Computing optimal pairings on abelian varieties with theta functions

David Lubicz ${ }^{1,2}$, Damien Robert ${ }^{3}$
${ }^{1}$ CÉLAR
${ }^{2}$ IRMAR, Université de Rennes 1
${ }^{1}$ LFANT Team, IMB \& Inria Bordeaux Sud-Ouest

10/02/2011 (Luminy)

Outline

(1) Motivations
(2) Miller's algorithm
(3) Abelian varieties

4 Theta functions
(5) Optimal pairings

Discrete logarithm

Definition (DLP)

Let $G=\langle g\rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h=g^{x}$. The discrete logarithm $\log _{g}(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\widetilde{O}(\sqrt{ } \bar{p})$ (in a generic group).
- The DLP is supposed to be difficult to solve in $\mathbb{F}_{q}^{*}, E\left(\mathbb{F}_{q}\right), J\left(\mathbb{F}_{q}\right)$, $A\left(\mathbb{F}_{q}\right)$.
\Rightarrow The DLP yields good candidates for one way functions.

Pairings

Definition

Let G_{1} and G_{2} be two cyclic groups of prime order. A pairing is a (non degenerate) bilinear application $e: G_{1} \times G_{1} \rightarrow G_{2}$.

- If the pairing e can be computed easily, the difficulty of the DLP in G_{1} reduces to the difficulty of the DLP in G_{2}.
\Rightarrow MOV attacks on elliptic curves.

Cryptographic applications of pairings

- Identity-based cryptography [BF03].
- Short signature [BLSO4].
- One way tripartite Diffie-Hellman [Jou04].
- Self-blindable credential certificates [Vero1].
- Attribute based cryptography [SW05].
- Broadcast encryption [GPSW06].

Example (Identity-based cryptography)

- Master key: $(P, s P), s . \quad s \in \mathbb{N}, P \in G_{1}$.
- Derived key: $Q, s Q . \quad Q \in G_{1}$.
- Encryption, $m \in G_{2}: m^{\prime}=m \oplus e(Q, s P)^{r}, r P . \quad r \in \mathbb{N}$.
- Decryption: $m=m^{\prime} \oplus e(s Q, r P)$.

The Weil pairing on elliptic curves

- Let $E: y^{2}=x^{3}+a x+b$ be an elliptic curve over k (car $\left.k \neq 2,3\right)$.
- Let $P, Q \in E[\ell]$ be points of ℓ-torsion.
- The divisor $[\ell]^{*}(Q-0)$ is trivial, let $g_{Q} \in k(E)$ be a function associated to this principal divisor.
- The function $x \mapsto \frac{g_{Q}(x+P)}{g_{Q}(x)}$ is constant and is equal to a ℓ-th root of unity $e_{W, \ell}(P, Q)$ in \bar{k}^{*}.

Proof.

If f_{Q} is a function associated to the principal divisor $\ell Q-\ell 0$, we have
$\left(g_{Q}^{\ell}\right)=[\ell]\left(g_{Q}\right)=[\ell]^{*}[\ell](Q-0)=[\ell]^{*}\left(f_{Q}\right)=\left(f_{Q} \circ[\ell]\right)$ so
$g_{Q}(x+P)^{\ell}=f_{Q}(\ell x+\ell P)=f_{Q}(\ell x)=g_{Q}(x)^{\ell}$ and $e_{W, \ell}(P, Q)^{\ell}=1$.

- The application $e_{W, \ell}: E[\ell] \times E[\ell] \rightarrow \mu_{\ell}(\bar{k})$ is a non degenerate pairing: the Weil pairing.

Computing the Weil pairing

- Let f_{P} be a function associated to the principal divisor $\ell(P-0)$, and f_{Q} to $\ell(Q-0)$.
- By Weil reciprocity, we have:

$$
e_{W, \ell}(P, Q)=\frac{f_{Q}(P-0)}{f_{P}(Q-0)} .
$$

- We need to compute the functions f_{P} and f_{Q}. More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda, X} \in k(E)$ to be a function thus that:

$$
\left(f_{\lambda, X}\right)=\lambda(X)-([\lambda] X)-(\lambda-1)(0) .
$$

Miller's algorithm

- The key idea in Miller's algorithm is that

$$
f_{\lambda+\mu, X}=f_{\lambda, X} f_{\mu, X} f_{\lambda, \mu, X}
$$

where $\mathfrak{f}_{\lambda, \mu, X}$ is a function associated to the divisor

$$
([\lambda+\mu] X)-([\lambda] X)-([\mu] X)+(0) .
$$

- We can compute $\mathfrak{f}_{\lambda, \mu, X}$ using the addition law in E : if [$\lambda] X=\left(x_{1}, y_{1}\right)$ and $[\mu] X=\left(x_{2}, y_{2}\right)$ and $\alpha=\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right)$, we have

$$
\mathfrak{f}_{\lambda, \mu, X}=\frac{y-\alpha\left(x-x_{1}\right)-y_{1}}{x+\left(x_{1}+x_{2}\right)-\alpha^{2}} .
$$

Tate pairing

Definition

- Let E / \mathbb{F}_{q} be an elliptic curve of cardinal divisible by ℓ. Let d be the smallest number thus that $\ell \mid q^{d}-1$: we call d the embedding degree. $\mathbb{F}_{q^{d}}$ is constructed from \mathbb{F}_{q} by adjoining all the ℓ-th root of unity.
- The Tate pairing is a non degenerate bilinear application given by

$$
\begin{aligned}
e_{T}: E\left(\mathbb{F}_{q^{d}}\right) / \ell E\left(\mathbb{F}_{q^{d}}\right) \times E[\ell]\left(\mathbb{F}_{q}\right) & \longrightarrow \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{* \ell} \\
(P, Q) & \longmapsto f_{Q}((P)-(0))
\end{aligned}
$$

- If $\ell^{2} \nmid E\left(\mathbb{F}_{q^{d}}\right)$ then $E\left(\mathbb{F}_{q^{d}}\right) / \ell E\left(\mathbb{F}_{q^{d}}\right) \simeq E[\ell]\left(\mathbb{F}_{q^{d}}\right)$.
- We normalise the Tate pairing by going to the power of $\left(q^{d}-1\right) / \ell$.
- This final exponentiation allows to save some computations. For instance if $d=2 d^{\prime}$ is even, we can suppose that $P=\left(x_{2}, y_{2}\right)$ with $x_{2} \in E\left(\mathbb{F}_{q^{d^{\prime}}}\right)$. Then the denominators of $\mathfrak{f}_{\lambda, \mu, Q}$ are ℓ-th powers and are killed by the final exponentiation.

Miller's algorithm

Computing Tate pairing

Input: $\ell \in \mathbb{N}, Q=\left(x_{1}, y_{1}\right) \in E[\ell]\left(\mathbb{F}_{q}\right), P=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q^{d}}\right)$.
Output: $e_{T}(P, Q)$.

- Compute the binary decomposition: $\ell:=\sum_{i=0}^{I} b_{i} 2^{i}$. Let $T=Q, f_{1}=1, f_{2}=1$.
- For i in [I..0] compute
- α, the slope of the tangent of E at T.
- $T=2 T . T=\left(x_{3}, y_{3}\right)$.
- $f_{1}=f_{1}^{2}\left(y_{2}-\alpha\left(x_{2}-x_{3}\right)-y_{3}\right), f_{2}=f_{2}^{2}\left(x_{2}+\left(x_{1}+x_{3}\right)-\alpha^{2}\right)$.
- If $b_{i}=1$, then compute
- α, the slope of the line going through Q and T.
- $T=T+Q . T=\left(x_{3}, y_{3}\right)$.
- $f_{1}=f_{1}^{2}\left(y_{2}-\alpha\left(x_{2}-x_{3}\right)-y_{3}\right), f_{2}=f_{2}\left(x_{2}+\left(x_{1}+x_{3}\right)-\alpha^{2}\right)$.
- Return

$$
\left(\frac{f_{1}}{f_{2}}\right)^{\frac{q^{d}-1}{\ell}}
$$

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1 .
- If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of dimension g.

Pairing on abelian varieties

- Let $Q \in \widehat{A}[\ell]$. By definition of the dual abelian variety, Q is a divisor of degree 0 on A such that ℓQ is principal. Let $f_{Q} \in k(A)$ be a function associated to ℓQ.
- Let $P \in A[\ell]$. Since $\widehat{\hat{A}} \simeq A$, we can see P as a divisor of degree 0 on $\widehat{A} . \ell(P)$ is then a principal divisor $\left(f_{P}\right)$ where $f_{P} \in k(\widehat{A})$.
- We can then define the Weil pairing:

$$
\begin{aligned}
e_{W, \ell}: A[\ell] \times \hat{A}[\ell] & \longrightarrow \mu_{\ell}(\bar{k}) \\
(P, Q) & \longrightarrow \frac{f_{Q}(P)}{f_{P}(Q)}
\end{aligned}
$$

- Likewise, we can extend the Tate pairing to abelian varieties.

Pairings and polarizations

- If Θ is an ample divisor, the polarisation φ_{Θ} is a morphism $A \rightarrow \widehat{A}, x \mapsto t_{x}^{*} \Theta-\Theta$.
- We can then compose the Weil and Tate pairings with φ_{Θ} :

$$
\begin{aligned}
e_{W, \Theta, \ell}: A[\ell] \times A[\ell] & \longrightarrow \mu_{\ell}(\bar{k}) \\
(P, Q) & \longmapsto e_{W, \ell}\left(P, \varphi_{\Theta}(Q)\right)
\end{aligned}
$$

- More explicitly, if f_{P} and f_{Q} are the functions associated to the principal divisors $\ell t_{P}^{*} \Theta-\ell \Theta$ and $\ell t_{Q}^{*} \Theta-\ell \Theta$ we have

$$
e_{W, \Theta, \ell}(P, Q)=\frac{f_{Q}(P-0)}{f_{P}(Q-0)}
$$

Cryptographic usage of pairings on abelian varieties

- The moduli space of abelian varieties of dimension g is a space of dimension $g(g+1) / 2$. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular elliptic curves have a too small embedding degree. [RSO9] says that for the current security parameters, optimal supersingular abelian varieties of small dimension are of dimension 4.
- If A is an abelian variety of dimension $g, A[\ell]$ is a $(\mathbb{Z} / \ell \mathbb{Z})$-module of dimension $2 g \Rightarrow$ the structure of pairings on abelian varieties is richer.

Computing pairings on abelian varieties

- If J is the Jacobian of an hyperelliptic curve H of genus g, it is easy to extend Miller's algorithm to compute the Tate and Weil pairing on J.
- For instance if $g=2$, the function $\mathfrak{f}_{\lambda, \mu, Q}$ is of the form

$$
\frac{y-l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}
$$

where l is of degree 3 .

- If P is a degenerate divisor (P is a sum of only one point on the curve H), the evaluation $f_{Q}(P)$ is faster than for a general divisor (which would be a sum of g points on the curve H).
\Rightarrow Pairings on Jacobians of genus 2 curves can be competitive with pairings on elliptic curves.
- What about more general abelian varieties? We don't have Mumford coordinates.

Complex abelian varieties

- Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathscr{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t}(n+a) \Omega(n+a)+2 \pi i^{t}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^{g}
$$

Quasi-periodicity:
$\vartheta\left[\begin{array}{c}a \\ b\end{array}\right]\left(z+m_{1} \Omega+m_{2}, \Omega\right)=e^{2 \pi i\left(t a \cdot m_{2}-t b \cdot m_{1}\right)-\pi i^{t} m_{1} \Omega m_{1}-2 \pi i t_{m_{1}} \cdot z} \vartheta\left[\begin{array}{c}a \\ b\end{array}\right](z, \Omega)$.

- Projective coordinates:

$$
\begin{array}{rll}
A & \longrightarrow & \mathbb{P}_{\mathbb{C}}^{n^{g}-1} \\
z & \longrightarrow & \left(\vartheta_{i}(z)\right)_{i \in Z(\bar{n})}
\end{array}
$$

where $Z(\bar{n})=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$ and $\vartheta_{i}=\vartheta\left[\begin{array}{l}0 \\ \frac{i}{n}\end{array}\right]\left(., \frac{\Omega}{n}\right)$.

The differential addition law $(k=\mathbb{C})$

$$
\begin{aligned}
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right)
\end{aligned}
$$

where $\quad \chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n})$

$$
\begin{aligned}
& \left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
& A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Example: addition in genus 1 and in level 2

Doubling Algorithm:
Input: $P=(x: z)$.
Output: 2. $P=\left(x^{\prime}: z^{\prime}\right)$.
(1) $x_{0}=\left(x^{2}+z^{2}\right)^{2}$;
(2) $z_{0}=\frac{A^{2}}{B^{2}}\left(x^{2}-z^{2}\right)^{2}$;
(3) $x^{\prime}=\left(x_{0}+z_{0}\right) / a$;
(4) $z^{\prime}=\left(x_{0}-z_{0}\right) / b$;
(5) Return $\left(x^{\prime}: z^{\prime}\right)$.

Differential Addition Algorithm:
Input: $P=\left(x_{1}: z_{1}\right), Q=\left(x_{2}: z_{2}\right)$
and $R=P-Q=\left(x_{3}: z_{3}\right)$ with $x_{3} z_{3} \neq 0$.
Output: $P+Q=\left(x^{\prime}: z^{\prime}\right)$.
(1) $x_{0}=\left(x_{1}^{2}+z_{1}^{2}\right)\left(x_{2}^{2}+z_{2}^{2}\right)$;
(2) $z_{0}=\frac{A^{2}}{B^{2}}\left(x_{1}^{2}-z_{1}^{2}\right)\left(x_{2}^{2}-z_{2}^{2}\right)$;
(3) $x^{\prime}=\left(x_{0}+z_{0}\right) / x_{3}$;
(4) $z^{\prime}=\left(x_{0}-z_{0}\right) / z_{3}$;
(5) Return $\left(x^{\prime}: z^{\prime}\right)$.

Arithmetic with low level theta functions ($\operatorname{car} k \neq 2$)

$\left.\begin{array}{lccc} & \text { Mumford } & \text { Level 2 } & \text { Level 4 } \\ & \text { [Lan05] } & \text { [Gau07] } & \\ \text { Doubling } & 34 M+7 S & & 7 M+12 S+9 m_{0}\end{array}\right) 49 M+36 S+27 m_{0}$.

Multiplication cost in genus 2 (one step).

	Montgomery	Level 2	Jacobians	Level 4
Doubling Mixed Addition	$5 M+4 S+1 m_{0}$	$3 M+6 S+3 m_{0}$	$3 M+5 S$	$9 M+10 S+5$

Multiplication cost in genus 1 (one step).

The Weil and Tate pairing with theta coordinates [LR10]

P and Q points of ℓ-torsion.

0_{A}	P	$2 P$	\cdots	$\ell P=\lambda_{P}^{0} 0_{A}$
Q	$P \oplus Q$	$2 P+Q$	\ldots	$\ell P+Q=\lambda_{P}^{1} Q$
$2 Q$	$P+2 Q$			
\ldots	\cdots			
$\ell Q=\lambda_{Q}^{0} 0_{A}$	$P+\ell Q=\lambda_{Q}^{1} P$			

- $e_{W, \ell}(P, Q)=\frac{\lambda_{\rho}^{1} \lambda_{Q}^{0}}{\lambda_{\rho}^{\top} \lambda_{Q}^{1}}$.

If $P=\Omega x_{1}+x_{2}$ and $Q=\Omega y_{1}+y_{2}$, then $e_{W, \ell}(P, Q)=e^{-2 \pi i \ell\left(t x_{1} \cdot y_{2}-t y_{1} \cdot x_{2}\right)}$.

- $e_{T, \ell}(P, Q)=\frac{\lambda_{p}^{1}}{\lambda_{p}^{{ }_{p}^{p}}}$.

Why does it works?

$$
\begin{array}{ccccc}
0_{A} & \alpha P & \alpha^{4}(2 P) & \ldots & \alpha^{\ell 2}(\ell P)=\lambda_{P}^{\prime 0} 0_{A} \\
\beta Q & \gamma(P \oplus Q) & \frac{\gamma^{2} \alpha^{2}}{\beta}(2 P+Q) & \ldots & \frac{\gamma^{\ell} \alpha^{\ell(l-1)}}{\beta^{\ell-1}}(\ell P+Q)=\lambda^{\prime}{ }_{P}^{\prime} \beta Q \\
\beta^{4}(2 Q) & \frac{\gamma^{2} \beta^{2}}{\alpha}(P+2 Q) & & & \\
\ldots & \ldots & & & \\
\beta^{\ell^{2}}(\ell Q)=\lambda_{Q}^{\prime 0} 0_{A} & \frac{r^{\ell} \beta^{\ell \ell-1)}}{\alpha^{\ell-1}}(P+\ell Q)=\lambda_{Q}^{\prime 1} \alpha P & &
\end{array}
$$

We then have

$$
\begin{gathered}
\lambda_{P}^{\prime 0}=\alpha^{\ell^{2}} \lambda_{P}^{0}, \quad \lambda_{Q}^{\prime 0}=\beta^{\ell} \lambda_{Q}^{0}, \quad \lambda_{P}^{\prime 1}=\frac{\gamma^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell}} \lambda_{P}^{1}, \quad \lambda_{Q}^{\prime 1}=\frac{\gamma^{\ell} \beta^{(\ell(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1}, \\
e_{W, \ell}^{\prime}(P, Q)=\frac{\lambda_{P}^{\prime 1} \lambda_{Q}^{\prime 0}}{\lambda_{P}^{\prime 0} \lambda_{Q}^{1}}=\frac{\lambda_{P}^{1} \lambda_{Q}^{0}}{\lambda_{P}^{0} \lambda_{Q}^{1}}=e_{W, \ell}(P, Q), \\
e_{T, \ell}^{\prime}(P, Q)=\frac{\lambda_{P}^{\prime 1}}{\lambda_{P}^{\prime 0}}=\frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} \frac{\lambda_{P}^{1}}{\lambda_{P}^{0}}=\frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} e_{T, \ell}(P, Q) .
\end{gathered}
$$

The case $n=2$

- If $n=2$ we work over the Kummer variety K, so $e(P, Q) \in \bar{k}^{*, \pm 1}$.
- We represent a class $x \in \bar{k}^{*, \pm 1}$ by $x+1 / x \in \bar{k}^{*}$. We want to compute the symmetric pairing

$$
e_{s}(P, Q)=e(P, Q)+e(-P, Q) .
$$

- From $\pm P$ and $\pm Q$ we can compute $\{ \pm(P+Q), \pm(P-Q)\}$ (need a square root), and from these points the symmetric pairing.
- e_{s} is compatible with the \mathbb{Z}-structure on K and $\bar{k}^{*, \pm 1}$.
- The \mathbb{Z}-structure on $\vec{k}^{*, \pm}$ can be computed as follow:

$$
\left(x^{\ell_{1}+\ell_{2}}+\frac{1}{x^{\ell_{1}+\ell_{2}}}\right)+\left(x^{\ell_{1}-\ell_{2}}+\frac{1}{x^{\ell_{1}-\ell_{2}}}\right)=\left(x^{\ell_{1}}+\frac{1}{x^{\ell_{1}}}\right)\left(x^{\ell_{2}}+\frac{1}{x^{\ell_{2}}}\right)
$$

Comparison with Miller algorithm

$$
\begin{array}{ll}
g=1 & 7 \mathbf{M}+7 \mathbf{S}+2 \mathbf{m}_{\mathbf{0}} \\
g=2 & 17 \mathbf{M}+13 \mathbf{S}+6 \mathbf{m}_{\mathbf{0}} \\
\hline
\end{array}
$$

Tate pairing with theta coordinates, $P, Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ (one step)

		Miller		Theta coordinates
		Doubling	Addition	One step
$g=1$	d even	$1 \mathbf{M}+1 \mathbf{S}+1 \mathbf{m}$	$1 \mathbf{M}+1 \mathbf{m}$	$1 \mathbf{M}+2 \mathbf{S}+2 \mathbf{m}$
	d odd	$2 \mathbf{M}+2 \mathbf{S}+1 \mathbf{m}$	$2 \mathbf{M}+1 \mathbf{m}$	
$g=2$	Q degenerate +	$1 \mathbf{M}+1 \mathbf{S}+3 \mathbf{m}$	$1 \mathbf{M}+3 \mathbf{m}$	
	d even	General case	$2 \mathbf{M}+2 \mathbf{S}+18 \mathbf{m}$	$2 \mathbf{M}+18 \mathbf{m}$

$P \in A[\ell]\left(\mathbb{F}_{q}\right), Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ (counting only operations in $\mathbb{F}_{q^{d}}$).

Ate pairing

- Let $G_{1}=E[\ell] \bigcap \operatorname{Ker}\left(\pi_{q}-1\right)$ and $G_{2}=E[\ell] \bigcap \operatorname{Ker}\left(\pi_{q}-[q]\right)$.
- We have $f_{a b, Q}=f_{a, Q}^{b} f_{b,[a] Q}$.
- Let $P \in G_{1}$ and $Q \in G_{2}$ we have $f_{a,[q] Q}(P)=f_{a, Q}(P)^{q}$.
- Let $\lambda \equiv q \bmod \ell$. Let $m=\left(\lambda^{d}-1\right) / \ell$. We then have

$$
\begin{aligned}
e_{T}(P, Q)^{m} & =f_{\lambda^{d}, Q}(P)^{\left(q^{d}-1\right) / \ell} \\
& =\left(f_{\lambda, Q}(P)^{\lambda^{d-1}} f_{\lambda,[q] Q}(P)^{\lambda^{d-2}} \ldots f_{\lambda,\left[q^{d-1}\right] Q}(P)\right)^{\left(q^{d}-1\right) / \ell} \\
& =\left(f_{\lambda, Q}(P)^{\sum \lambda^{d-1-i} q^{i}}\right)^{\left(q^{d}-1\right) / \ell}
\end{aligned}
$$

Definition

Let $\lambda \equiv q \bmod \ell$, the (reduced) ate pairing is defined by

$$
a_{\lambda}: G_{1} \times G_{2} \rightarrow \mu_{\ell},(P, Q) \mapsto f_{\lambda, Q}(P)^{\left(q^{d}-1\right) / \ell}
$$

It is non degenerate if $\ell^{2} \nmid\left(\lambda^{k}-1\right)$.

Optimal ate [

]

- Let $\lambda=m \ell=\sum c_{i} q^{i}$ be a multiple of ℓ with small coefficients c_{i}. ($\ell \nmid m$)
- The pairing

$$
\begin{aligned}
& a_{\lambda}: G_{1} \times G_{2} \longrightarrow \mu_{\ell} \\
&(P, Q) \longmapsto\left(\prod_{i} f_{c_{i}, Q}(P)^{q^{i}} \prod_{i} f_{j>i} c_{j} q^{j}, c_{i} q^{i}, Q\right. \\
&(P))^{\left(q^{d}-1\right) / \ell}
\end{aligned}
$$

is non degenerate when $m d q^{d-1} \not \equiv\left(q^{d}-1\right) / r \sum_{i} i c_{i} q^{i-1} \bmod \ell$.

- Since $\varphi_{d}(q)=0 \bmod \ell$ we look at powers $q, q^{2}, \ldots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_{i} \approx \ell^{1 / \varphi(d)}$.

Ate pairing with theta functions

- Let $P \in G_{1}$ and $Q \in G_{2}$.
- In projective coordinates, we have $\pi_{q}^{d}(P+Q)=P+\lambda^{d} Q=P+Q$.
- Unfortunately, in affine coordinates, $\pi_{q}^{d}(\widetilde{P+Q}) \neq \widetilde{P+\lambda^{d} Q}$.
- But if $\pi_{q}^{d}(\widetilde{P+Q})=C * \widetilde{P+\lambda^{d} Q}$, then C is exactly the (non reduced) ate pairing!

Miller functions with theta coordinates

- We have

$$
f_{\mu, Q}(P)=\frac{\vartheta(Q)}{\vartheta(P+\mu Q)}\left(\frac{\vartheta(P+Q)}{\vartheta(P)}\right)^{\mu} .
$$

- So

$$
\mathfrak{f}_{\lambda, \mu, Q}(P)=\frac{\vartheta(P+\lambda Q) \vartheta(P+\mu Q)}{\vartheta(P) \vartheta(P+(\lambda+\mu) Q)} .
$$

- We can compute this function using a generalised version of Riemann's relations:

$$
\begin{gathered}
\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(P+(\lambda+\mu) Q) \vartheta_{j+t}(\lambda Q)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(\mu Q) \vartheta_{l+t}(P)\right)= \\
\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(0) \vartheta_{j^{\prime}+t}(P+\mu Q)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(P+\lambda Q) \vartheta_{l^{\prime}+t}((\lambda+\mu) Q)\right) .
\end{gathered}
$$

Perspectives

- Characteristic 2 case (especially for supersingular abelian varieties of characteristic 2).
- Optimized implementations (FPGA, ...).
- Look at special points (degenerate divisors, ...).

Bibliography

[BF03]
D. Boneh and M. Franklin. "Identity-based encryption from the Weil pairing". In: SIAM Journal on Computing 32.3 (2003), pp. 586-615 (cit. on p. 5).
[BLSO4] D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: Journal of Cryptology 17.4 (2004), pp. 297-319 (cit. on p. 5).
[Gau07] P. Gaudry. "Fast genus 2 arithmetic based on Theta functions". In: Journal of Mathematical Cryptology 1.3 (2007), pp. 243-265 (cit. on p. 19).
[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. "Attribute-based encryption for fine-grained access control of encrypted data". In: Proceedings of the 13th ACM conference on Computer and communications security. ACM. 2006, p. 98 (cit. on p. 5).
[Jou04] A. Joux. "A one round protocol for tripartite Diffie-Hellman". In: Journal of Cryptology 17.4 (2004), pp. 263-276 (cit. on p. 5).
[Lan05] T. Lange. "Formulae for arithmetic on genus 2 hyperelliptic curves". In: Applicable Algebra in Engineering, Communication and Computing 15.5 (2005), pp. 295-328 (cit. on p. 19).
[LR10] D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: Algorithmic Number Theory. Lecture Notes in Comput. Sci. 6197 (July 2010). Ed. by G. Hanrot, F. Morain, and E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. DOI: 10.1007/978-3-642-14518-6_21. URL: http://www.normalesup.org/~robert/pro/publications/articles/ pairings.pdf. Slides http:
//www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf (cit. on p. 20).
[RS09] K. Rubin and A. Silverberg. "Using abelian varieties to improve pairing-based cryptography". In: Journal of Cryptology 22.3 (2009), pp. 330-364 (cit. on p. 14).
[SW05] A. Sahai and B. Waters. "Fuzzy identity-based encryption". In: Advances in Cryptology-EUROCRYPT 2005 (2005), pp. 457-473 (cit. on p. 5).
[Ver10]
F. Vercauteren. "Optimal pairings". In: IEEE Transactions on Information Theory 56.1 (2010), pp. 455-461 (cit. on p. 25).
[Vero1] E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in Cryptology-ASIACRYPT 2001 (2001), pp. 533-551 (cit. on p. 5).

