The group structure of rational points of elliptic curves over a finite field 2015/09 – ECC 2015, Bordeaux, France

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest Institut de Mathématiques de Bordeaux

September 2015

Introduction

- Cryptography!
- We are interested in $E(\mathbb{F}_q)$, were E is an elliptic curve over a finite field \mathbb{F}_q ;
- References: [Sil86; Len96; Wat69; WM71; Mil06];

Elliptic curves		
Torus		

- An elliptic curve E/\mathbb{C} is a torus $E = \mathbb{C}/\Lambda$, where Λ is a lattice $\Lambda = \tau \mathbb{Z} + \mathbb{Z}$, $(\tau \in \mathfrak{H})$.
- Let $\wp(z,\Lambda) = \sum_{w \in \Lambda \setminus \{0_E\}} \frac{1}{(z-w)^2} \frac{1}{w^2}$ be the Weierstrass \wp -function and $E_{2k}(\Lambda) = \sum_{w \in \Lambda \setminus \{0_E\}} \frac{1}{w^{2k}}$ be the (normalised) Eisenstein series of weight 2k.
- Then $\mathbb{C}/\Lambda \to E, z \mapsto (\wp(z, \Lambda), \wp'(z, \Lambda))$ is an analytic isomorphism to the elliptic curve

$$y^2 = 4x^3 - 60E_4(\Lambda) - 140E_6(\Lambda) = 4x^3 - g_2(\Lambda) - g_3(\Lambda).$$

- In particular the elliptic functions are rational functions in *φ*, *φ*':
 C(*E*) = C(*φ*, *φ*').
- Two elliptic curves $E = \mathbb{C}/\Lambda$ and $E' = \mathbb{C}/\Lambda'$ are isomorphic if there exists $\alpha \in \mathbb{C}^*$ such that $\Lambda = \alpha \Lambda'$;
- Two elliptic curves are isomorphic if and only if they have the same *j*-invariant: $j(\Lambda) = j(\Lambda')$.

$$j(\Lambda) = 1728 \frac{g_2^3}{g_2^3 - 27g_3^2}.$$

Elliptic curves		End _{<i>k</i>} (<i>E</i>)-module
Lattices		

• \wp is homogeneous of degree -2 and \wp' of degree -3:

$$\wp(\alpha z, \alpha \Lambda) = \alpha^{-3} \wp(z, \Lambda);$$

- Up to normalisation one has $\Lambda = \tau \mathbb{Z} + \mathbb{Z}$ with $\tau \in \mathfrak{H}_g$ the upper half plane;
- This gives a parametrisation of lattices Λ by $\tau \in \mathfrak{H}_g$;
- If $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sl_2(\mathbb{Z})$ then a new basis of Λ is given by $(a\tau + b, c\tau + d)$;
- We can normalize this basis by multiplying by $(c \tau + d)^{-1}$ to get $\Lambda' = \frac{a\tau+b}{c\tau+d}\mathbb{Z} + \mathbb{Z}$;
- The isomorphism class of elliptic curves is then parametrized by $\mathfrak{H}_g/\operatorname{Sl}_2(\mathbb{Z}).$

Elliptic curves

Elliptic curves over a field k

Definition

An elliptic curve E/k (k perfect) can be defined as

- A nonsingular projective plane curve *E*/*k* of genus 1 together with a rational point 0_E ∈ *E*(*k*);
- A nonsingular projective plane curve *E*/*k* of degree 3 together with a rational point 0_{*E*} ∈ *E*(*k*);
- A nonsingular projective plane curve E/k of degree 3 together with a rational point $0_E \in E(k)$ which is a point of inflection;
- A non singular projective curve with equation (the Weierstrass equation)

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}$$

(in this case $0_E = (0:1:0)$);

Elliptic curves

Z-module

iymplectic structure

Endomorphisms

End_k(E)-module

Choice of the base point

Remark

- If *E* is a nonsingular projective plan curve of degree 3 and $O \in E(k)$, then if *O* is an inflection point there is a linear change of variable which puts *E* into Weierstrass form and O = (0:1:0), but otherwise needs a non linear change of variable to transform *O* into an inflection point;
- If char k > 3 then a linear change of variable on the Weierstrass equation gives the short Weierstrass equation:

 $y^2 = x^3 + ax + b.$

Class of isomorphisms of elliptic curves

The Weierstrass equation:

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

has discriminant $\Delta_E = -b_2b_8 - 8b_3 - 27b_2 + 9b_2b_4b_6$ so it defines an elliptic curve whenever $\Delta_E \neq 0$.

(Here
$$b_2 = a_1^2 + 4a_2$$
, $b_4 = 2a_4 + a_1a_3$, $b_6 = a_3^2 + 4a_6$,
 $b_8 = a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 - a_4^2$).

• The *j*-invariant of *E* is

$$j_E = \frac{(b_2^2 - 24b_4)^3}{\Delta_E}$$

• When we have a short Weierstrass equation $y^2 = x^3 + ax + b$, the discriminant is $-16(4a^3 + 27b^2)$ and the *j*-invariant is

$$j_E = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Theorem

Two elliptic curves *E* and *E'* are isomorphic over \overline{k} if and only if $j_E = j_{E'}$.

Isomorphisms and Twists

Elliptic curves

• The isomorphisms (over \overline{k}) of isomorphisms of elliptic curves in Weierstrass form are given by the maps

$$(x, y) \mapsto (u^2 x + r, u^3 y + u^2 s x + t)$$

for $u, r, s, t \in \overline{k}$, $u \neq 0$.

- If we restrict to elliptic curves of the form $y^2 = x^3 + ax + b$ then s = t = 0.
- A twist of an elliptic curve E/k is an elliptic curve E'/k isomorphic to E over \overline{k} but not over k.

Example

• Every elliptic curve E/\mathbb{F}_q : $y^2 = x^3 + ax + b$ has a quadratic twist

$$E':\delta y^2 = x^3 + ax + b$$

for any non square $\delta \in \mathbb{F}_q$. *E* and *E'* are isomorphic over \mathbb{F}_q^2 .

• If E/\mathbb{F}_q is an ordinary elliptic curve with $j_E \notin \{0, 1728\}$ then the only twist of *E* is the quadratic twist. If $j_E = 1728$, then *E* admits 4 twists. If $j_E = 0$, then *E* admits 6 twists.

Elliptic curves			
The addition	ı law		

- Let *E* be an elliptic curve given by a Weierstrass equation
- Then (*E*, 0_{*E*}) is an abelian variety;
- The addition law is recovered by the chord and tangent law;
- If k = C this addition law coincides with the one on C modulo the lattice Λ. (The addition law of an abelian variety is fixed by the base point, and the base point 0 ∈ C corresponds to the point at infinity of E since ℘ and ℘' have a pole at 0).
- For $E: y^2 = x^3 + ax + b$ the addition law is given by

$$P + Q = -R = (x_R, -y_{-R})$$

$$\alpha = \frac{y_Q - y_P}{x_Q - x_P} \quad \text{or } \alpha = \frac{f'(x_P)}{2y_P} \text{ when } P = Q$$

$$x_R = \alpha^2 - x_P - x_Q$$

$$y_{-R} = y_P + \alpha(x_R - x_P)$$

• Indeed write $l_{P,Q}: y = \alpha x + \beta$ the line between *P* and *Q* (or the tangent to *E* at *P* when *P* = *Q*). Then $y_{-R} = \alpha x_{-R} + \beta$ and $y_P = \alpha x_P + \beta$ so $y_{-R} = \alpha (x_R - x_P) + y_P$. Furthemore x_R, x_P, x_Q are the three roots of $x^3 + ax + b - (\alpha x + \beta)^2$ so $x_P + x_Q + x_R = \alpha^2$.

Elliptic curves

Z-module 000000 Symplectic structure

Endomorphisms

Elliptic curves over other fields

• Why look at C? For cryptography we work with elliptic curves over finite fields;

- Everything that is true over C is true over other fields except when it is not true (non algebraically closed fields, characteristic *p*...). Example: "there are *n*² points of *n*-torsion".
- For things that are not true over other fields, change the definition so that it remains true. Examples: "the subscheme E[n] has degree n^{2n} , definition of the Tate module T_pE as a p-divisible group when the characteristic is p...

Elliptic curves over other fields

- Why look at C? For cryptography we work with elliptic curves over finite fields;
- Everything that is true over C is true over other fields except when it is not true (non algebraically closed fields, characteristic *p*...). Example: "there are *n*² points of *n*-torsion".
- For things that are not true over other fields, change the definition so that it remains true. Examples: "the subscheme E[n] has degree n^{2n} , definition of the Tate module $T_p E$ as a p-divisible group when the characteristic is p...

Elliptic curves over other fields

- Why look at C? For cryptography we work with elliptic curves over finite fields;
- Everything that is true over \mathbb{C} is true over other fields except when it is not true (non algebraically closed fields, characteristic p...). Example: "there are n^2 points of *n*-torsion".
- For things that are not true over other fields, change the definition so that it remains true. Examples: "the subscheme E[n] has degree n^{2n} , definition of the Tate module T_pE as a p-divisible group when the characteristic is p...

Elliptic curves over other fields

- Why look at C? For cryptography we work with elliptic curves over finite fields;
- Everything that is true over \mathbb{C} is true over other fields except when it is not true (non algebraically closed fields, characteristic p...). Example: "there are n^2 points of *n*-torsion".
- For things that are not true over other fields, change the definition so that it remains true. Examples: "the subscheme E[n] has degree n^2 ", definition of the Tate module $T_p E$ as a *p*-divisible group when the characteristic is *p*...

Transferring results from $\mathbb C$ to other fields

- If \overline{k} is an algebraically closed field of characteristic 0 and of cardinality 2_0^{\aleph} then \overline{k} is isomorphic to \mathbb{C} ;
- If \overline{k} is an algebraically closed field of characteristic 0 it is elementary equivalent to \mathbb{C} so the first order statements valid over \mathbb{C} are valid over \overline{k} too;
- If a first order statement is true over \mathbb{C} , it is also true for all algebraically closed field of characteristic p >> 0 (by compacity arguments);
- If E/F_q is an elliptic curve over a finite field, it can be lifted to an elliptic curve over Q_q (and Q_q is a subfield of C_q which is isomorphic to C by the explanation above);
- If E/\mathbb{F}_q is an ordinary elliptic curve, there is a lift to \mathbb{Q}_q which respects End(*E*);
- A polynomial in ℤ[X₁,...,X_n] which is 0 on a Zariski dense subset of ℂⁿ is identically null.

Example

If $A \in \operatorname{Mat}_n(R)$ is a matrix, then $\operatorname{adj} A.A = A.\operatorname{adj} A = \det A.\operatorname{Id}$. Indeed this is true for diagonalisable matrices over \mathbb{C} which form a dense Zariski subset (standard linear algebra), so it is true over any ring because the adjoint matrix is given by universal polynomials in the coefficients of A.

Invia-

Elliptic curves		
000000000		

Field of definition

- Let E/k be an elliptic curve, and let k_0 be the base field of k;
- There exist an elliptic curve E_0 over $k_0(j(E))$ which is a twist of E;
- *E* can then be defined over a finite algebraic extension of $k_0(j(E))$;
- $k_0(j(E))$ is either algebraic over k_0 or of transcendance degree 1.

Corollary

Every elliptic curve can be defined over a finite extension of $\mathbb{F}_p(T)$ or $\mathbb{Q}(T)$. If char k = 0, E can be defined over a subfield of \mathbb{C} .

n-torsion over $k = \mathbb{C}$

- $E[n] = \{P \in E(k) \mid n.P = 0_E\};$
- If $E = \mathbb{C}/\Lambda$, $E[n] = \frac{1}{n}\Lambda/\Lambda$;
- $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$.

Elliptic curves	ℤ-module	Symplectic structure	Endomorphisms 00000000000000000	End _k (E)-module 0000000
the second second	1 1			

n-torsion over k = k

- Let \overline{k} be an algebraically closed field of characteristic p;
- Let $E: y^2 = x^3 + ax + b$ be an elliptic curve (for simplicity we assume p = 0 or p > 3);
- Since *E* has dimension one, $E(\overline{k})$ is infinite (Exercice);
- The subscheme *E*[*n*] has dimension 0 and degree *n*²;

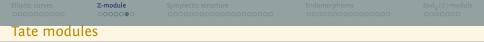
Elliptic curves	Z-module ○○●○○○○		
Proof			

- Via division polynomials: there exists a unitary polynomial φ_n(x) of degree n² such that [n]P = 0_E if and only if φ_n(x_P) = 0 (Exercice: why does φ_n not depend on y?);
- Via dual isogenies: $[n]: E \to E$ is its own dual isogeny, so $[\deg[n]] = [n] \circ \widehat{[n]} = [n^2]$, and $\deg[n] = n^2$;
- Via divisors: if *D* is a divisor on *E*, the theorem of the cube shows that $[n]^*D$ is linearly equivalent to $\frac{n^2+n}{2}D + \frac{n^2-n}{2}[-1]^*D$. But $\deg[n]^*D = \deg[n]\deg D$ so $\deg[n] = \frac{n^2+n+n^2-n}{2} = n^2$.

- d[n] is the multiplication by n map on the tangent space $T_{0_E}E$, so [n] is étale whenever $p \nmid n$;
- In this case $\#E[n](\overline{k}) = n^2$ so $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$ (Exercice);
- Either $\#E[p](\overline{k}) = p$ (in which case *E* is an ordinary elliptic curve), or $\#E[p](\overline{k}) = 0$ (and *E* is a supersingular elliptic curve);
- If E is ordinary, $E[p^e] = \mathbb{Z}/p^e \mathbb{Z} \oplus \mu_{p^e}$ where $\mu_p = \operatorname{Spec} \mathbb{Z}[T]/(T^{p^e} 1)$;
- If *E* is supersingular, $E[p^e] = \alpha_{p^e}^2$ where $\alpha_{p^e} = \operatorname{Spec} \mathbb{Z}[T]/T^{p^e}$ is connected.

Elliptic curves	ℤ-module ○○○○●○○		
Proof			

- Let π be the (small) Frobenius, $\hat{\pi}$ be the Verschiebung, then π is purely inseparable, and $\pi \circ \hat{\pi} = [p]$, $\hat{\pi} \circ \pi = [p]$, $\deg \pi = \deg \hat{\pi} = p$;
- The Weil pairing e_n shows that E[n] (and in particular E[p]) is self-dual;
- If $\hat{\pi}$ is separable, then $\mathbb{Z}/p\mathbb{Z}$ is a subscheme of E[p] and so is its dual μ_p . Taking degrees yield $E[p] = \operatorname{Ker} \hat{\pi} \oplus \operatorname{Ker} \pi = \mathbb{Z}/p\mathbb{Z} \oplus \mu_p$.
- Otherwise $\hat{\pi}$ is not separable, so Ker π cannot be μ_p (because its dual $\mathbb{Z}/p\mathbb{Z}$ would be a subscheme of E[p]) which implies that Ker $\pi = \alpha_p$ (α_p is self-dual).



- The ℓ -adic numbers $\mathbb{Z}_{\ell} = \varprojlim \mathbb{Z}/\ell^n \mathbb{Z}$ are a way to handle all the residue rings $\mathbb{Z}/\ell^n \mathbb{Z}$ at once, $\widehat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n \mathbb{Z} = \prod_{\ell} \mathbb{Z}_{\ell}$.
- Likewise the Tate modules are a way to encode the (*l*-primary) torsion subgroup:

$$T_{\ell}(E) = \varprojlim E[\ell^{n}](\overline{k})$$
$$T(E) = \varprojlim E[n](\overline{k})$$

- $E[n](\overline{k}) \simeq T(E)/nT(E);$
- $T_{\ell}(E) = \mathbb{Z}_{\ell}^2$ if $p \nmid \ell$;
- If *E* is ordinary $T_p(E) = \mathbb{Z}_p$, and $T(E) = \widehat{\mathbb{Z}} \times \widehat{\mathbb{Z}}'$ (where $\widehat{\mathbb{Z}}' = \varprojlim_{p \nmid n} \mathbb{Z}/n\mathbb{Z}$) and $E(\overline{k})_{\text{tors}} = \mathbb{Q}/\mathbb{Z} \oplus \mathbb{Z}_{(p)}/\mathbb{Z}$;
- If *E* is supersingular $T_p(E) = 0$ and $T(E) = \widehat{\mathbb{Z}}' \times \widehat{\mathbb{Z}}'$ and $E(\overline{k})_{\text{tors}} = \mathbb{Z}_{(p)}/\mathbb{Z} \oplus \mathbb{Z}_{(p)}/\mathbb{Z}$.

- If $k = \mathbb{F}_q$ then E(k) is finite;
- In fact (Exercice):

 $E(k) = \mathbb{Z}/n_1\mathbb{Z} \oplus \mathbb{Z}/n_2\mathbb{Z}$ with $n_1 \mid n_2$.

• We will study how n_1 , and n_2 vary under isogenies and fields extensions.

The Weil pairing over $\mathbb C$

- $E = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z});$
- The function

$$e_n \colon E[n] \times E[n] \longrightarrow \mu_n$$

(P,Q) \longmapsto $e^{2\pi i n (x_P y_Q - x_Q y_P)}$

where $P = x_P + \tau y_P$ and $Q = x_Q + \tau y_Q$ is bilinear and non degenerate;

• The value does not depend on the choice of basis for the lattice $\Lambda = \mathbb{Z} + \tau \mathbb{Z}$: let $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, then if $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Sl}_2(\mathbb{Z})$,

$$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_P \\ y_P \end{pmatrix} \end{pmatrix}^T J \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_Q \\ y_Q \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_P \\ y_P \end{pmatrix}^T \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^t J \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix} \begin{pmatrix} x_Q \\ y_Q \end{pmatrix} = \begin{pmatrix} x_P \\ y_P \end{pmatrix}^T J \begin{pmatrix} x_Q \\ y_Q \end{pmatrix} = x_P y_Q - x_Q y_P$$

	Symplectic structure	End _{<i>k</i>} (<i>E</i>)-module 0000000
Divisors		

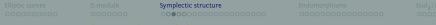
- Let *C* be a projective smooth and geometrically connected curve;
- A divisor D is a formal finite sum of points on C: $D = n_1[P_1] + n_2[P_2] + \cdots + n_e[P_e]$. The degree deg $D = \sum n_i$.
- If $f \in k(C)$ is a rational function, then

$$\operatorname{Div} f = \sum_{P} \operatorname{ord}_{P}(f)[P]$$

 $((O_C)_P$ the stalk of functions defined around P is a discrete valuation ring since C is smooth and $\operatorname{ord}_P(f)$ is the corresponding valuation of f at P).

Example

If $C = \mathbb{P}_k^1$ then $\operatorname{Div} \frac{\prod(X-\alpha_i^{e_i})}{\prod(X-\beta_i^{f_i})} = \sum e_i[\alpha_i] - \sum f_i[\beta_i] + (\sum \beta_i - \sum \alpha_i)\infty$. In particular deg $\operatorname{Div} f = 0$ and conversely any degree 0 divisor comes from a rational function.



Linear equivalence class of divisors

- For a general curve, if $f \in k(C)$, Div(f) is of degree 0 but not any degree 0 divisor D comes from a function f;
- A divisor which comes from a rational function is called a principal divisor. Two divisors D_1 and D_2 are said to be linearly equivalent if they differ by a principal divisor: $D_1 = D_2 + \text{Div}(f)$.
- Pic $C = \text{Div}^0 C / \text{Principal Divisors}$
- A principal divisor D determines f such that D = Div f up to a multiplicative constant (since the only globally regular functions are the constants).

Z-module

ymplectic structure

Endomorphisms

End_k(E)-module

Divisors on elliptic curves

Theorem

Let $D = \sum n_i[P_i]$ be a divisor of degree 0 on an elliptic curve E. Then D is the divisor of a function $f \in \overline{k}(E)$ (ie D is a principal divisor) if and only if $\sum n_i P_i = 0_E \in E(\overline{k})$ (where the last sum is not formal but comes from the addition on the elliptic curve). In particular $P \in E(\overline{k}) \rightarrow [P_i] = [0_n] \in lac(E)$ is a aroun isomorphism between the

In particular $P \in E(\overline{k}) \rightarrow [P] - [0_E] \in Jac(E)$ is a group isomorphism between the points in E and the linear equivalence classes of divisors;

Proof.

- We will give an algorithm (Miller's algorithm) which starts from a divisor $D = \sum n_i [P_i]$ of degree 0 and constructs a rational function f such that D is linearly equivalent to $[\sum n_i P_i] [0_E]$. If $\sum n_i P_i = 0_E$ then D is principal.
- Conversely we have to show that if $P = \sum n_i P_i \neq 0_E$ then $[P] [0_E]$ is not principal. But if we had a function f such that $\text{Div}(f) = [P] [0_E]$, then the morphism $E \to \mathbb{P}^1_k : x \mapsto (1 : f(x))$ associated to f would be birational. But this is absurd: E is an elliptic curve so it has genus 1, it cannot have genus 0.

		Symplectic structure	Endomorphisms	End _k (E)-module
		000000000000000000000000000000000000000		
Rational di	visors			

- A divisor *D* over a perfect field is rational if it is stable under the Galois action;
- If $f \in k(E)$ then Div f is a rational divisor, conversely if $f \in \overline{k}(E)$ and Div f is rational then there exists $\alpha \in \overline{k}^*$ such that $\alpha f \in k(E)$;
- A linear equivalence class of divisors [D] is rational if it is stable under the Galois action: σD ~D ∀σ ∈ Gal(k/k);
- Over an elliptic curve *E*, if $D \simeq [P] [0_E]$ then *D* is rational if and only if *P* is rational;
- Over a curve C with $C(k) \neq 0$ then a rational equivalence class of divisors has a representative given by a rational divisor;
- In particular the map $P \mapsto [P] [0_E]$ is Galois-equivariant.

		Symplectic structure	
		000000000000000000000000000000000000000	
Miller's fur	ictions		

- Let $\mu_{P,Q}$ be a function with divisor $[P]+[Q]-[P+Q]-[0_E]$;
- Using the geometric interpretation of the addition law on *E* one can construct $\mu_{P,Q}$ explicitly:
- if P = -Q then $\mu_{P,Q} = x x_P$;
- Otherwise let $l_{P,Q}$ be the line going through P and Q (if P = Q then we take $l_{P,Q}$ to be the tangent to the elliptic curve at P). Then $\text{Div}(l_{P,Q}) = [P] + [Q] + [-P Q] 3[0_E].$
- Let $v_{P,Q}$ be the vertical line going through P + Q and -P Q; Div $(v_{P,Q}) = [P + Q] + [-P - Q] - 2[0_E]$;

•
$$\mu_{P,Q} = \frac{l_{P,Q}}{v_{P,Q}};$$

• Explicitly if $E: y^2 = x^3 + ax + b$ is given by a short Weierstrass equation,

$$\mu_{P,Q} = \frac{y - \alpha (x - x_P) - y_P}{x + (x_P + x_Q) - \alpha^2}$$
(1)

with $\alpha = \frac{y_P - y_Q}{x_P - x_Q}$ when $P \neq Q$ and $\alpha = \frac{f'(x_P)}{2y_P}$ when P = Q.

Elliptic curves

Z-module 000000 ymplectic structure

Endomorphisms

Miller's algorithm: reducing divisors

- Let $D = [P] + [Q] + D_0$ be a divisor of degree 0;
- Using $\mu_{P,Q}$ we get that $D = \text{Div}(\mu_{P,Q}) + [P+Q] + D_0 + [0_E]$;
- We can iterate the reduction until there is only one non zero point in the support: D = Div(g)+[R]-[0_E];
- *D* is principal if and only if $R = 0_E$, in which case *g* is a function (explicitly written in terms of the $\mu_{P,Q}$) with divisor *D* (and normalised at 0_E).

- If D = n[P] n[0_E] one can combine the reduction above with a double and add algorithm;
- let $\lambda \in \mathbb{N}$ and $P \in E(k)$; we define $f_{\lambda,P} \in k(E)$ to be the function normalized at 0_E thus that:

$$\operatorname{Div}(f_{\lambda,P}) = \lambda[P] - [\lambda P] - (\lambda - 1)[0_E].$$

- In particular $D = \text{Div} f_{n,P} + [nP] [\mathbf{0}_E];$
- If λ , $\nu \in \mathbb{N}$, we have

$$f_{\lambda+\nu,P} = f_{\lambda,P} f_{\nu,P} \mathbf{f}_{\lambda,\nu,P}$$

where $\mathbf{f}_{\lambda,\nu,P} := \mu_{\lambda P,\nu P}$ is the function associated to the divisor $[(\lambda + \nu)P] - [(\lambda)P] - [(\nu)P] + [0_E]$ and normalized at 0_E ;

- Let *D* be a general divisor of degree 0. How to apply a double and add algorithm to reduce *D*?
- Write $D = D_1 + 2D_2 + 4D_4 + \dots$
- Example: $D = 5[P] + 7[Q] 12[0_E];$
- Reduce: $[P] + [Q] 2[0_E] \sim [P + Q] [0_E];$
- Double: $2[P+Q]-2[0_E] \sim [2P+2Q]-[0_E];$
- Add: $[2P+2Q]+[Q]-2[0_E] \sim [2P+3Q]-[0_E];$
- Double: $2[2P+3Q]-2[0_E] \sim [4P+6Q]-[0_E];$
- Add: $[4P+6Q]+[P+Q]-2[0_E] \sim [5P+7Q]-[0_E];$

Evaluating functions on divisors

• If f is a function with support disjoint from a divisor $D = \sum n_i [P_i]$, then one can define

$$f(D) = \prod f(P_i)^{n_i}$$

- If D is of degree 0, then f(D) depends only on Div f;
- Miller's algorithm allows, given Div f to compute f(D) efficiently, the data Div f can then be seen as a compact way to represent the function f.
- Technicality: during the execution of Miller's algorithm we introduce temporary points in the support of the divisors we evaluate, so we may get a zero or a pole during the evaluation even through *f* has support disjoint to *D*;
- One way to proceed is to extend the definition of f(P) when $\operatorname{ord}_P(f) = n$ by fixing a uniformiser u_P (a function with simple zero at P), and defining f(P) to be $(f/u_P^{\operatorname{ord}_P(f)})(P)$. Since C is smooth, $\widehat{O}_p = k[[u_P]]$, $f \in k((u_P))$ and f(P) is then the first coefficient in the Laurent expansion of f along u_P .
- For an elliptic curve a standard uniformiser at 0_E is u = x/y; a function f is said to be normalised at 0_E if $f(0_E) = 1$. This fixes uniquely f in its equivalence class Div f.

Algorithm (Evaluating $f_{r,P}$ on Q)

Input: $r \in \mathbb{N}$, $P = (x_P, y_P) \in E[r](\mathbb{F}_q)$, $Q = (x_Q, y_Q) \in E(\mathbb{F}_{q^d})$. Output: $f_{r,P}(Q)$ where Div $f_{r,P} = r[P] - r[0_E]$.

• Compute the binary decomposition: $r := \sum_{i=0}^{I} b_i 2^i$. Let $T = P, f_1 = 1, f_2 = 1$.

Sor *i* in [1..0] compute

- (1) α , the slope of the tangent of *E* at *T*.
- **2** $f_1 = f_1^2 (y_Q \alpha (x_Q x_T) y_T), f_2 = f_2^2 (x_Q + 2x_T \alpha^2).$

$$T = 2T.$$

- If $b_i = 1$, then compute
 - (1) α , the slope of the line going through P and T.
 - $f_1 = f_1^2 (y_Q \alpha (x_Q x_T) y_T), f_2 = f_2 (x_Q + x_P + x_T \alpha^2).$

$$T = T + L$$

Return

$$\frac{f_1}{f_2}$$

Elliptic curves

Z-module

iymplectic structure

Endomorphisms

End_k(E)-module

The Weil pairing over algebraically closed fields

Theorem

Let *E* be an elliptic curve, *r* a number and *P* and *Q* two points of *r*-torsion on *E*. Let D_P be a divisor linearly equivalent to $[P]-[0_E]$ and D_Q be a divisor linearly equivalent to $[Q]-[0_E]$. Then

$$e_{W,r}(P,Q) = \varepsilon(D_P, D_Q)^r \frac{(rD_P) \cdot (D_Q)}{(rD_Q) \cdot (D_P)}$$
(2)

is well defined. Furthermore the application $E[r] \times E[r] \rightarrow \mu_r : (P,Q) \mapsto e_{W,r}(P,Q)$ is a pairing, called the Weil pairing. The pairing $e_{W,r}$ is an alternate pairing, which means that $e_{W,r}(P,Q) = e_{W,r}(Q,P)^{-1}$.

Proof.

An essential ingredient of the proof is Weil's reciprocity theorem: if $f, g \in K(E)$, then

 $f(\operatorname{Div}(g)) = \varepsilon(\operatorname{Div} f, \operatorname{Div} g)g(\operatorname{Div}(f)).$

(Note: $\varepsilon(\operatorname{Div} f, \operatorname{Div} g) = 1$ if the two divisors have disjoint support.)

Elliptic curves		Symplectic structure		
Weil's pairi	ng in pract	tice		

- Recall that $f_{r,P}$ is the function with divisor $r[P] r[0_E]$ (and normalised at 0_E) constructed via Miller's algorithm;
- Similarly $f_{r,Q}$ has divisor $r[Q] r[0_E]$;

•
$$e_{W,r}(P,Q) = (-1)^r \frac{f_{r,P}(Q)}{f_{r,Q}(P)};$$

• If during the execution of Miller's algorithm to evaluate $f_{r,P}(Q)$ we find a pole or a zero, then we know that Q is a multiple of P and that $e_{W,r}(P,Q) = 1$.

Elliptic curves	Z-module 0000000	Symplectic structure	Endomorphisms 000000000000000000	End _k (E)-module 0000000
Embedding degree				

- If \mathbb{F}_q is a finite field, the embedding degree e is the smallest integer such that $\mathbb{F}_{q^e} = \mathbb{F}_q(\mu_r)$;
- Alternatively, if $r = \ell$ is prime, it is the smallest integer such that $r \mid q^e 1$.
- If $\sigma \in \text{Gal}(\overline{k}/k)$, $e_r(\sigma P, \sigma Q) = \sigma(e(P,Q))$ (by unraveling the definition), so if $P, Q \in k$ then $e(P,Q) \in k$;
- In particular if $E[\ell] \subset E(\mathbb{F}_q)$ and ℓ is prime, then $\ell \mid q-1$.
- More generally if $E[r] \subset E(\mathbb{F}_q)$ then $\mu_r \subset \mathbb{F}_q$.

- Extremely useful for cryptography (MOV attack, pairing-based cryptography);
- For cryptography rather use optimised pairings derived from the Tate pairing;
- Application for the group structure: $P, Q \in E[\ell]$ form a basis of the ℓ -torsion if and only if $e_{W,\ell}(P,Q) \neq 1$ (Exercice: compare the complexity with the naive method);
- More generally: $P, Q \in E[r]$ form a basis of the *r*-torsion if and only if $e_{W,r}(P,Q)$ is a primitive *r*-root of unity (Exercice: what is the complexity to check this?);

Remark

If $P, Q \in E[n]$, $e_{W,nm}(P,Q) = e_{W,n}(P,Q)^m$ so the Weil pairings glue together to give a symplectic structure on the Tate module T(E).

Elliptic curves

Z-module 000000 ymplectic structure

Endomorphisms

End_k(E)-module

The Tate pairing over a finite field

Theorem

Let *E* be an elliptic curve, *r* a prime number, $P \in E[r](\mathbb{F}_{q^e})$ a point of *r*-torsion defined over \mathbb{F}_{q^e} and $Q \in E(\mathbb{F}_{q^e})$ a point of the elliptic curve defined over \mathbb{F}_{q^e} . Let D_P be a divisor linearly equivalent of $[P]-[0_E]$ and D_Q be a divisor linearly equivalent of $[Q]-[0_E]$. Then

$$e_{T,r}(P,Q) = \left((rD_P) \cdot (D_Q) \right)^{\frac{q^e - 1}{r}}$$
(3)

is well defined and does not depend on the choice of D_P and D_Q . Furthermore the application $E[r](\mathbb{F}_{q^e}) \times E(\mathbb{F}_{q^e})/rE(\mathbb{F}_{q^e}) \rightarrow \mu_r: (P,Q) \mapsto e_{T,r}(P,Q)$ is a pairing, called the Tate pairing.

• Recall that $f_{r,P}$ is the function with divisor $r[P] - r[0_E]$ (and normalised at 0_E) constructed via Miller's algorithm;

•
$$e_{T,r}(P,Q) = f_{r,P}(Q)^{\frac{q^e-1}{r}};$$

• If during the execution of Tate's algorithm to evaluate $f_{r,P}(Q)$ we find a pole or a zero, then we use $D_Q = [Q+R] - [R]$ instead (for R a random point in $E(\mathbb{F}_{q^e})$) and evaluate

$$e_{T,r}(P,Q) = \left(\frac{f_{r,P}(Q+R)}{f_{r,P}(R)}\right)^{\frac{q^e-1}{r}};$$

• If $R \in E(\mathbb{F}_q)$ and e > 1 we have

$$e_{T,r}(P,Q) = f_{r,P}(Q+R)^{\frac{q^e-1}{r}}.$$

- The Weil pairing, Tate pairing and the Frobenius are related;
- Let $P \in E[r](\mathbb{F}_{q^e})$ and $Q \in E(\mathbb{F}_{q^e})$. Let $Q_0 \in E[r](\overline{k})$ be any point such that $rQ_0 = Q$;
- $\pi^e Q_0 Q_0 \in E[r]$ (Exercice)

$$e_{T,r}(P,Q) = e_{W,r}(P,(\pi^e - 1)Q_0)$$

- If Q' = Q + rR with $R \in E(\mathbb{F}_{q^e})$ then one can choose $Q'_0 = Q_0 + R$ so that $(\pi^e 1)(Q_0) = (\pi^e 1)(Q'_0)$;
- So the value of $e_{T,r}(P,Q)$ depends only on the class of $Q \in E(\mathbb{F}_{q^e})/rE(\mathbb{F}_{q^e})$.

Elliptic curves	Symplectic structure	$\operatorname{End}_k(E)$ -module 0000000
Proof		

- The link between the Weil and Tate pairing comes from Weil's reciprocity;
- If $E[r] \subset E(\mathbb{F}_{q^e})$, then $(\pi^e 1)E[r] = 0$ so $\frac{\pi^e 1}{r}$ is an endomorphism;
- Since the Weil pairing is non degenerate, to show that the Tate pairing is non degenerate we just need to show that $\frac{\pi^k 1}{r} : E(\mathbb{F}_{q^e}) \to E[r]$ is surjective;
- The kernel of π^{k-1}/r restricted to E(𝔽_{qe}) is rE(𝔽_{qe}), so the image is isomorphic to E(𝔽_{qe})/rE(𝔽_{qe});
- $E(\mathbb{F}_{q^e}) = \mathbb{Z}/a\mathbb{Z} \oplus \mathbb{Z}/b\mathbb{Z}$ with $a \mid b$, and since $E(\mathbb{F}_{q^e}) \supset E[r]$, we know that $r \mid a$ and $r \mid b$;
- We deduce that $E(\mathbb{F}_{q^e})/rE(\mathbb{F}_{q^e})$ is isomorphic to $\mathbb{Z}/r\mathbb{Z} \oplus \mathbb{Z}/r\mathbb{Z}$, in particular it has cardinal r^2 so the application is indeed surjective;
- The general case comes from Galois cohomology applied to the exact sequence $0 \rightarrow E[r] \rightarrow E(\overline{k}) \rightarrow E(\overline{k}) -> 0$.

c curves **Z-module Syn**

Field of definition of the *r*-roots of unity

- By the CRT, we may assume that $r = \ell^n$;
- μ_{ℓ^n} lives in \mathbb{F}_{q^e} whenever $v_{\ell}(q^e-1) \ge n$;
- If $\mu_{\ell} \not\in \mathbb{F}_q$ then $\mathbb{F}_q(\mu_{\ell}) = \mathbb{F}_{q^e}$ with $e \mid \ell 1$;
- If $\mu_{\ell} \in \mathbb{F}_q$, then $v_{\ell}(q^e 1) = v_{\ell}(q 1)$ unless $\ell \mid e$;
- If $\mu_{\ell} \in \mathbb{F}_q$, $v_{\ell}(q^{\ell}-1) = v_{\ell}(q-1)+1$ (except possibly when $\ell = 2$ and $v_{\ell}(q-1) = 1$ where $v_{\ell}(q^{\ell}-1)$ can increase by more than 1);
- (Hint: write $q^e - 1 = (q-1)(1+q+q^2+\dots+q^{k-1})) = (q-1)(q-1+q^2-1+\dots+q^{e-1}-1+e)).$

Elliptic curves

Z-module

Symplectic structure

Endomorphisms

End_k(E)-module

Endomorphisms and isogenies

- An isogeny is a non constant rational application $\varphi: E_1 \rightarrow E_2$ between two elliptic curves E_1 and E_2 that commutes with the addition law;
- A rational application φ is an isogeny if and only if $\varphi(0_{E_1}) = 0_{E_2}$ (and $\varphi \neq 0$);
- An isogeny is surjective on the \overline{k} -points and has finite kernel;
- The degree of φ is $[k(E_2): \varphi^*k(E_1)];$
- An isogeny $\varphi: E_1 \to E_2$ admits a dual $\widehat{\varphi}: E_2 \to E_1$ such that $\varphi \circ \widehat{\varphi} = [\deg \varphi]$ and $\widehat{\varphi} \circ \varphi = [\deg \varphi]$;
- We write E₁[φ] = Ker φ; deg φ = deg E₁[φ] (as a scheme), Ker φ determines φ (up to automorphisms);
- If φ is separable (for instance if $p \nmid \deg \varphi$) then $E_1[\varphi] = \{P \in E_1(\overline{k}) \mid \varphi P = 0_{E_2}\}$ so $\deg \varphi = \#E_1[\varphi](\overline{k});$
- Conversely a finite subscheme group K determines an isogeny $E \rightarrow E/K$ of degree deg K;
- Over an elliptic curve, every isogeny is (up to isomorphisms) the composition of a separable isogeny and a power of the small Frobenius π_p .
- An endomorphism $\varphi \in \text{End}(E)$ is an isogeny from E to E.

Elliptic curves Z-module Symplectic structure Endomorphisms End_k

Endomorphism and isogenies over C

- Let $E_1 = \mathbb{C}/\Lambda_1$ and $E_2 = \mathbb{C}/\Lambda_2$;
- An isogeny comes from a linear map $z \mapsto \alpha z$ where $\alpha \Lambda_1 \subset \Lambda_2$;
- The kernel is $\alpha^{-1}\Lambda_2/\Lambda_1$;
- If $E = \mathbb{C}/\Lambda$ an endomorphism comes from a linear map $z \mapsto \alpha z$ where $\alpha \Lambda \subset \Lambda$;
- Write Λ = ℤ ⊕ τℤ, we get that if α ∉ℤ then τ satisfy a quadratic equation and α ∈ ℤ[τ];
- $\mathbb{Q}(\tau)$ is then a quadratic imaginary field and $\operatorname{End}(E)$ an order (because it stabilizes a lattice).

Elliptic curves Z-module Symplectic structure Endomorphisms endocode Symplectic structure endocode end

- Let *E*/*k* be an elliptic curve (*k* perfect);
- It may happen that endomorphisms of *E* are defined over a larger field than *k* (Exercice: but there are always defined over a finite extension of *k*);
- We let End(*E*) = End_{*k*}(*E*) and End_{*k*}(*E*) the subring of rational endomorphisms;
- $\varphi \in \text{End}(E)$ is defined over k if and only if it is stable under $\text{Gal}(\overline{k}/k)$;
- In particular if $k = \mathbb{F}_q$ and π is the Frobenius, then $\text{End}_k(E)$ is the commutant of π in End(E).
- If l/k is an extension of field, then $\operatorname{End}_l(E)/\operatorname{End}_k(E)$ is torsion free (Exercice: if $m\varphi$ is rational, then so is φ).

Remark

If k is not perfect and l/k is a purely inseparable extension of k then End_l(E) = End_k(E).

Characteristic polynomial

Let $\varphi \in \text{End}_k(E)$, the characteristic polynomial $\chi_{\varphi} \in \mathbb{Z}[X]$ is defined as

- The characteristic polynomial of φ on $T_{\ell}(E)$ ($\ell \neq p$);
- The only polynomial such that $deg(\varphi n \operatorname{Id}) = \chi_{\varphi}(n) \quad \forall n \in \mathbb{Z};$
- If $\operatorname{End}_k(E)$ is quadratic, as the characteristic polynomial of φ in $\operatorname{End}(E)$;

Endomorphisms

- If $\varphi \notin \mathbb{Z}$, as the characteristic polynomial of φ in $\mathbb{Q}(\varphi)$;
- If $\varphi \in \mathbb{Z}$, as $X^2 2\varphi X + \varphi^2$;
- Let $\operatorname{Tr}(\varphi) = \varphi + \hat{\varphi} \in \mathbb{Z}$ and $N(\varphi) = \varphi \hat{\varphi} = \deg \varphi \in \mathbb{Z}$;

$$\chi_{\varphi} = X^2 - \operatorname{Tr}(\varphi)X + N(\varphi);$$

Corollary

If $p \nmid n$, the characteristic polynomial of φ acting on E[n] is $\chi_{\varphi} \mod n$.

Remark

If $\varphi \in \operatorname{End}_k(E)$, $\widehat{\varphi} = \overline{\varphi}$.

Elliptic curves 2-module Symplectic structure Endomorphisms End_v(E) Characteristic polynomial of the Frobenius ($k = \mathbb{F}_{a}$)

•
$$\chi_{\pi} = X^2 - tX + q;$$

The roots of χ_π in C have absolute value |√q| so |t| ≤ 2√q (Hasse);
#E(𝔽_q) = deg(π−1) = χ_π(1);

$$\zeta_{E} = \exp\left(\sum_{n=1}^{\infty} \#E(\mathbb{F}_{q^{n}})\frac{T^{n}}{n}\right) = \frac{1-t\,T+q\,T^{2}}{(1-q\,T)(1-T)};$$

•
$$\chi_{\pi^n} = \operatorname{Res}_X(\chi_{\pi}(Y), Y^n - X);$$

Theorem (Tate)

۲

Two elliptic curves over \mathbb{F}_q are isogenous if and only if they have the same cardinal, if and only if they have the same characteristic polynomial of the Frobenius.

Let Δ_π = t²-4q;
If Δ_π = 0 mod ℓ then either π = (λ 0 / 0 λ) on E[ℓ] (and all ℓ-isogenies are rational) or π = (λ 1 / 0 λ) (and there is one rational ℓ-isogeny);
If (Δ_π/ℓ) = 1 then π = (λ 0 / 0 μ) on E[ℓ] with λ ≠ ν ∈ 𝔽_ℓ, λμ = q (and there are two rational ℓ-isogenies);
If (Δ_π/ℓ) = -1 then π = (λ 0 / 0 μ) on E[ℓ] with λ ≠ ν ∈ 𝔽_ℓ, λμ = q (and there are no rational ℓ-isogenies).

Corollary

If $\ell \parallel \#E(\mathbb{F}_q)$ then

• If the embedding degree e > 1 then $\pi = \begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix}$ and $E[\ell] \subset E(\mathbb{F}_{q^e})$;

• Otherwise
$$\pi = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $E[\ell] \subset E(\mathbb{F}_{q^{\ell}})$.

- Let $\ell \neq p$ then Hom $(E_1, E_2) \otimes \mathbb{Z}_{\ell} \to \text{Hom}(T_{\ell}E_1, T_{\ell}E_2)$ is injective [Sil86][Theorem III.7.4] (Exercice: show that Hom $(E_1, E_2) \to \text{Hom}(T_{\ell}E_1, T_{\ell}E_2)$ is injective);
- In particular End(*E*) has rank at most 4;

Theorem (Tate, Faltings)

If k is a finite field or a number field, then

```
\operatorname{Hom}_{k}(E_{1}, E_{2}) \otimes \mathbb{Z}_{\ell} \simeq \operatorname{Hom}_{\mathbb{Z}_{\ell}(\operatorname{Gal}(\overline{k}/k))}(T_{\ell} E_{1}, T_{\ell} E_{2})
```

Remark

Tate's theorem remain valid for $\ell = p$ when considering the Tate module coming from the duality of p-divisible group schemes.

Endomorphism rings and endomorphism fields

 $\operatorname{End}_k(E)$ is either

- Z;
- An order in a quadratic imaginary field;
- A maximal order in the definite quaternion algebra ramified at p and $\infty.$

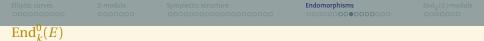
Remark

If *E* is an elliptic curve over a finite field \mathbb{F}_q , then

- If *E* is ordinary then End(*E*) is an order in a quadratic imaginary field;
- If *E* is supersingular then End(E) is a maximal order in the definite quaternion algebra ramified at *p* and ∞ .

Exercice

- In characteristic 0, $\operatorname{End}_k(E)$ is commutative;
- In characteristic p, $\operatorname{End}_k(E) = \mathbb{Z}$ if and only if j(E) is transcendental.



```
We follow https://rigtriv.wordpress.com/2009/05/14/
endomorphisms-of-elliptic-curves-and-the-tate-module/
```

Lemma

```
Hom(E_1, E_2) is torsion free.
```

Proof.

The degree is multiplicative, so if $[m] \circ f = 0$ then m = 0 or f = 0.

Lemma

 $\operatorname{End}_k(E)$ has no zero divisors, so $\operatorname{End}_k^0(E) = \operatorname{End}_k(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ is a division algebra

Elliptic curves		Endomorphisms	End _k (E)-module 0000000
Proof			

(We assume here that p > 2)

- If $\operatorname{End}_k(E)$ has rank 1 then it is \mathbb{Z} (the maximal order of \mathbb{Q});
- Let $\varphi \in \operatorname{End}_k(E) \setminus \mathbb{Z}$, by translating by an integer we can assume that $\operatorname{Tr} \varphi = 0$, and since $N(\varphi) = \deg \varphi > 0$ we get that $\mathbb{Z} + \mathbb{Z} \varphi$ is an order in a quadratic imaginary field. If the rank of $\operatorname{End}_k(E) = 2$ then $\operatorname{End}_k(E)$ is an order containing $\mathbb{Z} + \mathbb{Z} \varphi$.
- Otherwise $\psi \mapsto \varphi \psi \varphi^{-1}$ is a linear map of order 2. If ψ is in the -1-eigenspace (Exercice: why does such a ψ exists?) then $(1,\varphi,\psi,\varphi\psi)$ forms a basis of $\operatorname{End}_k(E)$. Thus $\operatorname{End}_k^0(E)$ is a quaternion algebra and $\operatorname{End}_k(E)$ an order in the quaternion algebra.
- Over ℓ ≠ p we get that End_k E ⊗ Z_ℓ ⊂ End(T_ℓE) = M₂(Z_ℓ) so End⁰_k E is split at ℓ;
- So either $\operatorname{End}_k^0 E = M_2(\mathbb{Q})$ or the definite quaternion algebra ramified at p and ∞ . But $M_2(\mathbb{Q})$ has zero divisors so it cannot be $\operatorname{End}_k(E)$.

- Let E/\mathbb{F}_q be an elliptic curve, π the Frobenius and $\chi_{\pi} = X^2 tX + q$;
- *E* is supersingular if and only if *t* is not prime to *p*, if and only if a power of π is an integer, if and only if $\text{End}^{0}(E)$ is a quaternion algebra if and only if the isogeny class (up to isomorphism) over \overline{k} is finite.
- Either χ_{π} is irreducible or $\chi_{\pi} = X^2 2 \pm \sqrt{q}X + q = (X \mp \sqrt{q})^2$ and $\pi = \pm \sqrt{q} \in \mathbb{Z}$. If χ_{π} is irreducible then $\operatorname{End}_k^0 = \mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{t^2 4q})$ is quadratic imaginary, otherwise End_k^0 is the definite quaternion algebra ramified at p and ∞ ;
- If E is ordinary over F_q, then End_k(E) = End(E) is an order in Q(π) containing Z[π], Z[π] is maximal at p and p splits.
- If *E* is supersingular, then $\operatorname{End}_k^0(E)$ is a quaternion algebra if and only if $\pi \in \mathbb{Z}$, and $\operatorname{End}_k(E) = \operatorname{End}(E)$ is then a maximal order. Otherwise $\operatorname{End}_k(E)$ is a quadratic order in $\mathbb{Q}(\pi)$ and is maximal at *p* (even though $\mathbb{Z}[\pi]$ may not be maximal at *p*).

- If *E* is supersingular then $\pi_p^2 E \simeq E$. In particular $j_E \in \mathbb{F}_{p^2}$ and $\pi_p^2 = [p] \circ \zeta$ where ζ is an automorphism. ζ is then a root of unity in $\operatorname{End}(E)$ so a power of π is an integer. Reciprocally if $\pi^n \in \mathbb{Z}$ then $p \mid \pi^n$ is inseparable so *E* is supersingular.
- t is not prime to p ⇔ a power of π is an integer (Not trivial exercice, see [Wat69][Chapter 4]);
- $\pi^n \in \mathbb{Z} \Leftrightarrow \operatorname{End}^0_{\mathbb{F}_{an}}(E)$ is a quaternion algebra (by Tate's theorem);
- If $\operatorname{End}^0(E) = \mathbb{Q}(\pi)$ is a quadratic field, then the isogeny class is infinite (Exercice: look at isogenies $E \to E_i$ of degree a prime ℓ_i inert in O_K and prove that the E_i are non isomorphic). Conversely all supersingular elliptic curves are defined over \mathbb{F}_{p^2} so the isogeny class is finite.

			Endomorphisms			
Reduction and lifting						

- Let *O* be an order in a imaginary quadratic field *K*. Then there are h_O (the class number of *O*) elliptic curves over $\overline{\mathbb{Q}}$ with endomorphism ring *O*. They are defined over the ray class field H_O of *O*.
- If $p \nmid \Delta_0$, p is a prime of good reduction. Let \mathfrak{p} be a prime above p in H_0 . If p is inert in K, $E_{\mathfrak{p}}$ is supersingular. If p splits, $E_{\mathfrak{p}}$ is ordinary, and its endomorphism ring is the minimal order containing O of index prime to p.
- Reciprocally, if E/\mathbb{F}_q is an ordinary elliptic curve, the couple (E, End(E)) can be lifted over \mathbb{Q}_q .

Corollary

- If E/\mathbb{F}_q is an ordinary elliptic curve, then $\operatorname{End}(E)$ is an order in $K = \mathbb{Q}(\pi)$ of conductor prime to p. For every order O of K such that $\mathbb{Z}[\pi] \subset O$, there exist an isogenous curve whose endomorphism ring is O.
- Reciprocally, for every order O of discriminant a non zero square modulo p, let n be the order of one of the prime above p in the class group of O. Then there exist an (ordinary) elliptic curve E' over \mathbb{F}_{q^n} with $\operatorname{End}(E') = O$.

Elliptic curves Z-module Symplectic structure Endomorphisms End_k(E)-module

- The automorphisms of *E* are the inversible elements in $O = \operatorname{End}_k E$.
- All inversible elements are roots of unity.
- We usually have $O^* = \{\pm 1\}$ except in the following exceptions:
 - $j_E = 1728$ ($p \neq 2,3$), in this case O is the maximal order in $\mathbb{Q}(i)$ and $\#O^* = 4$;
 - $j_E = 0$ ($p \neq 2,3$), in this case O is the maximal order in $\mathbb{Q}(i\sqrt{3})$ and $\#O^* = 6$;
 - $j_E = 0$ (p = 3), in this case E is supersingular and $\#O^* = 12$;
 - $j_E = 0$ (p = 2), in this case E is supersingular and $\#O^* = 24$.
- The Frobenius $\pi \in K$ characterizes the isogeny class of E (Tate). A twisted isogeny class will correspond to a Frobenius $\pi' \neq \pi$, where there exist n with $\pi^n = \pi'^n$. This give a bijection between the twisted isogeny class and the roots of unity in K.
- More generally, there is a bijection between O^* and the twists of E.

Remark

If E_1 is isogeneous to E_2 over k and $k \in l$, $\operatorname{Hom}_k(E_1, E_2) = \operatorname{Hom}_l(E_1, E_2)$ when $\operatorname{End}_k(E_1) = \operatorname{End}_l(E_2)$. In particular a twist to E is never isogenous to E over k if E is ordinary.

Isogeny class of elliptic curves over \mathbb{F}_q

Let $q = p^n$. The isogeny classes of elliptic curves are given by the value of the trace t by Tate's theorem. The possible value of t are:

- *t* prime to *p*, in this case the isogeny class is ordinary.
- The other cases give supersingular elliptic curves. The endomorphism fraction ring $\operatorname{End}_k^0(\mathscr{E})$ of the isogeny class is either a quaternion algebra of rank 4, or an imaginary quadratic field. In the latter case, it will become maximal after an extension of degree d, with:

If n is even:

- $t = \pm 2\sqrt{q}$, this is the only case where $\operatorname{End}_k^0(\mathscr{E})$ is a quaternion algebra.
- $t = \pm \sqrt{q}$ when $p \not\equiv 1 \mod 3$, here d = 3.
- t = 0 when $p \not\equiv 1 \mod 4$, here d = 2.

If n is odd:

- t = 0, here d = 2.
- $t = \pm \sqrt{2q}$ when p = 2, here d = 4.
- $t = \pm \sqrt{3q}$ when p = 3, here d = 6.

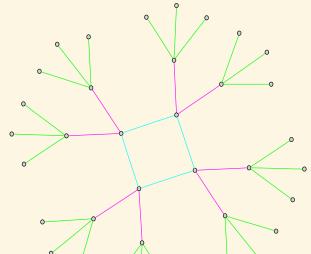
Remark

Any two supersingular elliptic curves become isogenous after a quadratic extension of degree 2d (with d the degree where their endomorphism ring become maximal). But a new maximal class and up to 3 commutative classes appear in this extension.

Isogeny graph and endomorphisms of ordinary elliptic curves

The ℓ -isogeny graph looks like a volcano [Koh96; FM02]: Let f_E be the conductor of $\operatorname{End}(E) \subset O_K$. At each level $\nu_\ell(f_E)$ increase by one. At the crater $\nu_\ell(f_E) = 0$ and at the bottom $\nu_\ell(f_E) = \nu_\ell(f) = \nu_\pi$ where f is the conductor of $\mathbb{Z}[\pi] \subset O_K$.

Inría.



Elliptic curves Z-module Symplectic structure Endomorphisms End_k(E)-module α

Theorem ([Len96])

• If $\operatorname{End}_k(E)$ is commutative, let $\alpha \in \operatorname{End}_k(E)$ be a separable endomorphism. We have an isomorphisme of $\operatorname{End}_k(E)$ -modules:

 $E[\alpha] \simeq \operatorname{End}_k(E) / \alpha \operatorname{End}_k(E).$

• If $\operatorname{End}_k(E)$ is non commutative (ie $\pi \in \mathbb{Z}$), let $n \in \mathbb{Z}$. We have an isomorphism of $\operatorname{End}_k(E)$ -modules:

 $E[n] \oplus E[n] \simeq \operatorname{End}_k(E)/n \operatorname{End}_k(E).$

Outline of the proof in the commutative case.

 $\operatorname{End}_k(E)$ is a quadratic order so it is a Gorenstein ring. $E[\alpha]$ is faithful over $\operatorname{End}_k(E)/\alpha \operatorname{End}_k(E)$, which is a finite Gorenstein ring. So $E[\alpha]$ contains a free $\operatorname{End}_k(E)/\alpha \operatorname{End}_k(E)$ module of rank 1, but $\#E[\alpha] = \#\operatorname{End}_k(E)/\alpha \operatorname{End}_k(E) = \operatorname{deg} \alpha$ so $E[\alpha]$ is free of rank 1 over $\operatorname{End}_k(E)/\alpha \operatorname{End}_k(E)$.

Elliptic curves Z-module Symplectic structure Endomorphisms End_k(E)-module

The structure of the rational points

Theorem (Lenstra)

Let E/\mathbb{F}_q be an ordinary elliptic curve (or suppose that $\pi \notin \mathbb{Z}$). We have as $\operatorname{End}_{\mathbb{F}_q}(E)$ -modules:

$$E(\mathbb{F}_{q^n}) \simeq \frac{\operatorname{End}_{\mathbb{F}_q}(E)}{\pi^n - 1}$$

- Let $\Delta_{\pi} = t^2 4q$ and Δ the discriminant of $\mathbb{Q}(\sqrt{\Delta_{\pi}})$. We have $\Delta_{\pi} = \Delta f^2$ where f is the conductor of $\mathbb{Z}[\pi] \subset O_K$.
- In practice if $\Delta_{\pi} = df_0^2$, then $\Delta = d$, $f = f_0$ if $d \equiv 1 \mod 4$ or $\Delta = 4d$, $f = f_0/2$ otherwise;
- Let $\omega = \frac{1+\sqrt{d}}{2}$ if $d \equiv 1 \mod 4$ and $\omega = \sqrt{d}$ otherwise.
- $O_K = \mathbb{Z} \oplus \mathbb{Z} \omega = \mathbb{Z}[\frac{\Delta + \sqrt{\Delta}}{2}];$
- $\pi = a + f \omega$ with $a = \frac{t-f}{2}$ if $d \equiv 1 \mod 4$ and $a = \frac{t}{2}$ otherwise;
- Let f_E be the conductor of $\operatorname{End}(E) \subset O_K$, $f_E | f$ since $\mathbb{Z}[\pi] \subset \operatorname{End}(E)$, $f = f_E \gamma$ where $\gamma_E = [\operatorname{End}(E) : \mathbb{Z}[\pi]]$;
- $E(\mathbb{F}_q) = \mathbb{Z}/n_1\mathbb{Z} \oplus \mathbb{Z}/n_2\mathbb{Z}$ where $n_1 \mid n_2, n_1 = \gcd(a-1, \gamma_E)$ and $N = n_1n_2 = \#E(\mathbb{F}_q)$.

Z-module Symplectic

Symplectic structure

Endomorphisms

 $\operatorname{End}_k(E)$ -module

Torsion and conductor of the order

Lemma ([MMS+06])

Let
$$N = n_1 n_2 = \#E(\mathbb{F}_q), \ \pi = a + f \omega, \ n_1 = \gcd(a - 1, \gamma_E).$$

 $v_{\ell}(a-1) \ge \min(v_{\ell}(f), v_{\ell}(N)/2).$

Proof.

$$N = \chi_{\pi}(1) = (1 - \pi)(1 - \hat{\pi}).$$

If $d \neq 1 \mod 4$, from $\pi = a + f \omega$ we get

$$N = (a-1)^2 - df^2$$

so $2\nu_{\ell}(a-1) \ge \min(2\nu_{\ell}(f), \nu_{\ell}(N))$. If $d \equiv 1 \mod 4$, then $(t-2)^2 = f^2 + 4N$ so $4(a-1)^2 = 4N + f^2(d-1) - 4f(a-1)$, and taking valuations yield the Lemma too.

Corollary

- If $v_{\ell}(n_1) < v_{\ell}(N)/2$ then $v_{\ell}(\gamma_E) = v_{\ell}(n_1)$;
- If $v_{\ell}(n_1) = v_{\ell}(N)/2$ then $v_{\ell}(\gamma_E) \ge v_{\ell}(N)/2$.

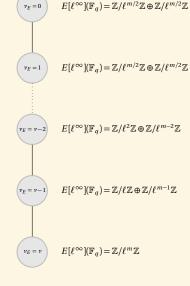
- If *E* is on the floor, $E[\ell^{\infty}](\mathbb{F}_q)$ is cyclic: $E[\ell^{\infty}](\mathbb{F}_q) = \mathbb{Z}/\ell^m \mathbb{Z}$, with $m = v_{\ell}(N)$ (possibly m = 0).
- If *E* is on level $\alpha < m/2$ above the floor, then $E[\ell^{\infty}](\mathbb{F}_q) = \mathbb{Z}/\ell^{\alpha} \oplus \mathbb{Z}/\ell^{m-\alpha}$.
- If $v \ge m/2$ then *m* is even and when *E* is on level $\alpha \ge m/2$, $E[\ell^{\infty}](\mathbb{F}_q) = \mathbb{Z}/\ell^{m/2} \oplus \mathbb{Z}/\ell^{m/2}$.

Corollary

When $E[\ell^{\infty}](\mathbb{F}_q) = \mathbb{Z}/\ell^{\alpha} \oplus \mathbb{Z}/\ell^{m-\alpha}$ with $\alpha \neq m/2$ we can read the ℓ -valuation of the conductor of $\operatorname{End}_k(E)$ directly from the rational points!

Example

If $\ell \parallel \#E(\mathbb{F}_q)$ then $\operatorname{End}_k(E)$ is maximal at ℓ and the volcano has height 1.



The structure of the ℓ^{∞} -torsion in the volcano

Invia_

 $\operatorname{End}_{k}(E)$ -module 0000000

Elliptic curves

Z-module

iymplectic structure

Endomorphisms

Torsion and extensions

- $v_{\ell}(f_{\pi^e}) = v_{\ell}(f_{\pi})$ when $\ell \nmid e$;
- $v_{\ell}(f_{\pi^{\ell}}) = v_{\ell}(f_{\pi}) + 1$, except when $\ell = 2$ and $v_{\ell}(f_{\pi}) = 1$ when the height can increase by more than one [Fou01];
- If $E[\ell^{\infty}](\mathbb{F}_q) = \mathbb{Z}/\ell^{n_1} \oplus \mathbb{Z}/\ell^{n_2}$ $(n_1 \leq n_2)$ with $n_1 > 0$ and $n_2 > 0$ then $E[\ell^{\infty}](\mathbb{F}_{q^e}) = E[\ell^{\infty}](\mathbb{F}_q)$ when $\ell \nmid e$;
- With the hypothesis above, if $\ell > 2$, $E[\ell^{\infty}](\mathbb{F}_{q}^{\ell}) = \mathbb{Z}/\ell^{n_{1}+1} \oplus \mathbb{Z}/\ell^{n_{2}+1}$;
- If $\ell = 2$, n_1 and n_2 can increase by more than one (but when $v_{\ell}(f_{\pi}) > 1$ then n_1 only increase by 1) [IJ13].

Elliptic curves

Z-module 0000000 Symplectic structure

Endomorphisms

Number fields

- If *K* is a number field, *E*(*K*) is finitely generated (Mordell);
- $E(\mathbb{Q})_{\text{tors}} \in \{\mathbb{Z}/n\mathbb{Z} \ 1 \le n \le 10 \text{ or } n = 12\} \cup \{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}/2\mathbb{Z}/2\mathbb{Z}/2\mathbb{Z}/2\mathbb{Z}/2\mathbb{Z}/2\mathbb{Z}/2\mathbb{Z}/2\mathbb$

			$\operatorname{End}_k(E)$ -module
$E(\overline{k})$ [Len96	5]		

- $E(\overline{k}) = E(\overline{k})_{\text{tors}} \oplus E(\overline{k})/E(\overline{k})_{\text{tors}};$
- E(k)/E(k)_{tors} is equal to 0 if k is the algebraic closure of a finite field, otherwise it is isomorphic as en End(E) module to End⁰(E)^{#k};
- Let p denotes the endomorphisms acting trivially on the tangeant space $T_0(E)$;
- If E is ordinary (rankEnd(E) = 2), $E(\overline{k})_{tors} = End(E)_{p}/End(E)$;
- Otherwise (rank End(E) = 4) $E(\overline{k})_{tors} \oplus E(\overline{k})_{tors} = End(E)_{\mathfrak{p}} / End(E)$.

Corollary

$$E(\overline{k}) = E(\overline{k})_{\text{tors}}$$
 if and only if \overline{k} is algebraic over a finite field.

Proof.

If \overline{k} is algebraic over a finite field and $P \in E(\overline{k})$, the coordinates of P are defined over a finite field, so P is of torsion. Conversely we may assume that \overline{k} is algebraic over $\mathbb{F}_p(T)$ or \mathbb{Q} or $\mathbb{Q}(T)$. If $E(\overline{k}) = E(\overline{k})_{\text{tors}}$ the Jordan-Hölder factors of the absolute Galois group would be of the form $\text{PSL}_2(\mathbb{F}_q)$ (up to a finite number of exceptions). But $\mathbb{F}_p(T)$, \mathbb{Q} and $\mathbb{Q}(T)$ all have Galois extension with the symmetric groups S_n for all n.

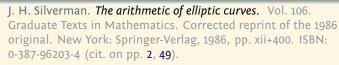
Endomorphisms

 $\operatorname{End}_k(E)$ -module

ln ría_

Bibliography

- M. Fouquet and F. Morain. "Isogeny volcanoes and the SEA algorithm". In: *Algorithmic Number Theory* (2002), pp. 47–62 (cit. on p. 58).
- M. Fouquet. "Anneau d'endomorphismes et cardinalité des couples elliptiques: aspects algorithmiques". PhD thesis. Palaiseau, Ecole Polytechnique, 2001 (cit. on p. 64).
- S. Ionica and A. Joux. "Pairing the volcano". In: *Mathematics of Computation* 82.281 (2013), pp. 581–603 (cit. on p. 64).
- D. Kohel. "Endomorphism rings of elliptic curves over finite fields". PhD thesis. University of California, 1996 (cit. on p. 58).
- H. Lenstra Jr. "Complex multiplication structure of elliptic curves". In: *journal of number theory* 56.2 (1996), pp. 227–241 (cit. on pp. 2, 59, 66).
- J. Milne. "Elleptic Curves". In: (2006) (cit. on p. 2).
- J. Miret, R. Moreno, D. Sadornil, J. Tena, and M. Valls. "An algorithm to compute volcanoes of 2-isogenies of elliptic curves over finite fields". In: *Applied mathematics and computation* 176.2 (2006), pp. 739–750 (cit. on p. **61**).



W. Waterhouse. "Abelian varieties over finite fields". In: Ann. Sci. Ecole Norm. Sup 2.4 (1969), pp. 521–560 (cit. on pp. 2, 54).

W. Waterhouse and J. Milne. "Abelian varieties over finite fields". In: *Proc. Symp. Pure Math* 20 (1971), pp. 53–64 (cit. on p. 2).

