
The group structure of rational points of elliptic curves
over a finite field

2015/09 — ECC 2015, Bordeaux, France

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest
Institut de Mathématiques de Bordeaux

September 2015



Elliptic curves Z-module Symplectic structure Endomorphisms Endk (E )-module

Introduction

Cryptography!

We are interested in E (Fq ), were E is an elliptic curve over a finite field
Fq ;

References: [Sil86; Len96; Wat69; WM71; Mil06];



Elliptic curves Z-module Symplectic structure Endomorphisms Endk (E )-module

Torus

An elliptic curve E /C is a torus E =C/Λ, where Λ is a lattice Λ=τZ+Z,
(τ �H).
Let ℘(z ,Λ) =
∑

w �Λ\{0E }
1

(z−w )2 −
1

w 2 be the Weierstrass ℘-function and
E2k (Λ) =
∑

w �Λ\{0E }
1

w 2k be the (normalised) Eisenstein series of weight 2k .

Then C/Λ→ E , z 7→ (℘(z ,Λ),℘′(z ,Λ)) is an analytic isomorphism to the
elliptic curve

y 2 = 4x 3−60E4(Λ)−140E6(Λ) = 4x 3− g2(Λ)− g3(Λ).

In particular the elliptic functions are rational functions in ℘,℘′:
C(E ) =C(℘,℘′).

Two elliptic curves E =C/Λ and E ′ =C/Λ′ are isomorphic if there exists
α � C∗ such that Λ=αΛ′;

Two elliptic curves are isomorphic if and only if they have the same
j -invariant: j (Λ) = j (Λ′).

j (Λ) = 1728
g 3

2

g 3
2 −27g 2

3

.
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Lattices

℘ is homogeneous of degree −2 and ℘′ of degree −3:

℘(αz ,αΛ) =α−3℘(z ,Λ);

Up to normalisation one has Λ=τZ+Z with τ �Hg the upper half plane;

This gives a parametrisation of lattices Λ by τ �Hg ;

If

�

a b
c d

�

� Sl2(Z) then a new basis of Λ is given by (aτ+ b , cτ+d );

We can normalize this basis by multiplying by (cτ+d )−1 to get
Λ′ = aτ+b

cτ+d Z+Z;
The isomorphism class of elliptic curves is then parametrized by
Hg /Sl2(Z).
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Elliptic curves over a field k

Definition

An elliptic curve E /k (k perfect) can be defined as

A nonsingular projective plane curve E /k of genus 1 together with a
rational point 0E � E (k );

A nonsingular projective plane curve E /k of degree 3 together with a
rational point 0E � E (k );

A nonsingular projective plane curve E /k of degree 3 together with a
rational point 0E � E (k ) which is a point of inflection;

A non singular projective curve with equation (the Weierstrass
equation)

Y 2Z +a1X Y Z +a3Y Z 2 = X 3+a2X 2Z +a4X Z 2+a6Z 3

(in this case 0E = (0 : 1 : 0));
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Choice of the base point

Remark

If E is a nonsingular projective plan curve of degree 3 and O � E (k ), then
if O is an inflection point there is a linear change of variable which
puts E into Weierstrass form and O = (0 : 1 : 0), but otherwise needs a
non linear change of variable to transform O into an inflection point;

If char k > 3 then a linear change of variable on the Weierstrass
equation gives the short Weierstrass equation:

y 2 = x 3+a x + b .
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Class of isomorphisms of elliptic curves

The Weierstrass equation:

y 2+a1 x y +a3 y = x 3+a2 x 2+a4 x +a6

has discriminant ∆E =−b2b8−8b3−27b2+9b2b4b6 so it defines an
elliptic curve whenever ∆E 6= 0.
(Here b2 = a 2

1 +4a2 , b4 = 2a4+a1a3 , b6 = a 2
3 +4a6 ,

b8 = a 2
1 a6+4a2a6−a1a3a4+a2a 2

3 −a 2
4 ).

The j -invariant of E is

jE =
(b 2

2 −24b4)3

∆E

When we have a short Weierstrass equation y 2 = x 3+a x + b , the
discriminant is −16(4a 3+27b 2) and the j -invariant is

jE = 1728
4a 3

4a 3+27b 2
.

Theorem

Two elliptic curves E and E ′ are isomorphic over k if and only if jE = jE ′ .
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Isomorphisms and Twists

The isomorphisms (over k ) of isomorphisms of elliptic curves in
Weierstrass form are given by the maps

(x , y ) 7→ (u 2 x + r, u 3 y +u 2s x + t )

for u , r, s , t � k , u 6= 0.

If we restrict to elliptic curves of the form y 2 = x 3+a x +b then s = t = 0.

A twist of an elliptic curve E /k is an elliptic curve E ′/k isomorphic to E
over k but not over k .

Example

Every elliptic curve E /Fq : y 2 = x 3+a x + b has a quadratic twist

E ′ :δy 2 = x 3+a x + b

for any non square δ � Fq . E and E ′ are isomorphic over F2
q .

If E /Fq is an ordinary elliptic curve with jE 6� {0, 1728} then the only
twist of E is the quadratic twist. If jE = 1728, then E admits 4 twists. If
jE = 0, then E admits 6 twists.
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The addition law

Let E be an elliptic curve given by a Weierstrass equation

Then (E , 0E ) is an abelian variety;

The addition law is recovered by the chord and tangent law;

If k =C this addition law coincides with the one on C modulo the
lattice Λ. (The addition law of an abelian variety is fixed by the base
point, and the base point 0 � C corresponds to the point at infinity of E
since ℘ and ℘′ have a pole at 0).

For E : y 2 = x 3+a x + b the addition law is given by

P +Q =−R = (xR ,−y−R )

α=
yQ − yP

xQ − xP
or α=

f ′(xP )
2yP

when P =Q

xR =α
2− xP − xQ

y−R = yP +α(xR − xP )

Indeed write lP,Q : y =αx +β the line between P and Q (or the tangent
to E at P when P =Q ). Then y−R =αx−R +β and yP =αxP +β so
y−R =α(xR − xP )+ yP . Furthemore xR , xP , xQ are the three roots of
x 3+a x + b − (αx +β )2 so xP + xQ + xR =α2.
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Elliptic curves over other fields

Why look at C? For cryptography we work with elliptic curves over
finite fields;

Everything that is true over C is true over other fields except when it is
not true (non algebraically closed fields, characteristic p…). Example:
“there are n 2 points of n -torsion”.

For things that are not true over other fields, change the definition so
that it remains true. Examples: “the subscheme E [n ] has degree n 2”,
definition of the Tate module Tp E as a p -divisible group when the
characteristic is p…
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Transferring results from C to other fields

If k is an algebraically closed field of characteristic 0 and of cardinality
2ℵ0 then k is isomorphic to C;
If k is an algebraically closed field of characteristic 0 it is elementary
equivalent to C so the first order statements valid over C are valid over
k too;
If a first order statement is true over C, it is also true for all
algebraically closed field of characteristic p >> 0 (by compacity
arguments);
If E /Fq is an elliptic curve over a finite field, it can be lifted to an
elliptic curve over Qq (and Qq is a subfield of Cq which is isomorphic to
C by the explanation above);
If E /Fq is an ordinary elliptic curve, there is a lift to Qq which respects
End(E );
A polynomial in Z[X1, . . . , Xn ] which is 0 on a Zariski dense subset of Cn

is identically null.

Example

If A �Matn (R ) is a matrix, then adj A.A = A.adj A = det A. Id. Indeed this is true
for diagonalisable matrices over C which form a dense Zariski subset
(standard linear algebra), so it is true over any ring because the adjoint
matrix is given by universal polynomials in the coefficients of A.
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Field of definition

Let E /k be an elliptic curve, and let k0 be the base field of k ;

There exist an elliptic curve E0 over k0( j (E )) which is a twist of E ;

E can then be defined over a finite algebraic extension of k0( j (E ));

k0( j (E )) is either algebraic over k0 or of transcendance degree 1.

Corollary

Every elliptic curve can be defined over a finite extension of Fp (T ) or Q(T ). If
char k = 0, E can be defined over a subfield of C.
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n -torsion over k =C

E [n ] = {P � E (k ) | n .P = 0E };
If E =C/Λ, E [n ] = 1

n Λ/Λ;

E [n ]' (Z/nZ)2.
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n -torsion over k = k

Let k be an algebraically closed field of characteristic p ;

Let E : y 2 = x 3+a x + b be an elliptic curve (for simplicity we assume
p = 0 or p > 3);

Since E has dimension one, E (k ) is infinite (Exercice);

The subscheme E [n ] has dimension 0 and degree n 2;
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Proof

Via division polynomials: there exists a unitary polynomial ϕn (x ) of
degree n 2 such that [n ]P = 0E if and only if ϕn (xP ) = 0 (Exercice: why
does ϕn not depend on y ?);

Via dual isogenies: [n ] : E → E is its own dual isogeny, so
[deg[n ]] = [n ] ◦Ó[n ] = [n 2], and deg[n ] = n 2;

Via divisors: if D is a divisor on E , the theorem of the cube shows that
[n ]∗D is linearly equivalent to n2+n

2 D + n2−n
2 [−1]∗D . But

deg[n ]∗D = deg[n ]deg D so deg[n ] = n2+n+n2−n
2 = n 2.
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Group structure of the n -torsion

d [n ] is the multiplication by n map on the tangent space T0E
E , so [n ] is

étale whenever p - n ;
In this case #E [n ](k ) = n 2 so E [n ]' (Z/nZ)2 (Exercice);
Either #E [p ](k ) = p (in which case E is an ordinary elliptic curve), or
#E [p ](k ) = 0 (and E is a supersingular elliptic curve);

If E is ordinary, E [p e ] =Z/p eZ⊕µp e where µp = SpecZ[T ]/(T p e −1);

If E is supersingular, E [p e ] =α2
p e where αp e = SpecZ[T ]/T p e

is
connected.
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Proof

Let π be the (small) Frobenius, bπ be the Verschiebung, then π is purely
inseparable, and π ◦ bπ= [p ], bπ ◦π= [p ], degπ= deg bπ= p ;

The Weil pairing en shows that E [n ] (and in particular E [p ]) is self-dual;

If bπ is separable, then Z/pZ is a subscheme of E [p ] and so is its dual
µp . Taking degrees yield E [p ] =Ker bπ⊕Kerπ=Z/pZ⊕µp .

Otherwise bπ is not separable, so Kerπ cannot be µp (because its dual
Z/pZ would be a subscheme of E [p ]) which implies that Kerπ=αp (αp

is self-dual).
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Tate modules

The `-adic numbers Z` = lim←−Z/`
nZ are a way to handle all the residue

rings Z/`nZ at once, bZ= lim←−Z/nZ=
∏

`Z`.

Likewise the Tate modules are a way to encode the (`-primary) torsion
subgroup:

T`(E ) = lim←−E [`n ](k )

T (E ) = lim←−E [n ](k )

E [n ](k )' T (E )/nT (E );

T`(E ) =Z2
` if p - `;

If E is ordinary Tp (E ) =Zp , and T (E ) = bZ× bZ′ (where bZ′ = lim←−p -n Z/nZ)
and E (k )tors =Q/Z⊕Z(p )/Z;

If E is supersingular Tp (E ) = 0 and T (E ) = bZ′× bZ′ and
E (k )tors =Z(p )/Z⊕Z(p )/Z.
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The group of rational points over a finite field

If k =Fq then E (k ) is finite;

In fact (Exercice):

E (k ) =Z/n1Z⊕Z/n2Z with n1 | n2.

We will study how n1, and n2 vary under isogenies and fields extensions.
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The Weil pairing over C

E =C/(Z+τZ);
The function

en : E [n ]×E [n ] −→ µn

(P,Q ) 7−→ e 2πi n
�

xP yQ−xQ yP
�

where P = xP +τyP and Q = xQ +τyQ is bilinear and non degenerate;

The value does not depend on the choice of basis for the lattice

Λ=Z+τZ: let J =

�

0 1
−1 0

�

, then if

�

a b
c d

�

� Sl2(Z),

��

a b
c d

��

xP

yP

��T

J

��

a b
c d

��

xQ

yQ

��

=

�

xP

yP

�T ��
a b
c d

�t

J

�

a b
c d

���

xQ

yQ

�

=

�

xP

yP

�T

J

�

xQ

yQ

�

= xP yQ − xQ yP
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Divisors

Let C be a projective smooth and geometrically connected curve;

A divisor D is a formal finite sum of points on C :
D = n1[P1] +n2[P2] + · · ·ne [Pe ]. The degree deg D =

∑

ni .

If f � k (C ) is a rational function, then

Div f =
∑

P

ordP ( f )[P ]

((OC )P the stalk of functions defined around P is a discrete valuation
ring since C is smooth and ordP ( f ) is the corresponding valuation of f
at P ).

Example

If C =P1
k then Div

∏

(X−αei
i )

∏

(X−β fi
i )
=
∑

ei [αi ]−
∑

fi [βi ] + (
∑

βi −
∑

αi )∞. In particular

deg Div f = 0 and conversely any degree 0 divisor comes from a rational
function.
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Linear equivalence class of divisors

For a general curve, if f � k (C ), Div( f ) is of degree 0 but not any
degree 0 divisor D comes from a function f ;

A divisor which comes from a rational function is called a principal
divisor. Two divisors D1 and D2 are said to be linearly equivalent if they
differ by a principal divisor: D1 =D2+Div( f ).

Pic C =Div0 C /Principal Divisors

A principal divisor D determines f such that D =Div f up to a
multiplicative constant (since the only globally regular functions are
the constants).
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Divisors on elliptic curves

Theorem

Let D =
∑

ni [Pi ] be a divisor of degree 0 on an elliptic curve E . Then D is the
divisor of a function f � k (E ) (ie D is a principal divisor) if and only if
∑

ni Pi = 0E � E (k ) (where the last sum is not formal but comes from the
addition on the elliptic curve).
In particular P � E (k )→ [P ]− [0E ] � Jac(E ) is a group isomorphism between the
points in E and the linear equivalence classes of divisors;

Proof.

We will give an algorithm (Miller’s algorithm) which starts from a
divisor D =
∑

ni [Pi ] of degree 0 and constructs a rational function f
such that D is linearly equivalent to [

∑

ni Pi ]− [0E ]. If
∑

ni Pi = 0E then
D is principal.

Conversely we have to show that if P =
∑

ni Pi 6= 0E then [P ]− [0E ] is not
principal. But if we had a function f such that Div( f ) = [P ]− [0E ], then
the morphism E →P1

k
: x 7→ (1 : f (x )) associated to f would be

birational. But this is absurd: E is an elliptic curve so it has genus 1, it
cannot have genus 0.
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Rational divisors

A divisor D over a perfect field is rational if it is stable under the Galois
action;

If f � k (E ) then Div f is a rational divisor, conversely if f � k (E ) and
Div f is rational then there exists α � k

∗
such that α f � k (E );

A linear equivalence class of divisors [D ] is rational if it is stable under
the Galois action: σD ∼D ∀σ �Gal(k/k );

Over an elliptic curve E , if D ' [P ]− [0E ] then D is rational if and only if
P is rational;

Over a curve C with C (k ) 6= 0 then a rational equivalence class of
divisors has a representative given by a rational divisor;

In particular the map P 7→ [P ]− [0E ] is Galois-equivariant.
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Miller’s functions

Let µP,Q be a function with divisor [P ] + [Q ]− [P +Q ]− [0E ];

Using the geometric interpretation of the addition law on E one can
construct µP,Q explicitly:

if P =−Q then µP,Q = x − xP ;

Otherwise let lP,Q be the line going through P and Q (if P =Q then we
take lP,Q to be the tangent to the elliptic curve at P ). Then
Div(lP,Q ) = [P ] + [Q ] + [−P −Q ]−3[0E ].

Let vP,Q be the vertical line going through P +Q and −P −Q ;
Div(vP,Q ) = [P +Q ] + [−P −Q ]−2[0E ];

µP,Q =
lP,Q
vP,Q

;

Explicitly if E : y 2 = x 3+a x + b is given by a short Weierstrass equation,

µP,Q =
y −α(x − xP )− yP

x + (xP + xQ )−α2
(1)

with α= yP −yQ
xP −xQ

when P 6=Q and α= f ′(xP )
2yP

when P =Q .
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Miller’s algorithm: reducing divisors

Let D = [P ] + [Q ] +D0 be a divisor of degree 0;

Using µP,Q we get that D =Div(µP,Q )+ [P +Q ] +D0+ [0E ];

We can iterate the reduction until there is only one non zero point in
the support: D =Div(g )+ [R ]− [0E ];

D is principal if and only if R = 0E , in which case g is a function
(explicitly written in terms of the µP,Q ) with divisor D (and normalised
at 0E ).
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Miller’s algorithm: double and add

If D = n [P ]−n [0E ] one can combine the reduction above with a double
and add algorithm;

let λ � N and P � E (k ); we define fλ,P � k (E ) to be the function
normalized at 0E thus that:

Div( fλ,P ) =λ[P ]− [λP ]− (λ−1)[0E ].

In particular D =Div fn ,P + [nP ]− [0E ];

If λ,ν � N, we have
fλ+ν,P = fλ,P fν,P fλ,ν,P

where fλ,ν,P :=µλP,νP is the function associated to the divisor
[(λ+ν)P ]− [(λ)P ]− [(ν)P ] + [0E ] and normalized at 0E ;
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Miller’s algorithm: example

Let D be a general divisor of degree 0. How to apply a double and add
algorithm to reduce D ?

Write D =D1+2D2+4D4+ . . ..

Example: D = 5[P ] +7[Q ]−12[0E ];

Reduce: [P ] + [Q ]−2[0E ]∼ [P +Q ]− [0E ];

Double: 2[P +Q ]−2[0E ]∼ [2P +2Q ]− [0E ];

Add: [2P +2Q ] + [Q ]−2[0E ]∼ [2P +3Q ]− [0E ];

Double: 2[2P +3Q ]−2[0E ]∼ [4P +6Q ]− [0E ];

Add: [4P +6Q ] + [P +Q ]−2[0E ]∼ [5P +7Q ]− [0E ];
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Evaluating functions on divisors

If f is a function with support disjoint from a divisor D =
∑

ni [Pi ], then
one can define

f (D ) =
∏

f (Pi )
ni

If D is of degree 0, then f (D ) depends only on Div f ;

Miller’s algorithm allows, given Div f to compute f (D ) efficiently, the
data Div f can then be seen as a compact way to represent the
function f .

Technicality: during the execution of Miller’s algorithm we introduce
temporary points in the support of the divisors we evaluate, so we may
get a zero or a pole during the evaluation even through f has support
disjoint to D ;

One way to proceed is to extend the definition of f (P ) when ordP ( f ) = n
by fixing a uniformiser uP (a function with simple zero at P ), and
defining f (P ) to be ( f /u ordP ( f )

P )(P ). Since C is smooth, ÒOp = k [[uP ]],
f � k ((uP )) and f (P ) is then the first coefficient in the Laurent expansion
of f along uP .

For an elliptic curve a standard uniformiser at 0E is u = x/y ; a function
f is said to be normalised at 0E if f (0E ) = 1. This fixes uniquely f in its
equivalence class Div f .
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Evaluating functions on divisors: example

Algorithm (Evaluating fr,P on Q )

Input: r � N, P = (xP , yP ) � E [r ](Fq ),Q = (xQ , yQ ) � E (Fq d ).

Output: fr,P (Q ) where Div fr,P = r [P ]− r [0E ].

1 Compute the binary decomposition: r :=
∑I

i=0 bi 2i . Let T = P, f1 = 1, f2 = 1.
2 For i in [I ..0] compute

1 α, the slope of the tangent of E at T .
2 f1 = f 2

1 (yQ −α(xQ − xT )− yT ), f2 = f 2
2 (xQ +2xT −α2).

3 T = 2T .
4 If bi = 1, then compute

1 α, the slope of the line going through P and T .
2 f1 = f 2

1 (yQ −α(xQ − xT )− yT ), f2 = f2(xQ + xP + xT −α2).
3 T = T +P .

Return
f1

f2
.
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The Weil pairing over algebraically closed fields

Theorem

Let E be an elliptic curve, r a number and P and Q two points of r -torsion on E .
Let DP be a divisor linearly equivalent to [P ]− [0E ] and DQ be a divisor linearly
equivalent to [Q ]− [0E ]. Then

eW ,r (P,Q ) = ε(DP , DQ )
r (r DP ) · (DQ )
(r DQ ) · (DP )

(2)

is well defined.
Furthermore the application E [r ]×E [r ]→µr : (P,Q ) 7→ eW ,r (P,Q ) is a pairing,
called the Weil pairing. The pairing eW ,r is an alternate pairing, which means
that eW ,r (P,Q ) = eW ,r (Q , P )−1.

Proof.

An essential ingredient of the proof is Weil’s reciprocity theorem: if
f , g � K (E ), then

f (Div(g )) = ε(Div f , Div g )g (Div( f )).

(Note: ε(Div f , Div g ) = 1 if the two divisors have disjoint support.)
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Weil’s pairing in practice

Recall that fr,P is the function with divisor r [P ]− r [0E ] (and normalised
at 0E ) constructed via Miller’s algorithm;

Similarly fr,Q has divisor r [Q ]− r [0E ];

eW ,r (P,Q ) = (−1)r fr,P (Q )
fr,Q (P )

;

If during the execution of Miller’s algorithm to evaluate fr,P (Q ) we find
a pole or a zero, then we know that Q is a multiple of P and that
eW ,r (P,Q ) = 1.
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Embedding degree

If Fq is a finite field, the embedding degree e is the smallest integer
such that Fq e =Fq (µr );

Alternatively, if r = ` is prime, it is the smallest integer such that
r | q e −1.

If σ �Gal(k/k ), er (σP,σQ ) =σ (e (P,Q )) (by unraveling the definition), so
if P,Q � k then e (P,Q ) � k ;

In particular if E [`]⊂ E (Fq ) and ` is prime, then ` | q −1.

More generally if E [r ]⊂ E (Fq ) then µr ⊂Fq .
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Application of the Weil pairing

Extremely useful for cryptography (MOV attack, pairing-based
cryptography);

For cryptography rather use optimised pairings derived from the Tate
pairing;

Application for the group structure: P,Q � E [`] form a basis of the
`-torsion if and only if eW ,`(P,Q ) 6= 1 (Exercice: compare the complexity
with the naive method);

More generally: P,Q � E [r ] form a basis of the r -torsion if and only if
eW ,r (P,Q ) is a primitive r -root of unity (Exercice: what is the complexity
to check this?);

Remark

If P,Q � E [n ], eW ,nm (P,Q ) = eW ,n (P,Q )m so the Weil pairings glue together to
give a symplectic structure on the Tate module T (E ).
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The Tate pairing over a finite field

Theorem

Let E be an elliptic curve, r a prime number, P � E [r ](Fq e ) a point of r -torsion
defined over Fq e and Q � E (Fq e ) a point of the elliptic curve defined over Fq e . Let
DP be a divisor linearly equivalent of [P ]− [0E ] and DQ be a divisor linearly
equivalent of [Q ]− [0E ]. Then

eT ,r (P,Q ) =
�

(r DP ) · (DQ )
�

q e −1
r (3)

is well defined and does not depend on the choice of DP and DQ .
Furthermore the application E [r ](Fq e )×E (Fq e )/r E (Fq e )→µr : (P,Q ) 7→ eT ,r (P,Q )
is a pairing, called the Tate pairing.
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Tate’s pairing in practice

Recall that fr,P is the function with divisor r [P ]− r [0E ] (and normalised
at 0E ) constructed via Miller’s algorithm;

eT ,r (P,Q ) = fr,P (Q )
q e −1

r ;

If during the execution of Tate’s algorithm to evaluate fr,P (Q ) we find a
pole or a zero, then we use DQ = [Q +R ]− [R ] instead (for R a random
point in E (Fq e )) and evaluate

eT ,r (P,Q ) =

�

fr,P (Q +R )
fr,P (R )

�

q e −1
r

;

If R � E (Fq ) and e > 1 we have

eT ,r (P,Q ) = fr,P (Q +R )
q e −1

r .
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Tate pairing and the Frobenius

The Weil pairing, Tate pairing and the Frobenius are related;

Let P � E [r ](Fq e ) and Q � E (Fq e ). Let Q0 � E [r ](k ) be any point such that
r Q0 =Q ;

πe Q0−Q0 � E [r ] (Exercice)

eT ,r (P,Q ) = eW ,r (P, (πe −1)Q0)

If Q ′ =Q + r R with R � E (Fq e ) then one can choose Q ′
0 =Q0+R so that

(πe −1)(Q0) = (πe −1)(Q ′
0);

So the value of eT ,r (P,Q ) depends only on the class of Q � E (Fq e )/r E (Fq e ).
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Proof

The link between the Weil and Tate pairing comes from Weil’s
reciprocity;

If E [r ]⊂ E (Fq e ), then (πe −1)E [r ] = 0 so πe −1
r is an endomorphism;

Since the Weil pairing is non degenerate, to show that the Tate pairing
is non degenerate we just need to show that π

k−1
r : E (Fq e )→ E [r ] is

surjective;

The kernel of π
k−1
r restricted to E (Fq e ) is r E (Fq e ), so the image is

isomorphic to E (Fq e )/r E (Fq e );

E (Fq e ) =Z/aZ⊕Z/bZ with a | b , and since E (Fq e )⊃ E [r ], we know that
r | a and r | b ;
We deduce that E (Fq e )/r E (Fq e ) is isomorphic to Z/rZ⊕Z/rZ, in
particular it has cardinal r 2 so the application is indeed surjective;

The general case comes from Galois cohomology applied to the exact
sequence 0→ E [r ]→ E (k )→ E (k )−> 0.
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Field of definition of the r -roots of unity

By the CRT, we may assume that r = `n ;

µ`n lives in Fq e whenever v`(q e −1)¾ n ;

If µ` 6� Fq then Fq (µ`) =Fq e with e | `−1;

If µ` � Fq , then v`(q e −1) = v`(q −1) unless ` | e ;
If µ` � Fq , v`(q `−1) = v`(q −1)+1 (except possibly when `= 2 and
v`(q −1) = 1 where v`(q `−1) can increase by more than 1);

(Hint: write
q e −1= (q −1)(1+q +q 2+ · · ·+q k−1)) = (q −1)(q −1+q 2−1+ · · ·+q e−1−1+e )).
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Endomorphisms and isogenies

An isogeny is a non constant rational application ϕ : E1→ E2 between
two elliptic curves E1 and E2 that commutes with the addition law;

A rational application ϕ is an isogeny if and only if ϕ(0E1
) = 0E2

(and
ϕ 6= 0);

An isogeny is surjective on the k -points and has finite kernel;

The degree of ϕ is [k (E2) :ϕ∗k (E1)];

An isogeny ϕ : E1→ E2 admits a dual bϕ : E2→ E1 such that ϕ ◦ bϕ = [degϕ]
and bϕ ◦ϕ = [degϕ];

We write E1[ϕ] =Kerϕ; degϕ = deg E1[ϕ] (as a scheme), Kerϕ
determines ϕ (up to automorphisms);

If ϕ is separable (for instance if p - degϕ) then
E1[ϕ] = {P � E1(k ) |ϕP = 0E2

} so degϕ = #E1[ϕ](k );

Conversely a finite subscheme group K determines an isogeny
E → E /K of degree deg K ;

Over an elliptic curve, every isogeny is (up to isomorphisms) the
composition of a separable isogeny and a power of the small Frobenius
πp .

An endomorphism ϕ � End(E ) is an isogeny from E to E .
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Endomorphism and isogenies over C

Let E1 =C/Λ1 and E2 =C/Λ2;

An isogeny comes from a linear map z 7→αz where αΛ1 ⊂Λ2;

The kernel is α−1Λ2/Λ1;

If E =C/Λ an endomorphism comes from a linear map z 7→αz where
αΛ⊂Λ;
Write Λ=Z⊕τZ, we get that if α 6� Z then τ satisfy a quadratic equation
and α � Z[τ];
Q(τ) is then a quadratic imaginary field and End(E ) an order (because it
stabilizes a lattice).
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Field of definition of endomorphisms

Let E /k be an elliptic curve (k perfect);

It may happen that endomorphisms of E are defined over a larger field
than k (Exercice: but there are always defined over a finite extension of
k );

We let End(E ) = Endk (E ) and Endk (E ) the subring of rational
endomorphisms;

ϕ � End(E ) is defined over k if and only if it is stable under Gal(k/k );

In particular if k =Fq and π is the Frobenius, then Endk (E ) is the
commutant of π in End(E ).

If l /k is an extension of field, then Endl (E )/Endk (E ) is torsion free
(Exercice: if mϕ is rational, then so is ϕ).

Remark

If k is not perfect and l /k is a purely inseparable extension of k then
Endl (E ) = Endk (E ).
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Characteristic polynomial

Let ϕ � Endk (E ), the characteristic polynomial χϕ � Z[X ] is defined as

The characteristic polynomial of ϕ on T`(E ) (` 6= p );

The only polynomial such that deg(ϕ−n Id) =χϕ(n ) ∀n � Z;
If Endk (E ) is quadratic, as the characteristic polynomial of ϕ in End(E );

If ϕ 6� Z, as the characteristic polynomial of ϕ in Q(ϕ);
If ϕ � Z, as X 2−2ϕX +ϕ2;

Let Tr(ϕ) =ϕ+ ϕ̂ � Z and N (ϕ) =ϕϕ̂ = degϕ � Z;

χϕ = X 2−Tr(ϕ)X +N (ϕ);

Corollary

If p - n , the characteristic polynomial of ϕ acting on E [n ] is χϕ mod n .

Remark

If ϕ � Endk (E ), bϕ =ϕ.
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Characteristic polynomial of the Frobenius (k =Fq )

χπ = X 2− t X +q ;

The roots of χπ in C have absolute value |pq | so |t |¶ 2
p

q (Hasse);

#E (Fq ) = deg(π−1) =χπ(1);

ζE = exp

� ∞
∑

n=1

#E (Fq n )
T n

n

�

=
1− t T +q T 2

(1−q T )(1−T )
;

χπn =ResX (χπ(Y ), Y n −X );

Theorem (Tate)

Two elliptic curves over Fq are isogenous if and only if they have the same
cardinal, if and only if they have the same characteristic polynomial of the
Frobenius.
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Action of the Frobenius on E [`]

Let ∆π = t 2−4q ;

If ∆π = 0 mod ` then either π=

�

λ 0
0 λ

�

on E [`] (and all `-isogenies are

rational) or π=

�

λ 1
0 λ

�

(and there is one rational `-isogeny);

If
�

∆π
`

�

= 1 then π=

�

λ 0
0 µ

�

on E [`] with λ 6= ν � F`, λµ= q (and there

are two rational `-isogenies);

If
�

∆π
`

�

=−1 then π=

�

λ 0
0 µ

�

on E [`] with λ 6= ν � F`2 , λµ= q (and there

are no rational `-isogenies).

Corollary

If ` || #E (Fq ) then

If the embedding degree e > 1 then π=

�

1 0
0 q

�

and E [`]⊂ E (Fq e );

Otherwise π=

�

1 1
0 1

�

and E [`]⊂ E (Fq ` ).
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Isogenies and Tate modules

Let ` 6= p then Hom(E1, E2)⊗Z`→Hom(T`E1, T`E2) is
injective [Sil86][Theorem III.7.4] (Exercice: show that
Hom(E1, E2)→Hom(T`E1, T`E2) is injective);

In particular End(E ) has rank at most 4;

Theorem (Tate,Faltings)

If k is a finite field or a number field, then

Homk (E1, E2)⊗Z` 'HomZ`(Gal(k/k ))(T`E1, T`E2)

Remark

Tate’s theorem remain valid for `= p when considering the Tate module
coming from the duality of p -divisible group schemes.
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Endomorphism rings and endomorphism fields

Endk (E ) is either

Z;
An order in a quadratic imaginary field;

A maximal order in the definite quaternion algebra ramified at p
and∞.

Remark

If E is an elliptic curve over a finite field Fq , then

If E is ordinary then End(E ) is an order in a quadratic imaginary field;

If E is supersingular then End(E ) is a maximal order in the definite
quaternion algebra ramified at p and∞.

Exercice

In characteristic 0, Endk (E ) is commutative;

In characteristic p , Endk (E ) =Z if and only if j (E ) is transcendental.
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End0
k (E )

We follow https://rigtriv.wordpress.com/2009/05/14/

endomorphisms-of-elliptic-curves-and-the-tate-module/

Lemma

Hom(E1, E2) is torsion free.

Proof.

The degree is multiplicative, so if [m ] ◦ f = 0 then m = 0 or f = 0.

Lemma

Endk (E ) has no zero divisors, so End0
k (E ) = Endk (E )⊗ZQ is a division algebra

https://rigtriv.wordpress.com/2009/05/14/endomorphisms-of-elliptic-curves-and-the-tate-module/
https://rigtriv.wordpress.com/2009/05/14/endomorphisms-of-elliptic-curves-and-the-tate-module/
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Proof

(We assume here that p > 2)

If Endk (E ) has rank 1 then it is Z (the maximal order of Q);
Let ϕ � Endk (E ) \Z, by translating by an integer we can assume that
Trϕ = 0, and since N (ϕ) = degϕ > 0 we get that Z+Zϕ is an order in a
quadratic imaginary field. If the rank of Endk (E ) = 2 then Endk (E ) is an
order containing Z+Zϕ.
Otherwise ψ 7→ϕψϕ−1 is a linear map of order 2. If ψ is in the
−1-eigenspace (Exercice: why does such a ψ exists?) then (1,ϕ,ψ,ϕψ)
forms a basis of Endk (E ). Thus End0

k (E ) is a quaternion algebra and
Endk (E ) an order in the quaternion algebra.

Over ` 6= p we get that Endk E ⊗Z` ⊂ End(T`E ) =M2(Z`) so End0
k E is split

at `;

So either End0
k E =M2(Q) or the definite quaternion algebra ramified at

p and∞. But M2(Q) has zero divisors so it cannot be Endk (E ).
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Endomorphism rings over Fq

Let E /Fq be an elliptic curve, π the Frobenius and χπ = X 2− t X +q ;

E is supersingular if and only if t is not prime to p , if and only if a
power of π is an integer, if and only if End0(E ) is a quaternion algebra if
and only if the isogeny class (up to isomorphism) over k is finite.

Either χπ is irreducible or χπ = X 2−2±pq X +q = (X ∓pq )2 and
π=±pq � Z. If χπ is irreducible then End0

k =Q(π) =Q(
p

t 2−4q ) is
quadratic imaginary, otherwise End0

k is the definite quaternion algebra
ramified at p and∞;

If E is ordinary over Fq , then Endk (E ) = End(E ) is an order in Q(π)
containing Z[π], Z[π] is maximal at p and p splits.

If E is supersingular, then End0
k (E ) is a quaternion algebra if and only if

π � Z, and Endk (E ) = End(E ) is then a maximal order. Otherwise Endk (E )
is a quadratic order in Q(π) and is maximal at p (even though Z[π] may
not be maximal at p ).
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Proof (partial)

If E is supersingular then π2
p E ' E . In particular jE � Fp 2 and π2

p = [p ] ◦ζ
where ζ is an automorphism. ζ is then a root of unity in End(E ) so a
power of π is an integer. Reciprocally if πn � Z then p |πn is inseparable
so E is supersingular.

t is not prime to p ⇔ a power of π is an integer (Not trivial exercice,
see [Wat69][Chapter 4]);

πn � Z⇔ End0
Fq n
(E ) is a quaternion algebra (by Tate’s theorem);

If End0(E ) =Q(π) is a quadratic field, then the isogeny class is infinite
(Exercice: look at isogenies E → Ei of degree a prime `i inert in OK and
prove that the Ei are non isomorphic). Conversely all supersingular
elliptic curves are defined over Fp 2 so the isogeny class is finite.
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Reduction and lifting

Let O be an order in a imaginary quadratic field K . Then there are hO

(the class number of O ) elliptic curves over Q with endomorphism ring
O . They are defined over the ray class field HO of O .

If p -∆O , p is a prime of good reduction. Let p be a prime above p in
HO . If p is inert in K , Ep is supersingular. If p splits, Ep is ordinary, and
its endomorphism ring is the minimal order containing O of index
prime to p .

Reciprocally, if E /Fq is an ordinary elliptic curve, the couple (E ,End(E ))
can be lifted over Qq .

Corollary

If E /Fq is an ordinary elliptic curve, then End(E ) is an order in K =Q(π) of
conductor prime to p . For every order O of K such that Z[π]⊂O , there
exist an isogenous curve whose endomorphism ring is O .

Reciprocally, for every order O of discriminant a non zero square modulo p ,
let n be the order of one of the prime above p in the class group of O . Then
there exist an (ordinary) elliptic curve E ′ over Fq n with End(E ′) =O .
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Automorphisms and twist

The automorphisms of E are the inversible elements in O = Endk E .

All inversible elements are roots of unity.

We usually have O ∗ = {±1} except in the following exceptions:
1 jE = 1728 (p 6= 2, 3), in this case O is the maximal order in Q(i ) and #O ∗ = 4;
2 jE = 0 (p 6= 2, 3), in this case O is the maximal order in Q(i

p
3) and #O ∗ = 6;

3 jE = 0 (p = 3), in this case E is supersingular and #O ∗ = 12;
4 jE = 0 (p = 2), in this case E is supersingular and #O ∗ = 24.

The Frobenius π � K characterizes the isogeny class of E (Tate). A
twisted isogeny class will correspond to a Frobenius π′ 6=π, where there
exist n with πn =π′n . This give a bijection between the twisted isogeny
class and the roots of unity in K .

More generally, there is a bijection between O ∗ and the twists of E .

Remark

If E1 is isogeneous to E2 over k and k ⊂ l , Homk (E1, E2) =Homl (E1, E2) when
Endk (E1) = Endl (E2). In particular a twist to E is never isogenous to E over k
if E is ordinary.



Elliptic curves Z-module Symplectic structure Endomorphisms Endk (E )-module

Isogeny class of elliptic curves over Fq

Let q = p n . The isogeny classes of elliptic curves are given by the value of
the trace t by Tate’s theorem. The possible value of t are:

t prime to p , in this case the isogeny class is ordinary.
The other cases give supersingular elliptic curves. The endomorphism
fraction ring End0

k (E ) of the isogeny class is either a quaternion algebra
of rank 4, or an imaginary quadratic field. In the latter case, it will
become maximal after an extension of degree d , with:

1 If n is even:
t =±2

p
q , this is the only case where End0

k (E ) is a quaternion algebra.
t =±pq when p 6≡ 1 mod 3, here d = 3.
t = 0 when p 6≡ 1 mod 4, here d = 2.

2 If n is odd:
t = 0, here d = 2.
t =±
p

2q when p = 2, here d = 4.
t =±
p

3q when p = 3, here d = 6.

Remark

Any two supersingular elliptic curves become isogenous after a quadratic
extension of degree 2d (with d the degree where their endomorphism ring
become maximal). But a new maximal class and up to 3 commutative
classes appear in this extension.
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Isogeny graph and endomorphisms of ordinary elliptic curves

The `-isogeny graph looks like a volcano [Koh96; FM02]:
Let fE be the conductor of End(E )⊂OK . At each level v`( fE ) increase by one.
At the crater v`( fE ) = 0 and at the bottom v`( fE ) = v`( f ) = νπ where f is the
conductor of Z[π]⊂OK .
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The α-torsion as an Endk (E ) module

Theorem ([Len96])

If Endk (E ) is commutative, let α � Endk (E ) be a separable endomorphism.
We have an isomorphisme of Endk (E )-modules:

E [α]' Endk (E )/αEndk (E ).

If Endk (E ) is non commutative (ie π � Z), let n � Z. We have an
isomorphism of Endk (E )-modules:

E [n ]⊕E [n ]' Endk (E )/n Endk (E ).

Outline of the proof in the commutative case.

Endk (E ) is a quadratic order so it is a Gorenstein ring. E [α] is faithful over
Endk (E )/αEndk (E ), which is a finite Gorenstein ring. So E [α] contains a free
Endk (E )/αEndk (E ) module of rank 1, but #E [α] = # Endk (E )/αEndk (E ) = degα
so E [α] is free of rank 1 over Endk (E )/αEndk (E ).
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The structure of the rational points

Theorem (Lenstra)

Let E /Fq be an ordinary elliptic curve (or suppose that π 6� Z). We have as
EndFq

(E )-modules:

E (Fq n )'
EndFq

(E )

πn −1

Let ∆π = t 2−4q and ∆ the discriminant of Q(
p

∆π). We have ∆π =∆ f 2

where f is the conductor of Z[π]⊂OK .
In practice if ∆π = d f 2

0 , then ∆= d , f = f0 if d ≡ 1 mod 4 or
∆= 4d , f = f0/2 otherwise;

Let ω= 1+
p

d
2 if d ≡ 1 mod 4 and ω=

p
d otherwise.

OK =Z⊕Zω=Z[∆+
p
∆

2 ];

π= a + f ω with a = t− f
2 if d ≡ 1 mod 4 and a = t

2 otherwise;
Let fE be the conductor of End(E )⊂OK , fE | f since Z[π]⊂ End(E ),
f = fE γ where γE = [End(E ) :Z[π]];
E (Fq ) =Z/n1Z⊕Z/n2Z where n1 | n2, n1 = gcd(a −1,γE ) and
N = n1n2 = #E (Fq ).
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Torsion and conductor of the order

Lemma ([MMS+06])

Let N = n1n2 = #E (Fq ), π= a + f ω, n1 = gcd(a −1,γE ).

v`(a −1)¾min(v`( f ), v`(N )/2).

Proof.

N =χπ(1) = (1−π)(1− bπ).
If d 6≡ 1 mod 4, from π= a + f ω we get

N = (a −1)2−d f 2

so 2v`(a −1)≥min(2v`( f ), v`(N ).
If d ≡ 1 mod 4, then (t −2)2 = f 2+4N so 4(a −1)2 = 4N + f 2(d −1)−4 f (a −1),
and taking valuations yield the Lemma too.

Corollary

If v`(n1)< v`(N )/2 then v`(γE ) = v`(n1);

If v`(n1) = v`(N )/2 then v`(γE )¾ v`(N )/2.
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The structure of the `∞-torsion in the volcano

If E is on the floor, E [`∞](Fq ) is cyclic: E [`∞](Fq ) =Z/`mZ, with
m = v`(N ) (possibly m = 0).

If E is on level α<m/2 above the floor, then E [`∞](Fq ) =Z/`α⊕Z/`m−α.

If ν≥m/2 then m is even and when E is on level α≥m/2,
E [`∞](Fq ) =Z/`m/2⊕Z/`m/2.

Corollary

When E [`∞](Fq ) =Z/`α⊕Z/`m−α with α 6=m/2 we can read the `-valuation of
the conductor of Endk (E ) directly from the rational points!

Example

If ` || #E (Fq ) then Endk (E ) is maximal at ` and the volcano has height 1.



Elliptic curves Z-module Symplectic structure Endomorphisms Endk (E )-module

The structure of the `∞-torsion in the volcano

νE = 0 E [`∞](Fq ) =Z/`m/2Z⊕Z/`m/2Z

νE = 1 E [`∞](Fq ) =Z/`m/2Z⊕Z/`m/2Z

νE = ν−2 E [`∞](Fq ) =Z/`2Z⊕Z/`m−2Z

νE = ν−1 E [`∞](Fq ) =Z/`Z⊕Z/`m−1Z

νE = ν E [`∞](Fq ) =Z/`mZ
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Torsion and extensions

v`( fπe ) = v`( fπ) when ` - e ;
v`( fπ` ) = v`( fπ)+1, except when `= 2 and v`( fπ) = 1 when the height can
increase by more than one [Fou01];

If E [`∞](Fq ) =Z/`n1 ⊕Z/`n2 (n1 ¶ n2) with n1 > 0 and n2 > 0 then
E [`∞](Fq e ) = E [`∞](Fq ) when ` - e ;
With the hypothesis above, if ` > 2, E [`∞](F`q ) =Z/`

n1+1⊕Z/`n2+1;

If `= 2, n1 and n2 can increase by more than one (but when v`( fπ)> 1
then n1 only increase by 1) [IJ13].
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Number fields

If K is a number field, E (K ) is finitely generated (Mordell);

E (Q)tors � {Z/nZ 1¶ n ¶ 10 or n = 12}∪ {Z/2Z×Z/2Z,Z/2Z×
Z/4Z,Z/2Z×Z/6Z,Z/2Z×Z/8Z} (Mazur).
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E (k ) [Len96]

E (k ) = E (k )tors⊕E (k )/E (k )tors;
E (k )/E (k )tors is equal to 0 if k is the algebraic closure of a finite field,
otherwise it is isomorphic as en End(E ) module to End0(E )#k ;
Let p denotes the endomorphisms acting trivially on the tangeant space
T0(E );
If E is ordinary (rank End(E ) = 2), E (k )tors = End(E )p/End(E );
Otherwise (rank End(E ) = 4) E (k )tors⊕E (k )tors = End(E )p/End(E ).

Corollary

E (k ) = E (k )tors if and only if k is algebraic over a finite field.

Proof.

If k is algebraic over a finite field and P � E (k ), the coordinates of P are
defined over a finite field, so P is of torsion.
Conversely we may assume that k is algebraic over Fp (T ) or Q or Q(T ). If
E (k ) = E (k )tors the Jordan-Hölder factors of the absolute Galois group would
be of the form PSL2(Fq ) (up to a finite number of exceptions). But Fp (T ), Q
and Q(T ) all have Galois extension with the symmetric groups Sn for all
n .
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