Computing optimal pairings on abelian varieties with theta functions

David Lubicz^{1,2}, Damien Robert³

¹CÉLAR

²IRMAR, Université de Rennes 1

¹LFANT Team, IMB & Inria Bordeaux Sud-Ouest

10/02/2011 (Luminy)

▲ロト ▲圖 > ▲ 画 > ▲ 画 > の Q @

Outline				
000	00000	00000	0000000	00000
Motivations	Miller's algorithm	Abelian varieties	Theta functions	Optimal pairings

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Motivations

- 2 Miller's algorithm
- Abelian varieties
- 4 Theta functions
- Optimal pairings

Discrete	logarithm			
Motivations	Miller's algorithm	Abelian varieties	Theta functions	Optimal pairings
●00	00000		00000000	00000

Definition (DLP)

Let $G = \langle g \rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h = g^x$. The discrete logarithm $\log_g(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\tilde{O}(\sqrt{p})$ (in a generic group).
- The DLP is supposed to be difficult to solve in \mathbb{F}_q^* , $E(\mathbb{F}_q)$, $J(\mathbb{F}_q)$, $A(\mathbb{F}_q)$.

 \Rightarrow The DLP yields good candidates for one way functions.

Motivations	Miller's algorithm	Abelian varieties	Theta functions	Optimal pairings
O●O	00000	00000		00000
Pairings				

Definition

Let G_1 and G_2 be two cyclic groups of prime order. A pairing is a (non degenerate) bilinear application $e: G_1 \times G_1 \rightarrow G_2$.

• If the pairing e can be computed easily, the difficulty of the DLP in G_1 reduces to the difficulty of the DLP in G_2 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

 \Rightarrow MOV attacks on elliptic curves.

- Identity-based cryptography [BF03].
- Short signature [BLS04].
- One way tripartite Diffie-Hellman [Jou04].
- Self-blindable credential certificates [Ver01].
- Attribute based cryptography [SW05].
- Broadcast encryption [GPSW06].

Example (Identity-based cryptography)

- Master key: (P, sP), s. $s \in \mathbb{N}, P \in G_1$.
- Derived key: Q, sQ. $Q \in G_1$.
- Encryption, $m \in G_2$: $m' = m \oplus e(Q, sP)^r$, rP. $r \in \mathbb{N}$.
- Decryption: $m = m' \oplus e(sQ, rP)$.

Motivations Miller's algorithm Abelian varieties ocooco cooco cooc

- Let $E: y^2 = x^3 + ax + b$ be an elliptic curve over k (car $k \neq 2,3$).
- Let $P, Q \in E[\ell]$ be points of ℓ -torsion.
- The divisor $[\ell]^*(Q-0)$ is trivial, let $g_Q \in k(E)$ be a function associated to this principal divisor.
- The function $x \mapsto \frac{g_Q(x+P)}{g_Q(x)}$ is constant and is equal to a ℓ -th root of unity $e_{W,\ell}(P,Q)$ in \overline{k}^* .

Proof.

If f_Q is a function associated to the principal divisor $\ell Q - \ell 0$, we have $(g_Q^\ell) = [\ell](g_Q) = [\ell]^*[\ell](Q - 0) = [\ell]^*(f_Q) = (f_Q \circ [\ell])$ so $g_Q(x + P)^\ell = f_Q(\ell x + \ell P) = f_Q(\ell x) = g_Q(x)^\ell$ and $e_{W,\ell}(P,Q)^\ell = 1$.

• The application $e_{W,\ell} : E[\ell] \times E[\ell] \rightarrow \mu_{\ell}(\overline{k})$ is a non degenerate pairing: the Weil pairing.

- Let f_P be a function associated to the principal divisor $\ell(P-0)$, and f_Q to $\ell(Q-0)$.
- By Weil reciprocity, we have:

$$e_{W,\ell}(P,Q) = \frac{f_Q(P-0)}{f_P(Q-0)}.$$

• We need to compute the functions f_P and f_Q . More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda,X} \in k(E)$ to be a function thus that:

 $(f_{\lambda,X}) = \lambda(X) - ([\lambda]X) - (\lambda - 1)(0).$

• The key idea in Miller's algorithm is that

$$f_{\lambda+\mu,X} = f_{\lambda,X} f_{\mu,X} \mathfrak{f}_{\lambda,\mu,X}$$

where $f_{\lambda,\mu,X}$ is a function associated to the divisor

$$([\lambda + \mu]X) - ([\lambda]X) - ([\mu]X) + (0).$$

• We can compute $f_{\lambda,\mu,X}$ using the addition law in *E*: if $[\lambda]X = (x_1, y_1)$ and $[\mu]X = (x_2, y_2)$ and $\alpha = (y_1 - y_2)/(x_1 - x_2)$, we have

$$f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}.$$

< ロ > < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < < つ < ○

Motivations 000	Miller's algorithm	Abelian varieties	Theta functions	Optimal pairings 00000
Tate pairin	g			

Definition

- Let E/\mathbb{F}_q be an elliptic curve of cardinal divisible by ℓ . Let d be the smallest number thus that $\ell \mid q^d 1$: we call d the embedding degree. \mathbb{F}_{q^d} is constructed from \mathbb{F}_q by adjoining all the ℓ -th root of unity.
- The Tate pairing is a non degenerate bilinear application given by

$$e_T \colon E(\mathbb{F}_{q^d})/\ell E(\mathbb{F}_{q^d}) \times E[\ell](\mathbb{F}_q) \longrightarrow \mathbb{F}_{q^d}^*/\mathbb{F}_{q^d}^{*\ell}$$

$$(P,Q) \longmapsto f_Q((P)-(0))$$

- If $\ell^2 \nmid E(\mathbb{F}_{q^d})$ then $E(\mathbb{F}_{q^d})/\ell E(\mathbb{F}_{q^d}) \simeq E[\ell](\mathbb{F}_{q^d})$.
- We normalise the Tate pairing by going to the power of $(q^d 1)/\ell$.
- This final exponentiation allows to save some computations. For instance if d = 2d' is even, we can suppose that $P = (x_2, y_2)$ with $x_2 \in E(\mathbb{F}_{q^{d'}})$. Then the denominators of $\mathfrak{f}_{\lambda,\mu,Q}$ are ℓ -th powers and are killed by the final exponentiation.

Miller's	alaorithm			
000	00000	00000	0000000	00000
Motivations		Abelian varieties	Theta functions	Optimal pairings

Computing Tate pairing

9

Input: $\ell \in \mathbb{N}$, $Q = (x_1, y_1) \in E[\ell](\mathbb{F}_q)$, $P = (x_2, y_2) \in E(\mathbb{F}_{q^d})$. Output: $e_T(P,Q)$.

- Compute the binary decomposition: $\ell := \sum_{i=0}^{I} b_i 2^i$. Let $T = Q, f_1 = 1, f_2 = 1$.
- For *i* in [*I*..0] compute
 - α , the slope of the tangent of *E* at *T*.
 - T = 2T. $T = (x_3, y_3)$.

•
$$f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), f_2 = f_2^2(x_2 + (x_1 + x_3) - \alpha^2).$$

- If $b_i = 1$, then compute
 - α , the slope of the line going through Q and T.
 - T = T + Q. $T = (x_3, y_3)$.

•
$$f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), f_2 = f_2(x_2 + (x_1 + x_3) - \alpha^2).$$

Return

$$\left(\frac{f_1}{f_2}\right)^{\frac{q^d-1}{\ell}}$$

.

90

Abelian	varieties			
000	00000	00000	0000000	00000
Motivations	Miller's algorithm		Theta functions	Optimal pairings

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

• Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1.
- If *C* is a (smooth) curve of genus *g*, its Jacobian is an abelian variety of dimension *g*.

- Let $Q \in \widehat{A}[\ell]$. By definition of the dual abelian variety, Q is a divisor of degree 0 on A such that ℓQ is principal. Let $f_Q \in k(A)$ be a function associated to ℓQ .
- Let $P \in A[\ell]$. Since $\widehat{\widehat{A}} \simeq A$, we can see P as a divisor of degree 0 on \widehat{A} . $\ell(P)$ is then a principal divisor (f_P) where $f_P \in k(\widehat{A})$.
- We can then define the Weil pairing:

$$e_{W,\ell}: A[\ell] \times \widehat{A}[\ell] \longrightarrow \mu_{\ell}(\overline{k})$$

(P,Q) $\longmapsto \frac{f_Q(P)}{f_P(Q)}$

• Likewise, we can extend the Tate pairing to abelian varieties.

- If Θ is an ample divisor, the polarisation φ_{Θ} is a morphism $A \rightarrow \widehat{A}, x \mapsto t_x^* \Theta \Theta$.
- We can then compose the Weil and Tate pairings with φ_{Θ} :

$$\begin{array}{ccc} e_{W,\Theta,\ell} \colon A[\ell] \times A[\ell] & \longrightarrow & \mu_{\ell}(\overline{k}) \\ (P,Q) & \longmapsto & e_{W,\ell}(P,\varphi_{\Theta}(Q)) \end{array}$$

• More explicitly, if f_P and f_Q are the functions associated to the principal divisors $\ell t_P^* \Theta - \ell \Theta$ and $\ell t_Q^* \Theta - \ell \Theta$ we have

$$e_{W,\Theta,\ell}(P,Q) = \frac{f_Q(P-0)}{f_P(Q-0)}.$$

- The moduli space of abelian varieties of dimension g is a space of dimension g(g+1)/2. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular elliptic curves have a too small embedding degree. [RS09] says that for the current security parameters, optimal supersingular abelian varieties of small dimension are of dimension 4.
- If A is an abelian variety of dimension g, A[ℓ] is a (Z/ℓZ)-module of dimension 2g ⇒ the structure of pairings on abelian varieties is richer.

- If *J* is the Jacobian of an hyperelliptic curve *H* of genus *g*, it is easy to extend Miller's algorithm to compute the Tate and Weil pairing on *J*.
- For instance if g = 2, the function $f_{\lambda,\mu,Q}$ is of the form

$$\frac{y-l(x)}{(x-x_1)(x-x_2)}$$

where l is of degree 3.

- If *P* is a degenerate divisor (*P* is a sum of only one point on the curve *H*), the evaluation $f_Q(P)$ is faster than for a general divisor (which would be a sum of *g* points on the curve *H*).
- ⇒ Pairings on Jacobians of genus 2 curves can be competitive with pairings on elliptic curves.
 - What about more general abelian varieties? We don't have Mumford coordinates.

- Abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, where $\Omega \in \mathcal{H}_g(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^g .

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i^{t} (n+a)\Omega(n+a) + 2\pi i^{t} (n+a)(z+b)} \quad a, b \in \mathbb{Q}^g$$

Quasi-periodicity:

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z+m_1\Omega+m_2,\Omega) = e^{2\pi i (t a \cdot m_2 - t b \cdot m_1) - \pi i t m_1\Omega m_1 - 2\pi i t m_1 \cdot z} \vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z,\Omega).$$

• Projective coordinates:

$$\begin{array}{rccc} A & \longrightarrow & \mathbb{P}^{n^g-1}_{\mathbb{C}} \\ z & \longmapsto & (\vartheta_i(z))_{i \in Z(\overline{n})} \end{array}$$

where $Z(\overline{n}) = \mathbb{Z}^g / n\mathbb{Z}^g$ and $\vartheta_i = \vartheta \begin{bmatrix} 0 \\ \frac{i}{n} \end{bmatrix} (., \frac{\Omega}{n}).$

$$\left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\right)\cdot\left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\right) = \left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\right)\cdot\left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\right).$$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Doubling Algorithm: Input: P = (x : z). Output: $2 \cdot P = (x' : z')$.

- $x_0 = (x^2 + z^2)^2;$
- 2 $z_0 = \frac{A^2}{B^2} (x^2 z^2)^2;$
- $\ \, {}^{\bigcirc} \ \, x' = (x_0 + z_0)/a;$
- Seturn (x':z').

Differential Addition Algorithm: Input: $P = (x_1 : z_1)$, $Q = (x_2 : z_2)$ and $R = P - Q = (x_3 : z_3)$ with $x_3 z_3 \neq 0$. **Output:** P + Q = (x' : z').

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つくぐ

•
$$x_0 = (x_1^2 + z_1^2)(x_2^2 + z_2^2);$$

2 $z_0 = \frac{A^2}{B^2} (x_1^2 - z_1^2) (x_2^2 - z_2^2);$

$$x' = (x_0 + z_0)/x_3;$$

- Return (x':z').

Motivations	Miller's algorithm	Abelian varieties	Theta functions	Optimal pairings
000	00000		00000000	00000
Arithmetic	with low leve	l theta functi	ons (car $k \neq 2$	2)

	Mumford	Level 2	Level 4
- 11	[Lan05]	[Gau07]	
Doubling	34M + 7S	$7M + 12S + 9m_0$	$49M + 36S + 27m_0$
Mixed Addition	37M + 6S		

-

Multiplication cost in genus 2 (one step).

	Montgomery	Level 2	Jacobians	Level 4
Doubling Mixed Addition	$5M + 4S + 1m_0$	$3M + 6S + 3m_0$	3M + 5S $7M + 6S + 1m_0$	9M + 10S + 5

Multiplication cost in genus 1 (one step).

 Motivations
 Miller's algorithm
 Abelian varieties
 Theta functions
 Optimal pairings

 000
 0000
 0000
 0000
 0000
 0000

 The Weil and Tate pairing with theta coordinates [LR10]

P and *Q* points of ℓ -torsion.

٥

۲

0_A	Р	2P	•••	$\ell P = \lambda_P^0 0_A$	
Q	$P \oplus Q$	2P+Q		$\ell P + Q = \lambda_P^1 Q$	
2Q	P+2Q				
$\ell Q = \lambda_Q^0 0_A$	$P + \ell Q = \lambda_Q^1 P$				
$e_{W,\ell}(P,Q) = \frac{\lambda_p^1}{\lambda_p^0}$ If $P = \Omega x_1 + x$ $e_{T,\ell}(P,Q) = \frac{\lambda_p^1}{\lambda_p^0}$	$\frac{\lambda_Q^0}{\lambda_Q^1}$. 2 and $Q = \Omega y_1 + \frac{1}{2}$	y_2 , then e_y	_{V,ℓ} (P,Q	$) = e^{-2\pi i \ell (t_{x_1} \cdot y_2 - t_{y_1})}$	· <i>x</i> ₂).

. . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Motivations	Miller's algorithm	Abelian varieties	Theta functions	Optimal pairings
000	00000	00000		00000
Why does	it works?			

We then have

$$\lambda_{P}^{\prime 0} = \alpha^{\ell^{2}} \lambda_{P}^{0}, \quad \lambda_{Q}^{\prime 0} = \beta^{\ell^{2}} \lambda_{Q}^{0}, \quad \lambda_{P}^{\prime 1} = \frac{\gamma^{\ell} \alpha^{(\ell(\ell-1)}}{\beta^{\ell}} \lambda_{P}^{1}, \quad \lambda_{Q}^{\prime 1} = \frac{\gamma^{\ell} \beta^{(\ell(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1},$$
$$e_{W,\ell}^{\prime}(P,Q) = \frac{\lambda_{P}^{\prime 1} \lambda_{Q}^{\prime 0}}{\lambda_{P}^{\prime 0} \lambda_{Q}^{\prime 1}} = \frac{\lambda_{P}^{1} \lambda_{Q}^{0}}{\lambda_{P}^{0} \lambda_{Q}^{1}} = e_{W,\ell}(P,Q),$$
$$e_{T,\ell}^{\prime}(P,Q) = \frac{\lambda_{P}^{\prime 1}}{\lambda_{P}^{\prime 0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} \frac{\lambda_{P}^{1}}{\lambda_{P}^{0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} e_{T,\ell}(P,Q).$$

Motivations	Miller's algorithm	Abelian varieties	Theta functions	Optimal pairings
000	00000	00000		00000
The case n	=2			

- If n = 2 we work over the Kummer variety K, so $e(P,Q) \in \overline{k}^{*,\pm 1}$.
- We represent a class $x \in \overline{k}^{*,\pm 1}$ by $x + 1/x \in \overline{k}^*$. We want to compute the symmetric pairing

$$e_s(P,Q) = e(P,Q) + e(-P,Q).$$

- From $\pm P$ and $\pm Q$ we can compute $\{\pm (P+Q), \pm (P-Q)\}$ (need a square root), and from these points the symmetric pairing.
- e_s is compatible with the \mathbb{Z} -structure on K and $\overline{k}^{*,\pm 1}$.
- The \mathbb{Z} -structure on $\overline{k}^{*,\pm}$ can be computed as follow:

$$(x^{\ell_1+\ell_2}+\frac{1}{x^{\ell_1+\ell_2}})+(x^{\ell_1-\ell_2}+\frac{1}{x^{\ell_1-\ell_2}})=(x^{\ell_1}+\frac{1}{x^{\ell_1}})(x^{\ell_2}+\frac{1}{x^{\ell_2}})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations 000	Miller's algorithm 00000	Abelian varieties 00000	Theta functions 0000000●	Optimal pairings		
Comparison with Miller algorithm						

 $\begin{array}{ll} g = 1 & 7{\bf M} + 7{\bf S} + 2{\bf m_0} \\ g = 2 & 17{\bf M} + 13{\bf S} + 6{\bf m_0} \end{array}$

Tate pairing with theta coordinates, $P,Q \in A[\ell](\mathbb{F}_{q^d})$ (one step)

		Mille	er	Theta coordinates
		Doubling	Addition	One step
g = 1	<i>d</i> even <i>d</i> odd	$1\mathbf{M} + 1\mathbf{S} + 1\mathbf{m}$ $2\mathbf{M} + 2\mathbf{S} + 1\mathbf{m}$	$\frac{1\mathbf{M} + 1\mathbf{m}}{2\mathbf{M} + 1\mathbf{m}}$	1M + 2S + 2m
g=2	Q degenerate + d even General case	1M+1S+3m 2M+2S+18m	1 M +3 m 2 M +18 m	$3\mathbf{M} + 4\mathbf{S} + 4\mathbf{m}$

 $P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d})$ (counting only operations in \mathbb{F}_{q^d}).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Motivations	Miller's algorithm	Abelian varieties	Theta functions	Optimal pairings
000	00000	00000	00000000	●0000
Ate pairing				

- Let $G_1 = E[\ell] \bigcap \operatorname{Ker}(\pi_q 1)$ and $G_2 = E[\ell] \bigcap \operatorname{Ker}(\pi_q [q])$.
- We have $f_{ab,Q} = f_{a,Q}^b f_{b,[a]Q}$.
- Let $P \in G_1$ and $Q \in G_2$ we have $f_{a,[q]Q}(P) = f_{a,Q}(P)^q$.
- Let $\lambda \equiv q \mod \ell$. Let $m = (\lambda^d 1)/\ell$. We then have

$$e_T(P,Q)^m = f_{\lambda^d,Q}(P)^{(q^d-1)/\ell} = \left(f_{\lambda,Q}(P)^{\lambda^{d-1}} f_{\lambda,[q]Q}(P)^{\lambda^{d-2}} \dots f_{\lambda,[q^{d-1}]Q}(P)\right)^{(q^d-1)/\ell} = \left(f_{\lambda,Q}(P)^{\sum \lambda^{d-1-i}q^i}\right)^{(q^d-1)/\ell}$$

Definition

Let $\lambda \equiv q \mod \ell$, the (reduced) ate pairing is defined by

$$a_{\lambda}: G_1 \times G_2 \to \mu_{\ell}, (P,Q) \mapsto f_{\lambda,Q}(P)^{(q^d-1)/\ell}$$

It is non degenerate if $\ell^2 \nmid (\lambda^k - 1)$.

Motivations	Miller's algorithm	Abelian varieties	Theta functions	Optimal pairings
000	00000	00000	00000000	
Optimal at	t e [Ver10]			

- Let $\lambda = m\ell = \sum c_i q^i$ be a multiple of ℓ with small coefficients c_i . $(\ell \nmid m)$
- The pairing

$$a_{\lambda}: G_{1} \times G_{2} \longrightarrow \mu_{\ell}$$

$$(P,Q) \longmapsto \left(\prod_{i} f_{c_{i},Q}(P)^{q^{i}} \prod_{i} \mathfrak{f}_{\sum_{j>i} c_{j}q^{j},c_{i}q^{i},Q}(P)\right)^{(q^{d}-1)/\ell}$$

is non degenerate when $m dq^{d-1} \not\equiv (q^d - 1)/r \sum_i ic_i q^{i-1} \mod \ell$.

- Since $\varphi_d(q) = 0 \mod \ell$ we look at powers $q, q^2, \dots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_i \approx \ell^{1/\varphi(d)}$.

 Motivations
 Miller's algorithm
 Abelian varieties
 Theta functions
 Optimal pairings

 000
 00000
 0000000
 0000000
 0000000

 Ate pairing with theta functions
 Optimal pairings

- Let $P \in G_1$ and $Q \in G_2$.
- In projective coordinates, we have $\pi_a^d(P+Q) = P + \lambda^d Q = P + Q$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Unfortunately, in affine coordinates, $\pi_q^d(\widetilde{P+Q}) \neq \widetilde{P+\lambda^d}Q$.
- But if $\pi_q^d(\widetilde{P+Q}) = C * P + \lambda^d Q$, then C is exactly the (non reduced) ate pairing!

Miller functions with theta coordinates

We have

$$f_{\mu,Q}(P) = \frac{\vartheta(Q)}{\vartheta(P+\mu Q)} \left(\frac{\vartheta(P+Q)}{\vartheta(P)}\right)^{\mu}.$$

So

$$\mathfrak{f}_{\lambda,\mu,Q}(P) = \frac{\vartheta(P+\lambda Q)\vartheta(P+\mu Q)}{\vartheta(P)\vartheta(P+(\lambda+\mu)Q)}.$$

• We can compute this function using a generalised version of Riemann's relations:

$$\left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(P+(\lambda+\mu)Q)\vartheta_{j+t}(\lambda Q)\right).\left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(\mu Q)\vartheta_{l+t}(P)\right)=\left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(0)\vartheta_{j'+t}(P+\mu Q)\right).\left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(P+\lambda Q)\vartheta_{l'+t}((\lambda+\mu)Q)\right).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Persnectives						
000	00000	00000	0000000	00000		
Motivations	Miller's algorithm	Abelian varieties	Theta functions			

• Characteristic 2 case (especially for supersingular abelian varieties of characteristic 2).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Optimized implementations (FPGA, ...).
- Look at special points (degenerate divisors, ...).

000		00000	00000	00000000		
	Bibliogra	phy				
[BF03] D. Boneh and M. Franklin. "Identity-based encryption from the Wei SIAM Journal on Computing 32.3 (2003), pp. 586-615 (cit. on p. 5).					airing". In:	
	[BLSO4]	D. Boneh, B. Lynn, a Journal of Cryptolog	h, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: of Cryptology 17.4 (2004), pp. 297-319 (cit. on p. 5).			
	[Gau07]	P. Gaudry. "Fast ger Mathematical Crypt	P. Gaudry. "Fast genus 2 arithmetic based on Theta functions". In: <i>Journal of Mathematical Cryptology</i> 1.3 (2007), pp. 243–265 (cit. on p. 19).			
	[GPSW06]	V. Goyal, O. Pandey, fine-grained access conference on Comp p. 5).	A. Sahai, and B. Waters. control of encrypted dat puter and communications	"Attribute-based encryptio a". In: Proceedings of the 13 security. ACM. 2006, p. 98	n for <i>th ACM</i> (cit. on	
	[Jou04]	A. Joux. "A one rou <i>Cryptology</i> 17.4 (200	nd protocol for tripartite 94), pp. 263–276 (cit. on p.	Diffie–Hellman". In: <i>Journ</i> 5).	al of	
	[Lan05]	T. Lange. "Formulae Algebra in Engineeri (cit. on p. 19).	e for arithmetic on genus ng, Communication and Co	3 2 hyperelliptic curves". In omputing 15.5 (2005), pp. 29	i: Applicable 15-328	
	[LR10]	D. Lubicz and D. Rc Algorithmic Number G. Hanrot, F. Morai ANTS-IX, July 19-23, URL: http://www. pairings.pdf. Sli //www.normalesu (cit. on p. 20).	bbert. "Efficient pairing cd r Theory. Lecture Notes in n, and E. Thomé. 9th Inte 2010, Proceedings. DOI: J normalesup.org/~robe des http: p.org/~robert/publicd	omputation with theta fur Comput. Sci. 6197 (July 20 rnational Symposium, Nar L0.1007/978-3-642-145 rt/pro/publications/a ations/slides/2010-07	nctions". In: 10). Ed. by ncy, France, 18-6_21. rticles/ - ants.pdf	
	[RS09]	K. Rubin and A. Silv cryptography". In:	verberg. "Using abelian va Journal of Cryptology 22.3	arieties to improve pairing (2009), pp. 330-364 (cit. or	-based 1 p. 14).	
	[SW05]	A. Sahai and B. Wat Cryptology-EUROCR	ers. "Fuzzy identity-based <i>PPT 2005</i> (2005), pp. 457–4	d encryption". In: Advances 173 (cit. on p. 5), → ★ ₹ ►	sin ৰ≣► ≣ ৩৭	

Motivations 000	Miller's algorithm 00000	Abelian varieties	Theta functions	
[Ver10]	F. Vercauteren. "Op (2010), pp. 455–461	otimal pairings". In: <i>IEEE T</i> (cit. on p. 25).	ransactions on Information	n Theory 56.1
[Ver01]	E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in Cryptology—ASIACRYPT 2001 (2001), pp. 533-551 (cit. on p. 5).			

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶