial
factor (Exercice: if n = p q what is the probability to get a non trivial
factor?)
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Smooth numbers

n is B -smooth if n can be written as a product of integer ¶ B ;

Canfield-Erdös-Pomerance: The probability that a number x ¶ n is
B -smooth is

u−u (1+o (1)

where u = log n
log B and when log n ε < u < log n 1−ε.

Subexponential functions: L x (α,β ) = exp(β logα x log log1−α x );

The probability for a number of size L x (α,β ) to be L x (γ,δ)-smooth is
L x (α−γ,−β (α−γ)/µ+o (1)).

Example: a number of size n = Ln (1) is Ln (1/2) smooth with probability
Ln (1/2);
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Linear and Quadratic Sieves

Dixon Linear Sieve: Generate squares modulo n : y = x 2 mod n where y
is B -smooth with B = Ln (1/2)⇒ time Ln (1/2) to find them;

Collect enough relations to use linear algebra so that a suitable product
of y is a square;

Pomerance Quadratic Sieve: let m = dn 1/2e. Generate the y by
(m +a )2 = (m 2−n )+a 2+2a m mod n . The y are of size

p
n rather than

n so the probability to be B -smooth is much higher;

A detailed complexity analysis give a complexity of Ln (1/2,
p

2)
(B = Ln (1/2, 1/

p
2)) for the linear sieve and Ln (1/2, 1) (B = Ln (1/2, 1/2))

for the quadratic field.
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General Number field sieve

Invented by Pollard and Lenstra;

Generate smooth numbers in two number fields to get relations (see
commutative diagram);

Linear algebra on the relations to get two squares;

Use sieves (lattice sieving or line sieving) to generate the smooth
numbers;

In practice very complex (obstructions from the class group and the
group of unity, taking square roots in number fields)…

Heuristic Complexity Ln (1/3, (64/9)1/3);

See for example CADO-NFS for an open-source implementation.
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Discrete Logarithm

Definition (DLP)

Let G = 〈g 〉 be a cyclic group of prime order. Let x � N and h = g x . The
discrete logarithm logg (h ) is x .

Exponentiation: O (log p ). DLP: eO (pp ) (in a generic group). So we can
use the DLP for public key cryptography.

⇒ We want to find secure groups with efficient addition law and compact
representation.



RSA ZK NFS DLP Elliptic curves Pairings RLWE

Discrete logarithm problem

Given a cyclic group G =< g >.

Exponentiation x 7→ h = g x (via fast exponentiation algorithm); DLP
h = g x 7→ x .

Shanks: the DLP in G can be done in time n =
p

#G via the Baby Steps,
Giant Steps algorithm (time/memory tradeoff). Let c =

p
N and write

x = y + c z , y , z ¶ c . Compute the intersection of {1, g , . . . , g c } and
{hg −c , hg −2c , . . . , hg −c c } to find g z = hg −c y .

Pollard: take a random path of si = g ui h vi (typically find a a suitable
function and compute si+1 = f (si )) until a collision is found: si = s j .

Then h = g
ui −u j
vi −v j . Birthday paradox: a collision is found in time

p
n .

Pohlig-Helman: the DLP inside G can be reduced to the DLP inside
subroups of side pi | n .

First reduction: CRT. Z/NZ=
∏

Z/p ei
i Z, so to recover x we need to recover

xi = x mod p ei
i ; via hi = g xi

i where hi = h N /p
ei
i , g i = g N /p

ei
i .

Second reduction: Hensel lift. Write xi = x0+x1p ; and solve h
p ei −1

i = g
p ei −1 x0
i

to recover x0; write xi − x0 = p (x1 +p x2) and find x1 and so on.
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Security of the DLP

Theorem

On a generic group, the complexity of the DLP is of complexity the square root of
its largest prime divisor.

But effective groups are not generic!

G = (Z/NZ,+), the DLP is trivial (Euclide algorithm);

G = (Z/pZ)∗, same methods and subexponential complexity as for
factorisation: 2O (n1/3);

G =F∗2n , quasi polynomial algorithm: n log n ;

Generic ordinary elliptic curve over Fp : the generic algorithm is the
best available;

⇒ To get 128 bits of security find an elliptic curve E /Fp where p has 256
bits and E (Fp ) is prime (or almost prime).
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Diffie-Helman Key Exchange

How to share a secret key across a non confidential channel?

⇒ Encrypt it via an asymmetric scheme;

Or use the Diffie-Helman Key Exchange algorithm (predates
asymmetric cryptography).

Alice sends g a to Bob

Bob sends g b to Alice

The secret key is g a b .

Diffie-Helman Problem: Eve has to recover g a b from only g , g a and g b .

DLP⇒DHP
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El Gamal encryption

Public key: (g , p = g a ), Private key: a ;

Encryption: m 7→ (g k , s = p k .m ) (k random);

Decryption: m = s/(g k )a .

Warning: Never reuse k .
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DSA (Signature)

Public key: (g , p = g a ), Private key: a ;

Φ : G →Z/nZ;
Signature: m 7→ (u =Φ(g k ), v = (m +aΦ(g k ))/k ) � (Z/nZ)2;
Verification: u =Φ(g m v−1

p u v−1 ).
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Zero Knowledge

Alice publish (g , p = g a ), her secret is a .

Alice choose a random x and sends q = g x ;

Either Bob asks for x and checks that q = g x ;

Either Bob asks for a + x and checks that q ·p = g a+x .
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Elliptic curves

Definition (char k 6= 2, 3)

An elliptic curve is a plane curve with equation

y 2 = x 3+a x + b 4a 3+27b 2 6= 0.

-2

-1

 0

 1

 2

-1.5 -1 -0.5  0  0.5  1  1.5  2

P

Q

R
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Exponentiation:

(`, P ) 7→ `P

Discrete logarithm:

(P,`P ) 7→ `
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Scalar multiplication on an elliptic curve
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Scalar multiplication on an elliptic curve
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Scalar multiplication on an elliptic curve
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ECC (Elliptic curve cryptography)

Example (NIST-p-256)

E elliptic curve y 2 = x 3 −3x +

41058363725152142129326129780047268409114441015993725554835256314039467401291 over
F115792089210356248762697446949407573530086143415290314195533631308867097853951

Public key:
P = (48439561293906451759052585252797914202762949526041747995844080717082404635286,

36134250956749795798585127919587881956611106672985015071877198253568414405109),

Q = (76028141830806192577282777898750452406210805147329580134802140726480409897389,

85583728422624684878257214555223946135008937421540868848199576276874939903729)

Private key: ` such that Q = `P .

Used by the NSA;

Used in Europeans biometric passports.
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ECC vs RSA for 128 bits of security

ECC (Curve25519) 256 bits:
AAAAC3NzaC1lZDI1NTE5AAAAIMoNrNYhU7CY1Xs6v4Nm1V6oRHs/FEE8P+XaZ0PcxPzz

RSA 3248 bits:
MIIHRgIBAAKCAZcAvlGW+b5L2tmqb5bUJMrfLHgr2jga/Q/8IJ5QJqeSsB7xLVT/

ODN3KNSPxyjaHmDNdDTwgsikZvPYeyZWWFLP0B0vgwDqQugUGHVfg4c73ZolqZk6

1nA45XZGHUPt98p4+ghPag5JyvAVsf1cF/VlttBHbu/noyIAC4F3tHP81nn+lOnB

eilEALbdmvGTTZ5jcRrt4IDT5a4IeI9yTe0aVdTsUJ6990hpKrVzyTOu1eoxp5eV

KQ7aIX6es9Xjnr8widZunM8rqhBW9EMmLqabnXZItPQoV3rUAnwKzDLV7E56viJk

S2xU5+95IctYu/RTTbf3wTxnkDOqxId0MONHyBJsukXgYKxVB1fWhBKZ4tWui1gw

UCIiKTqLml2zJhLn4WovaxrvvTx0082S0xncEfYDXYu4xbRnJn+ZsTTguqufwC1M

U4MYRdWy7uj+H1EmIGul69Fw9NkuCitWI9dFpcDtSP+/1eEN7wc2FlxhDIRwer0F

6I1P4StWn1uQyHzsTLVdcP+rqA1AsvbWBCKL4ravEO2CEQIDAQABAoIBllWt5YoJ

YZzk4RXbkSX/LvmWICfdmkjTKW6F1w+P4TnotCr0WPG0ObDoANJoUcnbSqNGMgCu

01SF8q9+UuDwZx4KBZm0j8IPOPzJ2nYcK5dYDhyMHzDq1LJ4zJfgPQGQ5WWq2BWm

2RHDhADdTth6YZArs/z9hAqtA9gqMPnMPcdQpIvlsHSOn06zBJD8sJQA+kOxG+Y2

GS8NakLcUVlDpNd/Q+QHkv4AW1ge2EF8QvmKtU/9rekOBqWNm2Tapd6RtAhZwPJX

UhD9yiesTF6rjZ1ZcMGXUaN5Rt0zD3D4zowRz2JLtCe4GkiJmtc3waN6hu1IaIqz

boI11evqnbatqnC4rCq8sf21yZqaLUIbwH4lW2G3K8xMJNh3iy8cgHTYneNYa+/d

7xyNWlMO9SKlHsyaPcWv98BdD+At0x/6R6YPYkeR+qXJ9ETGFKW4U6iNbBQXOMbh

kZb1Ry8vfMH8vsYIzh8Edg6aq00ScU57KiDS/Gc8KuqI6vmf2leCdCa487kVCgw6

cGXQ2bLZGYBiMZFfOOlpCQECgcwA5ZUh3/8yS0duNhsDz3sgC2u40HwHUbxuSOUa

a5t4CoUY9iuF7b7qhBEcvdLgIOiXA5xo+r4p0xgbLvDUTsRR1mrDM2+wRcjjwXcW

pFaMFRl2Rr72yLUC7N0WNcoUshrNL4X/1j8T4WLRcannpXcor+/kn1rwdLEbRCC+

zRTAdJlgMPt4kwJeHtE9Mzw2/O3GX3MeLvzvJklzvpCGw20N/2Yqjs++V5hXoHPs

21y6y6/FV097dvFctf7NahS04JsjubfnjOMx89AUNZsCgcwA1DfabCGJSCkmQ+mg

2q9lDPJz6r29wmBtYyT20oZ2kd4QBHrOp0t59yG4bvdRqcZG/Dr5LjuVDWMPyetV

dksK7hVYQz2B7Nzy7W3waPVrhA0N4fqbIFGxih5QiSFG7/oroZ8PdZDcfVRKroh1

/JJ7rIz/ZBQCLRS5t7/G2B0kBDOMMM+02wR60CTmxUhmgvsoDZWRp5KKha5PSvZa

WAu2CN3mXNK72RLF3RFUvuhNYnkOEj5Oau1RaGgpZoB0JTKYI9nffbe8up+DV8MC

gcwA18be28Ti5FXyg+/IGQ3EBHfucCTiTDQqA2Ew/8pTfK+z0kr9yYISsKXUuaSk

+skghkhPcrugW8LgabH4GT/zGu+lH4btyekSBxeCtFqTtpED1WJOWD2ozi7NXSjd

YrhF+VCcMCWA7ekOqSHjkmT4XMO/wPab4VFEKzgLnHzQlcZB3ke7/4/OHnDScIE7

vWVNeRCdYdRggT+wBX+Y6bxp142Smj8uyu1oDmpmR5ZUCnTdqT4O8K/RT0x4jCeC

CUhGv5rVillO7bS4CdkCgctXvnQwCzmwvVrV744TfTuhu8lTwHnqGWaA/LKU3wW9

T/x9ba1uHFXkaWvRba61LIcDGPsYM4hwTYokqYnfbC2rvOWOf6rtnXlP1An3y6lV

ovQfgDeNiFmIyvnviPPEm0JZA+QnburLYwOx4DgwYvyBnpal8WPo8c3L/J4hkwLm

Pc30DJ0xhUumLevAnCvOcjvgSfw8NenSVfzw+KToDIeKaP0rWfJTUWDAA79vY6tD

UNwRjPNtYIwtSAv+FpRvINko0ZeHamW9H+D1cwKBy2euc93qruYDtFej/biGSA5D

tUrca+kdE3aF/4TD8UckKQ1BjTHerOM2utX4+9yg4mTcYB6nziYP+MD+stDjDf90

1yOakz6sK2EcJwqW76dUG0O2QghzD5oya7gBDMMwZsuV1QGES0omdlKVs/AdNzwI

901Loc7ekm6zeW+n8/q5MmeXVNgDVtk+5l5V/Y98iRutpRpj3s2w3HkgOyrI6erA

J+u47AHSJ0lEcoOKz9WdbRY889fUbW2ppjJzlank9T+U/XCgBNQ78iHu
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Addition law on the Weierstrass model

E : y 2 = x 3+a x + b (short Weierstrass form).
Distinct points P and Q :

P +Q =−R = (xR ,−yR )

α=
yQ − yP

xQ − xP

xR =α
2− xP − xQ yR = yP +α(xR − xP )

(If xP = xQ then P =−Q and P +Q = 0E ).
If P =Q , then α comes from the tangent at P :

α=
3x 2

P + b

2yP

xR =α
2−2xP yR = yP +α(xR − xP )

Indeed write lP,Q : y =αx +β the line between P and Q (or the tangent
to E at P when P =Q ). Then y−R =αx−R +β and yP =αxP +β so
y−R =α(xR − xP )+ yP . Furthemore xR , xP , xQ are the three roots of
x 3+a x + b − (αx +β )2 so xP + xQ + xR =α2.

⇒ Avoid divisions by working with projective coordinates (X : Y : Z ):

E : Y 2Z = X 3+a X Z 2+ b Z 3.
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Scalar multiplication

The scalar multiplication P 7→ n .P is computed via the standard double
and add algorithm;

On average log n doubling and 1/2 log n additions;

Standard tricks to speed-up include NAF form, windowing …

The multiscalar multiplication (P,Q ) 7→ n .P +m .Q can also be computed
via doubling and the addition of P , Q or P +Q according to the bits of n
and m ;

On average log N doubling and 3/4 log N additions where N =max(n , m );

GLV idea: if there exists an efficiently computable endomorphism α
such that α(P ) = u .P where u ≈

p
n , then replace the scalar

multiplication n .P by the multiscalar multiplication n1P +n2α(P );

One can expect n1 and n2 to be half the size of n ⇒ from log n doubling
and 1/2 log n additions to 1/2 log n doubling and 3/8 log n additions.
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Edwards curves

E : x 2+ y 2 = 1+d x 2 y 2, d 6= 0,−1.

Addition of P = (x1, y1) and Q = (x2, y2):

P +Q =
�

x1 y2+ x2 y1

1+d x1 x2 y1 y2
,

y1 y2− x1 x2

1−d x1 x2 y1 y2

�

When d = 0 we get a circle (a curve of genus 0) and we find back the
addition law on the circle coming from the sine and cosine laws;

Neutral element: (0,1); −(x , y ) = (x , y ); T = (1,0) has order 4, 2T = (0, 1).

If d is not a square in K, then there are no exceptional points: the
denominators are always nonzero⇒ complete addition laws;

⇒ Very useful to prevent some Side Channel Attacks.
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Twisted Edwards curves

E : a x 2+ y 2 = 1+d x 2 y 2;

Extensively studied by Bernstein and Lange;

Addition of P = (x1, y1) and Q = (x2, y2):

P +Q =
�

x1 y2+ x2 y1

1+d x1 x2 y1 y2
,

y1 y2−a x1 x2

1−d x1 x2 y1 y2

�

Neutral element: (0,1); −(x , y ) = (x , y ); T = (0,−1) has order 2;

Complete addition if a is a square and d not a square.
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Montgomery

E : B y 2 = x 3+Ax 2+ x ;

Birationally equivalent to twisted Edwards curves;

The map E →A1, (x , y ) 7→ (x ) maps E to the Kummer line KE = E /±1;

We represent a point ±P � KE by the projective coordinates (X : Z )
where x = X /Z ;

Differential addition: Given ±P1 = (X1 : Z1), ±P2 = (X2 : Z2) and
±(P1−P2) = (X3 : Z3); then one can compute ±(P1+P2) = (X4 : Z4) by

X4 = Z3 ((X1−Z1)(X2+Z2)+ (X1+Z1)(X2−Z2))
2

Z4 = X3 ((X1−Z1)(X2+Z2)− (X1+Z1)(X2−Z2))
2
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Montgomery’s scalar multiplication

The scalar multiplication ±P 7→ ±n .P can be computed through
differential additions if we can construct a differential chain;

If ±[n ]P = (Xn −Zn ), then

Xm+n = Zm−n ((Xm −Zm )(Xn +Zn )+ (Xm +Zm )(Xn −Zn ))
2

Zm+n = Xm−n ((Xm −Zm )(Xn +Zn )− (Xm +Zm )(Xn −Zn ))
2

Montgomery’s ladder use the chain nP , (n +1)P ;

From nP, (n +1)P the next iteration computes 2nP , (2n +1)P or
(2n +1)P , (2n +2)P via one doubling and one differential addition.
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Side channel resistant scalar multiplication

Start with T0 = 0E and T1 = P . At each step do
If ki = 1, T0 = T0 +T1, T1 = 2T1
Else T1 = T0 +T1, T0 = 2T0

Constant time execution, but vulnerable to branch prediction attacks.
Remove the branch:

T1−ki
= T0+T1, Tki

= 2Tki

The memory access pattern depend on the secret bit ki ⇒ vulnerable to
cache attacks. Use bit masking to mask the memory access pattern:

M = (ki . . . ki )2 the bitmask
R = T0 +T1, S = 2

�

(M &T0) | (M &T1)
�

T0 = (M &S ) | (M &R )
T1 = (M &R ) | (M &S )
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Pairing-based cryptography

Definition

A pairing is a non-degenerate bilinear application e : G1×G1→G2 between
finite abelian groups.

Example

If the pairing e can be computed easily, the difficulty of the DLP in G1

reduces to the difficulty of the DLP in G2.

⇒ MOV attacks on supersingular elliptic curves.

Identity-based cryptography [BF03].

Short signature [BLS04].

One way tripartite Diffie–Hellman [Jou04].

Self-blindable credential certificates [Ver01].

Attribute based cryptography [SW05].

Broadcast encryption [GPS+06].
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Example of applications

Tripartite Diffie–Helman

Alice sends g a , Bob sends g b , Charlie sends g c . The common key is

e (g , g )a b c = e (g b , g c )a = e (g c , g a )b = e (g a , g b )c �G2.

Example (Identity-based cryptography)

Master key: (P, s P ), s . s � N, P �G1.

Derived key: Q , sQ . Q �G1.

Encryption, m �G2: m ′ =m ⊕ e (Q , s P )r , r P . r � N.
Decryption: m =m ′⊕ e (sQ , r P ).
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Divisors

Let C be a projective smooth and geometrically connected curve;

A divisor D is a formal finite sum of points on C :
D = n1[P1] +n2[P2] + · · ·ne [Pe ]. The degree deg D =

∑

ni .

If f � k (C ) is a rational function, then

Div f =
∑

P

ordP ( f )[P ]

((OC )P the stalk of functions defined around P is a discrete valuation
ring since C is smooth and ordP ( f ) is the corresponding valuation of f
at P ).

Example

If C =P1
k then Div

∏

(X−αei
i )

∏

(X−β fi
i )
=
∑

ei [αi ]−
∑

fi [βi ] + (
∑

βi −
∑

αi )∞. In particular

deg Div f = 0 and conversely any degree 0 divisor comes from a rational
function.
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Linear equivalence class of divisors

For a general curve, if f � k (C ), Div( f ) is of degree 0 but not any
degree 0 divisor D comes from a function f ;

A divisor which comes from a rational function is called a principal
divisor. Two divisors D1 and D2 are said to be linearly equivalent if they
differ by a principal divisor: D1 =D2+Div( f ).

Pic C =Div0 C /Principal Divisors

A principal divisor D determines f such that D =Div f up to a
multiplicative constant (since the only globally regular functions are
the constants).
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Divisors on elliptic curves

Theorem

Let D =
∑

ni [Pi ] be a divisor of degree 0 on an elliptic curve E . Then D is the
divisor of a function f � k (E ) (ie D is a principal divisor) if and only if
∑

ni Pi = 0E � E (k ) (where the last sum is not formal but comes from the
addition on the elliptic curve).
In particular P � E (k )→ [P ]− [0E ] � Jac(E ) is a group isomorphism between the
points in E and the linear equivalence classes of divisors;
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The Weil pairing on elliptic curves

Let E : y 2 = x 3+a x + b be an elliptic curve over a field k (char k 6= 2, 3,
4a 3+27b 2 6= 0.)

Let P,Q � E [`] be points of `-torsion.

Let fP be a function associated to the principal divisor `(P )−`(0), and fQ

to `(Q )− `(0). We define:

eW ,`(P,Q ) =
fP ((Q )− (0))
fQ ((P )− (0))

.

The application eW ,` : E [`]×E [`]→µ`(k ) is a non degenerate pairing: the
Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number such that ` | q d −1; Fq d is
then the smallest extension containing µ`(k ).
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The Tate pairing on elliptic curves over Fq

Definition

The Tate pairing is a non degenerate bilinear application given by

eT : E0[`]×E (Fq )/`E (Fq ) −→ F∗q d /F∗q d
`

(P,Q ) 7−→ fP ((Q )− (0))
.

where
E0[`] = {P � E [`](Fq d ) |π(P ) = [q ]P }.

On Fq d , the Tate pairing is a non degenerate pairing

eT : E [`](Fq d )×E (Fq d )/`E (Fq d )→F∗q d /F∗q d
` 'µ`;

If `2 - E (Fq d ) then E (Fq d )/`E (Fq d )' E [`](Fq d );

We normalise the Tate pairing by going to the power of (q d −1)/`.
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Miller’s functions

We need to compute the functions fP and fQ . More generally, we define
the Miller’s functions:

Definition

Let λ � N and X � E [`], we define fλ,X � k (E ) to be a function thus that:

( fλ,X ) =λ(X )− ([λ]X )− (λ−1)(0).

We want to compute (for instance) f`,P ((Q )− (0)).
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Miller’s algorithm

The key idea in Miller’s algorithm is that

fλ+µ,X = fλ,X fµ,X fλ,µ,X

where fλ,µ,X is a function associated to the divisor

([λ]X )+ ([µ]X )− ([λ+µ]X )− (0).

We can compute fλ,µ,X using the addition law in E : if [λ]X = (x1, y1) and
[µ]X = (x2, y2) and α= (y1− y2)/(x1− x2), we have

fλ,µ,X =
y −α(x − x1)− y1

x + (x1+ x2)−α2
.
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Miller’s algorithm

[λ]X = (x1, y1) [µ]X = (x2, y2)

-2

-1

 0

 1

 2

-1.5 -1 -0.5  0  0.5  1  1.5  2

λX

μX

-(λ+μ)X

(λ+μ)X

fλ,µ,X =
y −α(x − x1)− y1

x + (x1+ x2)−α2
.
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Miller’s algorithm on elliptic curves

Algorithm (Computing the Tate pairing)

Input: ` � N, P = (x1, y1) � E [`](Fq ),Q = (x2, y2) � E (Fq d ).

Output: eT (P,Q ).

1 Compute the binary decomposition: ` :=
∑I

i=0 bi 2i . Let T = P, f1 = 1, f2 = 1.
2 For i in [I ..0] compute

1 α, the slope of the tangent of E at T .
2 T = 2T . T = (x3, y3).
3 f1 = f 2

1 (y2 −α(x2 − x3)− y3), f2 = f 2
2 (x2 + (x1 + x3)−α2).

4 If bi = 1, then compute
1 α, the slope of the line going through P and T .
2 T = T +Q . T = (x3, y3).
3 f1 = f 2

1 (y2 −α(x2 − x3)− y3), f2 = f2(x2 + (x1 + x3)−α2).

Return
�

f1

f2

�

q d −1
`

.
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Ring Learning With Errors

R =Z/qZ[x ]/Φ2n where Φ2n = x 2n +1;

RLWE assumption: from (ai , bi = ai s + ei ) where s is secret and ei are
small Gaussian error terms, the bi look random;

Encryption: fix t a power of two and m 7→ P = (a s + t e +m )−a X . We
have P (s ) =m mod t ;

Decryption: P 7→ P (s ) mod t ;

Homomorphic addition: Pm +Pm ′ = Pm+m ′ ;

Homomorphic multiplication: Pm ×Pm ′ = Pm×m ′ ;

The homomorphic properties are valid as long as the coefficient of Pm ,
Pm ′ are small enough (to not overflow q ) and in the case of
multiplication when deg Pm +deg Pm ′ < 2n ;

Optimisations: when q = 1 mod 2n+1, then x 2n+1 −1 and hence x 2n +1
split totally modulo q ;

Modulus switching to reduce noise;

Security: based on assumptions about ideal lattices (beware recent
attacks on these kinds of lattices).
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