
Mondex , an electronic purse :
specification and refinement checks

with the Alloy model-finding method

Tahina Ramananandro

École Normale Supérieure

45, rue d’Ulm — 75005 Paris (France)
Tahina.Ramananandro@ens.fr

September 1, 2006

Contents

1 Introduction 6

1.1 The VSR Project . 6

1.2 The Mondex case study . 7

1.2.1 The abstract model . 8

1.2.2 The concrete model . 9

1.2.3 The Between world : operations and constraints 16

1.2.4 The refinement process . 17

1.3 Overview of the Z specification language through a simplified version of Mondex . . 21

2 A simplified version of the Mondex specification in Alloy 27

2.1 Modeling with the Alloy specification language . 27

2.1.1 Defining signatures and relations . 27

2.1.2 Defining logical constraints : facts. The relational calculus 28

2.1.3 Signature extension and inclusion . 30

2.1.4 Auxiliary predicates and functions . 32

2.1.5 Assertions . 33

2.1.6 Modules . 36

2.2 Analyzing the specification using the Alloy Analyzer, a model finder 37

2.2.1 Type checking . 37

2.2.2 Checking assertions. Notion of finite scope. 38

2.2.3 “Running” predicates : sanity-check simulation 39

1

3 Modeling the Mondex case study in Alloy : technical issues encountered 43

3.1 Finiteness . 43

3.2 Integers . 44

3.2.1 Sequence numbers . 45

3.2.2 Amounts . 46

3.3 Clear codes . 50

3.4 Existential quantification and constraints . 51

3.5 The identity of objects . 54

4 Summary of the final model layout 58

4.1 The Common module . 58

4.2 The Abstract module . 58

4.3 The Concrete Purse module . 60

4.4 The Concrete World module . 61

4.5 The Between World module . 61

4.6 The Between World operations module and the Concrete World operations module . 62

4.7 The Between and Concrete initialization and finalization module 62

4.8 The Between operation consistency module . 62

4.9 The Abstract/Between refinement module . 63

4.10 The Between/Concrete refinement module . 64

4.11 The Canonicalization module . 65

5 Results 65

5.1 Bugs found in the Z specification . 65

5.1.1 Abort proof schema . 65

5.1.2 Authenticity . 66

5.1.3 Framing schema for operations that first abort 67

5.2 Scopes and times of checks . 67

5.3 Limits to the use of the Alloy Analyzer . 69

6 Using first-order theorem provers with Alloy 73

6.1 The usual approach : Alloy atoms as FOL atoms 73

6.1.1 Principle . 73

6.1.2 Simplifications . 74

6.2 The “lifted” way : Alloy relations as FOL atoms . 75

6.3 Results and limits . 76

2

7 Conclusion and future work 78

References 80

List of Figures 83

3

Résumé

Du 6 mars au 26 août 2006, j’ai suivi un stage de recherche au MIT, précisément au CSAIL1, au
sein du Software Design group dirigé par Daniel Jackson. Ce groupe est axé sur la conception
d’un langage de spécification, Alloy [Jac02, Jac06], fondé sur la logique du premier ordre et le
calcul des relations avec clôture transitive, et le développement d’un logiciel, Alloy Analyzer [AA],
pour analyser des spécifications dans ce langage en lui cherchant des modèles au moyen de la
traduction de la spécification en une formule booléenne à satisfaire (technique du model-finding
par SAT-solving [Jac00]) .

Le but de ce stage était de montrer les capacités du langage de spécification Alloy et du programme
Alloy Analyzer dans le cadre de la vérification automatique de spécifications, en considérant la
preuve de la spécification (initialement dans le langage de spécification Z [Spi92, WD96]) du sys-
tème de porte-monnaies électroniques Mondex [Mon, SCW00, MCS] comme cobaye. Après avoir
découvert la méthode formelle Alloy, j’ai modélisé le système Mondex en utilisant le langage de
spécification Alloy et je l’ai vérifié pour des univers de taille réduite. J’ai alors trouvé quelques
bogues et j’en ai fait état en Angleterre, lors d’un atelier le 26 mai au Cosener’s House, dépendant
du Rutherford Appleton Laboratory (Angleterre). À mon retour le 6 juin, j’ai amélioré cette pre-
mière version pour aboutir à une spécification en Alloy plus complète et plus rigoureuse du système
Mondex, avant d’essayer de généraliser les résultats obtenus à un univers de taille quelconque en
utilisant des méthodes externes comme la preuve automatique de théorèmes du premier ordre.

Je souhaite remercier tous les membres du SDG pour leur aide précieuse — parfois en pleine nuit
— tout au long de ce stage, et pour m’avoir initié à l’esprit du laboratoire, ce qui m’a permis
de découvrir un aperçu de quelques sujets de recherche en informatique inconnus en France, en
visitant les laboratoires et en assistant à des séminaires donnés par des chercheurs du monde entier.

1Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar
Street, Cambridge (Massachusetts) 02139, United States of America

4

Abstract

I have been attending a research internship since March 6th, until August 26th, 2006, at MIT,
precisely CSAIL1, within the Software Design group led by Daniel Jackson. This research group
aims at developing a specification language, called Alloy [Jac02, Jac06] and based on first-order
logic and relational calculus including transitive closures, and a tool, called Alloy Analyzer [AA]
and based on model-finding through SAT-solving [Jac00], to analyze specifications in this language.

The aim of this internship was to show the capabilities of the Alloy specification language and
the Alloy Analyzer in automated specification checking, by tackling the proof of the specification
(initially in the Z specification language [Spi92, WD96]) of the Mondex electronic purse system
[Mon, SCW00, MCS] as a case study. After discovering the Alloy formal method, I modeled the
Mondex system using the Alloy specification language and checked it for small scopes with the
Alloy Analyzer, finding some bugs I showed in England at a workshop on May 26th at Cosener’s
House, a dependency of Rutherford Appleton Laboratory (England). When I came back on June
6th, I improved that initial version to produce a more complete, rigorous Alloy specification of
the Mondex system, before trying to generalize the results to any scope through external methods
such as automated first-order theorem proving.

I would like to acknowledge all the SDG members for their useful help — sometimes overnight
— throughout this internship and for the spirit of the laboratory which allowed me to discover
an overview of some Computer Science research topics which are not tackled in France through
visiting the laboratories and attending talks led by researchers from all over the world.

5

1 Introduction

1.1 The VSR Project

The UK Computing Research Committee has launched several projects called Grand Challenges in
Computing [Com]. Such projects meet several strong criteria like historical interest, international-
ity, and general purpose, not to mention their actual, scientifically challenging level. Conferences
are organized every two years to discuss the global progress of the projects and the opportunities
to add new projects as Grand Challenges.

The sixth Grand Challenge (GC6), called Dependable software evolution [GC6], led by Jim Wood-
cock2, with the cooperation of Tony Hoare among others, addresses automated systems, thus
involving works on software robustness and verification.

One of the current projects tackled within GC6 is the Verified Software Repository [JOW06, VSR],
which is a network (also called VSR-net) gathering different workgroups with their own verification
methods. The VSR-net aims at finding fully automatic formal methods for software verification.
To achieve this, different formal methods are to tackle the same case study to point out their
features and their limits, and eventually to improve them. The main case study chosen so far is
the Mondex electronic purse (also called smart card) system [Mon, MCS], a specification which
has been proven by hand in Z [Spi92, WD96, SCW00].

The VSR-net has led several meetings, the last two of them at Rutherford Appleton Laboratory
(England) on January 13-14th and on May 26-27th, 2006. The next VSR-net meeting will occur
at the University of York, England, on October 5-6th, 2006. The following candidates have been
taking part to the project so far :

• Z, the original language for the Mondex hand proof. Automatization attempt with the help
of the Z/Eves theorem prover [ZE, FW06]

• The B method [Abr96a] : Event-B [Abr96b, BY06]

• KIV [KIV, SGHR06]

• OCL [WK99, Gog06]

• Perfect Developer [CC04, PD, Cro06]

• Raise [GHH+95, GH06]

• VDM [Jon06, Jon90]

• Alloy [Jac02, Jac06], a specification language, with the help of the Alloy Analyzer model-
finder [AA, Jac00]

There are for sure many other methods for software verifying. Among them, proof assistants
like Coq [Coq] are very well known. But, despite their extended logical skills (higher order logic,
calculus of constructions), they are not automated enough to efficiently tackle part to the VSR-net
project.

2University of York, United Kingdom

6

1.2 The Mondex case study

In 1994, National Westminster Bank developed an electronic purse (or smart card) system, called
Mondex [Mon]3 . An electronic purse is a card-sized device intended to replace “real” coins with
electronic cash. Contrary to a credit or debit card, an electronic purse stores its balance in
itself, thus does not necessarily require any network access to update a remote database during a
transaction. So, electronic purses can be used in small stores or shops, such as bakeries. where
small amounts of money are involved. Mondex has spread over Great Britain and other places
around the world such as Hong Kong or New York. Other systems have been developed since, such
as Moneo [Mno] in France.

But everything regarding cash requires a critically high security level. So, in 1998, National
Westminster Bank asked researchers to verify security properties about Mondex :

• any value must be accounted ; in particular, in case of a failed transaction, lost value must
be logged

• no money may suddenly appear on a purse without being debited from another purse through
an achieved transaction

This research, funded by DataCard (once National Westminster Development Team, then Platform
7), led to the publication, in 2000, of a hand proof of the Mondex electronic purse system with the
Z notation [SCW00], by Susan Stepney, David Cooper and Jim Woodcock. Thanks to this proof,
the Mondex system has been granted ITSEC security level 6 out of 6.

This proof consists in a specification relying on a refinement relation between two models :

• the abstract model, a very simplified model with an atomic transaction, and each purse
storing the amount of its balance and the amount it has lost

• the concrete model, which corresponds to the actual implementation with a non-atomic
transaction protocol based on message exchange through an insecure communications channel

Several security issues raised by the Concrete protocol :

• a purse can be disconnected from the system too early

• a message can be lost by the communications channel

• a message can be replayed several times in the communications channel, but has to be read
only at most once

• a message can be read by any purse

3Since then, this system has been sold to MasterCard International.

7

If the transaction cannot go on for some reason (for instance if one of the two purses is disconnected
too early), then a mechanism of abortion is provided (that could occur after a timeout in the real
world). Then, in abortion cases where money could be lost, aborting purses have to log the
transaction details into a private logging archive, so that if a transaction is actually lost, then it
has necessary been logged. Later purses may also copy the contents of their private log to a global
archive.

So, the system is nondeterministic, insofar as a purse can decide to abort instead of going on
with the transaction. But in both cases, the specification assumes that, once purses are connected
to the system, they behave correctly and follow the operation protocol. The specification also
assumes that messages related to the protocol cannot be forged (they are “protected”, for instance
cryptographically), they can only be replayed. However, other “foreign” messages can be forged.

The proof layout in the Z specification consists in showing that security properties hold for the
Abstract, then refining the Abstract model by the Concrete. But, as the Concrete model is not
constrained enough, refinement is made easier by making it two-step, through a Between world
which has the same structure as the Concrete but is constrained. So :

• the Between is abstracted by the Abstract by computing the values stored by abstract purses
corresponding to the Between ; however, for each purse, those computations may involve
several purses because of the logs

• the refinement of the Between by the Concrete is rather an invariant proof than a refinement
proof.

1.2.1 The abstract model

The abstract model consists in a world of abstract authentic purses. Authenticity is an intrinsic
property of the state : it is defined by the choice of the subset of authentic purses.

An abstract purse has two state components storing values :

• balance stores the amount of money available to the purse for foregoing transactions

• lost stores the amount of money lost through failed transactions initiated by the purse

Three operations between abstract states are possible :

• AbIgnore does nothing

• AbTransferOkay is a successful transfer between two purses : the “from” purse decreases its
balance at the same time as the “to” increases its own one

• AbTransferLost is a lost transfer between two purses : the “from” purse decreases its balance
and increases its lost store at the same time. This operation is provided to abstract lost
transactions in the Concrete world, as no abortion is provided in the Abstract.

Those operations are atomic : they modify the stores of both involved purses at the same time.

The specification considers the AbTransfer operation as the main transfer operation, that is any
AbTransferOkay and any AbTransferLost operation, to make the nondeterminism of the protocol
explicit.

8

T ob a l a n c e : = b a l a n c e + v a l u eF r o mb a l a n c e : = b a l a n c e � v a l u e A b T r a n s f e r O k a y
T ol o s t : = l o s t + v a l u eF r o mb a l a n c e : = b a l a n c e � v a l u e A b T r a n s f e r L o s t

Figure 1: Abstract (atomic) transactions : successful, lost.

1.2.2 The concrete model

The concrete model consists not only in a world of concrete authentic purses, but also a communi-
cation channel, called ether, and an archive which is a global logging system for failed transactions.

1.2.2.1 The ether communication channel The ether communication channel is simply a
set of messages. A purse sends a message by simply putting it into the ether. It receives a message
simply by reading it from the ether. But the ether is insecure :

• a received message can stay in the ether, so it can be replayed. Thus, operations have to
ensure that a purse reads a message at most once.

• a message can be lost, disappearing from the ether before being read

• a message can be read by any purse. Thus, the specification has to ensure that operations
are not triggered when a purse reads a message relevant to other purses.

• a message irrelevant to the protocol can be forged. However, the specification assumes that
such a message does not lead to undesired behaviours of the purses. Moreover, messages
relevant to the protocol are assumed to be “protected” and unforgeable (for instance, they
may be encrypted, but those issues are not tackled by the specification).

1.2.2.2 The concrete transaction protocol Contrary to the abstract model, a concrete
transaction is not atomic at all : it must follow 5 steps. The names of the operations refer to the
names of the messages received by the processing purses.

1. StartFrom : the “from” purse receives a startFrom message giving the identity of the “to”
purse and the amount being transferred.

2. StartTo : conversely, the“to”purse receives a startTo message giving the identity of the“from”
purse and the amount being transferred. It sends a req (for “money request”) message to
the “from” purse.

9

3. Req : the “from” purse receives the req message. It decreases its balance and sends the val
(for “value”) message to the “to” purse.

4. Val : the “to” purse receives the val message. It increases its balance and sends the ack (for
“acknowledgment”) message to the “from” purse. The “to” purse is done.

5. Ack : the “from” purse receives the ack message. The “from” purse is done.

Neither the startFrom nor the startTo message are sent by the purses themselves, but by a global
authority which is not modelled here. In real world, this could correspond to pressing a button to
initialize the transaction. Thus, in the model, those messages spontaneously appear in the ether.

Once the purses are connected to the system, they are assumed to behave properly and follow the
protocol.

1.2.2.3 Properties of the concrete purse

• A concrete purse has only one state component storing value, balance. Indeed, contrary to
the abstract model, where lost value is logged regardless of the transaction involving it, lost
transactions are logged individually in the concrete.

• But the purse does not directly log lost transactions into the public archive : first it has to
log them into a private log called exLog (for “exception log”); moreover, it does not need to
transfer it to the global archive. The exLog store may log several aborted transactions.

• A purse can only take part in at most one transaction at a given time : it stores it into its
pdAuth (for “payment details authenticated”) property.

• To prevent purses from being misled by the messages they read, a system of sequence num-
bers, SEQNO, helps uniquely identify the transaction. Each purse has its own sequence
number, nextSeqNo, increasing at each transaction, so that a transaction is uniquely de-
fined by the identity of the “from” and “to” purse and their initial sequence numbers. This
information is also provided in the startFrom and startTo messages.

• A purse also stores its status, among one of the following values :

– the“from”purse, at the beginning of the StartFrom operation, is in eaTo (for“expecting
any to”).

– the “to” purse, at the beginning of the StartTo operation, is in eaFrom (for “expecting
any from”).

– the “from”purse, at the end of the StartFrom operation, is in epr (“expecting request”)

– the “to” purse, at the end of the StartTo operation, is in epv (“expecting value”)

– the“from”purse, at the end of the Req operation, is in epa (“expecting acknowledgment”)

The Z specification introduces an asymmetry in the protocol, through the two statuses eaTo and
eaFrom. But it enforces purses to necessarily alternate roles between different transactions. More-
over, many peripheral operations turn purses into eaFrom rather than eaTo as an idle status. Thus,
many people analysing the specification decided to merge those two statuses. So did we.

Finally, the possible statuses are, in function of the role of the purse in the transaction :

10

f r o m t o(u n m o d e l l e d)c e n t r a l a u t h o r i t y

e t h e r(c o m m u n i c a t i o n c h a n n e l)

S t a r t T oS t a r t F r o m s t a r t F r o m s t a r t T o e a F r o me a T o
r e qR e qb a l a n c e : =b a l a n c e 3 v a l u e

e p r
v a l V a lb a l a n c e : =b a l a n c e + v a l u eA c k a c k

e p v
e p a

e a T oe a F r o m
Figure 2: Concrete 5-step protocol, with the statuses of the purses depending on the operations.

Once purses are connected to the system, they are assumed to follow the protocol.

The central authority sending the startFrom and startTo messages could correspond to pressing a
button to initialize the transaction. It is not modelled : those messages spontaneously appear in

the ether.

The statuses eaTo and eaFrom may be interpreted as a single “idle” status.

11

• Either purse may be in eaFrom or eaTo status, when it is idle.

• The “from”purse may be successively in epr before sending money, then in epa after sending
money.

• The “to” purse may be only in epv during a transaction.

1.2.2.4 The Abort operation : when a transaction may be lost Sometimes, the trans-
action may lead to a stalemate, for instance when the communications channel loses a message,
or when a purse is disconnected from the system too early. In such cases, the purse has to abort
to avoid being locked in this transaction. (In real life, this abortion may occur after a timeout,
but this issue is not modelled.) Thanks to abortion, the purse is then available to other purses for
other transactions. Indeed, a purse cannot be involved in two transactions at the same time.

But as the ether is lossy, a purse cannot know the exact progress of the transaction. In particular,
it does not know the status of the counterparty (the other purse involved in the transaction). That
is why the Abort operation is local to a purse. When a purse aborts, the counterparty might not
have aborted yet ; moreover, it is impossible for a purse to know whether the counterparty has
aborted the transaction. It is, however, impossible to “abort the Abort” operation. Thus, a purse
having aborted may no longer receive messages relevant to that transaction.

When a transaction is aborted, money may be lost, if the transaction is aborted after the “from”
purse sent the money but before the “to”purse receives it. That is why, in case of abortion, a purse
has to preventively log the transaction if there is a risk of losing money.

Suppose the “to” purse wants to abort the transaction in progress. It is, then, in epv status :
expecting the“from”purse to send the money (val message). But, there is no way to know whether
the money has actually been sent, before receiving the val message. If the “to” purse aborts the
transaction before receiving the message, then it will never receive the message. Though, the“from”
purse might have sent the money. That is why the “to” purse in epv has to log the transaction in
its exLog when it aborts.

Now suppose the “from”purse wants to abort the transaction in progress. It is, then, either in epr
or in epa status, that is expecting the “to” purse to send respectively either the money request or
the acknowledgement.

If the “from” purse is in epr, then it has not received yet the request, so it has not sent any money
yet. In this case, no money may be lost, so there is no need for the purse to log the transaction.

If the “from” purse is in epa, then it has already sent the money (as it expects the “to” purse to
confirm having received it). If it aborts the transaction, it will never receive the acknowledgment,
so it will never know whether the money sent has actually arrived. That is why the “from” purse
in epa has to log the transaction in its exLog when it aborts.

Even though the Abort operation is local to a purse, it may be possible to globally (that is, for an
external observer who would take all the purses into account — but not the ether, which is lossy)
determine whether money is lost. But there are still cases where it is too early to know anything.
More precisely :

• The money is definitely lost :

– if both purses abort and log the transaction

12

– or if the “to” purse logs the transaction while the “from” is in epa (having already sent
the money)

• The money may be lost, that is the situation is critically ambiguous and cannot be recovered
to the previous state, when the “to” purse has neither received the money nor logged the
transaction yet, but the “from” has just sent the money and :

– either is expecting the acknowledgment

– or has logged the transaction

• On the contrary, no money is lost yet before the “from” purse has sent the money, even
though the “to”purse could have logged the transaction (in the latter case, the transaction is
ambiguous, but not critically ambiguous, as the previous state can be recovered if the “from”
purse aborts before sending the money).

• The money is definitely received when the “to” purse receives the val message and sends
the ack, even though the “from” purse could have aborted and logged the transaction before
receiving the ack message

1.2.2.5 The global archive and the archiving protocol When a purse aborts, the failed
transaction, in a relevant case, is logged into an internal exLog local to the purse. But the purse
may clear its exLog, provided it has copied all its information to the global archive to prevent any
loss of logged data.

A purse may always copy some information from its exLog to the global archive. This operation,
called Archive, is totally non-deterministic, as the amount of copied information is unknown a
priori (this step could have to repeat several times until all the contents of the exLog is copied) ;
moreover, this operation may happen at any time, even during a transaction, which does not have
to be aborted, since nothing is modified locally to the purse.

Regardless of this copying process, a three-step process may happen for a purse to clear its exLog.
These steps are constrained so that no transaction logged in the exLog may be lost. That is, when
an exLog is about to be cleared, its contents has to be already present in the global archive.

1. A purse receives a readExceptionLog message (generated by an unmodelled“global authority”,
so spontaneously appearing in the ether) : it is required to send an exceptionLogResult
message carrying one piece of information related to a logged transaction from its exLog
store. This operation, called ReadExceptionLog, models the fact that the “global authority”
does not read the exLog of a purse as a whole, but only one logged transaction after the
other. To perform this operation, the purse has to first abort, so as to eventually send the
information about the current transaction if it is logged.

2. The central authority sends a exceptionLogClear message carrying a clear code along with
the name of a purse which could clear its exLog. The clear code is unique to the set of
transactions in the exLog, through a globally defined and fixed injection (in practice, it could
work with something like a hash function), and that corresponding set of transactions is
constrained to be included in the global archive.

13

f r o m t o(u n m o d e l l e d)c e n t r a l a u t h o r i t y

e t h e r(c o m m u n i c a t i o n c h a n n e l)

S t a r t T oS t a r t F r o m s t a r t F r o m s t a r t T o e a F r o me a T o
r e qR e qb a l a n c e : =b a l a n c e T v a l u e

e p r
v a l V a lb a l a n c e : =b a l a n c e + v a l u eA c k a c k

e p ve p a
e a T oe a F r o m m o n e y d e f i n i t e l y r e c e i v e d

m o n e y n o t s e n t y e t
m o n e y l o s tm o n e y n o t l o s t

m o n e y m a y b e l o s t(i f " t o " a b o r t s)
m o n e y m a y b e l o s t(i f " f r o m " d o e s n o t a b o r t)m o n e y d e fi n i t e l y n o t l o s t

Figure 3: Abort operation : cases when money is lost or not.

This diagram shows what happens when a purse first aborts.

The zone between the “req” sending and the “ack” receival, represent the cases when an aborting
purse has to log the transaction into its exLog.

The most critical zone, between the “req” receival and the “val” receival, represent the cases when
the money has been sent but not received yet : if the “to” purse aborts in this zone, then money is

definitely lost.

The dashed lines denote events important for a purse but happening at the other, so that it is
impossible to know that it has happened until the subsequent message is received.

14

e t h e r(c o m m u n i c a t i o n c h a n n e l)

R e a d E x c e p t i o n L o g
C l e a r E x c e p t i o n L o ge x L o g c l e a r e d

c l e a r i n g p u r s e (u n m o d e l l e d)g l o b a l a u t h o r i t y

A u t h o r i z e E x L o g C l e a r

r e a d E x c e p t i o n L o ge x c e p t i o n L o g R e s u l tw i t h a p i e c e o f e x L o gm a y b e s e v e r a l t i m e s t o r e a d t h e w h o l e e x L o g
e x c e p t i o n L o g C l e a rw i t h a c l e a r c o d e m a t c h i n g t h e e x L o g

Figure 4: Clearing process

As the global authority is not modelled, the protocol only relies on the constraints enforced by the
operations for a purse to receive a exceptionLogClear message and treat it.

3. The purse receives a exceptionLogClear message carrying its name along with a clear code.
For the purse to abort, the clear code must correspond to the whole contents of its exLog.
Moreover, the purse has to first abort, which could allow the current transaction to be logged
into the exLog before it becomes cleared. If those constraints are met, then the purse may
clear its exLog.

1.2.2.6 Summary of Concrete operations There are four categories of Concrete opera-
tions.

• The operations related to the transaction protocol

1. StartFrom

2. StartTo

3. Req

15

4. Val

5. Ack

• The Abort operation

• The operations related to the archive protocol

1. Archive

2. ReadExceptionLog

3. AuthorizeExLogClear

4. ClearExceptionLog

• In addition to those protocols, two technical operations are also defined in the Concrete
model :

– Ignore does nothing

– Increase increases the sequence number of a purse without doing anything else. This
does not affect the current transaction, which keeps the original sequence numbers of
the two purses, numbers that should be less than the current ones.

1.2.3 The Between world : operations and constraints

The Between world, required for the refinement process, has the same structure as the Concrete
one, but, contrary to the latter it is constrained. It is meant to complete the refinement between
the Concrete and the Abstract models. Indeed, as the Concrete is unconstrained, a direct Ab-
stract/Concrete refinement would have had too few hypotheses. Then, Between constraints add
useful hypotheses to make such a refinement possible. Thus, the Abstract is refined by the Be-
tween instead of the Concrete, the latter refining the Between as an invariant proof rather than a
refinement proof.

The main difference between the Concrete and the Between is the ether : the Between ether
is not lossy. That is, the operations in both Between and Concrete are defined following the
aforementioned requirements, but whereas the Concrete operations may forget sending messages
to the ether, the Between operations are built with a full ether : whenever a purse sends a message,
it necessarily appears in the ether at the end of a Between operation.

The Between constraints are mainly relevant to the ether.

• No future messages may appear in the ether. That is, no req or val or ack messages may ap-
pear in the ether before the corresponding purses actually send them through the operations.
This constraint is expressed through verifying sequence numbers.

• In the same way, no future transactions may have been already logged by the purses.

• Messages may appear in the ether only according to the statuses of the purses. For instance,
if the “to” purse is still in epv, the ack message corresponding to this transaction may not
have already appeared in the ether.

16

• The clear codes carried by the exceptionLogClear messages of the ether refer to transactions
actually logged in the global archive

• The set of all the transaction details logged by the relevant “to” purses (that is, either in
their exLog or in the global archive) has to be finite. This constraint is needed for the
Abstract/Between refinement, see below.

Other constraints are proper to the Between, especially because its ether is reliable :

• Whenever a transaction is logged, it must correspond to an existing req message in the ether.

• A req message in the ether only refers to an authentic “to” purse. This constraint along with
the previous one avoids spurious non-authentic messages or logs.

1.2.4 The refinement process

For easier proofs, a two-step refinement process is used. Indeed, it is easier to tackle a refinement
between the Abstract and the Between constrained version of the Concrete model first, than to try
to directly refine Abstract by the unconstrained Concrete.

The general method is to define an abstraction relation, or refinement relation (depending on the
way : “the abstract model abstracts the concrete model”, but “the concrete model refines the
abstract model”). Indeed, defining an abstraction function is not always possible. But instead,
a function depending on other variables in addition to the concrete state can be defined in such
cases like the Mondex case study.

To put it in a nutshell, a Between model is created to both refine the Abstract model and abstracts
the Concrete model.

In this document, we present the proof layout adopted by the Z specification, which we also decided
to follow for our Mondex specification in Alloy.

1.2.4.1 Abstract/Between The proof schema is based on a backwards simulation : given a
Between operation and the corresponding Abstract post-state, find an Abstract pre-state such that
the corresponding Abstract operation holds.

In this refinement, there is no abstraction function, but an abstraction relation. Indeed, let’s
suppose we would define such a function. Given a Between world, this function would have to
compute, for each authentic Between purse, the balance and lost stores of its corresponding Abstract
purse (it is obvious that the set of Between purses should be bijected with the corresponding set
of Abstract purses). But an unambiguous computation is impossible in general, for instance when
purses abort and log too early (see above).

But if one allows to choose which critically ambiguous states (money sent but not received yet)
are considered lost, then there is a unique possible computation. For any purse :

• the abstract balance equals the concrete balance plus the sum of the amounts of the critically
ambiguous transactions which are not chosen to be lost.

17

B e t w e e np o s t � s t a t e
A b s t r a c tp o s t � s t a t e

B e t w e e np r e � s t a t e
A b s t r a c tp r e � s t a t e A b s t r a c to p e r a t i o n

B e t w e e no p e r a t i o nA b s t r a c t i o nr e l a t i o n A b s t r a c t i o nr e l a t i o n
c h o s e n L o s tc h o s e n L o s t P r o p h e c yv a r i a b l e

Figure 5: Backwards refinement proof for Abstract/Between

The dashed elements have to be proven to exist and to meet the corresponding constraints,
eventually with the help of constructing auxiliary elements (dash-dotted). One can see that the

prophecy variable construction goes in the way against the operations, but indicates the way of the
proof.

• the abstract lost equals the sum of the amounts of the transactions definitely lost (when it
is possible to globally determine such a state after one of the two purses has aborted, see
above) and the critically ambiguous transactions which are chosen to be lost.

The amount of an unambiguous transaction is either accounted in the abstract lost of the “to”
purse or in its abstract balance depending on whether the transaction is lost or not.

As the set of transactions chosen lost is used in a backwards simulation, and does not affect the
Between states themselves (it is only relevant to the abstraction relation), it is a prophecy variable
: one has to “guess” its pre-value from its “prophecized” post-value and the Between states.

The refinement process is as follows : all the Between operations refine AbIgnore, except Req which
refines AbTransfer (that is AbTransferOkay or AbTransferLost). That is, thanks to the choice of
lost transactions, the atomic transaction may be seen in Req. Indeed :

• Req is the operation during which the “from” purse decreases its balance. As the concrete
balance is greater than the abstract, AbTransfer cannot be refined by any of the previous
operations (StartFrom or StartTo), which act like informational operations “initializing” the
transaction, and thus refine AbIgnore. It is easier to choose lost transactions as early as
possible. As Req is the earliest significant transaction operation, it is thus chosen to refine
AbTransfer.

• Abort refines AbIgnore because the operation being aborted is either already definitely lost
(for instance when the “from” purse aborts whereas the “to” has already aborted), or has
been explicitly chosen to be lost. In the latter case, the Abstract pre-state is deduced from

18

B 0 B 1 B 2 B 3 B 4 B 5
A A 'A b I g n o r e

S t a r tF r o m S t a r tT o R e q V a l A c k
A b s t r a c t i o nA b s t r a c t i o n A b s t r a c t i o n A b s t r a c t i o nA b s t r a c t i o n A b s t r a c t i o n

A b T r a n s f e r O k a y A b I g n o r e
Figure 6: Abstraction of the typical sequence of Between operations defining a transaction

the post-states by applying the abstraction function with that transaction appended to the
post-choice of lost transactions.

• Val refines AbIgnore : the balance of the “to” purse being increased means that the transac-
tion succeeds. Thus it is not chosen lost, even for the pre-state. The abstract balance does
not change, as the amount of the transaction moves from the ambiguous (but not chosen
lost) state to the concrete balance.

• Ack refines AbIgnore. Indeed, this operation may even not happen if for instance the “from”
purse aborts before receiving the ack message.

• Archive protocol operations all refine AbIgnore because there is no notion of global Archive
in the abstract model.

Some of those operations (StartFrom, StartTo, ReadExceptionLog, ClearExceptionLog) require that
the purse eventually first abort. But, as Abort refines AbIgnore, it does not matter.

Remark. To verify security properties requires the computation of the sum of the abstract balance
and lost stores of all the abstract purses. Thus, for those sums to be well-defined, it is necessary
that there be :

• a finite number of abstract purses, to compute the sum of balance stores, hence a finite
number of between purses

• a finite number of transactions logged by “to”purses, to compute the sum of lost stores. The
finiteness of transactions logged by “from”purses is not required, as such transactions, if not
logged by the corresponding “to” purses, are either definitely not lost, or ambiguous. In the
former case, they are done, so their values are accounted in Between balance stores ; in the
latter case, they are pending, so they are still occurring between authentic purses, thus their
number is finite.

19

C o n c r e t ep o s t Ð s t a t e
B e t w e e np o s t Ð s t a t e

C o n c r e t ep r e Ð s t a t e
B e t w e e np r e Ð s t a t e B e t w e e no p e r a t i o n

C o n c r e t eo p e r a t i o nA b s t r a c t i o nr e l a t i o n A b s t r a c t i o nr e l a t i o n
Figure 7: Forwards refinement for Between/Concrete

1.2.4.2 Between/Concrete This refinement is rather an invariant check than an abstraction
check. Thus, it may be led by a simple forwards simulation : given a Concrete operation and the
corresponding Between pre-state, find a Between post-state such that the corresponding Between
operation holds.

As the only structural difference between Between and Concrete states is the lossiness of the
Concrete ether, the abstraction relation is only relevant to the ethers : neither the properties of
the purses nor the global archive are changed. That is also the only difference between the Between
and Concrete operations.

The abstraction relation is quite simple : a between state B abstracts a concrete C if and only if,
in addition to the respective between and concrete constraints, C’s ether is included in B’s (), that
is, C’s ether is the result of an eventual loss of messages from B’s ether.

Obviously, that abstraction relation cannot be defined as a function. But given a Concrete oper-
ation and a Between pre-state, it is possible to define a function returning a Between post-state
abstracting the Concrete post-one. Of course it depends on the Concrete post-state, actually keep-
ing its purse properties and its global archive, but it also depends on the operation, in particular
its output message, and the ether of the Between pre-state, as that output message is appended
to this pre-state ether.

1.2.4.3 Technical issues To ensure operations are total, they are explicitly given the choice
of doing nothing, that is they are disjoined with Ignore. For instance, a Val operation may happen
even if the transaction has aborted before, in that case doing nothing. The actual operation would
be denoted ValOkay.

The specification also provides initialization and finalization steps. For each model, it defines an
initial and a final states which are meant to be initial and final observational states : they bound
an observation of a sequence of operations.

• An initial state is a special state with eventually further constraints. The refinements demand
the initial states to match between models through the corresponding abstraction relations.

– Any abstract state can be initial

20

C o n c r e t ei n i t i a l s t a t e

B e t w e e ni n i t i a l s t a t e
A b s t r a c t i o nr e l a t i o n

C o n c r e t efi n a l s t a t e " G l o b a l " s t a t e(w i t h A b s t r a c ts t r u c t u r e)
B e t w e e nfi n a l s t a t e

A b s t r a c t i o nr e l a t i o n C o n c r e t e fi n a l i z a t i o n (i n f a c t ,A b s t r a c t / B e t w e e n a b s t r a c t i o n)
B e t w e e n fi n a l i z a t i o n (i n f a c t ,A b s t r a c t / B e t w e e n a b s t r a c t i o n)

Figure 8: Between/Concrete initialization and finalization.

The layout is the same for the Abstract/Between initialization and finalization, except that the
abstraction relation is different, and the Abstract finalization is simply the identity.

– A Between initial state must contain all readExceptionLog, startFrom and startTo mes-
sages in its ether (recall that messages in the ether are not necessarily read by the
purses), and

– Any concrete state can be initial if its correspond to a Between initial state having lost
messages from its ether. Thus a concrete initial state has to meet the constraints of a
Between state except those relevant to the ether.

• A final state is any state that is retrieved to an object, called global world, which has the
same structure as an Abstract state. The retrieval is the identity for an Abstract final state,
and for a Between or Concrete final state it is similar to the Abstract/Between abstraction
relation with the constraint that any ambiguous (that is, in fact : unended) transaction is
considered lost. The refinements demand that the final states be retrieved to the same global
world.

1.3 Overview of the Z specification language through a simplified ver-
sion of Mondex

The Mondex case study has been specified and proven by hand using the Z specification language,
also called “the Z notation” [Spi92]. This language is based on schema calculus and uses the
classical logic with the Zermelo – Fraenkel set theory (hence the “Z”). It is often extended
by adding constructs for special purposes, for instance for sequential systems such as the Mondex
case study.

21

In the Z notation, a theory is a set of set parameters along with a set of schemas depending on
those parameters. Both objects and operations are modeled by a schema. A schema is a structure
gathering fields along with constraints, logical formulae involving the variables of a schema. The
notion of schema comes with the schema calculus, a formal reduction rule involving schemas.

For instance, the following Z specification shows how the abstract state (AbWorld) with the AbIg-
nore, AbTransferOkay and AbTransferLost operations could have been modeled in a simplified
way.

AbPurse
balance, lost : Z

balance ≥ 0
lost ≥ 0

That schema defines the purse structure, AbPurse, which has two fields representing the balance
and lost as integers constrained to be non-negative.

Then, the abstract state (AbWorld) is defined as follows :

[NAME]

AbWorld
abAuthPurse : NAME 7 7→ AbPurse

That schema defines the abstract state with a field abAuthPurse that is a finite functional mapping
(7 7→) between names and purses, representing the set of abstract authentic purses. Even though
the name is not directly stored within its purse, it allows distinguishing it among all the purses, for
instance if two purses have the same balance and lost values. The name is picked in a set which is
given as a parameter (no matter what names actually are). The finiteness of this relation expresses
the fact that there is only a finite number of authentic purses.

Then, the operation AbIgnore, which does nothing, is simply defiined by the following schema :

AbIgnore
ΞAbWorld

That schema uses the invariance construct Ξ which declares a pre-state and a post-state and
constrain them to be equal. That schema could be equivalently rewritten as this one :

AbIgnore
∆AbWorld

abAuthPurse ′ = abAuthPurse

That schema uses one of the most used constructs in the Z specifications for sequential systems,
namely the duplication construct ∆ which declares a pre-state and a post-state. Fields of the pre-
state are accessed directly through their names used alone, whereas fields for the post-state have to

22

be appended with a prime (’). So abAuthPurse refers to the pre-state field, whereas abAuthPurse’
refers to the post-state field.

The AbTransferOkay and AbTransferLost operations only differ in the fact that the former increases
the balance of the “to” purse whereas the latter increases its lost store. So, we may use the schema
extension mechanism, that consists in defining a common transfer schema which will be extended
by the schemas defining respectively AbTransferOkay and AbTransferLost.

AbTransferCommon
∆AbWorld
from, to : NAME
value : N

{from, to} ⊆ dom abAuthPurse
from 6= to
dom abAuthPurse ′ = dom abAuthPurse
∀ name : NAME | name ∈ dom abAuthPurse \ {from, to} •

abAuthPurse name = abAuthPurse ′ name
∃∆AbPurse •

abAuthPurse from = θAbPurse
∧ abAuthPurse ′ from = θAbPurse ′

∧ value ≤ balance
∧ balance ′ = balance − value
∧ lost ′ = lost

The constraints of that schema use the binding construct, θ, the most frequent uses of which are
to denote either the pre-state or the post-state of a previously given ∆ construct : here, θAbPurse
denotes the pre-state object of the existentially quantified ∆AbPurse pre- and post-purses, whereas
θAbPurse ′ denotes its post-state. In fact, ’ may be replaced with any other decoration depending
on the purpose of the specification ; then, θ may be also used in such cases. Whereas ∆ is specific
to sequential systems, θ is a general construct of the Z schema calculus.

The constraint value ≤ balance ensures the“from”purse to have sufficient funds for the transaction.

Given that global schema, it may be extended to get the two schemas corresponding to the Ab-
TransferOkay and AbTransferLost operations :

AbTransferOkay
AbTransferCommon

∃∆AbPurse •
abAuthPurse to = θAbPurse
∧ abAuthPurse ′ to = θAbPurse ′

∧ balance ′ = balance + value
∧ lost ′ = lost

23

AbTransferLost
AbTransferCommon

∃∆AbPurse •
abAuthPurse to = θAbPurse
∧ abAuthPurse ′ to = θAbPurse ′

∧ balance ′ = balance
∧ lost ′ = lost + value

Those schemas both extend the AbTransferCommon schema : they are strictly equivalent to the
schemas where AbTransferCommon fields and constraints would have been inlined.

AbTransferOkay
∆AbWorld
from, to : NAME
value : N

{from, to} ⊆ dom abAuthPurse
from 6= to
dom abAuthPurse ′ = dom abAuthPurse
∀ name : NAME | name ∈ dom abAuthPurse \ {from, to} •

abAuthPurse name = abAuthPurse ′ name
∃∆AbPurse •

abAuthPurse from = θAbPurse
∧ abAuthPurse ′ from = θAbPurse ′

∧ balance ′ = balance − value
∧ lost ′ = lost

∃∆AbPurse •
abAuthPurse to = θAbPurse
∧ abAuthPurse ′ to = θAbPurse ′

∧ value ≤ balance
∧ balance ′ = balance + value
∧ lost ′ = lost

24

AbTransferLost
∆AbWorld
from, to : NAME
value : N

{from, to} ⊆ dom abAuthPurse
from 6= to
dom abAuthPurse ′ = dom abAuthPurse
∀ name : NAME | name ∈ dom abAuthPurse \ {from, to} •

abAuthPurse name = abAuthPurse ′ name
∃∆AbPurse •

abAuthPurse from = θAbPurse
∧ abAuthPurse ′ from = θAbPurse ′

∧ value ≤ balance
∧ balance ′ = balance − value
∧ lost ′ = lost

∃∆AbPurse •
abAuthPurse to = θAbPurse
∧ abAuthPurse ′ to = θAbPurse ′

∧ balance ′ = balance
∧ lost ′ = lost + value

Then, security properties may be stated also using schemas :

NoValueCreated
∆AbWorld
Totals

totalBalance abAuthPurse ′ ≤ totalBalance abAuthPurse

AllValueAccounted
∆AbWorld
Totals

totalBalance abAuthPurse ′ + totalLost abAuthPurse ′

= totalBalance abAuthPurse + totalLost abAuthPurse

Those two properties use totalBalance and totalLost functions which can be defined axiomatically
using the following Totals schema4 :

4In the original specification, those functions were not defined in a schema, but simply axiomatically, in order
to be used more easily in a general purpose (as if they were globally defined).

25

Totals
totalBalance, totalLost : (NAME 7 7→ AbPurse)→ Z

totalBalance(∅) = 0
totalLost(∅) = 0
∀ f : NAME 7 7→ AbPurse; name : NAME ; AbPurse |

name ∈ dom f ∧ θAbPurse = f (name)
•

totalBalance(f) = totalBalance(name −⊳ f) + balance
∧ totalLost(f) = totalLost(name −⊳ f) + lost

Here the construct θAbPurse refers to the previously universally quantified AbPurse schema. The
construct −⊳ is a relational operation restricting the domain of a function by removing some of its
elements (here name).

The soundness of that definitions mainly relies on the finiteness of the domain of the function f.

Finally, the theorems stating that the abstract operations make security properties hold, may be
enounced as follows :

AbTransferOkay ⊢ NoValueCreated ∧ AllValueAccounted

AbTransferLost ⊢ NoValueCreated ∧ AllValueAccounted

The proof use the constraints of the relevant schemas and eventually the axioms of the totalBalance
and totalLost functions in addition to the Zermelo – Fraenkel set theory. We won’t detail
the proofs here ; however, those theorems are quite obvious since nothing but the value of a given
transfer may be removed from a purse, and this value removed from the “from” balance is added :

• either to the “to” balance, in which case the lost stores are constant, and so is the sum of the
balance stores

• or to the “to” lost, in which case the sum of the balance stores decreases, the sum of the lost
stores increases, but the difference between the pre-state and the post-state balance sum is
the same as the difference between the post-state and the pre-state lost sum, that is exactly
value

• nowhere else

26

2 A simplified version of the Mondex specification in Alloy

The Alloy specification language [Jac02, Jac06] has been developed within Daniel Jackson’s Soft-
ware Design group at MIT CSAIL. It is a specification language based on first-order logic with
relational calculus and transitive closures. It comes with Alloy Analyzer [AA], a piece of software
using model-finding to check specifications written in Alloy, that is trying to find an instance of
a model to prove its consistency, or a counterexample to a theorem to prove its inconsistency.
The Alloy Analyzer reduces the problem to SAT-solving [Jac00], requiring the user to give a finite
scope, that is the number of objects (or atoms) allowed in an instance or counterexample (also
called search space).

This section explains the main guidelines I used to build the Alloy model. So the Alloy model
described here is a simplified version of the actual, final model. But in the latter version, I managed
to model the whole initial Z specification, adressing technical issues raised in Section 3.

2.1 Modeling with the Alloy specification language

The Alloy specification language relies on first-order logic with relational calculus and transitive
closures. Historically, its conception is inspired of the Z notation.

Basically, a specification defines several relations. A relation represents a set of atoms or tuples
(the components of which are atoms), depending on its arity : a relation can contain only objects
of the same arity.

A model (or an instance) of the specification is the assignment of a set of atoms or tuples to each
relation depending on their arities. Atoms or tuples do not directly appear in the specification,
except through relations which are explicitly constrained to be singletons.

2.1.1 Defining signatures and relations

Unary relations are defined as signatures, and other relations are defined as the “fields” of those
signatures.

The following (simplified) specification models a concrete purse :

sig ConPurse {

name : NAME,

balance : Int,

pdAuth : PayDetails,

exLog : set PayDetails,

status : STATUS,

nextSeqNo : Int

}

That specification defines a signature, called ConPurse, which represents a set of unary objects,
that is atoms. Their “fields”, given as names along with signature names, actually define rela-
tions between the signature being defined and the signatures provided. For instance, the field

27

name : NAME defines a binary relation between ConPurse and NAME. By default, a binary field
defined as such is a function, unless the user provides a multiplicity constraint such as set used
to define the relation exLog, allowing it to match a purse with several transaction details. So, a
purse is matched to exactly one name, one balance amount, one status and one sequence number,
but can be matched to any number of transaction details in its exLog.

On the contrary, a ternary (or more) relation is not a function by default, despite the notation ->

:

sig ConWorld {

conAuthPurse : NAME -> ConPurse,

ether : set MESSAGE,

archive : NAME -> PayDetails

}

That (simplified) specification models the concrete world. In that case, theconAuthPurse relation,
which maps a concrete world to its set of authentic purses distinguished by their names, would
be simply a ternary relation between ConWorld , NAME and ConPurse, which is not necessarily
functional, so that a name could be associated to several purses. So this relation has to be
constrained by adding a multiplicity constraint, replacing the corresponding definition with :

. . .

conAuthPurse : NAME -> lone ConPurse,

. . .

This constraints a tuple formed by a ConWorld and a NAME to match at most one purse (that is,
less than or equal than one) — indeed, a name may refer to no authentic purse. However, the
global archive is defined here as a ternary relation between worlds, names, and transaction details,
allowing to “tag” each archived transaction with the names of the purses having logged it. So, as
a purse may archive several transaction details through several readExceptionLog operations, it is
necessary to not define this relation as functional.

It is worth noting that the definition of a relation constraints the components of its tuples to
belong to certain signatures. But by default, signatures are disjoint (to avoid this, Alloy provides a
special mechanism described further down). Thus, for instance,conAuthPurse & archive, which
is the intersection of the ternary relations conAuthPurse and archive, is always empty because
ConPurse and PayDetails are disjoint.

2.1.2 Defining logical constraints : facts. The relational calculus

Although multiplicity constraints enforce the conAuthPurse to match at most one purse to each
combination of a concrete world and a name, it is of course not enough to ensure that the name
of the purse given by its name relation actually corresponds to the name it is associated to. That
is why, logical constraints have to be added. In fact, they are necessary to model most axioms of
the original Z theory.

A logical constraint is defined as a fact :

28

fact NamesMatch {

all c : ConWorld, n : NAME | n.(c.conAuthPurse).name in n

}

This fact is an universally quantified formula. As Alloy is based on first-order logic, this formula
quantifies over atoms. So, in the quantified formula, c and n are unary relations that contain
exactly one tuple.

This fact uses one of the most used constructs of relational calculus, namely the join operator (.).
Given two relations α and β, their join (or composition), α.β, is defined as follows :

α.β , {(a1, . . . , ap, b1, . . . , bq) | ∃ x , (a1, . . . , ap, x) ∈ α ∧ (x , b1, . . . , bq) ∈ β}

That is : take a tuple of α and a tuple of β such that the former’s last component matches the
latter’s first, then join the two tuples by blasting the common component. The Alloy join operator
is similar to the “database join” ⊲⊳ but the latter would keep the common component.

Consider the subexpression c.conAuthPurse. As c, the concrete world quantified over, is an unary
relation, p = 0 in the above definition, so that that join expression finally corresponds to the tuples
(name, purse)representing the authentic purses of the concrete world c along with their associated
names. As moreover c is a singleton, this matches the common interpretation where the signature
would be viewed as a record or a class and the join operator as a membership operator. Thus, we
see that c.conAuthPurse represents a binary relation.

Then, n.(c.conAuthPurse) is an unary relation, representing the set of authentic purses for the
concrete world c that are associated with the name n. That is, the set of the purses matched with
the tuple (c, n)in the relation conAuthPurse. As c and n are atoms, the multiplicity constraints
ensures that there is at most one such purse.

But there can be no such purse, in such case n.(c.conAuthPurse) is empty and, subsequently by
the definition of join, so is n.(c.conAuthPurse).name (which is equal to (n.(c.conAuthPurse)).name
as the join operator is defined left-associative). That is why the constraint is only in, that is a
relation inclusion rather than an equality. Indeed, n.(c.conAuthPurse).name = n would have
constrained the existence of an authentic purse for each name and each concrete world, which is
too strong. So this inclusion constraint naturally holds if there is no such purse. In the other
case where there is exactly one purse denoted by n.(c.conAuthPurse), then, as name is a func-
tion matching each purse with exactly one name, n.(c.conAuthPurse).name denotes exactly one
name. In that case, as n is a singleton, the inclusion implies the equality.

This constraint could even have been written without any quantification, thanks to the relational
calculus :

fact NamesMatch {

conAuthPurse.name in ConWorld->iden

}

That constraint, instead, uses the construct -> which is simply the cartesian product. This prod-
uct associates the whole signature ConWorld, which is indeed a unary relation gathering all the
atoms corresponding to a concrete world, with iden, which is the identity relation (that is, the

29

set of all the tuples (x , x) where x is any atom). On the left-hand side of the inclusion relation,
conAuthPurse.name is a ternary relation between a concrete world and two names, the one asso-
ciated to a purse through conAuthPurse, the other being the name of the same purse (due to the
join) through the name relation. So the inclusion implies that for any concrete world, two such
names must be equal (because of iden).

We see that in the general case where relations can contain more than one tuple, the join operator
cannot be interpreted as a class membership operator, although that interpretation is locally
interesting and helps the user understand the mechanism of signatures.

Besides those operators, more classical operators such as union (+), intersection (&), difference
(-), and also restriction on both sides (left <:, right :>), are of course available in Alloy. The Alloy
specification language also provides the transitive closure (ˆ) and the reflexive-transitive closure
(*) of a binary relation.

2.1.3 Signature extension and inclusion

By default, signatures are disjoint one to the other. But Alloy offers a mechanism to allow the
user to define a family of signatures included in a “mother signature”.

For instance, as shown before, a concrete purse has a status among eaFrom, eaTo (expecting any
from/to =“idle”), epr (“from”expecting request), epv (“to”expecting value), epa (“from”expecting
acknowledgment). In Alloy, the status could be defined as follows :

sig STATUS {}

one sig eaFrom, eaTo, epr, epv, epa in STATUS {}

The one keyword is a multiplicity constraint enforcing each of the followingly defined signatures
to be a singleton.

Through the in construct, those signatures are defined to be included in the STATUS signature.
But the in construct does not ensure that those signatures will be disjoint. In other words, in
signatures are simply subsets of already given signatures.

To constrain the signatures to be disjoint, we should use another construct :

sig STATUS {}

one sig eaFrom, eaTo, epr, epv, epa extends STATUS {}

Not only does the extends construct define the signatures to be included in STATUS, but it also
ensures that they will be disjoint one to the other. More precisely, any two signatures which extend
the same signature are necessarily disjoint. That is, if we had defined the statuses as follows :

sig STATUS {}

one sig eaFrom in STATUS {}

one sig eaTo, epr, epv, epa extends STATUS {}

30

then eaFrom could have been equal to one of the others.

But in both cases, the extension is not enough, as it does not enforce a STATUS to be necessarily
included in (here, equal to) one of the defined extensions. This can be constrained by defining
STATUS as an abstract signature :

abstract sig STATUS {}

one sig eaFrom, eaTo, epr, epv, epa extends STATUS {}

This specification is strong enough to model the status of a concrete purse.

Indeed, an abstract signature is a signature, the atoms of which necessarily belong to a signature
extending it. We could even have defined the statuses as follows :

abstract sig STATUS {}

abstract sig idle extends STATUS {}

one sig eaFrom, eaTo extends idle {}

abstract sig busy extends STATUS {}

one sig epr, epv, epa extends STATUS {}

In that case, a status must necessarily belong to a signature extending either idle or busy.

In fact, extends and abstract constructs may be rewritten as in constructs by adding some facts.
For instance, the specification above is equivalent to :

sig STATUS {}

sig idle in STATUS {}

sig eaFrom, eaTo in idle {}

sig busy in STATUS {}

sig epr, epv, epa in STATUS {}

fact status_extended {

STATUS = idle + busy

no idle & busy

}

fact idle_extended {

idle = eaFrom + eaTo

no eaFrom & eaTo

}

fact busy_extended {

busy = epr + epv + epa

no epr & epv

no (epr + epv) & epa

}

where & is the intersection, + is the union, and no simply constraints a relation to be empty. The
constraints of the form :

STATUS = idle + busy

correspond to the abstract construct, whereas the constraints of the form :

no idle & busy

correspond to the extends construct.

31

2.1.4 Auxiliary predicates and functions

Besides data structures, a specification has to describe operations. It is mostly not necessary to
model them as objects, and very often logical formulae are enough to define them.

That is why Alloy provides predicate definition. Another purpose is to prevent formulae from
growing, through defining them “piecewise”. To the latter purpose, Alloy also provides auxiliary
function definition.

Whereas a predicate defines an auxiliary formula, a function returns a relation. Both take relations
as arguments. Their definition constraint arguments to be included in certain fixed relations. But
beyond this constraint, relations are of arbitrary arity and multiplicity. However, functions or
predicates may not be carried like higher-order relations, they must be applied.

For instance, consider the Increase operation (a purse increases its sequence number). It can be
defined by two predicates : IncreasePurseOkay operates on a purse first, then this predicate is
promoted to the world level through Increase.

pred IncreasePurseOkay (p, p’ : ConPurse) {

p’.name = p.name

p’.exLog = p.exLog

p’.status = p.status

p’.balance = p.balance

p’.pdAuth = p.pdAuth

int p’.nextSeqNo >= int p.nextSeqNo

}

pred Increase (w, w’ : ConWorld) {

w’.conAuthPurse.ConPurse = w.conAuthPurse.ConPurse

some n : NAME {

n in w.conAuthPurse.ConPurse

(NAME - n) <: w’.conAuthPurse = (NAME - n) <: w.conAuthPurse

IncreasePurseOkay (n.(w.conAuthPurse), n.(w’.conAuthPurse))

}

w’.ether = w.ether

w’.archive = w.archive

}

It is necessary to indicate for each argument a relation in which it should be included.

The expression w.conAuthPurse.ConPurse denotes the domain of the relation w.conAuthPurse.
Indeed, by the definition of join, it corresponds to the set of names associated with any concrete
purse (hence ConPurse) through w.conAuthPurse. In other words, it corresponds to the names
authentic to the world w. We could then have defined this as a function :

fun authenticNames (w : ConWorld) : NAME {

w.conAuthPurse.ConPurse

}

32

As for a predicate, it is necessary to indicate an including relation for each argument, but also for
the result of the function.

Then, the Increase predicate above could be rewritten as follows :

pred Increase (w, w’ : ConWorld) {

authenticNames (w’) = authenticNames (w)

some n : NAME {

n in authenticNames (w)

(NAME - n) <: w’.conAuthPurse = (NAME - n) <: w.conAuthPurse

IncreasePurseOkay (n.(w.conAuthPurse), n.(w’.conAuthPurse))

}

w’.ether = w.ether

w’.archive = w.archive

}

The <: operator corresponds to the left-hand-side restriction. It is used to constraint the invariance
of any other purse than the increasing one.

Important. The arguments of predicates or functions are relations of arbitrary multiplicity. In
particular, they could be not singletons. Thus, the definitions above of IncreasePurseOkay and
Increase may not make sense if their arguments are not singletons. But in most cases, there is no
worrying, as the arguments actually used when predicates or functions are being called are in fact
singletons.

2.1.5 Assertions

Not only does a specification describe data structures and constraints, but it also provides theorems
which the user wants to show that the specification makes hold. This is the purpose of defining
assertions.

Those assertions are to be tackled by specification analyzers like the Alloy Analyzer (see below).
However, besides that project, there are very few attempts of analyzing Alloy specifications. One
of the most achieved is Prioni [AKMR03] which translates Alloy specifications for use with the
Athena [ath] proof assistant.

For instance, if the concrete Ignore operation is defined as follows :

pred Ignore (w, w’ : ConWorld) {

authenticNames (w) = authenticNames (w’)

all n : NAME | n in authenticNames (w) implies {

n.(w’.conAuthPurse).name = n.(w.conAuthPurse).name

n.(w’.conAuthPurse).exLog = n.(w.conAuthPurse).exLog

n.(w’.conAuthPurse).pdAuth = n.(w.conAuthPurse).pdAuth

n.(w’.conAuthPurse).status = n.(w.conAuthPurse).status

n.(w’.conAuthPurse).nextSeqNo = n.(w.conAuthPurse).nextSeqNo

n.(w’.conAuthPurse).balance = n.(w.conAuthPurse).balance

}

33

w’.ether = w.ether

w’.archive = w.archive

}

which states that any authentic purse keeps its properties invariant5, then we may ask the analyzer
to show that the Ignore operation is a particular case of Increase :

assert IgnoreImpliesIncrease {

all w, w’ : ConWorld | Ignore (w, w’) implies Increase (w, w’)

}

In fact, this theorem appears to be true, because it corresponds the case where the inequality of
the sequence number in IncreasePurseOkay is an equality.

Assertions use the same logic as any other formula (constraints, for instance), except that they
may be skolemized : the user is allowed to make non-nested higher-order universal quantifications.

For instance, consider the following Rab predicate, which models the refinement of the Abstract
by the Between. Assume it is defined as a predicate of the form :

pred Rab (a : AbWorld, b : BetweenWorld, chosenLost : PayDetails) {...}

assuming the Abstract and the Between worlds have been modeled in Alloy by respectively AbWorld

(with the AbIgnore operation) and BetweenWorld signatures, with BetweenWorld extending ConWorld.
In this predicate, contrary to the a and b arguments, chosenLost, which represents the set of the
details of the ambiguous transactions chosen to be considered lost, is not supposed to be a single-
ton. Then, the theorem stating that the Increase operation (defined above) refines the abstract
AbIgnore would be defined as the following assertion :

assert RabIncrease {

all a’ : AbWorld, b, b’ : BetweenWorld, chosenLost’ : set PayDetails | {

Rab (a’, b’, chosenLost’)

Increase (b, b’)

} implies some a : AbWorld {

Rab (a, b, chosenLost’)

AbIgnore (a, a’)

}

}

Actually, this assertion would be equivalent to defining auxiliary signatures : either one signature
with a field to represent the set of transactions chosen lost, then first-order quantifying over objects
of this signature and using the field to get the set of transaction details :

5Instead of defining w’.conAuthPurse = w.conAuthPurse, which might generate spurious counterexamples
where different purses would have had the same properties. This is a more general issue discussed further, in
Section 3.5.

34

sig ChosenLost {cl : set PayDetails}

assert RabIncrease {

all a’ : AbWorld, b, b’ : BetweenWorld, chosenLost’ : ChosenLost | {

Rab (a’, b’, chosenLost’.cl)

Increase (b, b’)

} implies some a : AbWorld {

Rab (a, b, chosenLost’.cl)

AbIgnore (a, a’)

}

}

or, more simply, a in signature directly representing the set of transactions chosen lost, then no
quantification over the choice is needed :

sig chosenLost’ in PayDetails {}

assert RabIncrease {

all a’ : AbWorld, b, b’ : BetweenWorld | {

Rab (a’, b’, chosenLost’)

Increase (b, b’)

} implies some a : AbWorld {

Rab (a, b, chosenLost’)

AbIgnore (a, a’)

}

}

It is important to point out the fact that this only works for unnested and universal higher-
order quantifications. That is why the condition over the pre-state reuses the post-chosenLost
(chosenLost’). That is, the following attempt to existentially quantify over the pre-chosenLost
would be a purely higher-order assertion :

assert RabIncrease {

all a’ : AbWorld, b, b’ : BetweenWorld, chosenLost’ : set PayDetails | {

Rab (a’, b’, chosenLost’)

Increase (b, b’)

} implies some a : AbWorld, chosenLost : set PayDetails {

Rab (a, b, chosenLost)

AbIgnore (a, a’)

}

}

Even though the method enclosing the set of transaction details into a field of a ChosenLost

signature first-order-quantified over gives a first-order assertion, we shall see later that this method
would define false theorems in most cases.

35

2.1.6 Modules

An Alloy specification may be splitted into several modules in order to group signatures and
predicates according to their actual dependencies. In other words, the module system allows
organizing theories, for instance to point out the fact that one module is independent on another.

For instance, one could model the Abstract world in the module a, then the Concrete and Between
worlds in the module cb. Then, the Rab refinement predicate would be defined in a third module,
rab, which would open, that is “import”, the first two modules, through the following statements :

open a

open cb

Then, the signatures and predicates defined in both modules become available.

The module system also allows defining parametric modules, that is modules taking signatures as
parameters to add constraints over them or even signatures extending them. For instance, the
standard distribution of the Alloy Analyzer provides a toolkit of all-purpose modules. Among
those, util/ordering models a total order. This module takes a signature and defines additional
constraints over this signature to enforce its ordering. It begins with the following statement,
declaring the signature taken as a parameter :

module util/ordering [X]

where X is the name used in the module to represent the signature given as a parameter. If we
want to use this module instead of integers to model the sequence numbers, then we can declare
a SEQNO signature and make it ordered through passing it as a parameter to the util/ordering

module being imported :

sig SEQNO {}

open util/ordering [SEQNO]

But what should happen if we wanted to define two ordered signatures ? Opening twice would
hide the definitions of the opened module. That is, assume for instance the minimum signature is
defined in util/ordering to represent the least element of the total order. Then, to which order
should minimum refer once used in the module that imported util/ordering ?

To solve this issue, Alloy allows the user to open a module and assign it an alias. For instance :

sig SEQNO, SEQNO2 {}

open util/ordering [SEQNO] as seqord1

open util/ordering [SEQNO2] as seqord2

Then, the module is not really opened, but it is available in two “versions” ; then, to refer to
the minimum signature of either version, the user has to qualify it with the alias, in either way
depending on the “version” referred to :

seqord1/minimum

seqord2/minimum

36

It is worth noting that this qualification mechanism can also be used to refer to a module that has
not been imported.

However, despite this feature, the current semantics prevents the user from importing twice the
same module with the same parameters. Thus it is impossible to define two different orders for the
same signature using util/ordering. Nevertheless, the basic module features provided by Alloy
in this section are quite useful in practice.

Actually, assuming that the qualification mechanism is never used in any other case than aliased
imported modules, the module system allows to show that theories are independent. For instance,
although I used modules to “chain” theories (which form, then, a linear dependency chain) in the
naive version of the Mondex model, the final version of the model is organised in several groups
so that the Concrete model does not depend on the Abstract one (as it was the case in the former
model because of finalization, which uses a“global world”having the same structure as the Abstract
world).

2.2 Analyzing the specification using the Alloy Analyzer, a model
finder

The Alloy specification language comes with the Alloy Analyzer [AA], a piece of software intended
to analyze specifications written in Alloy. It uses model-finding : instead of proving assertions, it
tries to find counterexamples to them. But to this purpose, the model has to be assumed to be not
only finite, but also bounded : the user has to specify a scope, that is maximal number of objects.

The Alloy Analyzer has been written in Java by Ilya Shlyakter, a former member of Daniel Jack-
son’s Software Design group. It is available on the Alloy website, http://alloy.mit.edu http:

//alloy.mit.edu. Although widely used in the industry, it is no longer maintained. Currently,
the SDG is developing Kodkod, an improved engine for the Alloy Analyzer but keeping the principle
of model-finding.

2.2.1 Type checking

Strictly speaking, there are no types in Alloy. But, as shown before, relation definitions constrain
the components of their tuples to belong to certain signatures. Thus, it is possible to write
relational expressions that are always empty, for instance conAuthPurse & archive. Mostly such
expressions are user errors. That is why, even though they may be strictly well-defined, the Alloy
Analyzer rejects them as such.

Of course the Alloy Analyzer also rejects truly malformed relational expressions such as the join of
two unary relations6, or the union of two relations of different arities, as Alloy requires a relation
to contain only tuples of the same arity.

The Alloy Analyzer also rejects higher-order quantifications in predicates or assertions when they
are not skolemizable.

6Rigorously speaking, in such a join expression α.β where α and β are unary, we would have p = q = 0 in the
definition of join, then the result would be a relation of arity 0 : if ∃ x , x ∈ α∧ x ∈ β (following the definition), then
α.β would contain the empty tuple, else the relation would contain no tuple. But Alloy does not handle relations of
arity 0.

37

S p e c i fi c a t i o ni n A l l o y

S A T � S o l v e rC o u n t e re x a m p l es p e ci n v a l i d
F i x n e e d e d

A l l o y A n a l y z e r

S p e c v a l i di n t h eg i v e ns c o p eI n c r e a s e s c o p e
S A T + T r a n s l a t i o n

A l l o y b a c k +t r a n s l a t i o n S A T
U N S A T

Figure 9: Principle of model-fiinding through SAT-solving with the Alloy Analyzer

2.2.2 Checking assertions. Notion of finite scope.

The Alloy Analyzer does not prove assertions. Instead, it tries to check them, by finding a coun-
terexample to them, that is, a model satisfying all the constraints but not the assertion being
checked.

To do that, it translates the Alloy specification, namely the constraints and the negation of the
assertion, to a (often huge) boolean formula [Jac00] that it asks a SAT-solver to try to satisfy it.
If it is satisfied, then the assignation of boolean variables is translated back to an assignation of
atoms to signatures and tuples to relations, which gives a model satisfying the negation of the
assertion, that is a counterexample to the assertion.

But that translation requires a finite number of atoms. More precisely, the analyzer must know
in advance a bound on the number of atoms in each signature, that is called a scope. The user
has to provide the scope for each assertion being checked. If the analyzer gives a counterexample,
then the assertion is invalid for any scope. But if the analyzer does not, the assertion might still
be false in a higher scope. Increasing the scope only raises the confidence level.

To check the IgnoreImpliesIncrease assertion, we just have to provide the scope through a
check statement like this one :

check IgnoreImpliesIncrease for 5

This bounds the number of objects to 5 for each signature other than abstract or in or signatures
constrained to be singletons through one. It is also possible to define a scope for some signatures,
leaving a default scope for the others. For instance, as only two concrete worlds are considered

38

(because there are no constraints relating different concrete worlds outside of an operation), it is
sound to bound the scope to 2 concrete worlds :

check IgnoreImpliesIncrease for 5 but 2 ConWorld

It is also possible to define scope for each signature :

check IgnoreImpliesIncrease for 5 ConPurse, 2 ConWorld, 5 PayDetails, 5 Int

By default, a scope defines an upper bound on the number of atoms in a signature. But specifying
the exactly keyword enforces this bound to be reached, and the signature to have precisely the
specified number of atoms :

check IgnoreImpliesIncrease for 5 but exactly 2 ConWorld

In all those cases, the Alloy Analyzer finds no counterexample. But this bounding method could
not be sound if applied to the purses, because for instance the Between constraints could relate
them.

Again, this does not show that the assertion holds for any scope. If we want to dramatically
increase our confidence level :

check IgnoreImpliesIncrease for 100 but 2 ConWorld

then in that case, the Alloy Analyzer crashes (out of memory), namely while translating to SAT-
formula.

Nevertheless, the scope should be high enough to make sense.

For instance, suppose we define the following reciprocal assertion :

assert IncreaseImpliesIgnore {

all w, w’ : ConWorld | Increase (w, w’) implies Ignore (w, w’)

}

We know that this assertion should not hold, as the sequence number could change. But if we
check the assertion for a too small scope :

check IncreaseImpliesIgnore for 5 but 1 ConPurse

the Alloy Analyzer will find no counterexample. Indeed, with only one purse, its sequence number
cannot change (because this would require another purse to exist, the post-purse with the new
sequence number), and the assertion is true. But as expected, if we increase the scope :

check IgnoreImpliesIncrease for 5 but 2 ConPurse

then the Alloy Analyzer finds a counterexample, as expected.

2.2.3 “Running” predicates : sanity-check simulation

The Alloy Analyzer can also “run” a predicate : it tries to make it satisfiable. That is, the Alloy
Analyzer translates the specification and the predicate — not its negation as for an assertion —
to a boolean formula, and by translating back an eventual assignation of boolean variables to an
assignation of atoms to signatures and tuples to relations, it finds an example making the predicate
hold. This is a simulation of the model, showing that it is consistent : it is a sanity-check.

39

Figure 10: Counterexample to the IncreaseImpliesIgnore assertion

The counterexample shows a Increase operation between two Concrete worlds, where a purse, the
name of which is indicated by Increase n on the bottom, gets its sequence number strictly

increased.

40

To put it in a nutshell, “running” a predicate is equivalent to checking the assertion corresponding
to its negation.

The predicate may have arguments ; in that case, the Alloy Analyzer will existentially quantify
over them, that is the analyzer will try to find an assignation of tuples to relations being passed
to the predicate being “run”.

As for assertions, it is also necessary to provide a scope for signatures. For instance, to show that
a Increase operation may happen, we may provide the scope by a run statement like this one :

run Increase for 5 but 2 ConPurse

Then, the Alloy Analyzer will find an example to the predicate, showing that it is satisfiable.

But although that relations passed as arguments to a predicate have an arbitrary multiplicity, the
implicit existential quantification made by the Alloy Analyzer when “running” a predicate is only
first-order. To enforce skolemisation, the user has to explicitly specifying the existential higher-
order in the predicate. Then this predicate may be “run” in a standalone simulation. But if this
predicate is referred to by an assertion, then the Alloy Analyzer will reject the specification as this
existential quantifier will be “inlined” in the assertion and there becomes not skolemizable.

41

Figure 11: Example to the Increase predicate

The example shows a Increase operation between two Concrete worlds, where the increasing
purse, the name of which is indicated by Increase n on the bottom, gets its sequence number

actually unchanged.

42

3 Modeling the Mondex case study in Alloy : technical

issues encountered

The use of the Alloy method (the Alloy specification language and the Alloy Analyzer) raised some
technical issues at different levels, either due to the logical conception of the Alloy specification
language, or to the current implementation of the Alloy Analyzer. I solve them in two steps :
first, I wrote a first naive version of the Mondex specification in Alloy that I presented on May
26, 2006 at the 3rd VSR/NET workshop. That version used to follow the Z specification as close
as possible. But since I came back to MIT on June 6th, I optimized the model in order to make
it more conform to the Alloy “idiom”. This optimisation has eventually pointed out some errors in
the former model.

3.1 Finiteness

Although there might be an infinite number of abstract or concrete worlds, or even transactions,
the Mondex case study requires finiteness properties to be shown :

• for any abstract, between or concrete world, there must be only a finite number of authentic
purses. This is required to compute the sum of balance values when abstracting a Between
world to an Abstract one.

• for any between or concrete world, the set of the transaction details logged by “to”purses has
to be finite. This is required to compute the sum of lost values when abstracting a Between
world to an Abstract one.

As Alloy is based on first-order with transitive closures, it is possible to constrain a given set to
be finite. It is enough to define an “immediate successor” function, the induced order of which (by
transitive closure) is bounded. For instance, we could redefine the concrete world by adding, for
each concrete world, such a function over authentic names, as follows :

sig ConWorld {

conAuthPurse : NAME -> ConPurse,

finiteAuthPurse : NAME -> lone NAME, -- 1

ether : set MESSAGE,

archive : NAME -> PayDetails

}

fun authenticNames (c : ConWorld) : NAME {

c.conAuthPurse.ConPurse

}

fact finiteAuthPurseAxioms {

all c : ConWorld {

c.finiteAuthPurse in authenticNames(c)->authenticNames(c) -- 2

no iden & ^(c.finiteAuthPurse) -- 3

one authenticNames(c) - authenticNames(c).(c.finiteAuthPurse) -- 4

one authenticNames(c) - c.finiteAuthPurse.authenticNames(c) -- 5

}

}

43

The character sequence -- introduces a comment in Alloy. There are the meanings of the con-
straints denoted by the numbers indicated beneath the comments.

1. A concrete world and a name are matched with at most one name.

2. For a given world c, any tuple in c.finiteAuthPurse has both components in the set of
names authentic for c.

3. For a given world c, there is no tuple with equal components in the transitive closure of
c.finiteAuthPurse. This means that c.finiteAuthPurse is acyclic.

4. For a given world c, there is exactly one authentic name having no “pre-image” through
c.finiteAuthPurse. This name is actually the“maximum”. Indeed, authenticNames(c).(c.finiteAuthPur
represents the set of all the“images”obtained from authentic names through c.finiteAuthPurse

(by definition of join).

5. For a given world c, there is exactly one authentic name having no“image”through c.finiteAuthPurse.
This name is actually the “minimum”. Indeed, (c.finiteAuthPurse).authenticNames(c)
represents the set of all the“pre-images”obtained from authentic names through c.finiteAuthPurse

(by definition of join).

But it still remains impossible in Alloy to directly show the finiteness of any set or relation. Indeed,
it would be necessary to at least existentially quantify over a relation, as any attempt to express
finiteness involves an “external” relation. In fact, transitive closure only expresses reachability in a
finite number of steps ; this does not imply that the underlying set is finite.

Thus, to be able to analyze a specification using the Alloy specification language (with or without
the Alloy Analyzer) , it is necessary to drop any property about finiteness.

Moreover, because of the finite scope, the analysis with the Alloy Analyzer assumes that every
model is finite, that is there is necessary a finite number of atoms (thus, every signature or relation
is finite).

Remark. In fact, it is worth noting that the finiteness of the set of Abstract (or Concrete)
authentic purses can be shown indirectly. Indeed, the set of Abstract authentic purses does not
change through an operation. In the same way, the finiteness of the set of the transaction details
logged by “to” purses can be shown indirectly, as at most one transaction is logged by a purse
during an operation. So, as regards the Mondex case study, finiteness properties may be skipped
without worrying. More globally, it could be also an interesting idea to abstract a whole model by
taking only authentic purses, which would necessarily give a finite number of purses.

3.2 Integers

The Alloy specification language provides support for integers, namely comparison, sum, and sum
of sets of values, provided the model is assumed finite. Product, however, is not available, as the
model has to be kept first-order.

So, the Abstract world and the security properties could have been modeled in Alloy as follows :

44

sig AbPurse { balance, lost : Int }

sig AbWorld {

abAuthPurse : NAME -> lone AbPurse,

}

pred NoValueCreated (w, w’ : AbWorld) {

sum NAME.(w’.abAuthPurse).balance <= sum NAME.(w.abAuthPurse).balance

}

pred AllValueAccounted (w, w’ : AbWorld) {

sum NAME.(w’.abAuthPurse).balance + sum NAME.(w’.abAuthPurse).lost

= sum NAME.(w.abAuthPurse).balance + sum NAME.(w.abAuthPurse).lost

}

Those predicates use the sum construct, which computes the sum of a set of values. This construct
only works if the model is assumed finite, which is automatically the case if the Alloy Analyzer is
used.

However, the current implementation of integers in the Alloy Analyzer prevents efficient analyses.
Indeed, the translation of integers and their operations into boolean formulae consume a lot of
time and space, and dramatically reduce the definable scope.

The idea commonly retained by Alloy users, and also by the researchers who develop Alloy them-
selves (within Daniel Jackson’s Software Design group) is that for most models written in Alloy,
integers may be replaced with another representation providing similar properties, and which could
fit the model better. This idea holds for the Mondex case study :

• Sequence numbers do not use any arithmetical property of N. They only use comparison.

• Surprisingly, even amounts may be represented without integers, although they seem to use
all the properties of N.

3.2.1 Sequence numbers

Sequence numbers are used to distinguish different transactions led by purses. In some way, they
represent a time scale increasing whenever a transaction begins. It is not specified how this time
scale increases : only the comparison relation is used. So, we only need a total order to model
them.

One idea proposed above is to use the ordering module provided along with the standard distribu-
tion of the Alloy Analyzer : util/ordering.

sig SEQNO {}

open util/ordering [SEQNO]

Moreover, an obscure “hack” allows the Alloy Analyzer to treat this module in an optimized way.
In particular, when a scope is given to SEQNO, it is exact : whereas by default a scope is an
upper bound on the number of atoms in a signature, this bound is reached for any signature using
util/ordering, as if the exactly flag was specified along with its scope in a check (assertion
check) or run (predicate simulation) statement.

45

3.2.2 Amounts

It is somewhat surprising that amounts may be expressed without using integers. But the point is
that, even though all the first-order properties of integers are used, they are used in a particular
way. Comparisons only occur between the pre-state and the post-state of an operation : either a
purse decreasing its balance, or the whole global world balance, is concerned. In particular, two
balances of different purses (associated to different names) are never compared.

The solution proposed by members of the SDG group, namely Emina Torlak and Derek Rayside, is
to use sets of coins to represent an amount. The amount will not be represented by the cardinality
of the set, but the coins themselves, as with real coins in non-electronic purses ! So, with this
approach, operations are redefined as follows :

• The sum of two values is the union of the corresponding sets of coins

• The difference of two values is the (set) difference of the corresponding sets of coins

• The comparison relation is the set inclusion between sets of coins.

Indeed, when a purse decreases its balance, it actually gives away part of it. So there is how the
Abstract world can be defined :

sig NAME {}

sig Coin {}

sig AbPurse { balance, lost : set Coin }

sig AbWorld { abAuthPurse : NAME -> lone AbPurse }

However, this approach requires to define additional constraints to avoid coin sharing, the fact
that, for instance, two amounts being added could have common coins.

First constraints are added on the Abstract world. They are quite simple to express :

• there is no coin common to two purses, regardless of whether it would belong to the balance
or the lost store of either purse. In other words, a coin must belong to at most one purse.

• there is no coin common to the balance store and the lost store of a purse. In other words,
a coin must be either not lost, or lost.

fact noCoinSharing {

all w : AbWorld {

no disj n1, n2 : NAME | some n1.(w.abAuthPurse).(balance + lost) & n2.(w.abAuthPurse).(balance

no p : AbPurse {

p in NAME.(w.abAuthPurse)

some p.balance & p.lost

}

}

}

46

The no disj quantification expresses that there are no distinct (“disjoint” singletons) purses veri-
fying the property, namely the fact that there is a coin common to the union of their balance and
lost.

These constraints only apply to abstract authentic purses (although the second could even have
been defined for any abstract purse).

Then, the Concrete purses also use coins :

sig PayDetails {

from, to : NAME,

fromSeqNo, toSeqNo : SEQNO,

value : set Coin

}

sig ConPurse {

name : NAME,

balance : set Coin,

pdAuth : PayDetails

exLog : set PayDetails,

nextSeqNo : SEQNO,

status : STATUS

}

sig ConWorld {

conAuthPurse : NAME -> lone ConPurse,

ether : set MESSAGE,

archive : NAME -> PayDetails

}

Equivalent constraints to avoid coin sharing have to be added to the Concrete world. First, in the
former model, I added the following constraints :

fact noCoinSharingConcrete {

all p : ConPurse | no p.exLog.value & p.balance -- 1

all w : ConWorld {

no disj n1, n2 : NAME |

some n1.(w.conAuthPurse).balance & n2.(w.conAuthPurse).balance -- 2

no p : ConPurse, pd : PayDetails {

p in NAME.(w.conAuthPurse)

pd in NAME.(archive.log)

some p.balance & pd.value -- 3

}

}

}

1. A purse has no coin common to its balance and a transaction it has logged to its exLog

2. Two distinct purses have no abstract

47

3. A purse has no coin common to its balance and a transaction that has been logged in the
global archive

As I came back from England in June, trying to optimize the specification, I figured out the fact
that although constraint 2 makes sense, constraints 1 and 3 were too strong.

Indeed, as regards constraint 3 :

• the“to”purse has received the money and sends the acknowledgment message, but the“from”
purse aborts before receiving it, logging the transaction into its exLog. Then, this constraint
prevents the “from” purse from copying the details relevant to this transaction to the global
archive, as the “to” balance contains the coins corresponding to its value.

• the “to” purse has just send the request message but aborts, then logging . If the “from”
purse aborts before receiving this message, then it will have kept the coins of the transaction
value in its balance. Thus, the “to” purse will not be able to copy the details relevant to this
transaction to the global archive.

In both cases, the corresponding transaction is “locked” in the exLog, which consequently cannot
clear it through a ClearExceptionLog operation.

Roughly speaking, the point is to find constraints which could be equivalent to the abstract con-
straint preventing a coin to be “lost and not lost” at the same time. The solution may be found
by referring to the Abstract/Between refinement relation, which precisely defines . This relation
relies on the definition of two functions :

• definitelyLost corresponds to the set of details referring to transactions definitely lost, that
is either logged by the two purses, or logged by the “to” purse while the “from”, having sent
the money, is still expecting an acknowledgment.

• maybeLost corresponds to critically ambiguous transactions, where the “to”purse expects the
value while the “from” purse has already sent it and either expects the acknowledgment or
has logged the transaction before the “to” received the value. In this case, the value is stored
in no other

In both cases, we know that the value has been debited from the “from” balance but not yet
credited to the “to” balance. Then, it is sound to replace constraint 3 above with the following
one, stating that no coin in the value of a transaction in definitelyLost or maybeLost may be in a
purse balance at the same time :

all w : ConWorld | no p : ConPurse {

p in NAME.(w.conAuthPurse)

some p.balance & (definitelyLost (w) + maybeLost (w)) -- new 3

}

48

This constraint alone guarantees that the equivalent balance and lost stores are disjoint. This
constraint, indeed, prevents a coin from being in a balance and a lost store at the same time, even
if the purses are distinct. However,

As regards constraint 1, it is too strong if the following situation arises : the “to” purse logs the
transaction just after sending the request, but the “from” aborts before receiving it (thus it does
not log). Then, no money has been sent yet, but the transaction has been logged by the “to”purse.
In that case, the “to”purse cannot receive the corresponding coins in a further transaction attempt
involving them, because they are already in the logged transaction, even though they are still in
the “from” balance.

All those situations have been found by counterexamples while trying to optimize the Alloy spec-
ification after I came back from England. Indeed, whereas I first defined those constraints within
the Concrete world, I then moved them to the Between world. Then, I figured out the fact that the
Between/Concrete refinements did not hold, as some operations were impossible in some situations,
precisely those situations due to too strong constraints in the Between that are not necessarily kept
through operations. Thus, the new constraints defined here are actually in the Between world, not
the Concrete.

However, it does make sense to set some additional constraints over the Between world, even
though no counterexamples are yielded without them :

• before the Val operation, the balance of the“to”purse must not have coins common the value
being transferred to it. In other words, a coin cannot be received twice by the purse. There
are no counterexamples without this constraint, because Val refines AbIgnore but occurs
after Req that actually refines AbTransfer. Thus the value is already considered transferred
in the Abstract world. However, adding the constraint implies to also add a similar constraint
in the StartTo operation.

• In the same way, each coin must correspond to at most one lost transaction. There are no
counterexamples without this constraint, because Abort refines AbIgnore, that is the coin is
already considered lost, at least thanks to the chosenLost prophecy variable.

Remark 1. It is worth noting that the introduction of coins does not require the model to be
finite as would integers (because of the sum construct). But the drawback is that arbitrary infinite
values may be defined, so a purse may have an arbitrary, even infinitely, high value...

Remark 2. Using coins has another interesting effect, namely in the Abstract/Between refinement
relation : given a Between world and an Abstract world refining it, it is worth noting that the
chosenLost set of ambiguous transaction details chosen lost used to build the Abstract set is
uniquely known. Indeed, thanks to the constraint preventing a coin to belong to the values of two
distinct transactions considered ambiguous, it is possible to determine to which transaction a coin
corresponds. It is easily possible to show that the definitelyLost and maybeLost sets of transactions
are disjoint, because for the former, the “to” purse has to have logged the transaction, whereas for
the latter, the “to” purse has to be still in epv, which means that the transaction is still pending.
It is also obvious that coins being accounted in the Abstract model correspond to either a concrete
balance, or a definitelyLost or maybeLost transaction amount, the latter case including the case of
a transaction chosen lost. So there are four solutions :

49

• the coin is in a concrete balance : then, it will be accounted into the abstract balance of the
corresponding purse

• the coin is in a definitelyLost transaction : then, it will be accounted into the lost of the
“from” purse of this transaction

• the coin is a maybeLost, but not chosen lost : then, it will be accounted into the balance of
the “from” purse of this transaction

• the coin is a maybeLost, but chosen lost : then, it will be accounted into the lost of the“from”
purse of this transaction

Then, it is possible to “revolve” this table to define the chosenLost set. Just take the transactions
of maybeLost, the coins of which are in an abstract lost :

fun getChosenLost (a : AbWorld, b : BetweenWorld) : PayDetails {

NAME.(a.abAuthPurse).lost.(~value :> maybeLost (b))

}

This relational definition does not seem clear. Actually it is quite simple, from left to right : take
the names, match them to a.abAuthPurse get the abstract authentic purses, then get their lost
coins. ~value represents the “revolved” value relation : it matches a coin to any transaction details
having this coin in its value. Then, starting from the lost coins of the abstract authentic purses,
get their transaction details but only those maybe lost.

To put it in a nutshell, using coins instead of integers allows to better track the amounts through
operations.

3.3 Clear codes

Recall that a clear code is meant to represent a set of transaction details, as if it was computed
through a hash function. Naively we could define a signature to represent this hash function and
the clear codes :

sig CLEAR {imageRecip : set PayDetails}

fact clearDef {

no disj c1, c2 : CLEAR | c1.imageRecip = c2.imageRecip

}

sig exceptionLogClear extends MESSAGE {

name : ConPurse,

clear : CLEAR

}

Actually, the imageRecip is the reciprocal relation to the hash function. The constraint ensures
the functionality of the hash function ; its injectivity is ensured by the Alloy relational calculus
itself : indeed, a clear code is mapped to exactly one set of transaction details, the one defined by
its join with imageRecip.

50

Then, the exceptionLogClear message is defined, carrying the [name of the] clearing purse and
the clear code.

But there is an easier way to represent clear codes. Indeed, we could also consider that the
exceptionLogClear message is itself the clear code. Although this would not make sense in Z (as
the message is, then, simply a record), it does in Alloy, since a message is an atom. Then, it could
be redefined as follows :

sig exceptionLogClear extends MESSAGE {

name : ConPurse,

pds : set PayDetails

}

Then, the pds relation represents the reciprocal hash function.

It is worth noting that, when a set of transaction details is quantified over by the Z specification
in order to compute its clear code, it is wise to quantify over the clear code instead. Then, the use
of the reciprocal injection allows finding back the set of transaction details. Nevertheless, it is true
that in practice, this reciprocal function is not calculable (as we start from a hash function). But
for the needs of the model, we may assume its existence, regardless of how to actually construct
it.

3.4 Existential quantification and constraints

The backwards (resp. forwards) simulation proofs require to show that for any Between (resp.
Concrete) operation and Abstract post-state (resp. Between pre-state), there exists an Abstract
pre-state (resp. a Between post-state) such that the Abstract (resp. Between) operation holds.

It is important to understand the notion of existence in the right way. Indeed, in the Z notation,
an existential theorem corresponds to the fact that an object with the right field values may be
constructed. But in Alloy, existence is the actual existence of the corresponding atoms in the model.
That is why, in the Abstract/Between refinement, if we tried to show the following predicate for the
Between Abort operation, using the method of “encapsulating” the chosenLost set into a specific
signature as a field of this signature :

sig ChosenLost {pd : set PayDetails}

assert ReqEx {

all b, b’ : BetweenWorld, a’ : AbWorld, cl’ : ChosenLost | {

Rab (a’, b’, cl’.pd)

Req (b, b’)

} implies some a : AbWorld, cl : ChosenLost {

Rab (a, b, cl.pd)

AbIgnore (a, a’)

}

}

51

then, a counterexample would come : the model with only one ChosenLost object, preventing some
cases where the ChosenLost must change from the post-state to the pre-state.

This is also the reason why a sanity-check property has to be verified through simulating a predicate
rather than trying to check an existential assertion. Indeed, if we naively tried to show that there
exists a BetweenWorld, to show that the constraints are not too strong and allow an object to
exist :

assert BetweenEx {

some BetweenWorld

}

then, the immediate counterexample comes : the empty model, with no atoms at all !

A naive idea would be to constrain the Alloy model to match the Z notion of existence, that is to
constrain any constructible object to exist. But that idea is very naive, as an immediate problem
arises with the Alloy Analyzer : the scope dramatically grows.

That is why the only solution is to assume that an object exists once we have enough properties
to define it. For instance, an Abstract world is completely determined if we know its abAuthPurse,
that is the set of all its authentic purses and their properties. Thus, we can consider that the Rab
abstraction relation, which computes the values of balance and lost fields of the authentic purses
of an Abstract world abstracting the given Between world and the ChosenLost variable, constructs
an object which has the structure of an Abstract world.

But assuming the existence of a constrained object does not make sense : thus it is necessary to
not define constraints as such, and define them as predicates which will be used as implication
hypotheses in assertions. For instance, instead of defining and using the Abstract and Between
worlds as follows :

sig BetweenWorld extends ConWorld {}

fact BetweenConstraints {...}

assert RabIgnore {

all b, b’: BetweenWorld, a’ : AbWorld, cl’ : set PayDetails | {

Rab (a’, b’, cl’)

Ignore (b, b’)

} implies some a : AbWorld {

Rab (a, b, cl’)

AbIgnore (a, a’)

}

}

it is a better idea to define constraints as predicates rather than facts :

sig AbWorld {abAuthPurse : NAME -> AbPurse}

pred Abstract (a : AbWorld) {

a.abAuthPurse : NAME -> lone AbPurse

... -- and abstract coin sharing constraints

}

pred Between (b : ConWorld) {...}

52

Then, the abstraction relation could be also defined “structurally”, with no references to the “con-
straints” :

pred Rab (a : AbWorld, b : BetweenWorld, cl : set PayDetails) {

a.abAuthPurse.AbPurse = b.conAuthPurse.ConPurse -- 1

all n : NAME | n in b.conAuthPurse.ConPurse implies {

one n.(a.abAuthPurse) -- 2

n.(a.abAuthPurse).balance = ...

n.(a.abAuthPurse).lost = ...

}

}

1. The authentic names are the same for the abstract as for the between world

2. for any authentic name, there is exactly one corresponding abstract purse

Then, the assertion could be stated as follows :

assert RabIgnore {

all b, b’: ConWorld, a, a’ : AbWorld, cl’ : set PayDetails | {

Between (b)

Between (b’)

Abstract (a’)

Rab (a’, b’, cl’)

Ignore (b, b’)

Rab (a, b, cl’)

} implies {

Abstract (a) -- 1

AbIgnore (a, a’)

}

}

It is worth noting that multiplicity constraints also have to be defined as additional constraints.

Then, the following lemma would avoid conclusion 1 to be checked each time :

assert RabEx {

all b : ConWorld, a : AbWorld, cl : set PayDetails | {

Rab (a, b, cl)

} implies {

Abstract (a)

}

}

That is, the abstraction relation (provided the chosenLost set of transactions consists in only
critically ambiguous transactions that may be lost, a constraint that has to be defined in the
abstraction relation) always defines an Abstract world starting from a Between. Or, in other
words, any object that would have the same structure of an Abstract world but would abstract a
given Between world through the abstraction relation, automatically verifies the constraints of an
Abstract world, thus is itself a “true” abstract world.

53

3.5 The identity of objects

The immediate question yielded by the issue of existential quantification is : can an object be
defined only through its properties ?

First, the notion of a property has to be made more clear. Indeed, it is important to understand
that signatures do not define records. That is why, for instance, the following assertion fails :

pred AbIgnore (w, w’ : AbWorld) {

w’.abAuthPurse = w.abAuthPurse

}

assert AbIgnoreIsIdent {

all w, w’ : AbWorld | AbIgnore (w, w’) implies w = w’

}

This assertion fails : it gives a counterexample with two different abstract worlds. Indeed, abstract
worlds are not records, but atoms, and they are simply related to the same objects by the abAu-
thPurse relation. This case raises the issue of the identity of objects in Alloy compared to the Z
idiom.

One solution could be to canonicalize signatures : that is, to introduce canonicalization constraints
which enforce two abstract worlds having the same properties to be equal :

fact canonAbPurse {

no disj p, p’ : AbWorld {

p.balance = p’.balance

p.lost = p’.lost

}

}

fact canonAbstract {

no disj w, w’ : AbWorld {

w’.abAuthPurse = w.abAuthPurse

}

}

The main purpose of this constraint would be to reduce the search space by eliminating redundant
cases when analyzing the specification. However, such a canonicalization constraint may be also
necessary for the Abstract purses, as the refinement relation could — and does, without this
constraint — give different purses having the same

But actually, the problem is deeper. Indeed, in Z, an abstract purse is only a record with two
fields, balance and lost. So, when two abstract purses have the same balance values and the same
lost values, then it would be impossible to distinguish them if we only considered that an AbWorld
could be a simple set of purses. That is why names were intended : to be able to define several
distinct purses with the same properties.

In Alloy, there is no such notion of field, and two distinct objects may be related to the same values
by the relations. In fact, we can get rid of names, confusing them with the purses they represent.

54

In some way, whereas Z represents records by default and needs names to make them individual
objects, it is the converse in Alloy, which represents objects by default and needs canonicalization
to pretend they are records.

Moreover, in Z, a purse in two different states may be represented by different records in different
abstract worlds but still associated to the same name. Then, confusing a name with a purse leads
to the fact that the balance of a purse not only depends on the purse, but also on the abstract
world which represents not only the set of authentic purses at a given time, but also the state in
which those purses are, along with their values. So, abstract purses and worlds can be redefined
as follows :

sig AbWorld {

abAuthPurse : set AbPurse

}

sig AbPurse {

balance, lost : Coin -> AbWorld

}

An abstract world is a state which is mapped to the set of its authentic purses through the
abAuthPurse relation. There are no more names. On the other hand, balance and lost are now
ternary relations, the tuples of which consist in an abstract purse, coins, and the abstract world
representing the state where we can consider that the coin belongs to the purse for the relevant
relation. Then, the AbTransfer operation could be defined as follows :

sig TransferDetails {

from, to : AbPurse,

details : set Coin

}

pred XiAbPurse (w, w’ : AbWorld, p : AbPurse) {

p <: balance.w’ = p <: balance.w

p <: lost.w’ = p <: lost.w

}

pred AbTransferOkay (w, w’ : AbWorld) {

some td : TransferDetails {

td.from + td.to in w.abAuthPurse

w’.abAuthPurse = w.abAuthPurse -- 1

XiAbPurse (w, w’, w.abAuthPurse - from - to) -- 2

td.value in td.from.balance.w -- 3

td.from.balance.w’ = td.from.balance.w - td.value

td.to.balance.w’ = td.to.balance.w’ + td.value

}

Then, formula 1 would not mean that the purses do not change their balance or lost. It only
means that the set of authentic purses does not change, regardless of their “properties”. To ensure
that the purses other than the “from” and the “to” purse won’t change their stores during the
transaction, formula 2 is required. It uses the predicate XiAbPurse defined above, which claims
that the binary relations balance.w’ and balance.w restricted to the authentic purses are the

55

same : the authentic purses except“from”and“to”are matched to the same coins. Then, constraint
3 ensures that the “from” purse has sufficient funds to make the transaction.

The only problem is that, once names disappeared, there seems to be no more link between abstract
purses and concrete purses. But thanks to the signature mechanism of Alloy, this problem may be
solved by defining a Purse signature and AbPurse and ConPurse as subsets of it :

sig Purse {}

sig AbPurse in Purse {

balance, lost : Coin -> AbWorld

}

sig ConPurse in Purse {

balance : Coin -> ConWorld,

payDetails : PayDetails -> ConWorld,

exLog : PayDetails -> ConWorld,

status : STATUS -> ConWorld,

nextSeqNo : SEQNO -> ConWorld

}

Note that the same method of getting rid of names has been used for the Concrete purse. We can
see that the name relation disappeared.

It is important to not define those signatures as extending Purse. Indeed, in that case we would
have that the sets of abstract purses and concrete purses are disjoint, then again without names
there would be no relation between them, and finally defining a Purse “mother signature” would
be useless. On the contrary, if AbPurse and ConPurse are defined as subsets of Purse, then they
may meet, and actually the abstraction relation will include this particular clause, where a is an
Abstract world and b is a Between world :

b.conAuthPurse = a.abAuthPurse

This clause actually states that the abstract purses are refined by themselves. Actually, what is
interesting in the abstraction relation is not the purses themselves, but their “properties”, that is
the way they appear in Abstract and in Between relations.

However, not all the objects of the Mondex case study can be treated this way. There are still
“true” records, for instance TransferDetails and PayDetails which represent respectively abstract
and concrete transaction details.

sig TransferDetails {

from, to : Purse,

value : set Coin

}

sig PayDetails extends TransferDetails {

fromSeqNo, toSeqNo : SEQNO

}

fact payDetailsCanon {

no disj p, p’ : PayDetails {

56

p’.from = p.from

p’.to = p.to

p’.fromSeqNo = p.fromSeqNo

p’.toSeqNo = p.toSeqNo

}

}

The canonicalization property is necessary because the StartTo and the StartFrom are independent
: during those operations, the “from” and the “to” purses have to define their pdAuth, the data
relevant to the transaction. It is necessary that the pdAuth of the “from” and the pdAuth of the
“to” be equal, as they are intended to be carried through the ether by req, val, ack messages, and
maybe logged into the archive.

57

4 Summary of the final model layout

This section describes the layout of the final Mondex specification in Alloy. It is divided into
several modules.

It is available on my website : http://www.eleves.ens.fr/home/ramanana/work/mondex/ . So
is the former model, which is not detailed here.

4.1 The Common module

This module defines the signatures that are going to be used by every module, namely the purses
(without properties) and the coins. It also defines the TransferDetails, because this signature is
extended by PayDetails in the Concrete.

module common

sig Purse {}

sig Coin {}

sig TransferDetails {

from, to : Purse,

value : set Coin

}

4.2 The Abstract module

This module imports the Common module.

It defines the abstract purses and the abstract world. It only structurally defines them, without
constraining them. Constraints, which are actually only coin sharing constraints, are defined as
predicates rather than facts, to be used later, in assertions themselves.

module a

sig AbPurse in Purse {

abBalance, abLost : Coin -> AbWorld

}

sig AbWorld {

abAuthPurse : set AbPurse

}

pred Abstract (a : AbWorld) {

no a.abAuthPurse.balance & a.abAuthPurse.lost

a.abAuthPurse <: (balance + lost) : lone AbPurse -> Coin

}

This module also defines the abstract operations (AbIgnore, AbTransfer).

It also defines the sanity-check predicate simulations for the Abstract model, and also the assertions
for security properties.

It also defines assertions to show the totality of the Abstract properties, and also to show that if
the pre-state of an Abstract operation is an Abstract world, then so is the post-state.

58

Common

Abstract
Concrete

Purse

Concrete

World

Between

World

Between

Operations

Concrete

Operations

Between Op.

consistency
Abstract/

Between refin.
Between/

Concrete refin.

Betw/Concrete

init. fin.
Canonicaliz.

Figure 12: Module dependencies of the final model

The arrows correspond to the “imports” relationship. It is worth noting that Between operations
do not import Between world : they are defined only structurally, independently on the

constraints.
Modules are grouped to improve graph lisibility.

59

4.3 The Concrete Purse module

This module imports the Common module. It also imports util/ordering to define the sequence
numbers along with their ordering relation.

It defines the concrete purses, hence also the sequence numbers, the statuses (confusing the two
“idle”statuses eaFrom and eaTo) and the transaction details, which have to extend TransferDetails

(defined in the Common module). It only structurally defines them, without constraining them.
Constraints are given in further modules, within worlds.

But the Concrete world is not defined yet. Though, a state must be defined to allow the purse
having different values for its properties depending on the state. To show that those values are in-
dependent on the global properties on a Concrete world (ether, archive), we define here a ConState

signature (without properties) which will be extended by the definition of the concrete world later
on.

module c

sig SEQNO {}

open util/ordering [SEQNO]

abstract sig STATUS {}

one sig eaFrom, epr, epv, epa extends STATUS {}

sig PayDetails extends TransferDetails {

fromSeqNo, toSeqNo : SEQNO

}

sig ConState {}

sig ConPurse {

balance : Coin -> ConState,

pdAuth : PayDetails -> ConState,

exLog : PayDetails -> ConState,

nextSeqNo : SEQNO -> ConState,

status : STATUS -> ConState

}

This module also defines concrete operations at the purse level, which will be used in both Concrete
and Between promotions to the world level. To this purpose, this module defines messages :
relevant to the transfer protocol (startFrom, startTo, req, val, ack) or the exLog clearing protocol
(readExceptionLog, exceptionLogResult, exceptionLogClear).

abstract sig MESSAGE {}

abstract sig CounterPartyDetails extends MESSAGE {

counterParty : ConPurse,

value : set Coin,

60

next : SEQNO

}

sig startFrom, startTo extends CounterPartyDetails {}

sig req extends MESSAGE {details : PayDetails}

sig val extends MESSAGE {details : PayDetails}

sig ack extends MESSAGE {details : PayDetails}

one sig readExceptionLog extends MESSAGE {}

sig exceptionLogResult extends MESSAGE {

name : ConPurse,

details : PayDetails

}

sig exceptionLogClear extends MESSAGE {

name : ConPurse,

pds : set PayDetails

}

4.4 The Concrete World module

This module imports the Common and the Concrete Purse modules.

It defines the Concrete World, and its “constraints” as predicates. The concrete world signature
extends ConState defined as the state signature for the concrete purses. The “constraints” include
the original constraints defined in the Z specification, and also multiplicity constraints for the
relations involving concrete purses. Indeed, one has to explicitly constraint the concrete purse to
have exactly one sequence number, one status, and one pending transaction (pdAuth — except if
the purse is idle) for each concrete world where it is authentic. However, they do not include coin
sharing constraints. The latter constraints are considered Between constraints.

module cw

open common

open c

sig ConWorld extends ConState {

conAuthPurse : set ConPurse,

ether : set MESSAGE,

archive : ConPurse -> PayDetails

}

pred Concrete (c : ConWorld) {...}

This module also defines a simulation predicate to show that there may exist a concrete world
satisfying Concrete.

4.5 The Between World module

This module (b) imports the Common, the Concrete Purse and the Concrete World modules.

61

It defines the Between World constraints, as predicates. To this purpose, it also defines auxiliary
functions such as definitelyLost, maybeLost.

In fact, as Between and Concrete world have the same structure, a Between world is not represented
by a signature ; such an object is only a Concrete world verifying the constraints of the Between
defined as predicates.

4.6 The Between World operations module and the Concrete World
operations module

These modules (bop, cop) import the Common, the Concrete Purse and the Concrete World mod-
ules.

bop defines the operations at the Between World level. However, it does not import the Between
World module, to show that operation definitions are independent on the constraints of Between
: they are defined only structurally. These operations work with a complete ether, losing no
messages.

cop defines the operations at the Concrete World level. These operations work with a lossy ether. It
additionally defines an assertion to show the totality of the Concrete operations (for any Concrete
pre-world and Concrete operation, there exists a Concrete post-world).

4.7 The Between and Concrete initialization and finalization module

This module (bcif) imports the Common module, the Concrete Purse module, the Concrete World
module, the Between World module, and also the Abstract World module.

It defines the initialization and finalization predicates. To the latter purpose, it needs the Abstract
World module because of the “global world”, which is simply a specific Abstract World.

It also defines simulation predicates to show that there exist initial states.

4.8 The Between operation consistency module

This module (bopc) imports the Common, the Concrete Purse, the Concrete World, the Between
World and the Between World operations modules.

It defines an assertion to show the totality of the Between operations (for any Concrete pre-world
and Concrete operation, there exists a Concrete post-world).

It also defines assertions to show that for any Between pre-state and any Between operation, the
post-state is a Between world.

It also defines assertions to show that the operations that first abort (StartFrom, StartTo, readEx-
ceptionLog, clearExceptionLog) may be decomposed into Abort followed by an elementary opera-
tion. Then, further operations about those theorems only involve more “atomic” operations, that
is assume that Abort has already been tackled.

62

4.9 The Abstract/Between refinement module

This module imports the Common, the Concrete Purse, the Concrete World, the Between World,
the Between World operations and the Abstract World modules.

It defines the Abstract/Between abstraction relation, splitting it into two parts : a “construction”
part (defining the abstract world), and a “condition” part (the applicability preconditions for the
abstraction relation).

module rab

open common

open c

open cw

open b

open bop

open a

pred RabCl_constr (a : AbWorld, b : ConWorld, cl : set PayDetails) {

a.abAuthPurse = b.conAuthPurse

abLost.a = ((b.conAuthPurse->(definitelyLost(b) + cl)) & ~from).value

abBalance.a = ((b.conAuthPurse->(maybeLost(b) - cl)) & ~to).value + balance.b

}

pred RabCl_cond (b : ConWorld, cl : set PayDetails) {

cl in maybeLost (b)

}

pred RabCl (a : AbWorld, b : ConWorld, cl : set PayDetails) {

RabCl_cond (b, cl)

RabCl_constr (a, b, cl)

}

Starting from those predicates, this module defines an assertion showing that any “abstract object”
defined through this relation is actually an Abstract world (verifying namely the abstract coin
sharing constraints) :

assert Rab_ex {

all b : ConWorld, cl : set PayDetails, a : AbWorld | {

RabCl (a, b, cl)

Between (b)

} implies Abstract (a)

}

This module also defines the variant Abstract/Between relation using coins. Then, it defines two
assertions to show that the definition is equivalent to the regular abstraction relation.

Then, the module defines the refinement assertions for each Between operation, using the variant
relation.

63

4.10 The Between/Concrete refinement module

This module imports the Common, the Concrete Purse, the Concrete World, the Between World,
the Concrete World operations and the Between World operations modules.

It defines the Between/Concrete abstraction relation, splitting it into two parts : a “generic” part
(defining the relation as the lossiness of the Concrete ether), and a “constructive” part (actually
constructing a Between post-state given the Concrete post-state, the ether of the pre-Between and
the output message of the operation.

module rbc

open common

open c

open cw

open b

open cop

open bop

open bcif

open a

pred Rbc (b, c : ConWorld) {

b.conAuthPurse = c.conAuthPurse

XiConPurse (b, c, b.conAuthPurse)

c.ether in b.ether

b.archive = c.archive

}

pred Rbc_constr (b’, c’ : ConWorld, eth : set MESSAGE, m_out : MESSAGE) {

b’.conAuthPurse = c’.conAuthPurse

XiConPurse (b’, c’, b’.conAuthPurse)

b’.ether = eth + m_out

b’.archive = c’.archive

}

Then, this module defines assertions to check the refinement relation for each operation.

It is not useful to check whether the structure computed by Rbc_constr is actually a Between
world. Indeed, thanks to the Between World consistency module, we already know that if the
pre-state of a Between operation is a Between world, then so is the post-state.

64

4.11 The Canonicalization module

Both Abstract/Between and Between/Concrete refinements, and also the Between world consis-
tency, may import the Canonicalization module (canon). This module defines axioms to canon-
icalize abstract and concrete worlds in order to try to reduce the search space when checking
theorems. This importation is “optional” as it can be disabled by commenting the corresponding
open statement, without any structural effect (as the module only defines facts).

fact ax_AbWorld_canon {

no disj a1, a2 : AbWorld {

a1.abAuthPurse = a2.abAuthPurse

XiAbPurse (a1, a2, a1.abAuthPurse)

} }

fact ax_ConWorld_canon {

no disj c1, c2 : ConWorld {

c1.conAuthPurse = c2.conAuthPurse

XiConPurse (c1, c2, c1.conAuthPurse)

c1.ether = c2.ether

c1.archive = c2.archive

} }

5 Results

5.1 Bugs found in the Z specification

The use of the Alloy Analyzer gave some counterexamples not related to the way of modeling the
Mondex specification in Alloy. Indeed, some of those counterexamples correspond to real bugs
in the original Z specification. Those bugs were discovered very early, in analysing the initial
specification. However, the optimized specification gave no further bugs.

5.1.1 Abort proof schema

Mostly, the Alloy method allows to directly check the specification without going through interme-
diate lemmas. But for the Abort/AbIgnore refinement, as a check on a scope of 8 did not terminate
after 2 days of computation, it was necessary to tackle a lemma. So, we had to go into the details
of the proof for this theorem.

The Abort operation can be split into three cases :

1. when the transaction has gone so far that aborting it leads to definitely losing the money

2. when the transaction has not gone far enough to decide

3. when there was no transaction to abort (the purse was idle)

65

Case 3 is easy to separate. Just discriminate on the status of the purse : if it is eaFrom, then the
“aborting” purse has no pending transaction, hence nothing to abort.

To distinguish between cases 1 and 2, the Z proof claims that it is enough to discriminate on
whether the transaction in progress is in maybeLost, that is critically ambiguous, arguing that in
this case, the “to” purse is necessarily aborting.

Actually, this is false, as the Alloy Analyzer generates a counterexample where the transaction in
progress is in maybeLost but the “from” purse is aborting, not the “to”. It is worth noting that
a transaction becomes lost only when the “to” purse has logged the transaction. For instance,
the “from” purse may abort after having sent the money whereas the “to” purse has still neither
received the value nor aborted.

The right condition that makes the proof work — and thus, the theorem hold, as expected — is
that the aborting purse is the “to” purse in epv. This is actually one of the two cases when the
transaction is in progress. The other case is when the aborting purse is the “from” purse in epa.
The latter case never causes money to be lost.

The false claim has been present only in the informal text of the proof : it has not been formalized
why splitting the proof of Abort through that condition worked. That is why this bug has not
been found by other methods, as I presented it at the workshop in May 2006.

5.1.2 Authenticity

The original Z specification requires that for any “from”purse expecting a request, its pdAuth, that
is the current transaction details held by the purse, must be authentic : its from field must match
the “from” purse.

But, even though a general constraint requires the purse to match either the from or the to field,
there is no more precise constraint for the “to” purse expecting the value, or even the “from”purse
expecting the acknowledgment.

Due to this lack, trying to check the Abort/AbIgnore refinement on the former specification yields
a counterexample. Actually, while trying to check this refinement with the method described
above, two counterexamples are (successively) generated in addition to the one related to the
Abort refinement itself :

• the one if the purse holds a pdAuth indicating that it is actually the from purse, but is in
epv (which is a “to” state)

• the other if the purse holds a pdAuth indicating that it is actually the to purse, but is in epa
(which is a “from” state).

This lack of authenticity creates an inconsistency in the actual role played by the purse in the
transaction : their status does not match the indication in the pdAuth.

Adding the corresponding contraints in the Concrete, or even in the Between world, solves this
problem and suppresses these counterexamples.

This bug has also been found by other methods like Z/Eves [FW06] or KIV [SGHR06].

66

5.1.3 Framing schema for operations that first abort

To make the proof easier, and to avoid showing several times that Abort refines AbIgnore, it is
wise to show that operations that first abort (that is : StartFrom, StartTo, ReadExceptionLog,
ClearExceptionLog) may be decomposed into elementary operations, the first being Abort.

The problem is that if such decomposition theorems are tackled with the Alloy Analyzer, they gen-
erate counterexamples ! Indeed, whereas StartTo and readExceptionLog output specific messages
(req and exceptionLogResult), Abort outputs a generic message called ⊥.

So there is necessary a bug in the Z specification. Actually, it can be found without a further check
with the Alloy Analyzer. The Z proof argues that those operations are defined through a framing
schema Φ, that is through a definition of the form :

∃∆ConPurse • Φ ∧ (AbortPurseOkay ; StartFromPurseEafromOkay)

where ; is the composition operation.

Then, the Z proof argues that this can be decomposed into two parts :

(∃∆ConPurse • Φ ∧ AbortPurseOkay) ; (∃∆ConPurse • Φ ∧ StartFromPurseEafromOkay)

using a lemma assuming that Φ is of the following form :

ConWorld
conAuthPurse : NAME 7→ ConPurse

Φ
∆ConWorld
∆ConPurse
n? : NAME

n? ∈ dom conAuthPurse
conAuthPurse n? = θConPurse
conAuthPurse ′ = conAuthPurse ⊕ {n? 7→ θConPurse ′}

But, even though the lemma itself might be true, actually the process is wrong because Φ is not
of the specified form ! Actually, the lemma neglects the non-functional fields of ConWorld , among
which is the ether ! This means that messages are not handled by this schema. This explains the
obtained counterexamples, for which the two “elementary operations” output different messages,
so that it is impossible to compose them.

The solution is to constrain the generic message ⊥ to be necessarily in the Between ether. In that
case, the composition does work, as the Abort operation does not add any new message to the
ether. The lemma would have to be adapted, for instance by handling some non-functional fields
(such as ether) and by showing a modified form of this lemma where the first operation does not
modify the non-functional fields but the second may do so.

5.2 Scopes and times of checks

The choice of the scope for a theorem is a very tough issue. Indeed, the user has to find a balance
between the time they want to spend checking an assertion, and the confidence level they require
for it.

67

3 4 5 6 7 8 9 10
1

10

100

1000

10000

100000

Evaluating scope for practical feasibility on one machine

B832_ignore

Rab_ex
Rbc_init

Rbc_fin
Rbc_startFrom

Rbc_ex

Scope

S
A

T
-S

o
lv

in
g

 T
im

e
 (

se
co

n
d

s)

Figure 13: Time exponentially increases with the scope

This graph was obtained with the former model.

At least, for each signature, the scope should be as large as the number of quantifications over
objects of this signature. Indeed, if the scope is not large enough, then hypotheses may not be
able to hold, and the theorem would be trivially true within this scope.

It is often admitted that a scope of 8 is reasonable for most models.

Actually, as regards the Mondex case study :

• Given an operation, it is sound to bound the number of abstract or concrete worlds to the
number of times they are quantified over in the formula. Indeed, outside the considered
operation, states are independent on each other.

• But this reasoning does not apply to purses : whereas it is sound to require at least 2 purses
(the “from” and the “to”), they do depend on other purses because of their local exLog. In
particular, even the computation of the corresponding abstract balance and lost does depend
on several purses. Moreover, it is also interesting to consider some unauthentic purses.

• Obviously, no bound on transactions or messages may be found either, for a similar reason.

The problem is that the time of checking exponentially increases with the scope.

Besides scope problems, intensive SAT-solving raises technical issues :

• machines have to be powerful enough to be able to tackle the problem. So the times of checks
also depend on the speed of the processor and the amount of memory.

68

• but even on a given machine, the same problem being tackled by different SAT-solvers may
take different times, or even crash.

Roughly speaking, SAT-solvings have been tackling from a few seconds to several hours, up to one
day, except for the Abort/Between refinement which has been stopped after two days of unsuccessful
computation.

Whereas the scopes have been successively checked for the former model, the final model has been
directly checked for a scope of 10 (modulo restrictions for worlds), except for the Abstract/Between
refinement and the Between model consistency where the scope has been limited to 8, as for the
former model. It is worth noting that in that case, the times are sensitively longer for the final
model than for the former model. On the one hand, this is due to the constraints, which were
too strong in the former model, and have been weakened in the final model. On the other hand,
it might be also due to the way the Alloy Analyzer constructs the search space. Indeed, in the
final model, there are almost no facts : all the “constraints” are defined by predicates then used as
hypotheses in implication formulae in assertions. Thus, the Alloy Analyzer might have to consider
every possible combination of the atoms to define relations.

In some way, the time of computation shows how important theorems are, but not always how diffi-
cult they are. Indeed, some obvious-looking theorems such as the Between/Concrete initialization
refinement take quite a long time to be checked.

5.3 Limits to the use of the Alloy Analyzer

Because Alloy is based on first-order, even despite transitive closures, finiteness properties have
to be dropped. But we saw that, as regards the Mondex case study, finiteness properties may be
shown indirectly by showing, for instance, that the symmetric difference between a post-set and a
pre-set is a bounded finite set. As for the finiteness of abstract (or concrete) authentic purses, or
This is true by the definition of operations

But what is more annoying is the finite scope. Indeed, the checks led with the Alloy Analyzer only
show that the theorems hold for a certain number of atoms.

A first attempt could be to try to increase scopes by improving ambient conditions (machines,
etc.), or even by using the Kodkod tool currently being developed by SDG. But those methods are
still bounded, and do not generalize.

We could also try to show a small model theorem , a meta-theorem which could in some way “com-
pute a minimal scope”, or threshold, for signatures. For instance Lee Momtahan’s idea [Mom04]
would be to show that, starting from a scope, it is possible to compute a threshold for one signa-
ture, for which any greater scope than this threshold would be automatically true, other signatures
keeping the same scope. But this approach is still not powerful enough because :

• the extended signature may not be quantified over (except skolemizable quantifications)

• only one signature scope may be extended at the same time

So, it could be wise to get rid of the scope issue and to choose a more direct approach of really
proving assertions. Then this will require the use of external tools, that is other than the Alloy

69

Scope → 5 6 7 8 9 10 Notes

↓Theorem

Abstract Security Properties 1:47 berkmin

with AbTransferOkay only 0:09 0:17 0:21 berkmin

Totality of Abstract Operations 0:24 minisat

Abstract constr. & operations

AbIgnore 0:50 minisat

AbTransfer 8:41 minisat

Totality of Between operations 3:47 minisat

Between constraints & operations

Ignore 5:42:14 minisat

5:43 minisat, but 2 ConState

4:13 1:40:22 minisat, but 2 ConState, canon.

Increase 20:35:33 minisat, but 2 ConState, canon.

Abort 20:08:46 minisat

4:22:24 minisat, but 2 ConWorld

19:10:12 siege v4, but 2 ConWorld, canon.

StartFrom 13:16:13 siege v4, but 2 ConWorld, canon.

StartTo 5:10:13 siege v4, but 2 ConWorld, canon.

Req 20:26:45 siege v4, but 2 ConWorld, canon.

Val 8:38:24 siege v4, but 2 ConWorld, canon.

Ack 14:42:13 siege v4, but 2 ConWorld, canon.

ReadExceptionLog 28:13:00 siege v4, but 2 ConWorld, canon.

ClearExceptionLog 6:49:54 siege v4, but 2 ConWorld, canon.

AuthorizeExLogClear 26:36:53 siege v4, but 2 ConWorld, canon.

Archive 57:49 siege v4, but 2 ConWorld, canon.

Decomp. of operations first aborting

StartFrom 2:36 minisat

StartTo 1:15 minisat

ReadExceptionLog 1:51 minisat

ClearExceptionLog 1:28 minisat

Figure 14: Scopes and times for the final model

70

Scope → 5 6 7 8 9 10 Notes

↓ Theorem

Abstract/Between ref. and coins

chosenLost can be found by coins 52:41 siege v4

coins can be found if chosenLost exists 57:34 siege v4

2:55 22:30 minisat

Abstraction relation sound 1:45 9:19 9:48 31:28 10:25:45 minisat

Abstract/Between refinement

Ignore 0:46 5:15 27:40 1:47:03 minisat, with chosenLost

17:09 minisat, but 2 AbWorld, 2 ConState

with coins

7:20 38:14 siege v4, but 2 AbWorld, 2 Constate,

with coins, canonicalized

Increase 14:01 58:23 idem

42:12 idem but not canonicalized

Abort 17:04:03 siege v4

36:07 siege v4, but 2 AbWorld, 2 ConState

16:00 1:20:34 idem canonicalized

StartFrom 48:05 idem as above

StartTo 1:01:23 idem

Req 42:26 idem

Val 25:35 idem

Ack 40:44 idem

ReadExceptionLog 38:06 idem

ClearExceptionLog 35:01 idem

AuthorizeExLogClear 18:34 idem

Archive 29:01 idem

Between/Concrete refinement

Initialization 2:46:47 siege v4, but 2 ConState, 1 AbWorld

Finalization 14:01 idem

Ignore 1:26 minisat

Increase 2:32 minisat

Abort 2:11 minisat

StartFrom 3:27:36 siege v4, but 5 ConState

StartTo 1:43:28 siege v4, but 5 ConState

Req 2:18 berkmin

Val 2:06 berkmin

Ack 1:59 berkmin

ReadExceptionLog 2:44 berkmin

ClearExceptionLog 2:46 berkmin

AuthorizeExLogClear 1:56 berkmin

Archive 1:53 berkmin

Figure 15: Scopes and times for the final model (continued)

71

Analyzer. It would be also an interesting way to show that the Alloy specification language can
be tacked with different methods, not only model-finding.

Prioni [AKMR03] translates an Alloy specification into the input language of the Athena [ath]
proof assistant, which is based on a logic with powerful relational calculus. But the problem is
that Athena, as a proof assistant, is not automated enough.

It makes sense to consider that the more expressive the logic, the less automated the tool. Then
comes up an apparently interesting solution : automated first-order theorem provers.

Indeed, if finiteness properties are dropped, then it is interesting to point out the fact that the
Mondex case study can be entirely written as a first-order theory, and even without transitive
closures. Actually, any higher-order quantification such as the quantification over a set of trans-
action details to compute its clear code, can be turned into first-order, for instance by considering
the clear code itself ; moreover, transitive closures are not useful as operations are considered
individually : there are no theorems about sequences of operations.

72

6 Using first-order theorem provers with Alloy

As the Mondex case study (minus finiteness properties) can be entirely written in first-order logic,
even without transitive closures, it could be interesting to really prove theorems using an automated
first-order theorem prover, instead of simply checking it with a model-finder.

There are two possible approaches :

• the usual approach, where Alloy atoms are directly mapped to FOL atoms

• the “lifted” approach, where FOL atoms are Alloy relations. This requires axiomatizing a
first-order relational theory

6.1 The usual approach : Alloy atoms as FOL atoms

A first approach is to consider Alloy atoms as atoms of the first-order theory. Then, relations are
expressible using predicates telling whether their argument is an element of the relation.

I wrote an Alloy parser, in Objective Caml [oca]. It parses part of the Alloy syntax (but does not
handle transitive closures), and outputs a first-order theory in either TPTP format, a format de-
veloped to appreciate, through competitions , the capabilities of theorem provers such as Vampire,
E [e] or Theo, or DFG format, for use with theorem provers such as SPASS [spa]. It is available
on my website, http://www.eleves.ens.fr/home/ramanana/work/mondex/.

6.1.1 Principle

Signatures and relations are defined as predicate symbols. For instance, for the Abstract world, we
obtain the following predicate symbols :

• Coin,Purse; AbPurse; AbWorld unary predicates,

• balance, lost , abAuthPurse binary predicates,

These predicate symbols are defined along with constraints over them, to model the signature
inclusion and extension mechanisms, and also the “typing” constraints for relations :

• ∀ x : ¬ (Coin (x) ∧ Purse (x)) ∧ ¬ ((Coin (x) ∨ Purse (x)) ∧ AbWorld (x)): signatures Coin,
Purse, AbWorld are disjoint.

• ∀ x : AbPurse (x)⇒ Purse (x): signature AbPurse included in Purse.

• ∀ x , y : balance (x , y)⇒ (AbPurse (x) ∧ Coin (y)) : relation balance associates only abstract
purses with coins. Similar constraints are generated for lost and abAuthPurse.

Then, each additional fact is added as an axiom of the FOL theory, whereas each assertion is added
as a conjecture.

Relations are mapped to the predicates representing them as follows, dropping transitive closures
(impossible to express in FOL) :

73

• [S] (−→x) ≡ S (−→x) if S is a signature or a relation

• [y] (x) ≡ x = y if y is a variable (necessarily representing an atom)

• [U + V] (−→x) ≡ [U] (−→x) ∨ [V] (−→x) (union)

• [U&V] (−→x) ≡ [U] (−→x) ∧ [V] (−→x)(intersection)

• [U → V] (−→x ,−→y) ≡ [U] (−→x)∧ [V] (−→y) (Cartesian product) if the tuples have the right arities

• [U .V] (−→x ,−→y) ≡ ∃ t : [U] (−→x , t) ∧ [V] (t ,−→y) (join)

Logical formulae are taken quite “as is”, except that there is no skolemisation : quantifications
must be first-order.

But Alloy auxiliary predicates and functions have to be inlined, as they take relations, not neces-
sarily atoms, as arguments. This makes the formulae dramatically grow.

6.1.2 Simplifications

Inlinings make the formulae grow. But in particular, each join operator introduces an existential
quantifier : the target formula may have up to 22000 existential quantifiers (Abstract/Between
refinement) !

Fortunately most of them generate formulae of the form ∃ t : t = y ∧ P (−→z). In that case, the
obvious simplification to P (−→z [t ← y]) allows deleting, roughly speaking, half of those quantifiers.
In the same way, such a simplification applies to formulae of the form ∀ t : t = y ⇒ P (−→z).

It is possible to increase the simplification level through introducing functions, that is taking into
account the fact that some relations are defined functional. Only binary functional relations are
implemented. Then, terms appear in the FOL-formula. Thanks to this simplification, roughly
speaking the two thirds of the existential quantifiers disappear.

Thanks to those simplifications, some theorems about the Abstract model, such as the trivial
AbIgnore inv (stating that the post-state of an AbIgnore operation is an Abstract world) or the
totality of transfer operations, can be proved with Vampire or SPASS, in a couple of seconds.
Security properties also get proved, but need variable amount of time, up to 20 minutes. How-
ever, splitting the latter theorem into Okay (achieved) and Lost transactions yields two theorems
provable in a couple of seconds each.

Thus comes up the idea of trying to break the formulae in several parts. The following cases would
be breakable :

• P ∧Q is breakable into the two parts P and Q.

• ∀−→x : P (−→x) ∧Q (−→x) is breakable into the two parts ∀−→x : P (−→x) and ∀−→x : Q (−→x).

• If −→y and −→x are independent on each other, then∃−→x : P (−→x) ∧ Q (−→y) is breakable into the
two parts ∃−→x : P (−→x) and Q (−→y).

74

As it is possible to put quantifiers as close as possible to the variables they quantify over (in
other words, on the contrary, extract subformulae under quantifiers that are independent on the
quantified variables), the idea is to break a formula into several parts of the form (∀

∨

∃
∧

) ∗

But this form requires to use the distributivity of ∨ through ∧. Subsequently, contrary to what
is expected of a simplification algorithm, the formula explodes, despite adding an algorithm of
subsumption detection. Worse : the “simplification” process does not terminate in a reasonable
amount of time. So this “simplification” has to be abandoned.

More generally, it is necessary to find another FOL interpretation of Alloy which could use less
variables and less quantifiers.

6.2 The “lifted” way : Alloy relations as FOL atoms

To prevent formulae from growing, the idea could be to axiomatize a first-order relational theory
where the FOL atoms would be Alloy relations themselves :

• Relations are of a given arity : they may only contain tuples of certain arity

• Given a specification in Alloy, it is possible to compute an upper bound over the arity of the
relations considered in the specification

From those main ideas, we can axiomatize the relation theory in a finite number of axioms given
the maximal arity of our relations. The basis is a binary predicate symbol representing ∈, meant
to be a restriction of ⊆ to singletons.

“General” set theory is defined as follows :

• ∀ r : singl (r) ≡ ∀ x : x ∈ r ⇔ x = r : a relation is defined to be a singleton if and only if
the only relation that belongs (∈) to it is exactly itself.

• ∀ x , r : x ∈ r ⇒ singl (x): only singletons can belong to relations.

• ∀ x : x 6∈ none : the empty relation has no elements.

• ∀ a, b : a ⊆ b ≡∀ x : x ∈ a ⇒ x ∈ b : definition of inclusion

• ∀ a, b : (a ⊆ b ∧ b ⊆ a)⇔ a = b : inclusion is reflexive and antisymmetric (extensionality)

Then, relations are partitioned into almost disjoint classes that are the arities :

•
∧

j
arityj (none) : the empty relation is said to be of any arity (hence the almost disjoint

arity classes)

• ∀ x :

(

arityi (x) ∧
∨

j<i

arityj (x)

)

⇒ x = none : a relation of two distinct arities is empty

• ∀ r : arityi (r) ⇔ (∀ s : s ⊆ r ⇒ arityi (s)) : any subset of a relation has the same arity as
the relation

75

Then, we define tuples as a predicate symbol to model the decomposition of a singleton of arity
i into a tuple of i singletons of arity 1. For each arity, there are 5 axioms to define the tuple
predicate :

• ∀ x : (singl (x) ∧ arityi (x))⇒ ∃ (yj)j<i
: tuplei (x ,−→y) : any singleton of arity i is decompos-

able into a tuple of i elements.

• ∀ (yj)j<i
:
∧

j<i

(singl (yj) ∧ arity1 (yj)) ⇒ ∃ x : tuplei (x ,−→y) : for any i singletons of arity 1,

their tuple may be constructed.

• ∀ x , (yj)j<i
: tuplei (x ,−→y) ⇒

(

singl (x) ∧ arityi (x) ∧
∧

j<i

(singl (yj) ∧ arity1 (yj))

)

: for any

decomposition, the decomposed tuple is a singleton of arity i, and each of the components is
a singleton of arity 1.

• ∀ x , (yj)j<i
, (zj)j<i

: (tuplei (x ,−→y) ∧ tuplei (x ,−→z))⇒ −→y = −→z : the decomposition of a tuple
is unique

• ∀ x ,w , (yj)j<i
: (tuplei (x ,−→y) ∧ tuplei (w ,−→y)) ⇒ x = w : a tuple construction defines a

unique tuple

The case i = 1 requires a further axiom : ∀ x , y : tuple1 (x , y) ⇒ x = y (the decomposition of a
“tuple” of arity 1 is necessary itself)

Given a specification in Alloy, it is possible to tag each relational construct (join, union, etc.) by
the arities of its arguments. Then, such a construct is constrained to define empty relations if the
arities of its arguments do not match.

Even though this theory is enough to model the relational theory in Alloy (without the transitive
closure), it still remains difficult to prove even basic theorems such as “the cartesian product of two
singletons equals the tuple they form”. Such a proof is achieved through defining lemmas by hand.
This highly jeopardizes the hope of trying to automatically prove arbitrarily complicated theorems
in this theory, in particular the Mondex case study, despite the fact that Mondex relations are of
arity at most 3.

6.3 Results and limits

Thanks to the first method, theorems about the Abstract model only have been proven : totality
of the Abstract operations, security properties and invariance of the Abstract constraints through
the Abstract operations. If the theorems about Transfer operations are splitted into the two parts
Okay (achieved transaction) and Lost, then each theorem takes a couple of seconds to be proved
with SPASS or Vampire. However, other theorem provers such as E or Theo failed : E crashed
each time, by lack of memory, whereas Theo did not terminate after several days — almost one
week — of computation.

Unfortunately, the second method did not even achieve to prove those theorems. This was mainly
due to the fact that lemmas would have been necessary to carry on the proof. But the use of lemmas
completely breaks the automation, unless those lemmas are themselves automatically generated.

76

Beyond the problem of lemmas, the logical expressiveness of those theorem provers is limited to
FOL : it is even less powerful than the Alloy specification language. Even transitive closures are
not available. But as the Mondex case study (without finiteness properties) does not need them,
the FOL method could have been interesting insofar as it allowed to rigorously prove theorems
beyond the limitations of scope imposed by the Alloy Analyzer.

77

7 Conclusion and future work

This internship allowed me to learn how to design a specification, and more generally to discover
another aspect of formal methods, namely raising automation as a main issue. When I came at
MIT in March, I had to learn Z and Alloy quite from scratch. The way of designing specifications
with Alloy is very user-friendly, as the language is easily understandable and has no graphical issues
such as Z’s ∆, θ or Ξ : Alloy’s notations are quite intuitive. But intuition can also deceive the
user through the join operator, which is not a field dereference operator, hence all the conceptual
problems between Z and Alloy about representing “records” and, more generally, the issue of the
identity of objects. However, thanks to the point of view, I have been able to design a more
rigorous Mondex model based on Alloy’s “idiom” rather than Z’s.

The Alloy formal method, based on first-order logic with transitive closures, allowed to specify
the Mondex case study almost entirely, that is just dropping the properties about finiteness, even
though those properties may be shown indirectly. Then, without those properties, this work
shows that the Mondex case study can be rewritten as a first-order theory, even without transitive
closures.

Despite some implementation issues that should be improved in its successor version currently
under development by the SDG group, the use of the Alloy Analyzer allows to rapidly and efficiently
develop a specification ; thanks to model-finding, sanity checks are made in a straightforward way.
The Alloy Analyzer also allowed us to find bugs in the original Z specification. Those bugs may be
relevant to the specification itself as much as to the proof, or even to informal comments guiding
the proof. Some those bugs such as the authenticity bug have also been found by other methods
such as Z/Eves or KIV, but not all of them, such as the AbIgnore/Abort refinement proof structure.
So the Alloy Analyzer can fairly compete in finding bugs in specifications.

However, beyond finding those bugs, the Alloy Analyzer itself does not provide any proof of the
theorems, only a confidence level depending on the size of the search space. But although this is
often considered to be enough in industrial software verification, it would not fit to try to prove
security-sensitive specifications such as the Mondex case study.

So it is necessary to extend the results obtained with the Alloy Analyzer. Lee Momtahan’s work
upon a small model theorem [Mom04] could be a first step towards generalizing results given by
the model-finder. But its too strong constraints over the specification, requiring signatures to
not be quantified at all, does not fit the Mondex case study. So, other formal methods have to
complete the use of the Alloy Analyzer. But, besides Prioni [AKMR03] which intends to use Alloy
specifications with the Athena proof assistant, which is not fully automatic, trying to handle Alloy
models in first-order logic could be also interesting. For more general cases than Mondex which
might use transitive closures, Tal Lev Ami’s work could represent an interesting first-order logic
complement to Alloy, as it moreover tries to handle transitive closures [LAIR+05]. But to be able
to practically use theorem provers, it is necessary to improve the conception of automated theorem
provers, which is the concern raised by competitions such as TPTP [tpt].

It could be also interesting to develop syntactic analysis of Alloy specifications, to automatize
relational calculus and reasoning directly at the formula level, which would make the constraint
of finite scope irrelevant. Integrating such an idea could dramatically increase the fame of Alloy,
which is already very popular in the industry thanks to its automated Alloy Analyzer. But,
with the coming Kodkod, an improved engine for the Alloy Analyzer, so still based on model-
finding through SAT-solving, the SDG group would like to extend the capabilities of the Alloy

78

specification language through adding scripting features. So, one could fear from the fact that
such features would become an issue for groups wishing to use the Alloy specification language
with other methods than model-finding. However, according to the SDG members, those scripting
features will keep the expressivity of the Alloy specification language invariant.

79

References

[AA] The Alloy Analyzer. http://alloy.mit.edu.

[Abr96a] Jean-René Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, 1996.

[Abr96b] Jean-René Abrial. Extending B without changing it (for developing distributed sys-
tems). In Proceedings of the 1st Conference on the B method, Putting into Practice
methods and tools for information system design, pages 169–191. Habrias, 1996.

[AKMR03] Konstantine Arkoudas, Sarfraz Khurshid, Darko Marinov, and Martin Rinard. Inte-
grating Model-Checking and Theorem Proving for Relational Reasoning. In 7th Inter-
national Seminar on Relational Methods in Computer Science (RelMiCS), 2003.

[ath] The Athena interactive theorem proving system. http://www.cag.csail.mit.edu/

~kostas/dpls/athena.

[BY06] Michael Butler and Divakar Yadav. Applying Event-B to Mondex. Slides for the 3rd
VSR-net workshop, 5 2006.

[CC04] David Crocker and Judith Carlton. Perfect Developer: what it is and what it does.
FACS Facts: Newsletter of the BCS Formal Aspects of Computer Science special in-
terest group, 11 2004.

[Com] UK Computing Research Commitee. Grand Challenges in Computer Research. http:
//www.ukcrc.org.uk/grand_challenges/index.cfm.

[Coq] The Coq proof assistant. http://coq.inria.fr.

[Cro06] David Crocker. Mondex Revisited with Perfect Developer. Slides for the 2nd VSR-net
Workshop, 1 2006.

[e] The E Equational Theorem Prover. http://www4.in.tum.de/~schulz/WORK/

eprover.html.

[FW06] Leo Freitas and Jim Woodcock. Mondex in Z/Eves. Slides for the 3rd VSR-net work-
shop, 5 2006.

[GC6] Grand Challenge 6 : Dependable Systems Evolution. http://www.fmnet.info/gc6.

[GH06] Chris George and Anne Haxthausen. Specification and Proof of the Mondex Electronic
Purse. Slides of the 3rd VSR-net Workshop, 5 2006.

[GHH+95] Chris George, Anne E. Haxthausen, Steven Hughes, Robert Milae, Soren Prehn, and
Jan Storbank Pedersen. The RAISE Development Method. Prentice Hall, 1995.

[Gog06] Martin Gogolla. Use OCL for Mondex. Slides for the 3rd VSR-net workshop, 5 2006.

[Jac00] Daniel Jackson. Automating first-order relational logic. In Proceedings of ACM SIG-
SOFT Conferences on Foundations of Software Engineering, 11 2000.

80

[Jac02] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology, 11(2):256–290, 2002.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language and Analysis. The MIT Press,
2006.

[Jon90] Cliff Jones. Systematic Software Development using VDM. Prentice Hall, 1990.

[Jon06] Cliff Jones. VSR Mondex Meeting. Slides of the 2nd VSR-net Workshop, 1 2006.

[JOW06] Cliff Jones, Peter O’Hearn, and Jim Woodcock. Verified Software: A Grand Challenge.
Computer, 39(4):93–95, 4 2006.

[KIV] KIV, the Karlsruhe Interactive Verifier. http://i11www.iti.uni-karlsruhe.de/

~kiv.

[LAIR+05] Tal Lev-Ami, Neil Immerman, Thomas W. Reps, Shmuel Sagiv, S Srivastava, and
Greta Yorsh. Simulating Reachability Using First-Order Logic with Applications to
Verification of Linked Data Structures. In Proceedings of 20th International Conference
on Automated Deduction, pages 99–115, 2005.

[MCS] The Mondex Case Study. http://qpq.csl.sri.com/vsr/private/repository/

MondexCaseStudy.

[Mno] The Moneo electronic purse system. http://www.moneo.net.

[Mom04] Lee Momtahan. Towards a Small Model Theorem for Data Independent Systems.
Electronic Notes in Theoretical Computer Science, 128(6), 3 2004.

[Mon] The Mondex electronic purse system. http://www.mondex.com.

[oca] The Objective Caml functional programming language. http://caml.inria.fr/

ocaml.

[PD] Perfect Developer. http://www.eschertech.com.

[SCW00] Susan Stepney, David Cooper, and Jim Woodcock. An electronic purse: Specification,
Refinement and Proof. Technical Monograph PRG–126. Oxford University Computing
Laboratory, Programming Research Group, 2000.

[SGHR06] Gerhard Schellhorn, Holger Grandy, Dominik Haneberg, and Wolfgang Reif. The
mondex challenge: Machine-checked proofs for an electronic purse. Technical re-
port, Lehrstuhl für Softwaretechnik und Programmiersprachen, Universität Augsburg,
2 2006.

[spa] SPASS: An Automated Theorem Prover for First-Order Logic with Equality. http:

//spass.mpi-sb.mpg.de.

[Spi92] J. Michael Spivey. The Z notation: a Reference Manual. Prentice Hall, 2nd edition
edition, 1992.

[tpt] Thousands of Problems for Theorem Provers. http://www.cs.miami.edu/~tptp.

81

[VSR] VSR-net: A Network for the Verified Software Repository. http://www.fmnet.info/
gc6.

[WD96] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement and Proof. Prentice
Hall, 1996.

[WK99] Jos Warmer and Anneke Kleppe. OCL: The constraint language of the UML. Journal
of Object-Oriented Programming, 12:10–13, 3 1999.

[ZE] The Z/Eves System. http://nexp.cs.pdx.edu/bart/omse/omse522-winter2002/

nfp/sw/z-eves/z-eves.html.

82

List of Figures

1 Abstract (atomic) transactions : successful, lost. 9

2 Concrete 5-step protocol, with the statuses of the purses depending on the operations. 11

3 Abort operation : cases when money is lost or not. 14

4 Clearing process . 15

5 Backwards refinement proof for Abstract/Between 18

6 Abstraction of the typical sequence of Between operations defining a transaction . . 19

7 Forwards refinement for Between/Concrete . 20

8 Between/Concrete initialization and finalization. 21

9 Principle of model-fiinding through SAT-solving with the Alloy Analyzer 38

10 Counterexample to the IncreaseImpliesIgnore assertion 40

11 Example to the Increase predicate . 42

12 Module dependencies of the final model . 59

13 Time exponentially increases with the scope . 68

14 Scopes and times for the final model . 70

15 Scopes and times for the final model (continued) . 71

83

