ECC Summer School – Exercices

Damien Robert

2015-09-25

1 Cryptography

Implement public key encryption and signature with elliptic curves:

El Gamal encryption :

- Alice has a secret key $a \in \mathbb{Z}/\ell\mathbb{Z}$ and public key $(P, aP) \in E(\mathbb{F}_p)^2$, where ℓ is a large prime dividing the order of E/\mathbb{F}_p , and P is of order ℓ . (To generate such a P take a random $P_0 \in E(\mathbb{F}_p)$ and set $P = \frac{\#E(\mathbb{F}_p)}{\ell}P_0$. Check that $P \neq 0_E$!)
- Bob wants to send $m \in E(\mathbb{F}_p)$ encrypted to Alice.
- Bob takes a random $b \in \mathbb{Z}/\ell\mathbb{Z}$ and send

$$u_1 = baP + m, u_2 = bP$$

• Alice recovers $m = u_1 - au_2$.

Signature (ECDSA, with some details skipped) :

- Alice has secret key *a* and public key (*P*, *aP*) as before;
- Signing $m \in \mathbb{Z}/\ell\mathbb{Z}$: Alice takes a random $k \in \mathbb{Z}\ell\mathbb{Z}$, compute $r = x_{kP} \in \mathbb{Z}/\ell\mathbb{Z}$ and sends

$$r,s = \frac{m+ra}{k}$$

• Verification: Bob computes $v = \frac{m}{s}P + \frac{raP}{s}$ and checks that $x_v = r \mod \ell$.

2 Addition law

• Implement the addition law for elliptic curves in Edwards model:

$$E: x^2 + y^2 = 1 + dx^2y^2, \quad d \neq 0, -1.$$

If $P = (x_1, y_1)$ and $Q = (x_2, y_2)$:

$$P + Q = \left(\frac{x_1y_2 + x_2y_1}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

Check that (0, 1) is a neutral element, that -(x, y) = (-x, y) and that T = (1, 0) has order 4 with 2T = (0, -1).

3 Discrete Logarithms

• Generalize to twisted Edwards curves:

$$E: ax^2 + y^2 = 1 + dx^2y^2.$$

If $P = (x_1, y_1)$ and $Q = (x_2, y_2)$:

$$P + Q = \left(\frac{x_1y_2 + x_2y_1}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - ax_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

• Montgomery curves:

$$E: By^2 = x^3 + Ax^2 + x$$

One can work using only the *x* coordinate: we represent a point $\pm P \in E$ by the projective coordinates (X : Z) where x = X/Z. No addition when we only have the *x*-coordinate, but we can do differential additions! Given $\pm P_1 = (X_1 : Z_1), \pm P_2 = (X_2 : Z_2)$ and $\pm (P_1 - P_2) = (X_3 : Z_3)$ then $\pm (P_1 + P_2) = (X_4 : Z_4)$ is given by

$$X_4 = Z_3 ((X_1 - Z_1)(X_2 + Z_2) + (X_1 + Z_1)(X_2 - Z_2))^2$$

$$Z_4 = X_3 ((X_1 - Z_1)(X_2 + Z_2) - (X_1 + Z_1)(X_2 - Z_2))^2$$

Implement the scalar multiplication $\pm P \mapsto \pm nP$ by using a Montgomery ladder: at each step we have $\pm nP$, $\pm (n + 1)P$ and we compute $\pm 2nP$, $\pm (2n + 1)P$ or $\pm (2n + 1)P$, $\pm (2n + 2)P$.

3 Discrete Logarithms

Try to implement the baby step giant step algorithm or the Pollard ρ method for the DLP in $E(\mathbb{F}_q)$.

4 Pairings and Miller's algorithm

Fix a prime ℓ and find an elliptic curve such that $\ell \mid \#E(\mathbb{F}_q)$. Let *e* be the embedding degree (compute it!)

Let $P \in E[r](\mathbb{F}_q)$ and $Q \in E(\mathbb{F}_{q^e})$. Implement Miller's algorithm algorithm 4.1 to compute $f_{r,P}(Q)$.

We recall that $f_{\lambda,P} \in \mathbb{F}_q(E)$ has divisor $\text{Div}(f_{\lambda,P}) = \lambda[P] - [\lambda P] - [\lambda P] - [\lambda - 1)[0_E]$. If $\lambda, \nu \in \mathbb{N}$, $f_{\lambda+\nu,P} = f_{\lambda,P}f_{\nu,P}\mu_{\lambda P,\nu P}$ where $\mu_{\lambda P,\nu P}$ has divisor $[(\lambda + \nu)P] - [(\lambda)P] - [(\nu)P] + [0_E]$:

$$\mu_{P_1,P_2} = \frac{y - \alpha(x - x_{P_1}) - y_{P_1}}{x + (x_{P_1} + x_{P_1}) - \alpha^2} \tag{1}$$

with $\alpha = \frac{y_{P_1} - y_{P_2}}{x_{P_1} - x_{P_2}}$ when $P_1 \neq P_2$ and $\alpha = \frac{f'(x_{P_1})}{2y_{P_1}}$ when $P_1 = P_2$.

Algorithm 4.1 (Evaluating $f_{r,P}$ on Q).

Input:
$$r \in \mathbb{N}$$
, $P = (x_P, y_P) \in E[r](\mathbb{F}_a)$, $Q = (x_O, y_O) \in E(\mathbb{F}_{a^d})$.

Output: $f_{r,P}(Q)$ where Div $f_{r,P} = r[P] - r[0_E]$.

- 1. Compute the binary decomposition: $r := \sum_{i=0}^{I} b_i 2^i$. Let T = P, $f_1 = 1$, $f_2 = 1$.
- 2. For *i* in [*I*..0] compute
 - a) α , the slope of the tangent of *E* at *T*.
 - b) $f_1 = f_1^2(y_Q \alpha(x_Q x_T) y_T), f_2 = f_2^2(x_Q + 2x_T \alpha^2).$
 - c) T = 2T.
 - d) If $b_i = 1$, then compute
 - i. α , the slope of the line going through *P* and *T*.

5 The group structure of $E(\mathbb{F}_q)$

ii.
$$f_1 = f_1^2 (y_Q - \alpha (x_Q - x_T) - y_T), f_2 = f_2 (x_Q + x_P + x_T - \alpha^2).$$

iii. $T = T + P.$

Return $\frac{f_1}{f_2}$.

• Implement the Weil pairing

$$e_{W,\ell}(P,Q) = \frac{f_{\ell,P}(Q)}{f_{\ell,Q}(P)}$$

for $P, Q \in E[\ell]$;

• Implement the Tate pairing

$$e_{T,\ell}(P,Q) = f_{\ell,P}(Q)^{\frac{q^{\ell-1}}{\ell}}$$

for $P \in E[\ell](\mathbb{F}_q)$ and $Q \in E(\mathbb{F}_{q^e})$;

- Compare with the Sage/Pari implementation, check bilinearity.
- Generalize the computation of $f_{r,P}$ to reduce an arbitrary divisor. Optimize the divisor reduction using a double and add algorithm.
- Example: $y^2 = x^3 5$ over \mathbb{F}_p with

p = 260532200783961536561853044153738822596223089371557168731494664303638395082391

check that

 $\#E(\mathbb{F}_p) = 260532200783961536561853044153738822595712665821175760941446444365476223949041$

is prime and that the embedding degree e is 12. Try some pairings between $P \in E(\mathbb{F}_n)$ and $Q \in E(\mathbb{F}_{n^{12}}[r])$.

5 The group structure of $E(\mathbb{F}_a)$

Let *E* be an elliptic curve over \mathbb{F}_q . Let $N = #E(\mathbb{F}_q)$ (ask Sage or Pari to get the number of points!). $E(\mathbb{F}_q) = \mathbb{Z}/a\mathbb{Z} \oplus \mathbb{Z}/b\mathbb{Z}$ with $a \mid b$ and we want to compute a and b.

Take *P*, *Q* two random points in $E(\mathbb{F}_q)$. Write a naive program to check that they generate $E(\mathbb{F}_q)$.

Here is a faster method: factorize N to compute the order N_1 and N_2 of P and Q. Let $b = N_1 \vee N_2$ and a the order of $e_b(P,Q)$. Prove that $E(\mathbb{F}_a) = \langle P, Q \rangle$ if and only if N = ab. Implement this algorithm.

Hint: using the CRT one can assume that $N = \ell^e$, and we want to find the ℓ -adic valuation of a and b. Also it may be easier to find two generators for each $E[\ell^{\infty}](\mathbb{F}_q)$ and use the CRT to find two generators for $E(\mathbb{F}_q)$.

Once we have two generators $\langle P, Q \rangle$ we want to replace them by a linear combination so that P, Q are generators with P of order a and Q of order b. (such generators are said to be in SNF form).

Hint: Likewise work over each $E[\ell^{\infty}](\mathbb{F}_q)$. This will involve DLP in $E[\ell]$ so don't try with an elliptic curve too big! Why don't we just take random elements until we find generators of the form above?

Example 5.1. Suppose that $E[\ell^{\infty}](\mathbb{F}_q) = \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell^2\mathbb{Z}$. The first random point is P = (0, 1) and the second is $Q = (1, \alpha)$. Then *P* and *Q* are of order ℓ^2 and $e_{\ell^2}(P, Q) \neq 1$ (why?) so *P*, *Q* are generators.

 $\ell P = \alpha \ell Q$, one can recover α via a DLP in $E[\ell]$, and compute $Q_1 = Q - \alpha P$. Then $Q_1 = (1, 0)$ is of ordrer ℓ and Q_1, P is in SNF (Smith Normal Form).

Example 5.2. Let $E: y^2 = x^3 + 723138791x + 549773675$ over \mathbb{F}_p with p = 777034913. $\#E(\mathbb{F}_p) = 3 \times 7 \times 17^4 \times 443$. Find the structure of $E[17^{\infty}](\mathbb{F}_p)$ and generators.

6 DLP in anomalous curves

6 DLP in anomalous curves

Exercice provided by Benjamin Smith.

Let

$$p = 11 \cdot 2^{252} + 12188 \cdot 2^{124} + 211005 \,.$$

The elliptic curve

$$E/\mathbb{F}_p: y^2 = x^3 - \frac{1536}{539}x + \frac{1024}{539}$$

is anomalous: that is, it has exactly *p* points.

- 1. Create *E*, and check that it has *p* points (you shouldn't need to use an explicit point counting algorithm).
- 2. First, implement an augmented group law \oplus on pairs in $E(\mathbb{F}_p) \times \mathbb{F}_p$:

$$(P, \alpha_P) \oplus (Q, \alpha_O) := (P + Q, \alpha_P + \alpha_O + a_0(P, Q))$$

where $a_0(P, Q)$ is the constant coefficient in the expansion of $(d\mu_{P,Q}/dt)/\mu_{P,Q}$ in terms of t = x/y, where Div $\mu_{P,Q} = l_{P,Q}/v_{P,Q}$, where $l_{P,Q}$ is the line through P and Q and $v_{P,Q}$ is the vertical line through P + Q (so $[P] + [Q] - 2[0_E] = [P + Q] - [0_E] + \text{Div}(\mu_{P,Q})$).

- 3. Now implement a simple double-and-add loop to compute $[m](P, a_P) = (P, a_P) \oplus \cdots \oplus (P, a_P)$ using your augmented group law.
- 4. Now, generate a random DLP instance: Q = [m]P on \mathscr{E} .
- 5. Compute [p](P, 0) and [p](Q, 0): you should have $[p](P, 0) = (0_{\mathscr{C}}, \alpha)$ and $[p](Q, 0) = (0_{\mathscr{C}}, \beta)$ for some α and β in \mathbb{F}_p .
- 6. Check that $m = \beta / \alpha$.