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Quantum signatures of the mixed classical phase space

for three interacting particles in a circular trap
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(Dated: April 30, 2024)

We study theoretically two consequences of the mixed classical phase space for three repulsively–
interacting bosonic particles in a circular trap. First, we show that the energy levels of the corre-
sponding quantum system are well described by a Berry–Robnik distribution. Second, we identify
stationary quantum states whose density is enhanced along the stable classical periodic trajecto-
ries, and calculate their energies and wavefunctions using the semiclassical Einstein–Brillouin–Keller
(EBK) theory. Our EBK results are in excellent agreement with our full–fledged finite–element nu-
merics. We discuss the impact of discrete symmetries, including bosonic exchange symmetry, on
these classically localized states. They are within experimental reach, and occur in the same range
of energies as the quantum scar reported in our previous work [Phys. Rev. A 107, 022217 (2023)].

I. INTRODUCTION

The suppression of ergodicity in quantum systems has
long been under intense scrutiny [1, chap. 8], and atomic
systems are very well suited to its investigation Refs. [2,
chap. 4]. The mechanisms leading to it in many–body
systems, relying on e.g. integrability [3], the presence of
disorder [4], many–body scarring [5, 6], or periodic driv-
ing [7], hold promises for quantum information processing
over long times, but may hinder cooling mechanisms [8].
In the case of Hamiltonian systems, comparing the

quantum system to its classical analog has been very
fruitful in identifying such mechanisms [9]. Most clas-
sical systems have a mixed phase space hosting both er-
godic and non–ergodic trajectories. Ergodic trajectories
densely cover a substantial fraction of the energy sur-
face; non–ergodic ones wind around tori found within
the Kolmogorov–Arnold–Moser (KAM) regions of phase
space, well described using KAM theory [10, appendix 8].
Ergodicity in the quantum system may be suppressed in a
phase space region corresponding to classical ergodic mo-
tion, e.g. by a quantum scar [11]. The quantum system is
also known to exhibit regular levels reflecting the classical
non–ergodic trajectories [9, Sec. 4]. These levels may be
studied using the semiclassical Einstein–Brillouin–Keller
(EBK) theory [12, 13]. In contrast to the semiclassi-
cal approaches applicable to the classically chaotic re-
gion, which mainly provide information concerning the
density of states [14, chap. 17], EBK theory applied to
the classical KAM regions yields both quantum energy
eigenvalues and eigenfunctions constructed from classi-
cally non–ergodic trajectories. The full energy spectrum,
including both the regular levels to which EBK theory
applies and the remaining levels related to chaotic dy-
namics [9, Sec. 5], exhibits energy level statistics which
significantly deviate [15, 16] from both the Poisson and
Wigner distributions respectively associated with classi-
cal integrability and chaos [14, chap. 16].

∗ Electronic address: david.papoular@cyu.fr

Mixed classical phase spaces are relevant for the de-
scription of many–body systems. The many–body scar
affecting the spin dynamics of a Rydberg atom chain ob-
served in Ref. [5] provides a recent example. The clas-
sical analog system, whose construction is involved [17],
exhibits mixed phase space, and KAM regions play a key
role in the many–body quantum revivals [18]. Motivated
by these recent developments, we introduced in our previ-
ous article [19] the system of three interacting particles in
a circular trap. We analyzed this experimentally accessi-
ble system through well–established theories applied to a
phase space whose dimension matches the number of in-
dependent parameters introduced in Ref. [18], and iden-
tified a quantum scar affecting the motion of the atoms.
In this paper, we analyze the role of its mixed clas-

sical phase space. First, we show that the parameters
we investigated in Ref. [19] fall within a range where the
quantum energy level statistics are well described by the
Berry–Robnik distribution [16]. Then, we identify quan-
tum states whose probability density is enhanced near
stable classical periodic trajectories. Using EBK theory,
we characterize their energy eigenvalues and explicitly
construct their wavefunctions. Our results are in ex-
cellent agreement with our full–fledged numerical solu-
tion of the Schrödinger equation using the finite–element
method. We highlight the role of discrete symmetries,
including bosonic echange symmetry, and their observ-
able consequence, on the energies and wavefunctions of
the considered localized states.
We formulate our analysis in terms of trapped Ryd-

berg atoms, made accessible by recent experimental ad-
vances [20, 21]. However, similar phenomena are ex-
pected to occur with systems of magnetic atoms [22] or
polar molecules [23] exhibiting the same symmetries. The
classically–localized states [24, chap. 22] identified in the
present paper occur for the same parameters and energy
range as the previously identified quantum scar [19]. One
may address one effect or the other simply by changing
the initial condition defining the atomic motion. Hence,
the simple, well–controlled atomic system we are propos-
ing offers an opportunity for a detailed experimental com-
parison of the two effects.

http://arxiv.org/abs/2404.18265v1
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(c) Trajectory A
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(e) Trajectory C

FIG. 1. (a) The periodic trajectories A0, A1, A2 (straight blue lines) and C+, C− (the closed green trajectory is followed
anticlockwise for C+ and clockwise for C−), shown in the (x, y) plane for the energy ǫ = 7C6/R

6. The dotted brown line shows
the classically accessible region. The inset shows the considered physical system: three interacting particles in a circular trap.
(b) Periodic trajectory A0 as a function of time for ǫ = 7C6/R

6 in terms of its coordinates x(t) (solid line) and y(t) (dashed
line). (c) Period TA(ǫ) of trajectory A as a function of the energy ǫ. Panels (d) and (e) show the corresponding quantities for
trajectory C+. Trajectories A and C are stable for the considered range of energies.

The paper is organized as follows. In Sec. II, we in-
troduce the considered system, and briefly summarize its
properties described in detail in our previous article [19].
In Sec. III, we show that its quantum energy levels are
well represented by the Berry–Robnik distribution. In
Sec. IV, we apply EBK theory to identify the energy lev-
els for the quantum states localized near stable periodic
trajectories and construct the corresponding EBK wave-
functions, and we compare them to our finite–element
numerical results. In Sec. V, we discuss experimental
prospects. The article ends with the conclusive Sec. VI.

II. THE CONSIDERED SYSTEM

The system we analyze has been introduced in our pre-
vious article [19]. We briefly summarize its key features.
We consider three identical bosonic particles of massm

in a circular trap of radius R (Fig. 1(a),inset). We assume
that the interaction v(dij) between the particles i and j
only depends on their distance dij = 2R| sin[(θi−θj)/2]|.
For circular Rydberg atoms whose electronic angular mo-
menta are perpendicular to the plane, v(dij) = C6/d

6
ij

with C6 > 0. We introduce the Jacobi coordinates
x = [(θ1 + θ2)/2 − θ3 + π]/

√
3, y = (θ2 − θ1)/2 − π/3,

z = (θ1 + θ2 + θ3)/3 − 2π/3, and their conjugate mo-
menta px, py, pz (which carry the unit of action). Then,
the Hamiltonian reads H = p2z/(3mR

2) +H2D, where

H2D =
p2x + p2y
4mR2

+ V (x, y) . (1)

Here, V (x, y) = v(x, y)C6/R
6, with

v(x, y) = [sin−6(π/3 + y) + sin−6(π/3 + x
√
3/2− y/2)

+ sin−6(π/3− x
√
3/2− y/2)]/64− 1/9, (2)

energies being measured from the minimum V (0). The
Hamiltonian H may be understood as describing either a

classical system or its quantum counterpart. It is invari-
ant under the point group C3v, generated by the rotation
of order 3 about the axis (x = y = 0) and the reflection
in the plane (x = 0). The free motion of the coordinate z
reflects the conservation of the total angular momentum
pz. Once the latter is fixed, the system is reduced to an
effective point in the two–dimensional (2D) plane (x, y)
within the equilateral triangle ABC of Fig. 1(a), in the
presence of the potential V (x, y).
From the quantum point of view, we seek the 3–atom

eigenstates of H in the form Ψn(θ1, θ2, θ3) = ψn(r) e
inz,

where r = (x, y), and n is an integer setting the value of
the quantized angular momentum pz. The wavefunction
ψn(r) is fully determined by its values within the tri-
angle ABC and vanishes along AB, BC, and CA. The
constraint Ψn(θ1, θ2, θ3) = Ψn(θ3−2π, θ1, θ2), combining
bosonic symmetry and angular periodicity, yields:

ψn(Rr) = ψn(r) e
2inπ/3 , (3)

where R is the rotation of angle 2π/3 about O in the
(x, y) plane. We sort the energy levels in terms of the
three irreducible representations A1, A2, E of C3v. Ow-
ing to Eq. (3), wavefunctions pertaining to the one–
dimensional (1D) representations A1 or A2 have n = 0
modulo 3, whereas those pertaining to the 2D represen-
tation E have n 6= 0 modulo 3.
As in Ref. [19], we set the ratio η = h̄R2/(mC6)

1/2 to
0.01, and we consider energies ǫ ∼ 7C6/R

6.

III. MIXED CLASSICAL PHASE SPACE AND

QUANTUM ENERGY LEVEL STATISTICS

A. Classical periodic trajectories

We have characterized the periodic trajectories of the
model of Eq. (1) using our own C++ implementation
of the numerical approach of Ref. [25]. We find three
families of periodic trajectories existing for all energies
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FIG. 2. Surface of section for Eq. (2), with pz = 0, ǫ =
7C6/R

6, x = 0, and px > 0. The periodic trajectory A0

appears as the dark blue closed boundary of the figure. All
other periodic trajectories appear as fixed points, shown in
dark blue for A1 and A2; dark red for B1, B2, and B3; and
dark green for C+ and C−. The stable trajectories Ai and
Cj are surrounded by (light blue and light green) tori; no tori
are present near the unstable trajectories Bk. The ≈ 287000
thin brown dots all belong to the same ergodic trajectory.

ǫ > 0: we label them A, B, C in analogy with those
of the Hénon–Heiles potential [26]. We have analyzed
the unstable trajectories of family B (i.e their Lyapunov
exponent > 0), along with the quantum scar it yields,
in our previous article [19]. By contrast, the trajectories
of families A and C are stable for all considered energies
(i.e. their Lyapunov exponents = 0).

For a given energy ǫ, family A contains three straight–
line trajectories A0, A1, A2, which follow the medians
of the triangular configuration space, and transform into
one another under rotations of order 3. Family C con-
tains two trajectories C+ and C−, which are closed loops
around the center O: C+ is followed anticlockwise and
C− clockwise, and they transform into each other under
reflections about any of the three medians. All five trajec-
tories are represented in the (x, y) plane on Fig. 1(a). The
vertical trajectory A0 and the trajectory C+ are shown
as functions of time on Figs. 1(b, d). Trajectories of a
given family have the same period as a function of energy
TA(ǫ) and TC(ǫ): these are plotted on Figs. 1(c, e) and
are both of the order of (mR8/C6)

1/2 for ǫ ∼ 7C6/R
6.

The simultaneous existence of stable and unstable pe-
riodic trajectories signals that the classical system repre-
sented by H2D is neither integrable nor fully chaotic: its
phase space is mixed. This is apparent on the surface of
section of Fig. 2 [19]. There, the non–ergodic trajecto-
ries are represented by the closed blue and green curves,
which are sections in the two–dimensional plane of the
KAM tori [10, appendix 8] surrounding the stable tra-
jectories A and C. We numerically find that the fraction
of the surface of section not occupied by tori is densely

FIG. 3. The histograms show the distribution of unfolded
energy level spacings sr,i = N̄r(ǫi + 1) − N̄r(ǫi) for states
belonging to the three irreducible representations r = A1

(top), A2 (center), E (bottom), which are analyzed separately.
They differ from the Poisson (dotted golden line) and Wigner
(dashed red line). They are well represented by the Berry–
Robnik distribution, assuming a single chaotic region in phase
space, with parameter ρ1 = 0.6 for all three representations.

covered by the intersections from a single ergodic trajec-
tory, comprising the single ergodic zone visible on Fig. 2,
within which lie the 3 unstable trajectories of family B.

B. Quantum energy level statistics

The quantum spectra of systems with mixed classical
phase space satisfy neither the Poisson nor the Wigner
distribution [14, Sec. 16.8]. We now verify this for the
model of Eq. (2), and show that its energy level statistics
are well represented by a Berry–Robnik distribution [16].
We numerically solve the Schrödinger equation for the

Hamiltonian of Eq. (1) using the finite–element software
FreeFEM [27]. We calculate stationary states belong-
ing to the three irreducible representations A1, A2, E of
the point group C3v separately. We exploit discrete sym-
metries to reduce the configuration space to a triangle
which slightly exceeds 1/6 of the classically accessible re-
gion for a given energy: details are given in our previous
paper [19, Appendix 2]. We use a triangular mesh com-
prising 1000 vertices along each edge. We thus numer-
ically obtain the energies and wavefunctions for slightly
more than 1200 consecutive energy levels for Represen-
tation A1, 1200 levels for Representation A2, and 1700
non–degenerate levels for Representation E, in energy
windows centered on 7C6/R

6.
For each irreducible representation r = A1, A2, and

E of C3v, we introduce the integrated density of states
Nr(ǫ), which is the staircase–like function giving the
number of stationary quantum states whose energies are
smaller than ǫ [14, Sec. 16.2]. We describe its smooth
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component N̄r(ǫ) through its Weyl expansion, account-
ing for discrete symmetries [28]. We retain the leading–
order term, proportional to 1/h̄2, and the first correc-
tion, proportional to 1/h̄. We calculate the spacings
sr,i = N̄r(ǫi+1)− N̄r(ǫi) between consecutive ‘unfolded’
energies N̄r(ǫi) [9, Sec. 5.4]. We plot their distribution
on Fig. 3, where it is seen to differ from both the Poisson
and the Wigner distributions [14, Secs. 16.3 & 16.4], as
expected for a system with mixed classical phase space.
Figure 3 shows that the distribution of unfolded energy

level spacings is well represented by the Berry–Robnik
distribution [16], assuming that a single chaotic region in
phase space contributes to the statistics, with the same
parameter ρ1 = 0.6 for all three representations. Both
the assumption of a single chaotic region and the value
ρ1 = 0.6, representing the fraction of the energy sur-
face over which motion is regular, are compatible with
the surface of section of Fig. 2. The applicability of the
Berry–Robnik distribution hinges on the statistical inde-
pendence of the regular and chaotic sequences of levels.
Counter–examples have been identified, e.g. the hydro-
gen atom in a magnetic field [29], and its numerical ver-
ification with billiards requires reaching the deep semi-
classical limit [30]. By contrast, our result provides a
realization of the Berry–Robnik distribution in an exper-
imentally accessible system involving smooth interatomic
interactions rather than sharp billiard walls.

IV. QUANTUM STATIONARY STATES

LOCALIZED NEAR THE CLASSICALLY STABLE

PERIODIC TRAJECTORIES A AND C

For the majority of the stationary quantum states of
the Hamiltonian H2D that we have obtained numerically,
the probability density |ψ(x, y)|2 is not directly related to
the periodic trajectories of types A and C. Nevertheless,
we find multiple eigenstates whose probability density is
enhanced along one or the other of these trajectories.
Figures 6(a,b) and 7(a,b) illustrate this phenomenon for
trajectories A and C, respectively: in each case, we show
the probability density for the quantum states closest to
the energy ǫ = 7C6/R

6. This phenomenon superficially
resembles the quantum scars stemming from trajectory
B which we have identified in our previous article [19].
However, the quantum states we consider in the present
article do not satisfy Heller’s definition for a quantum
scar [24, chap. 22]. Indeed, in stark contrast to the classi-
cally unstable trajectoryB, trajectoriesA and C are both
classically stable. Hence, quantum mechanics yields no
qualitative change in the behavior of the system in their
vicinity. In this section, we illustrate this statement with
two results. First, calculating the energies of the quan-
tum states related to trajectoriesA and C semiclassically,
we justify that they obey selection rules which we entirely
explain in terms of the symmetries of the classical KAM
tori. Second, we construct semiclassical wavefunctions
for these quantum states. Our semiclassical results for

both the energies and the wavefunctions are in excellent
agreement with our full quantum calculation.

A. Symmetries of the regular classical trajectories

We first consider the regular classical trajectories in
the KAM regions of phase space surrounding the stable
periodic trajectories of families A and C. Our numerical
results show that the tori lying close to the periodic tra-
jectories inherit the discrete symmetry properties of the
corresponding periodic trajectories, namely: (i) A torus
TA near the periodic trajectory of type A invariant under
the reflection S exhibits reflection symmetry, i.e. if the
point (r, p) belongs to TA, then so does (Sr,Sp); (ii) A
torus TC near a periodic trajectory of type C is invari-
ant under rotations R of order 3, i.e. if the point (r, p)
belongs to TC , then so does (Rr,Rp).
We justify properties (i) and (ii) through the follow-

ing argument. We rely on an approximation introduced
in Ref. [9, Sec. 4.1]: we ignore narrow instability subre-
gions and approximate the whole KAM region by a set of
concentric tori. Our numerical results for the surface of
section, shown on Fig. 2, confirm that it is very well sat-
isfied for the inner tori, close to the periodic trajectories,
which are of interest in this work (it breaks down for the
outer tori in the vicinity of the ergodic zone, which we do
not consider). This allows for the introduction of local
action–angle coordinates, valid within this region. These
are defined through the consistent choice of fundamental
frequencies ω = (ω1, ω2) [31, Sec. III.E] on each torus
within the region. Then, any conditionally–periodic tra-
jectory (r(t),p(t)) winding around one such torus may
be written as a Fourier series [32, §52]:

r(t) =
∑

k

rk exp(ik · ωt), p(t) = 2mR2dr/dt , (4)

the sum being taken over all integer pairs k = (k1, k2).
The considered torus is uniquely determined by its ac-
tions J = (J1, J2), which are given by [33]:

Jα =
∑

α′=1,2

∑

k

kα|rk|2kα′ωα′ . (5)

Let us justify statement (ii), concerning tori in the
vicinity of a periodic trajectory of type C. We consider
a point (r,p) belonging to the KAM region surround-
ing trajectory C+, and the rotated point (r′,p′) with
r′ = R2π/3r and p′ = R2π/3p. Trajectory C+ is invari-
ant under rotations of order 3, so that (r′,p′) also belongs
to the same KAM region. We compare the two trajecto-
ries (q(t),p(t)) and (q′(t),p′(t)) obtained from the initial
conditions (r,p) and (r′,p′). Their Fourier components
rk and r′

k
, defined by Eq. (4), satisfy r′

k
= R2π/3rk, so

that |r′

k
| = |rk|. According to Eq. (5), the actions Jα

only depend on the modulus |rk|, hence, they are the
same for both trajectories. Therefore, the points (r,p)
and (r′,p′) belong to the same torus TC+

. Statement (i)
may be justified similarly.
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B. EBK quantization: energy levels

In this section, we obtain semiclassical predictions for
the energies of the quantum levels related to trajecto-
ries A and C, which are in excellent agreement with the
values obtained through our numerical solution of the
Schrödinger equation (see Figs. 4(b) and 5(c)). We also
explain quasidegeneracies and derive selection rules, both
of which are direct consequences of the discrete symme-
tries of the KAM tori presented in Sec. IVA above.
Our semiclassical description relies on Einstein–

Brillouin–Keller (EBK) theory [12], accounting for the
Maslov phase corrections [34, §7]. This theory general-
izes the Wentzel–Kramers–Brillouin approach [35, §48]
to the quantization of regular classical motion with more
than one degree of freedom [13]. We use our own imple-
mentation as a Python script of the EBK approach, based
on Refs. [31, 36], which hinges on the representation of
conditionally–periodic motion in terms of the Fourier se-
ries of Eq. (4). We integrate classical trajectories over
time intervals of lengths up to tmax = 3700(mR8/C6)

1/2

and keep up to 3200 terms in Eq. (4).
We now characterize the quantum stationary states lo-

calized near the classically stable trajectoriesA and C. In
Sections IVB1 and IVB2 below, we derive the EBK en-
ergies for these states, considered as eigenstates of H2D,
whose wavefunctions depend on r = (x, y). In Section
IVB3, we analyze the role of angular momentum so as to
discuss the stationary states of the three–particle Hamil-
tonian H , whose wavefunctions depend on (x, y, z).

1. Quantum states localized near trajectory A

For a given energy ǫ, the three periodic trajectories A0,
A1, and A2 (see Fig. 1(a)) and the tori surrounding them
are mapped one onto the other through the rotations
R and R−1. Hence, we focus on the vertical trajectory
A0. In Eq. (4), we choose the fundamental frequencies
ω = (ω1, ω2) as in Ref. [31, Fig. 8(b)]. This leads to the
independent circuits Cx and Cy on Fig. 4(a). Calculating
their Maslov indices [13, Sec. II.C], we obtain the EBK
quantization condition for the tori near trajectory A:

Ix = h̄(νx + 1/2) and Iy = h̄(νy + 1) , (6)

where Ix,y are the action integrals for the circuits Cx,y,
h̄ is the reduced Planck’s constant, and the integers
νx,y ≥ 0 are the EBK quantum numbers. The action
Ix ≥ h̄/2, so that the periodic trajectory A0 itself does
not satisfy Eq. (6). The tori satisfying Eq. (6) which
are closest to trajectory A0 are those with νx = 0:
the corresponding energies within a window centered on
ǫ = 7C6/R

6 are shown on the top line of Fig. 4(b). We
compare them to the energies of the stationary quantum
states of H2D belonging to representations A1 and E lo-
calized near the trajectories A0, A1, and A2, obtained
through our finite–element calculations (see Fig. 6(a,b)).

These are shown on Fig. 4(b), middle and bottom lines,
and are in excellent agreement with the EBK results.
Figure 4(b) reveals that each EBK energy corresponds

to quasidegenerate quantum states pertaining to repre-
sentations A1 and E. Furthermore, no quantum station-
ary states pertaining to representation A2 exhibit den-
sity profiles similar to Fig. 6(a,b). Both of these proper-
ties follow from the symmetries of the regular trajectories
identified in Sec. IVA above, through a mechanism iden-
tified in Refs. [37] and [9, Sec. 4.2] in the case where
the discrete symmetry at play had order 2. The system
we consider provides examples of the same phenomenon
involving C3v symmetry, as we now show.
We consider the EBK wavefunction ψEBK(r), corre-

sponding to a torus in the vicinity of trajectory A0, with
the energy ǫEBK, satisfying Eq. (6) with νx = 0. This
torus is invariant under the reflection S about the verti-
cal axis x = 0. Therefore, as shown in [9, Sec. 4.2]:

ψEBK(Sr) = (−1)νxψEBK(r) = ψEBK(r) . (7)

The EBK wavefunction ψEBK reflects the symmetry of
the corresponding classical torus, but does not automat-
ically satisfy the symmetry requirements of any represen-
tation. We now project it onto the irreducible represen-
tations [35, §94] A1, A2, and E. This yields three linearly

independent wavefunctions, ψA1

EBK
and ψE,±

EBK
, pertaining

to the representations A1 and E, corresponding to the
same semiclassical energy. In terms of kets |ψ〉, with
〈r|R|ψ〉 = ψ(R−1r) and 〈r|S|ψ〉 = ψ(Sr), they read:











|ψA1

EBK
〉 = αA1

(1 +R+R−1) |ψEBK〉
|ψE,+

EBK
〉 = αE(1 + j∗ R+ j R−1) |ψEBK〉 ,

|ψE,−
EBK

〉 = αE(1 + j R+ j∗ R−1) |ψEBK〉 ,
(8)

In Eq. (8), αA1,E are normalization coefficients, and

j = e2iπ/3. We have used the relations SRS =

R−1 and Eq. (7). The states |ψA1

EBK
〉 and |ψE,±

EBK
〉 sat-

isfy R|ψA1

EBK
〉 = |ψA1

EBK
〉, R|ψE,±

EBK
〉 = ±j |ψE,±

EBK
〉 and

|ψE,−
EBK

〉 = S |ψE,+
EBK

〉. The component of ψEBK pertaining
to representation A2, proportional to (1+R+R−1)(1−
S) |ψEBK〉, is 0 because of Eq. (7).

2. Quantum states localized near trajectory C

We proceed as in Sec. IVB 1. For a given energy ǫ, the
two periodic trajectories C+ and C− (see Fig. 1(a)) and
the tori surrounding them are mapped onto each other
through the reflection S. Hence, we focus on the trajec-
tory C+. In Eq. (4), we choose the fundamental frequen-
cies ω = (ω1, ω2) as in Ref. [31, Fig. 8(a)], leading to the
independent circuits Cr and Cl on Fig. 5(a). Calculating
their Maslov indices, we obtain the EBK quantization
condition for the tori near trajectory C:

Ir = h̄(νr + 1/2) and Il = h̄(νl + 1/2) , (9)
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FIG. 4. (a) Classical trajectory A (solid dark blue) for the energy ǫ = 7C6/R
6, the nearest–energy trajectory satisfying Eq. (6)

for η = 0.01 (densely covering the light blue area), and two independent circuits Cx (dotted purple) and Cy (dotted red) circling
the torus, in terms of which the quantum numbers are νx = 0 and νy = 300. The dashed gray lines show the caustics of this
trajectory. The top left inset zooms in on the narrow region near (x = 0, y = 1.2) to reveal the self–intersection of the caustics.
(b) Top panel: energies of the EBK wavefunctions for νx = 0 and 295 ≤ νy ≤ 305. Center and bottom panels: energies of the
corresponding quasidegenerate quantum stationary states belonging to representations A1 (center) and E (bottom), obtained
through our finite–element numerical calculations. Because of the torus symmetries, there are no states in representation A2

corresponding to the EBK quantum numbers (νx = 0, νy). The integers in the center and bottom panels specify the relative
state indices within each representation, ∆νA1 and ∆νE/2, with respect to the quantum state related to Trajectory A whose
energy is closest to 7C6/R

6. (c) Small energy differences between the quasidegenerate states of representations A1 and E.

where Ir,l are the action integrals for the circuits Cr,l,
and the integers νr,l ≥ 0 are the EBK quantum numbers.
The trajectory C+ does not satisfy Eq. (9). The tori
satisfying it which are closest to C+ are those with νr = 0:
their energies are shown on the top line of Fig. 5(b). We
compare them to the energies of the stationary quantum
states of H2D belonging to representations A1, A2, and
E localized near the trajectories C+ and C−, obtained
through our finite–element calculations (see Fig. 7(a,b)).
These are shown on the three lower lines of Fig. 5(b), and
are in excellent agreement with the EBK results.

Figure 5(b) shows that each EBK energy with νr = 0
and νl = 0 modulo 3 corresponds to two quasidegener-
ate quantum states pertaining to representations A1 and
A2. By contrast, each EBK energy with νr = 0 and
νl 6= 0 modulo 3 corresponds to two exactly degenerate
quantum states spanning a representation E. As for the
states localized near trajectory A (see Sec. IVB 1 above),
these properties follow from the symmetries of the regu-
lar trajectories (Sec. IVA). These are different from the
symmetries of the tori surrounding trajectory A, leading
to different selection rules, which we now derive.

We consider the EBK wavefunction χEBK(r), corre-
sponding to a torus in the vicinity of trajectory C+, with
the energy ǫEBK, satisfying Eq. (9) with νr = 0. This
torus is invariant under the rotation R. A straightfor-
ward generalization of the argument in Ref. [9, Sec. 4.2]
to symmetry operations of order 3 leads to χEBK(Rr) =
jνl χEBK(r). We now project χEBK onto the irreducible
representations A1, A2, and E. For each νl, this yields
two linearly independent, degenerate EBK wavefunc-
tions. If νl = 0 modulo 3, the non–vanishing wavefunc-
tions pertain to representations A1 and A2:

|χA1,A2

EBK
〉 = βA1,A2

(1 ± S) |χEBK〉 , (10)

with βA1,A2
being two normalization factors, whereas the

component along E vanishes. By contrast, if νl 6= 0 mod-
ulo 3, the components along A1 and A2 vanish, whereas

the two non–vanishing wavefunctions |χE,±
EBK

〉 span a rep-

resentation E. For νl = −1 modulo 3, |χE,+
EBK

〉 = |χEBK〉
and |χE,−

EBK
〉 = S |χEBK〉, and the opposite assignment

holds for νl = +1 modulo 3.

3. The role of angular momentum

To discuss the three–particle eigenstates of H in terms
of the eigenstates of H2D identified in Secs. IVB1 and
IVB2, we now analyze the role of angular momentum.

We first consider quantum states localized near the pe-
riodic trajectories of family A. The two states ψE,±

νy (r)
obtained for a given νy, are exactly degenerate eigen-
states of H2D which span a 2D representation E. How-
ever, in terms of three–atom eigenstates of H , the states
ψE,±
νy (r)einz occur if the total angular momentum n =

∓1 modulo 3 because of Eq. (3).

The states ψA1
νy (r) and ψE,±

νy (r) obtained for a given
νy belong to different representations A1 and E. Their
quasidegeneracy is lifted by small couplings neglected in
the EBK approach [9, Sec. 4.5], and the small energy
difference is resolved in our finite–element numerical re-
sults, as shown on Fig. 4(c). Because of Eq. (3), the
three–atom states ψA1

νy (r)e
inz occur if n = 0 modulo 3,

so that none of the three states ψA1,E±
νy (r)einz may occur

for the same value of n. They do not reduce to an EBK
wavefunction corresponding to a single classical trajec-
tory. Instead, Eq. (8) shows that they represent coher-
ent superpositions of the three atoms undergoing motion
near the trajectories A0, A1, and A2.
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EBK quantized tori Trajectory C
262 263 264 265 266 267 268 269 270 271

Representation A1
-156 0 161

Representation A2
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6.8 7 7.2
Quantum stationary-state energies R6/C6

Representation E
-419 -314 -107 0 210 314 528

(b)
261 264 267 270
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 (
A 2

A 1
)

10
6 R

6 /C
6

Trajectory C

(c)

FIG. 5. (a) Classical trajectory C (solid dark green) for the energy ǫ = 7C6/R
6, the nearest–energy trajectory satisfying

Eq. (9) for η = 0.01 (densely covering the light green area), and two independent circuits Cr (purple) and Cl (red) circling the
torus, in terms of which the quantum numbers are νr = 0, νl = 267. The dashed gray lines show the caustics of this trajectory,
which self–intersect in the top left, top right, and bottom regions. (b) Top panel: energies of the EBK wavefunctions for νr = 0
and 262 ≤ νl ≤ 271. Three lower panels: energies of the corresponding quantum eigenstates belonging to representations
A1, A2, and E, obtained through our finite–element numerical calculations. States in representations A1 and A2 exhibit
quasidegeneracies and correspond to the EBK quantum numbers νr = 0, νl = 0 modulo 3; each EBK torus with quantum
numbers νr = 0, νl 6= 0 modulo 3 yields two degenerate states in representation E. The integers specify the relative state
indices within each representation, ∆νA1 , ∆νA2 and ∆νE/2, with respect to the quantum state related to trajectory C whose
energy is closest to 7C6/R

6. (c) Small energy differences between the quasidegenerate states of representations A1 and A2.

We now turn to quantum states localized near the pe-
riodic trajectories of family C. The two states χE,±

νl
(r),

obtained for a given νl 6= 0 modulo 3, are exactly de-
generate. The three–atom states χE,±

νl
(r)einz occur for

n = ∓1 modulo 3, and opposite values of n lead to atoms
rotating along C in opposite directions. The two states
χA1,A2
νl (r) obtained for a given νl = 0 modulo 3 belong

to different representations and, hence, are quasidegen-
erate: their small energy difference is shown on Fig. 5(c).
The three–atom states χA1,A2

νl
(r)einz may occur for the

same value of n = 0 modulo 3.

C. EBK quantization: wavefunctions

To further illustrate the applicability of the EBK ap-
proach to the quantum states localized near the stable pe-
riodic trajectories of families A and C, we construct prim-
itive EBK wavefunctions for these states [38]. We focus
on a given KAM torus satisfying the quantization condi-
tions of either Eq. (6) or Eq. (9), depending on whether
it lies near a trajectory of family A or C. To obtain
the corresponding EBK wavefunctions ψEBK and χEBK

of sections IVB 1 and IVB2 above, the key extra re-
quired step with respect to the approach of Refs. [31, 36]
is to describe the torus in terms of multiple sheets on
each of which the classical momentum is univalued [13,
Sec. III.A]. These sheets join along the caustics of the
classical trajectory in the (x, y) plane, shown as the
dashed gray lines on Figs. 4(a) and 5(a). The caustics
self–intersect, signalling the occurrence of catastrophes
[39], and the torus sheetings must be constructed accord-
ingly. We find that 12 sheets are required to describe tori
near a trajectory of family A with νx = 0, and that 6
sheets are required to describe tori near a trajectory of

family C with νr = 0. We then obtain the wavefunctions
ψEBK and χEBK from the Fourier series of Eq. (4), in
terms of linear superpositions of the contribution of each
sheet [13, III.C]. Finally, we project ψEBK and χEBK onto
the irreducible representations A1, A2, and E.

Figure 6(c,d) shows the resulting EBK wavefunctions
for the quasidegenerate quantum states ψA1,E(r) local-
ized near the trajectories of family A whose energies are
closest to 7C6/R

6. We compare them to the correspond-
ing wavefunctions obtained through our finite–element
numerical calculations (Fig. 6(a,b)). We show the anal-
ogous results for the states χA1,A2(r), localized near the
trajectories of family C, on figure 6. The agreement be-
tween the finite–element and EBK results is excellent,
including in the catastrophe regions where the classical
caustics self–intersect, shown in the upper left insets.

Primitive EBK wavefunctions do not account for the
quantum penetration of the wavefunctions through the
caustics. Instead, they diverge along the caustics as in
the WKB approach [35, §46] and vanish outside the clas-
sical torus, as illustrated on Figs. 8 and 9 in the appendix.
This causes the two limitations of the EBK wavefunctions
considered here. First, interference phenomena involving
decaying waves outside the torus are not captured: the
top left insets of Fig. 7 provide an example. Second, the
divergence of the wavefunctions leads to numerical in-
accuracies near the caustics which hinder their normal-
ization. Hence, each of our EBK wavefunctions matches
the finite–element wavefunction up to an overall normal-
ization factor of order 2. We eliminate it by scaling the
EBK wavefunction so that it matches the finite–element
result at one single point chosen far from the caustics.
The quantum penetration through the caustics may be
accounted for, and hence both limitations be overcome,
using a uniform approximation to the wavefunction [40,
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FIG. 6. Quantum states localized near the trajectories of family A. (a,b) Wavefunction densities |ψA1(r)|2 and |ψE(r)|2 for the
two quasidegenerate eigenstates of H2D localized near the periodic trajectories of family A whose energies are closest to C6/R

6,

obtained through our finite–element numerical calculations. (c,d) The corresponding squared EBK wavefunctions |ψA1

EBK
(r)|2

and |ψE
EBK(r)|

2, built from the KAM torus satisfying Eq. (6) with νx = 0, νy = 300 (see Fig. 4(a)). On all four panels, the left
inset details the region where the caustics self–intersect, and the right one shows the region near (x = 0, y = 0).

Sec. 7.2]. This goes beyond the scope of the present work.

V. EXPERIMENTAL PROSPECTS AND

OUTLOOK

The effects considered here may be realized e.g. on
the system already considered in Ref. [19]: 87Rb atoms
in the circular Rydberg state 50C, for which C6/h =
3GHzµm6. Then, the value η = 0.01 is achieved in a cir-
cular trap of radius R = 7µm. The energy ǫ = 7C6/R

6 =
h× 200 kHz is within experimental reach. For these pa-
rameters, the periodic trajectories of families A, B, and
C all have periods of the order of 1ms. The position of
the atoms may be detected at a given time by turning on
a 2D optical lattice to freeze the dynamics, followed by
atomic deexcitation and site–resolved ground state imag-
ing. We focus on realizations where the total three–atom
angular momentum n is well defined.

A key difference between the quantum scar of Ref. [19]

and the localization near stable orbits considered here
concerns the timescale over which quantum particles fol-
low the classical periodic trajectories. For the quantum
scar, the timescale over which quantum particles follow
the classically unstable periodic trajectory is expected to
depend on its inverse Lyapunov exponent [24, ch. 22]. No
such constraint exists for the dynamics near a classically
stable orbit, so that recurrences of the initial state may
be sought for over the lifetime of the trapped atoms.

Next, we point out a consequence of quantum coher-
ence. According to Sec. IVB 3, the quantum states lo-
calized near the trajectories of family A are equal–weight
superpositions of states localized near the three periodic
trajectories of family A (rather than just one trajectory).
This is the impact of bosonic symmetry. By contrast, mo-
tion along a single trajectory C+ or C− may be observed.

The following point warrants further investigation.
Three atoms launched with angular momentum n = 0
modulo 3 near the periodic trajectory C+ may undergo
dynamical tunneling [41] to the trajectory C−. The ex-
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FIG. 7. Quantum states localized near the trajectories of family C. (a,b) Wavefunction densities |χA1(r)|2 and |χA2(r)|2

for the two quasidegenerate eigenstates of H2D localized near the periodic trajectories of family C whose energies are closest
to C6/R

6, obtained through our finite–element numerical calculations. (c,d) The corresponding squared EBK wavefunctions

|χA1

EBK
(r)|2 and |χA2

EBK
(r)|2, built from the KAM torus satisfying Eq. (9) with νr = 0 and νl = 267 (see Fig. 5(a)). On all four

panels, the left inset details the region where the caustics self–intersect, and the right one shows the region near (x = 0, y = 0.4).

pected oscillation period, set by h/(ǫνl,A2
− ǫνl,A1

), is
∼ 25 s for the parameters of Fig. 5(c). This very long
timescale is out of reach of current setups, but should be-
come accessible in new experiments currently under con-
struction promising atomic lifetimes ∼ 1minute [42, 43].
Furthermore, the period may be minimized by varying
the energy ǫ and the parameter η. Dynamical tun-
neling has already been observed for non–interacting,
periodically–driven atoms [44, 45]. The system we con-
sider would provide an example involving interacting
atoms described by a time–independent Hamiltonian.

VI. CONCLUSION

We have revisited the system of three interacting
bosonic particles in a circular trap that we had first con-
sidered in Ref. [19]. We have illustrated the mixed nature
of its classical phase space, and shown that the statis-
tics of the quantum levels are well described by a Berry–

Robnik distribution. We have analyzed the symmetries
of the quantum states localized along the classically sta-
ble periodic trajectories A and C, calculated their en-
ergies semiclassically using EBK theory, and constructed
the corresponding EBK wavefunctions. Our semiclassical
EBK results, regarding both the energies and the wave-
functions, are in excellent agreement with the quantum
eigenstates and energies which we have obtained through
finite–element numerical calculations. Thus, the con-
sidered system hosts both a quantum scar, analyzed in
Ref. [19], and classical localization near stable periodic
orbits, analyzed in the present work. These phenomena,
all within experimental reach, occur in the same energy
range: to observe one or the other, one simply adapts the
initial conditions so as to launch the three atoms along a
classical periodic orbit which is either unstable or stable.
Hence, the system we propose appears promising in view
of a detailed experimental comparison between quantum
scars and classically localized states.
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Appendix A: Comparison between Schrödinger and

EBK wavefunctions

The supplementary figures 8 and 9 on the next page
compare the behavior of the EBK wavefunctions to those
obtained by solving the Schrödinger equation for the
Hamiltonian H2D through finite–element numerics along
the horizontal and vertical axes. They show excellent
agreement between the two approaches, and highlight the
key limitation of the EBK wavefunctions: the quantum

penetration through the caustics is not accounted for,
and is replaced by a divergence along the caustics.
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FIG. 8. Quantum states localized near the trajectories of family A. Comparison of the EBK (a,b) wavefunction ψA1

EBK
and (c,d)

density |ψE
EBK|

2 (green) with the corresponding quantities obtained through finite–element numerics (red) shown on Fig. 4,
along the horizontal (a,c) and vertical (b,d) axes. The insets illustrate their behaviour near the caustics (vertical dashed gray
lines). Each EBK wavefunction has been scaled to match the finite–element wavefunction at the point (x = 0, y = 0.5).

FIG. 9. Quantum states localized near the trajectories of family C. Comparison of the EBK wavefunctions (green) (a,b) χA1

EBK

and (c,d) χA2

EBK
and the corresponding wavefunctions obtained through finite–element numerics (red) shown on Fig. 5, along

the horizontal (a, c) and vertical (b, d) axes. The insets illustrate their behaviour near the caustics (vertical dashed gray lines).
Each EBK wavefunction has been scaled to match the finite–element wavefunction at the point (x = 0.5, y = 0).


