Algorithmic number theory and cryptography 2014/02 – Team presentation, Bordeaux

Damien ROBERT

Équipe LFANT, Inria Bordeaux Sud-Ouest

Public key cryptology

Cryptology:

- Encryption;
- Authenticity;
- Integrity.

Public key cryptology is based on a one way (trapdoor) function \Rightarrow asymmetric encryption, signatures, zero-knowledge proofs...

Applications:

- Military;
- Privacy;
- Communications (internet, mobile phones...)
- E-commerce...

Inría

Paranoia is healthy...

The Prism program collects stored Internet communications based on demands made to Internet companies (Microsoft, Yahoo!, Google, Facebook, Paltalk, YouTube, AOL, Skype, Apple...)

"The NSA has been:

- Tampering with national standards (NIST is specifically mentioned) to promote weak, or otherwise vulnerable cryptography.
- Influencing standards committees to weaken protocols.
- Working with hardware and software vendors to weaken encryption and random number generators.
- Attacking the encryption used by "the next generation of 4G phones".
- Obtaining cleartext access to "a major internet peer-to-peer voice and text communications system"
- Identifying and cracking vulnerable keys.
- Establishing a Human Intelligence division to infiltrate the global telecommunications industry.
- decrypting SSL connections.
- " (Matthew GREEN on Bullrun -

http://blog.cryptographyengineering.com/2013/09/on-nsa.html)

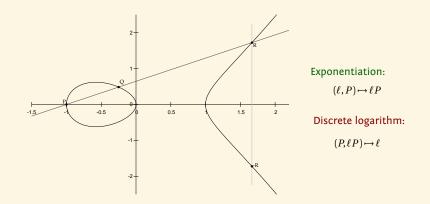
lnría.

Elliptic curves

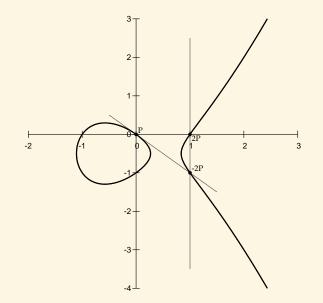
Definition (char $k \neq 2, 3$)

An elliptic curve is a plane curve with equation

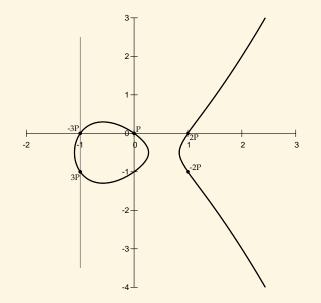
$$y^2 = x^3 + ax + b$$
 $4a^3 + 27b^2 \neq 0.$



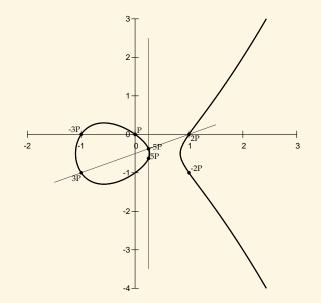
Scalar multiplication on an elliptic curve



Scalar multiplication on an elliptic curve



Scalar multiplication on an elliptic curve



ECC (Elliptic curve cryptography)

Example (NIST-p-256)

E elliptic curve

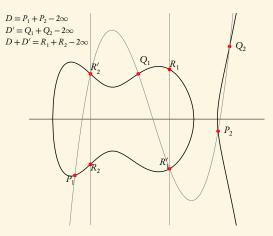
 $y^2 = x^3 - 3x + 41058363725152142129326129780047268409114441015993725554835256314039467401291$ over $\mathbb{F}_{115792089210356248762697446949407573530086143415290314195533631308867097853951}$

- Public key:
 - $P = (48439561293906451759052585252797914202762949526041747995844080717082404635286, \\ 36134250956749795798585127919587881956611106672985015071877198253568414405109),$
 - $\label{eq:Q} Q = (76028141830806192577282777898750452406210805147329580134802140726480409897389, \\85583728422624684878257214555223946135008937421540868848199576276874939903729)$
- Private key: ℓ such that $Q = \ell P$.
- Used by the NSA;
- Used in Europeans biometric passports.

Higher dimension

Dimension 2:

Addition law on the Jacobian of an hyperelliptic curve of genus 2: $y^2 = f(x)$, deg f = 5.

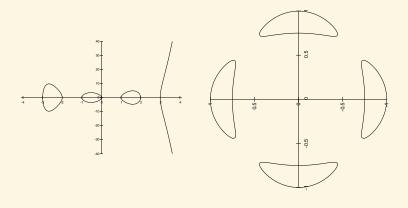


Higher dimension Dimension 2:

Dimension 3

Jacobians of hyperelliptic curves of genus 3.

Jacobians of quartics.



Inria-

Abelian surfaces

- For the same level of security, abelian surfaces need fields half the size as for elliptic curves (good for embedded devices);
- The moduli space is of dimension 3 compared to 1 ⇒ more possibilities to find efficient parameters;
- Potential speed record (the record holder often change between elliptic curves and abelian surfaces);
- But lot of algorithms still lacking compared to elliptic curves!

Security of elliptic curves cryptography

The security of an elliptic curve E/\mathbb{F}_q depends on its number of points $\#E(\mathbb{F}_q)$. But

- Endomorphisms acts on (the points of) E;
- Isogenies map an elliptic curve to another one;
- Pairings map an elliptic curve to F^{*}_{qe};
- *E* can be lifted to an elliptic curve over a number field (where we can compute elliptic integrals);
- The Weil restriction maps E/\mathbb{F}_{q^d} to an abelian variety over \mathbb{F}_q of higher dimension.

Security of elliptic curves cryptography

Most important question

How to assess the security of a particular elliptic curve?

- Point counting;
- Endomorphism ring computation (finer, more expensive);
- Relations to surrounding (isogenous) elliptic curves.

Main research theme

Consider elliptic curves and higher dimensional abelian varieties as families, via their moduli spaces.

Remark

- The geometry of the moduli space of elliptic curves is incredibly rich (Wiles' proof of Fermat's last theorem);
- This rich structure explain why elliptic curve cryptography is so powerful.

Moduli spaces

• If $E: y^2 = x^3 + ax + b$ is an elliptic curve, its isomorphism class is given by the *j*-invariant

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

The (coarse) moduli space of elliptic curves is isomorphic via the *j*-invariant to the projective line \mathbb{P}^1 ;

• The modular curve $X_0(3) \subset \mathbb{P}^2$ cut out by the modular polynomial

 $\varphi_3(X,Y) = X^4 + Y^4 - X^3Y^3 + 2232X^2Y^3 + 2232X^3Y^2 - 1069956X^3Y - 1069956XY^3$

 $+\,36864000 X^3+36864000 Y^3+2587918086 X^2 Y^2+8900222976000 X^2 Y$

 $+\,8900222976000X\,Y^2+45298483200000X^2+45298483200000Y^2$

describes the pairs of 3-isogenous elliptic curves (j_{E_1} , j_{E_2});

- The moduli space of abelian surfaces is of dimension 3;
- The class polynomials

 $128i_1^2 + 4456863i_1 - 7499223000 = 0$

 $(256i_1 + 4456863)i_2 = 580727232i_1 - 1497069297000$

 $(256i_1 + 4456863)i_3 = 230562288i_1 - 421831293750$

describe the (dimension 0) moduli space of abelian surfaces with complex multiplication by $\mathbb{Q}(X)/(X^4 + 13X^2 + 41)$.

Inría_

Isogeny graphs on elliptic curves

Definition

Isogenies are morphisms between elliptic curves.

Isogenies give links between

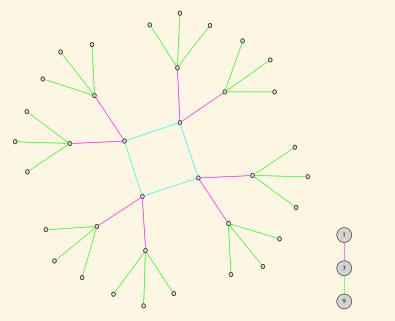
- arithmetic;
- endomorphism rings;
- class polynomials;
- modular polynomials;
- point counting;
- canonical lifting;
- moduli spaces;
- transfering the discrete logarithm problem.

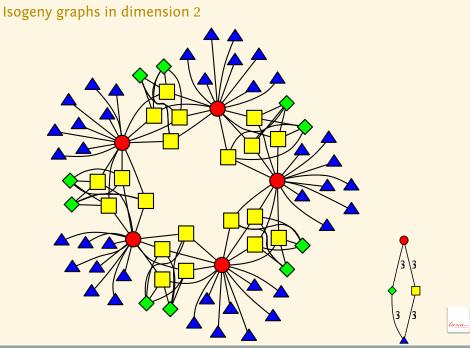
Isogeny graphs on elliptic curves

	Dimension 1	Dimension 2
$\#\mathbb{F}_q$	2^{256}	2^{128}
$#\mathcal{M}_{g}(\mathbb{F}_{q})$	2^{256}	2^{384}
#Isogeny graph	2^{128}	2 ¹⁹²

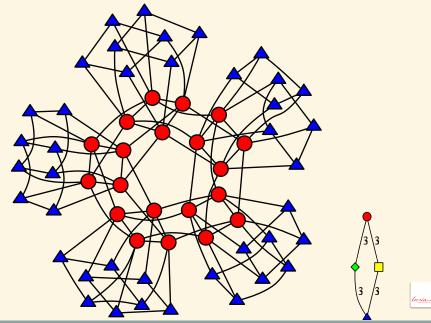
Table: Orders of magnitudes for 128 bits of security

Isogeny graphs on elliptic curves

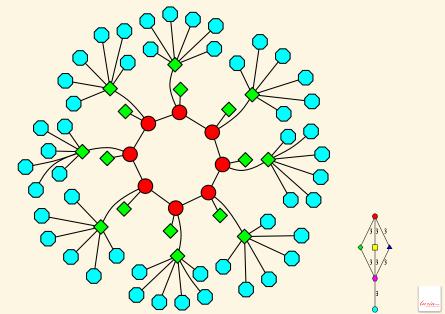




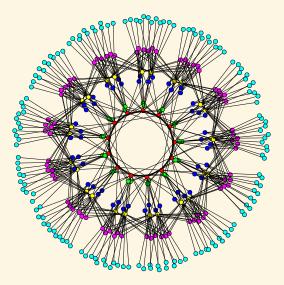
Isogeny graphs in dimension 2

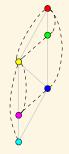


Isogeny graphs in dimension 2



Isogeny graphs in dimension 2





Inría-