ECC Summer School - Exercices

Damien Robert

2015-09-25

1 Cryptography

Implement public key encryption and signature with elliptic curves:

El Gamal encryption :

- Alice has a secret key $a \in \mathbb{Z} / \ell \mathbb{Z}$ and public key $(P, a P) \in E\left(\mathbb{F}_{p}\right)^{2}$, where ℓ is a large prime dividing the order of E / \mathbb{F}_{p}, and P is of order ℓ. (To generate such a P take a random $P_{0} \in E\left(\mathbb{F}_{p}\right)$ and set $P=\frac{\# E\left(\mathbb{F}_{p}\right)}{\ell} P_{0}$. Check that $P \neq 0_{E}!$)
- Bob wants to send $m \in E\left(\mathbb{F}_{p}\right)$ encrypted to Alice.
- Bob takes a random $b \in \mathbb{Z} / \ell \mathbb{Z}$ and send

$$
u_{1}=b a P+m, u_{2}=b P
$$

- Alice recovers $m=u_{1}-a u_{2}$.

Signature (ECDSA, with some details skipped) :

- Alice has secret key a and public key $(P, a P)$ as before;
- Signing $m \in \mathbb{Z} / \ell \mathbb{Z}$: Alice takes a random $k \in \mathbb{Z} \ell \mathbb{Z}$, compute $r=x_{k p} \in \mathbb{Z} / \ell \mathbb{Z}$ and sends

$$
r, s=\frac{m+r a}{k}
$$

- Verification: Bob computes $v=\frac{m}{s} P+\frac{r a P}{s}$ and checks that $x_{v}=r \bmod \ell$.

2 Addition law

- Implement the addition law for elliptic curves in Edwards model:

$$
E: x^{2}+y^{2}=1+d x^{2} y^{2}, \quad d \neq 0,-1
$$

If $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$:

$$
P+Q=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

Check that $(0,1)$ is a neutral element, that $-(x, y)=(-x, y)$ and that $T=(1,0)$ has order 4 with $2 T=(0,-1)$.

- Generalize to twisted Edwards curves:

$$
E: a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

If $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$:

$$
P+Q=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-a x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right) .
$$

- Montgomery curves:

$$
E: B y^{2}=x^{3}+A x^{2}+x
$$

One can work using only the x coordinate: we represent a point $\pm P \in E$ by the projective coordinates ($X: Z$) where $x=X / Z$. No addition when we only have the x-coordinate, but we can do differential additions! Given $\pm P_{1}=\left(X_{1}: Z_{1}\right), \pm P_{2}=\left(X_{2}: Z_{2}\right)$ and $\pm\left(P_{1}-P_{2}\right)=\left(X_{3}: Z_{3}\right)$ then $\pm\left(P_{1}+P_{2}\right)=\left(X_{4}: Z_{4}\right)$ is given by

$$
\begin{aligned}
& X_{4}=Z_{3}\left(\left(X_{1}-Z_{1}\right)\left(X_{2}+Z_{2}\right)+\left(X_{1}+Z_{1}\right)\left(X_{2}-Z_{2}\right)\right)^{2} \\
& Z_{4}=X_{3}\left(\left(X_{1}-Z_{1}\right)\left(X_{2}+Z_{2}\right)-\left(X_{1}+Z_{1}\right)\left(X_{2}-Z_{2}\right)\right)^{2}
\end{aligned}
$$

Implement the scalar multiplication $\pm P \mapsto \pm n P$ by using a Montgomery ladder: at each step we have $\pm n P, \pm(n+$ 1) P and we compute $\pm 2 n P, \pm(2 n+1) P$ or $\pm(2 n+1) P, \pm(2 n+2) P$.

3 Discrete Logarithms

Try to implement the baby step giant step algorithm or the Pollard ρ method for the DLP in $E\left(\mathbb{F}_{q}\right)$.

4 Pairings and Miller's algorithm

Fix a prime ℓ and find an elliptic curve such that $\ell \mid \# E\left(\mathbb{F}_{q}\right)$. Let e be the embedding degree (compute it!)
Let $P \in E[r]\left(\mathbb{F}_{q}\right)$ and $Q \in E\left(\mathbb{F}_{q^{e}}\right)$. Implement Miller's algorithm algorithm 4.1 to compute $f_{r, P}(Q)$.
We recall that $f_{\lambda, P} \in \mathbb{F}_{q}(E)$ has divisor $\operatorname{Div}\left(f_{\lambda, P}\right)=\lambda[P]-[\lambda P]-(\lambda-1)\left[0_{E}\right]$. If $\lambda, v \in \mathbb{N}, f_{\lambda+v, P}=f_{\lambda, P} f_{v, P} \mu_{\lambda P, v P}$ where $\mu_{\lambda P, v P}$ has divisor $[(\lambda+v) P]-[(\lambda) P]-[(v) P]+\left[0_{E}\right]$:

$$
\begin{equation*}
\mu_{P_{1}, P_{2}}=\frac{y-\alpha\left(x-x_{P_{1}}\right)-y_{P_{1}}}{x+\left(x_{P_{1}}+x_{P_{1}}\right)-\alpha^{2}} \tag{1}
\end{equation*}
$$

with $\alpha=\frac{y_{P_{1}}-y_{P_{2}}}{x_{P_{1}}-x_{P_{2}}}$ when $P_{1} \neq P_{2}$ and $\alpha=\frac{f^{\prime}\left(x_{P_{1}}\right)}{2 y P_{1}}$ when $P_{1}=P_{2}$.
Algorithm 4.1 (Evaluating $f_{r, P}$ on Q).
Input: $r \in \mathbb{N}, P=\left(x_{P}, y_{P}\right) \in E[r]\left(\mathbb{F}_{q}\right), Q=\left(x_{Q}, y_{Q}\right) \in E\left(\mathbb{F}_{q^{d}}\right)$.
Output: $f_{r, P}(Q)$ where $\operatorname{Div} f_{r, P}=r[P]-r\left[0_{E}\right]$.

1. Compute the binary decomposition: $r:=\sum_{i=0}^{I} b_{i} 2^{i}$. Let $T=P, f_{1}=1, f_{2}=1$.
2. For i in [I.. 0] compute
a) α, the slope of the tangent of E at T.
b) $f_{1}=f_{1}^{2}\left(y_{Q}-\alpha\left(x_{Q}-x_{T}\right)-y_{T}\right), f_{2}=f_{2}^{2}\left(x_{Q}+2 x_{T}-\alpha^{2}\right)$.
c) $T=2 T$.
d) If $b_{i}=1$, then compute
i. α, the slope of the line going through P and T.
ii. $f_{1}=f_{1}^{2}\left(y_{Q}-\alpha\left(x_{Q}-x_{T}\right)-y_{T}\right), f_{2}=f_{2}\left(x_{Q}+x_{P}+x_{T}-\alpha^{2}\right)$.
iii. $T=T+P$.

Return $\frac{f_{1}}{f_{2}}$.

- Implement the Weil pairing

$$
e_{W, \ell}(P, Q)=\frac{f_{\ell, P}(Q)}{f_{\ell, Q}(P)}
$$

for $P, Q \in E[\ell]$;

- Implement the Tate pairing

$$
e_{T, \ell}(P, Q)=f_{\ell, P}(Q)^{\frac{q^{\ell}-1}{\ell}}
$$

for $P \in E[\ell]\left(\mathbb{F}_{q}\right)$ and $Q \in E\left(\mathbb{F}_{q^{c}}\right)$;

- Compare with the Sage/Pari implementation, check bilinearity.
- Generalize the computation of $f_{r, P}$ to reduce an arbitrary divisor. Optimize the divisor reduction using a double and add algorithm.
- Example: $y^{2}=x^{3}-5$ over \mathbb{F}_{p} with

$$
p=260532200783961536561853044153738822596223089371557168731494664303638395082391
$$

check that
$\# E\left(\mathbb{F}_{p}\right)=260532200783961536561853044153738822595712665821175760941446444365476223949041$
is prime and that the embedding degree e is 12 . Try some pairings between $P \in E\left(\mathbb{F}_{p}\right)$ and $Q \in E\left(\mathbb{F}_{p^{12}}[r]\right)$.
5 The group structure of $E\left(\mathbb{F}_{q}\right)$
Let E be an elliptic curve over \mathbb{F}_{q}. Let $N=\# E\left(\mathbb{F}_{q}\right)$ (ask Sage or Pari to get the number of points!). $E\left(\mathbb{F}_{q}\right)=\mathbb{Z} / a \mathbb{Z} \oplus \mathbb{Z} / b \mathbb{Z}$ with $a \mid b$ and we want to compute a and b.

Take P, Q two random points in $E\left(\mathbb{F}_{q}\right)$. Write a naive program to check that they generate $E\left(\mathbb{F}_{q}\right)$.
Here is a faster method: factorize N to compute the order N_{1} and N_{2} of P and Q. Let $b=N_{1} \vee N_{2}$ and a the order of $e_{b}(P, Q)$. Prove that $E\left(\mathbb{F}_{q}\right)=<P, Q>$ if and only if $N=a b$. Implement this algorithm.

Hint: using the CRT one can assume that $N=\ell^{e}$, and we want to find the ℓ-adic valuation of a and b. Also it may be easier to find two generators for each $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right)$ and use the CRT to find two generators for $E\left(\mathbb{F}_{q}\right)$.

Once we have two generators $\langle P, Q\rangle$ we want to replace them by a linear combination so that P, Q are generators with P of order a and Q of order b. (such generators are said to be in SNF form).

Hint: Likewise work over each $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right)$. This will involve DLP in $E[\ell]$ so don't try with an elliptic curve too big! Why don't we just take random elements until we find generators of the form above?

Example 5.1. Suppose that $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right)=\mathbb{Z} / \ell \mathbb{Z} \oplus \mathbb{Z} / \ell^{2} \mathbb{Z}$. The first random point is $P=(0,1)$ and the second is $Q=(1, \alpha)$. Then P and Q are of order ℓ^{2} and $e_{\ell^{2}}(P, Q) \neq 1$ (why?) so P, Q are generators.
$\ell P=\alpha \ell Q$, one can recover α via a DLP in $E[\ell]$, and compute $Q_{1}=Q-\alpha P$. Then $Q_{1}=(1,0)$ is of ordrer ℓ and Q_{1}, P is in SNF (Smith Normal Form).

Example 5.2. Let $E: y^{2}=x^{3}+723138791 x+549773675$ over \mathbb{F}_{p} with $p=777034913$. $\# E\left(\mathbb{F}_{p}\right)=3 \times 7 \times 17^{4} \times 443$. Find the structure of $E\left[17^{\infty}\right]\left(\mathbb{F}_{p}\right)$ and generators.

6 DLP in anomalous curves

Exercice provided by Benjamin Smith.
Let

$$
p=11 \cdot 2^{252}+12188 \cdot 2^{124}+211005 .
$$

The elliptic curve

$$
E / \mathbb{F}_{p}: y^{2}=x^{3}-\frac{1536}{539} x+\frac{1024}{539}
$$

is anomalous: that is, it has exactly p points.

1. Create E, and check that it has p points (you shouldn't need to use an explicit point counting algorithm).
2. First, implement an augmented group law \oplus on pairs in $E\left(\mathbb{F}_{p}\right) \times \mathbb{F}_{p}$:

$$
\left(P, \alpha_{P}\right) \oplus\left(Q, \alpha_{Q}\right):=\left(P+Q, \alpha_{P}+\alpha_{Q}+a_{0}(P, Q)\right)
$$

where $a_{0}(P, Q)$ is the constant coefficient in the expansion of $\left(d \mu_{P, Q} / d t\right) / \mu_{P, Q}$ in terms of $t=x / y$, where $\operatorname{Div} \mu_{P, Q}=l_{P, Q} / v_{P, Q}$, where $l_{P, Q}$ is the line through P and Q and $v_{P, Q}$ is the vertical line through $P+Q$ (so $[P]+[Q]-2\left[0_{E}\right]=[P+Q]-\left[0_{E}\right]+\operatorname{Div}\left(\mu_{P, Q}\right)$).
3. Now implement a simple double-and-add loop to compute $[m]\left(P, a_{P}\right)=\left(P, a_{P}\right) \oplus \cdots \oplus\left(P, a_{P}\right)$ using your augmented group law.
4. Now, generate a random DLP instance: $Q=[m] P$ on \mathscr{E}.
5. Compute $[p](P, 0)$ and $[p](Q, 0)$: you should have $[p](P, 0)=\left(0_{\mathscr{E}}, \alpha\right)$ and $[p](Q, 0)=\left(0_{\mathscr{E}}, \beta\right)$ for some α and β in \mathbb{F}_{p}.
6. Check that $m=\beta / \alpha$.

