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Electrons on the liquid helium surface form an extremely clean two-dimensional system where different
plasmon excitations can coexist. Under a magnetic field, time-reversal symmetry is broken, and all the bulk
magnetoplasmons become gapped at frequencies below cyclotron resonance while chiral one-dimensional edge
magnetoplasmons appear at the system perimeter. We theoretically show that the presence of a homogeneous
density gradient in the electron gas leads to the formation of a delocalized magnetoplasmon mode in the same
frequency range as the lowest-frequency edge-magnetoplasmon mode. We experimentally confirm its existence
by measuring the corresponding resonance peak in frequency dependence of the admittance of the electron gas.
This allows us to realize a prototype system to investigate the coupling between a chiral one-dimensional mode
and a single delocalized bulk mode. Such a model system can be important for the understanding of transport
properties of topological materials where states of different dimensionality can coexist.
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I. INTRODUCTION

The recent discovery of topological states of matter has led
to striking predictions of topological surfaces and edge states
[1-11]. However, it has so far been difficult to realize a system
where topological edge states are completely decoupled from
remaining bulk states or spurious edge states of nontopolog-
ical origin [10-13]. Thus understanding the interaction be-
tween topological edge modes and nontopological bulk modes
is highly important. Electrons on helium are a high-purity
two-dimensional system where chiral edge-magnetoplasmon
modes naturally form under a perpendicular magnetic field
[14-17]; interestingly, their topological origin has been rec-
ognized only recently [18-20]. Bulk magnetoplasmons in a
two-dimensional electron gas have a gap at frequencies be-
low the cyclotron resonance, and it is traditionally considered
that edge and acoustic magnetoplasmons are the only low-
frequency plasmon excitations [21-23]. In experiments with
electrons on helium the frequency of edge magnetoplasmons
(EMPs) is typically in the kilohertz range, while the cyclotron
resonance frequency is typically several gigahertz. We show
how a low-energy bulk mode can be created inside the bulk-
magnetoplasmon gap by an anisotropic gradient of electronic
density. In this paper we will describe this plasma excitation
as a magnetogradient mode. We show that the frequency of
this magnetogradient mode can be obtained from an effective
Schrodinger equation allowing us to control the resonance
frequency through the shape of the electron cloud. This al-
lows us to tune this frequency into resonance with the edge
magnetoplasmons creating a model setting to study the in-
teraction between bulk and topological edge modes. We note
that the existence of this low-frequency bulk magnetoplasmon
can also be important to understand the surprising collective
effects that appear in electrons on helium in the microwave-
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induced resistance oscillation regime [24-30]: zero-resistance
states [31,32], incompressibility [33,34], and self-oscillations
[35], which are not yet understood microscopically.

II. THEORETICAL DESCRIPTION OF THE GRADIENT
MAGNETO-PLASMON

We first show that the presence of a density gradient can
indeed lead to the formation of a low-frequency delocal-
ized magnetoplasmon; this may seem counterintuitive as in
a homogeneous system all the bulk magnetoplasmons are
gapped with their lowest frequency given by the cyclotron
frequency w, = eB/m. The equations of motion for magneto-
plasmons can be derived from the drift transport equations on
the electronic density n, = n, + n,, where we decompose the
electronic density into time-averaged (n,) and time-dependent
(n,) parts (see a sketch of the cell geometry in Fig. 1). Treating
the time-dependent terms as a small perturbation, the lin-
earized transport equations are

0y = divag[na (e Vaa Vi + iy X Vg Vi)l (D

Here, V; is the time-dependent part of the quasistatic electric
potential V =V, +V,, and V; is its static part. In deriving
this equation we took into account that the electron cloud
screens the static part of the electronic potential, which leads
to VV, =0, and the longitudinal and Hall mobilities are
given by ., and u,,. Experiments typically take place in the
high-magnetic-field regime pty, < fyy and fiyy, > B! (this
corresponds to w, much faster than the scattering rate). Hence
it is reasonable to first find the frequency of the resonant
plasmon modes in the limit wu,, = 0. The potential V; can
be determined from the time-dependent density n, by solv-
ing the electrostatic Poisson equation; for simplicity we will

©2021 American Physical Society
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FIG. 1. (a) Sketch of the experimental cell with applied dc and ac
voltages. The helium cell and electrodes have cylindrical symmetry,
but the helium level is slightly tilted with an angle «. A trapping
potential V;, =7 V is applied to all bottom electrodes, and a bias
voltage V, can adjust the density between the outer guard and central
regions. The cell admittance Y (f,.) at frequency f,. = w/(2m) is
measured between the top central and middle electrodes on which
an ac potential V,. at frequency f,. is applied. (b) The typical
“plateau” and “caldera” profiles, which occur at V, < 0 and V,, > 0,
respectively. Orange and purple arrows illustrate the two possible
definitions of An, in Eq. (4) for the two types of density profile.
Liq., liquid.

assume for now a local electrostatics approximation n, = xV;,
where the compressibility y = %‘) is obtained from a plane
capacitor model. Simulations with an exact solution of elec-
trostatic equations will be presented later. The static electron
density in the presence of a density gradient can be written
as ny(r, 0) = ny(r) + no.(r) cos 8, where (r, 6) are polar co-
ordinates on the helium surface oriented along the gradient
direction. Away from the edges of the electron gas, we can
approximate ng.(r) = Ar and treat the gradient A as a small
anisotropy parameter. It is thus natural to expand », and V; in
harmonics of the angle 6:

n; = no(r) + nye(r)cos @ + n,(r)siné, 2)

where we have kept the lowest harmonics. This procedure
is justified since the only anisotropy comes from the uni-
form density gradient which couples only nearby harmonics
through the cos6 term. Expanding to the lowest polar an-
gle harmonics, we cast Eq. (1) into an effective Schrédinger
equation which describes standing modes of electron-density
oscillations:
2.2 2 22
e
My 2

(9r no)

V. 3)

In this equation we introduced the effective wave function
VY (r) = /rn, and o is the frequency of the density oscilla-
tion; its time dependence obeys 32 = —w?. This equation
describes a radial wave which propagates at velocity v =

Hayh/ V2. As in quantum mechanics, the shape of the wave
function v is controlled by the external potential. From
Eq. (3) we see that it contains a term describing repulsion at
the origin and a confinement term proportional to the square of
the gradient of the static isotropic density distribution (9,n¢ )2,
The obtained plasmon mode exists only due to the simultane-
ous presence of a magnetic field and of the anisotropic density
gradient A; we will thus call it a gradient magnetoplasmon
(GMP). The frequency, w,, of the first GMP mode is given by
the ground state of the Schrodinger equation (3); it scales as
wg ~ WxyA/(XR), where R is the radius of the electron cloud.
This frequency vanishes at the limit R — oo; its behavior
is thus similar to EMPs, which also do not have a gap and
can have frequencies much below w.. The GMP frequency
drops to zero at A = 0 and will be overdamped if the density
gradients are not strong enough. Fortunately, due to the high
mobility of electrons on the helium system this mode can be
visible even for small density gradients. Since Eq. (3) is a
standing-wave equation, in addition to the lowest-frequency
mode at frequency w,, resonances are expected at its har-
monics w, = nw, (n > 1, an integer); these harmonics will,
however, turn out to be overdamped in our experiments.

The previous calculation showed that a small density gradi-
ent can create delocalized bulk-magnetoplasmon modes well
below the cyclotron resonance frequency, which is usually
believed to give the gap frequency for bulk magnetoplas-
mons. This calculation was performed using a local-density
approximation n, = xV; and does not provide a complete
description of the low-frequency magnetoplasmon modes. In-
deed, Eq. (3) does not predict any finite frequency modes in
the limit A — 0, and the edge-magnetoplasmon modes are
thus missing. Hence a more realistic theory reproducing the
already known magnetoplasmons is needed. Such a theory
has to go beyond the local-density approximation and treat
the long-range Coulomb interactions in a realistic way. This
requires us to fix the electrostatic environment of the electron
gas and its properties. From here we will focus on a realistic
model of our experimental setup with electrons on helium.

III. EXPERIMENTAL OBSERVATIONS

A sketch of the system is shown in Fig. 1: Electrons are
trapped on a helium surface by a pressing electric field. If
the pressing electric field is perfectly perpendicular to the
helium surface, the geometry has cylindrical symmetry with
respect to the polar angle 8, and no gradient is present (A = 0).
However, a small misalignment angle « between the electric
field direction and the normal of the helium surface leads
to an in-plane electric field component «E,; («¢ < 1) which
will create, within the local-density approximation, a density
gradient A = x«E, . Since we assume that the helium surface
remains flat in the region where electrons are confined, the
drift-diffusion equation (1) at the surface remains unchanged
for finite «, and it is only the relation between n; and V; which
is changed when we use the exact nonlocal electrostatics.
Since the normal of the electric field presents a discontinu-
ity as it crosses the electrons on the helium cloud, a direct
perturbation-theory expansion around the isotropic solution
is not possible. We derived a suitable perturbation-theory
expansion by performing a transformation into a curved set
of coordinates where the position of the interface remains
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fixed with «. This expansion, to the lowest order, leads to a
modified Laplace equation, which is given in the Appendix.
Finite-element (FEM) [36] simulations based on this equation
confirm the validity of the approximation ny.(r) >~ a x E, r for
all the shapes of the electron cloud explored experimentally
except near the edge of the electron cloud. Thus a small
inclination of the helium surface with respect to the helium
cell creates a well-defined density gradient which only weakly
depends on the shape of the electron cloud ny(r). To simulate
approximately the ac response of electrons on helium, we used
the Poisson equation on the ac potential in the limit ¢ = 0
and drift-diffusion equations on the helium surface to deter-
mine the expected admittance of the cell. The full equations
and a discussion on their formal validity are provided in the
Appendix.

We now present experiments that reveal the coexistence of
one-dimensional (1D) EMPs and 2D GMPs; the simulations,
which are presented simultaneously, will allow us to confirm
the identification of the observed modes. The experiments
were realized on an electron cloud (see Fig. 1) with N, = 3 x
107 electrons at a magnetic field of B = 0.3 T and temperature
of 300 mK. The ac transport response of the electron cloud
is measured in a Corbino geometry using a Sommer-Tanner
method. An ac excitation voltage V,. with a 30-mV amplitude
is applied on the intermediate top-ring electrode at a frequency
fac (1-10 kHz), and the induced pickup signal from the top
central electrode is then measured with a voltage amplifier and
a lock-in detector giving the ac cell admittance Y (f,.). The
position of magnetoplasmon resonances then shows as peaks
in the admittance Y (f,.) for a fixed bias voltage V}. This bias
between the outer guard and central electrodes can tune the
frequency of the magnetoplasmons by controlling the shape
of the electron cloud [33,37]. For V;, < O the electron cloud
adopts a “plateau” density profile, where the density ng(r) is
a monotonously decaying function of the radial distance to
the cloud center r, while for V}, > 0 the electron density takes
a ““caldera” profile which has a density maximum inside the
guard region at the edge of the electron cloud [Fig. 1(b)]. The
EMPs which couple to the top measuring electrodes are differ-
ent in the two regimes. For a plateau profile the outer edge of
the cloud is closer to the center, and it is the EMPs propagating
at the perimeter of the cloud which are detected. For a caldera
geometry the cloud expands, and the outer perimeter becomes
weakly coupled to the measurement electrodes; instead it is
the interedge magnetoplasmons at the boundary between the
guard and central regions which are more easily excited. To
simplify further discussions, we will describe both situations
as an EMP mode. The theoretical expressions for the propa-
gation velocity are indeed similar in both cases [17,21]:

An, 1
In —,
2wregB  gh

where ¢ is the wave vector (¢ = 1/R for the lowest-frequency
mode, where R is the radius of the central bottom electrode)
and An, is the difference in electron density between the
center and guard regions (this definition is discussed more
precisely below).

For the magnetogradient plasmon the propagation velocity
is given by

“

VEMP =
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FIG. 2. (a) Magnetoplasmon modes appear as peaks in the real
part of the cell admittance Y (f,.), which is shown here as a function
of the density profile (controlled by the bias V,, between guard and
central regions) and excitation frequency f,.. Two magnetoplasmon
modes are observed in the explored frequency range with very differ-
ent dependence on Vj,: a dispersing mode at higher frequency (branch
carrying the star symbol) and a low-frequency mode (branch carrying
the pentagon symbol) with very small dependence of the electron
cloud density profile. (b) Finite-element simulations of Y (f,.) based
on Eq. (1) taking into account a small tilt « = 0.4° (fitted to data).
(c) Theoretical oscillating density profiles (r,); the low-frequency
“magnetogradient” plasmon (7, at the pentagon symbol) is delocal-
ized across the entire electron cloud, whereas the higher-frequency
plasmon (n, at the star symbol) is an edge magnetoplasmon (or
interedge at V, > 0) propagating in one dimension. The two modes
seem to make an avoided crossing when their frequencies overlap
near V, = 0.

This expression is obtained from Eq. (3) using the approxi-
mation A = axE, . It depends on the perpendicular electric
field £, but not on An, as opposed to the EMP modes. This
difference in the An, dependence provides a convenient
method to distinguish between GMP and EMP modes. We
represent the admittance Y (f,.) as a function of both V, and f,.
as a color-scale map that allows us to visualize the dependence
of the mode frequency on the voltage V,, (and thus on An,).
Modes that “disperse” as a function of V, are candidate 1D
EMP modes, while the absence of a V}, dependence suggests a
magnetogradient mode.

Our experimental results are shown in Fig. 2 together with
FEM simulations of the perturbation theory that we intro-
duced. Both experiment and simulations show the presence
of two resonant modes at low frequency: a mode whose
frequency strongly depends on V; with a dependence that
reminds us of the dispersion relation of “Dirac” fermions
and a second mode whose frequency is almost independent
of V,, except when its frequency crosses the frequency of the
dispersive mode.

To identify the dispersive mode as an EMP, we show the
theoretical frequency expected from Eq. (4). For the caldera
geometry [positive Vj, black lines in Figs. 2(a) and 2(b)], we
set An, as the difference between the electron density on top
of the rim in the guard region and the density in the center
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of the electron cloud; it reproduces the experimental EMP
frequency without adjustable parameters. The EMP modes
should not be visible in Corbino geometry, and the FEM sim-
ulations show that a small tilt of the helium cell can explain
their contribution to the Corbino signal with an amplitude
comparable to that of the experiment. For the plateau geome-
try (red lines for negative V;,) the density in the guard entering
in An, had to be reduced by 20% compared with its maximum
density in the guard. This phenomenological correction proba-
bly reflects a more complex situation where the electron cloud
boundary moves with V,, as the cloud is pushed towards the
center. FEM simulations predict the correct position for the
EMP mode without adjustable parameters even in this case.
The predictions for the linewidth and admittance amplitude
are less accurate as they are dependent on the ratio ftye/lxy,
which was assumed to be fixed to 5 x 10~ and without any
density dependence. To confirm the 1D character of this dis-
persive mode, we also represented the simulated oscillating
density profile n, of the EMP mode in Fig. 2: The oscillating
density is indeed localized in a narrow strip of width % at the
boundary between the central and guard regions. Note that
the perturbation theory is not reliable at the outer edge of the
electron cloud and the peak in 7, on the outer cloud boundary
may not be physical.

The lowest-frequency mode in Fig. 2 has a resonance
frequency which is independent of Vj, except near the cross-
ing points with the previously identified EMP mode. It is
thus a candidate GMP mode. To confirm this assignment, we
checked that this frequency scales as o E | /B as expected
from Eq. (5). The only other parameter in Eq. (5) is the
inclination of the helium free surface o compared with the
electric field. It was not possible to control this angle precisely
in our experiment; however, we confirmed that this frequency
changes indeed with a small variation (of around 0.1°) of
the refrigerator inclination. These experiments are shown in
the Appendix (see Fig. 8). The FEM simulations allow us to
visualize the oscillating density profile, which is displayed
in Fig. 2; this mode is delocalized across the entire electron
cloud. In the Appendix, in Fig. 6, we present experiments
with segmented pickup electrodes which allow us to con-
firm some features of the GMP density distribution. A good
agreement between simulations and the experimental Girvin-
MacDonald-Platzman (GMP) mode is obtained for o« = 0.4°.
At the crossing between GMP and EMP at V,, = 0 both sim-
ulations and experiment suggest an avoided crossing, which
implies the exciting possibility of realizing hybrid states with
simultaneous characteristics of a one-dimensional topologi-
cal EMP and a delocalized two-dimensional mode [note that
changes in the GMP confinement potential also contribute to
the change in the GMP frequency at Vj, = 0; this contribution
is discussed in the Appendix (see Fig. 3)]. Concerning the
linewidth of GMP modes, the simulations predict a similar
linewidth to that of the edge-magnetoplasmon modes. This
contrasts with the experiment where the GMP is significantly
broader than the EMP with a linewidth that depends on V.
This could be due to the dependence of the mobility on the
electron density, which is not taken into account in the model.
Indeed, the GMP is delocalized and thus can be more sensitive
to mobility gradients which appear as a result of the density
variations across the electron cloud. In the data in Fig. 2 the

f (Hz)

Vj, (Volt)

FIG. 3. Imaginary part of the cell admittance Im Y/f,. (in arbi-
trary units) for the experimental parameters of Fig. 2; the admittance
of the cell mainly behaves as a capacitance and is thus divided by f,.
to compensate its linear increase with frequency. The position of the
GMP resonance is given by the green contour curves, and the lowest
eigenfrequency of the effective Schrodinger equation for @ = 0.4° is
shown by the black line.

quality factor of the GMP resonance is not so high; however,
in the Appendix we show experimentally that the quality
factor increases substantially with stronger perpendicular field
(as shown in Fig. 7), with tilt angle (Fig. 8), or at minima
of microwave-induced resistance oscillations (Fig. 9), proving
that GMP is a genuine resonance of the 2D electron system.

IV. CONCLUSION

To summarize, we have shown both theoretically and ex-
perimentally that a system of electrons on the surface of liquid
helium hosts a novel type of bulk excitation, the delocalized
two-dimensional magnetogradient plasmon modes which ap-
pear in the presence of a small density gradient. This system
provides a highly controllable environment in which the in-
teraction of this novel excitation with the previously known
(topological) one-dimensional edge magnetoplasmons may be
studied. As gradients of carrier concentration can easily be
present in mesoscopic devices, this mode can also be present
in new two-dimensional electron systems.
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APPENDIX
1. DERIVATION OF THE MAIN EQUATIONS
a. Derivation of the effective Schrodinger equation

The following equation is derived from the drift-diffusion
equations written in the local-density approximation:

o [ /2
az Nye = = ntsarno (Al)
ny X7 Ardng — nyedeno.
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The density gradient A introduces a coupling between differ-
ent angular harmonics of the electron density. Introducing the
effective wave function v (r) = /rn,, this equation can be
reduced to the effective Schrodinger equation
2,2 2 2 2
X W A, 3A (0ynp)
=—-—9 - ,
/L)%yw 2 VW+8r2 + r? v

(A2)

4epaE |

where A = , which is Eq. (3) from the main text. We
remind the reader that the only unknown parameter in this
theory is the cell tilt angle «; we set it to o« = 0.4° as in the
finite-element simulations.

Figure 3 shows a comparison between the experimen-
tal position of the GMP resonance and the predictions
of the effective Schrodinger equation for the data from
Fig. 2. The position of the resonance is more easily followed
on the out-of-phase response, as it corresponds to a constant
value contour. The color in Fig. 3 thus shows Im Y (instead of
ReY as in Fig. 2) as a function of the bias voltage V, and the
excitation. The position of the resonance corresponds to the
green contour curves. We see that Eq. (3) gives a satisfactory
description of the dependence of the resonance frequency as a
function of V,,. However, the effective theory does not capture
the double resonance structure near Vj, = 0 since it appears
due to the crossing between the GMP and EMP modes, which
is not taken into account in this simplified model.

b. Effective Poisson equation in deformed coordinates
where the position of the helium layer is fixed

To enable the use of standard perturbation series, we thus
need to perform a coordinate transformation which levels the
helium surface in the cell while keeping in place the top
and bottom electrodes. We choose a rotation in the (x, z)
plane (containing the electric field direction z and the slightly
misaligned helium surface normal) with a height-dependent
rotation angle ¢(z) = a(l — 4;—;). The transformation be-
tween coordinates is then realized by

x\ _ [cos¢p(Z)x' —sing(z)7
z] 7 \singp(z)x’ + cos p(7)7' )’
where x’, 7’ are the new coordinates.

In the new coordinates the Poisson equation, to first order
in o, becomes

(A3)

8a ) 5
AV + ﬁ(xBZV + 2xz07V — 320,V — 22°0,.V) = 0; (A4)

in this form it can be expanded in powers of «. We see from
Eq. (A4) that @ induces a coupling only between neighboring
angular harmonics; thus, to first order in «, to which we
will limit ourselves here, only cos 6 and sin 6 terms will be
generated.

We solved Eq. (A4) for a stationary electron cloud without
ac excitation; this allows us to find the static density profile
ny(r, 0) = no(r) + any.(r) cos 8 induced by the tilt of the cell.
In the stationary case the potential of the electron cloud is con-
stant and fixed by the total charge of the cloud. In the isotropic
case the problem then reduces to find a stable boundary of
the electron cloud for which the electric field at the boundary
vanishes, which was done in a systematic way for different
geometries in Ref. [33]. To find the anisotropic correction

7
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FIG. 4. The top panel shows the evolution of the radial steady-
state density ny(r) for different bias voltages V,, between central and
guard reservoirs. The bottom panel shows the tilted component of
density ng. under the same conditions [we remind the reader that
the total steady-state density is the sum ng(r) + ang.(r) cos 0]; ng.
depends only weakly on V, in contrast to ny(r) and is well approxi-
mated by no,. = xaE r (straight line).

noc(r), we iterated Eq. (A4) neglecting the small deformation
of the circular cloud boundary. While this approach should
give accurate predictions in the center of the electron cloud,
the validity of the perturbation theory breaks down near the
cloud boundary. The results of our finite-element calculations
for no(r) and ny.(r) are shown in Fig. 4.

To be fully consistent, we in principle need to use the mod-
ified Poisson Eq. (A4), which introduces a mixing between
harmonics due to the tilt; we found, however, that using the
usual Poisson equation AV = 0 already gives a good descrip-
tion of the experiment. This probably comes from the fact
that the dynamic drift-diffusion equations already introduce a
coupling between modes through the density gradient ny. and
many (but seemingly not all) of the terms that would come
from Eq. (A4) become second order in «.

c. Full drift-diffusion equations for the lowest angular harmonics

For reference we write the full drift-diffusion equations as
a function of the steady-state radial distribution ny and the
density gradient ng. including contributions from both ., and
Iyy; these are the equations which are solved to build Fig. 2.
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The ac potential V; is decomposed into its lowest harmonics V; = V;o(r) + V() cos 0 + V;s(r) sin 6.

1
n0 . 2 8r (nscvts)
az Nge ¢ = Ty Vtsarn0
Ny nscathO - VtcarnO

2. Probing the spatial structure of the GMP

The system of equations (Al) gives a relation between
the time derivative of the polar angle average of the electron
density d,n;0 and the radial derivatives of its first angular
harmonic n;,:

Ak

xy
0,(rngg).
27 (rngy)

dnp = (A6)

This relation gives insight into the spatial structure of the
GMP mode, which is most easily visualized by plotting both
the in-phase and out-of-phase density maps, which are both
displayed in Fig. 5; note that Fig. 2 for compactness only
showed Re n,. We see that while the in-phase density response
is dominated by the sin 6 angular harmonic, the out-of-phase
component is essentially isotropic.

This observation can be checked in experiments with seg-
mented Corbino electrodes, which can probe not only the
polar-angle-averaged electron density but also its angular har-
monics. We performed such experiments using the electrode
layout shown in Fig. 6, where in contrast to the experiments
in the Corbino geometry, the excitation was applied on the
top central electrode. The detection was performed on the sur-
rounding ring electronde which was split into four segments
(named after the cardinal directions). Four voltage amplifiers
were connected to each of the segments, to measure the ad-
mittance Y, between the central electrodes and the segments.
As previously Y is shown rescaled by f,. due to the mainly
capacitive behavior of the admittance.

The results of the experiments are shown in Fig. 6 together
with finite-element simulations of the expected voltage on the
segmented electrodes (obtained by angular integration of 7,
nse, and n;g). We see that the spatial structure of the mode
GMP gives rise to a rather counterintuitive behavior: The
signal measured on individual segments seems out of phase
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FIG. 5. Time-dependent part of the electron density as a func-
tion of the spatial coordinates x and y, calculated for the following
parameters: saturation voltage Vi, = 0.8 V.V, =0V, V;, =75V,
B=0.23T, and f,. = 2.5 kHz (pentagon symbol in Fig. 2). The
electron density has both an in-phase component Re n, (left panel)
and an out-of-phase component Im n, (right panel) with respect to
the excitation voltage.
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with respect to the sum signal from all the segments. For
example, the imaginary part of the admittance from the seg-
ments is mainly an in-phase resonance line shape, with a peak
at resonance; however, the sum from all the segments behaves
more like a derivative feature (dispersive out-of-phase signal).
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Experiment Finite elements simulations
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FIG. 6. Admittance measurements from segmented electrodes;
gate voltages were set to V, =0 V and V; =7.5 V, the perpen-
dicular magnetic field was B = 0.23 T, the total electron number
was N, =2 x 107, and the temperature was 0.2 K. In the finite-
element simulations we used the numerical values o = 0.5° and
Max/Mxy = 2 x 1072, The signal from individual segments and the
isotropic signal (sum of all segments) are dephased by 90° with
each other, displaying different line shapes: peaked and dispersive
for the real and imaginary parts of the admittance, respectively. This
unusual behavior is reproduced by the finite-element simulations
and illustrates the spatial structure of the oscillating electron density
shown in Fig. 5. The signal is shown in arbitrary units since when
measurements are done with a voltage amplifier the measured voltage
depends on the capacitance of the measuring cables and a careful
calibration is needed to recover the absolute value of the admittance.
We showed in Ref. [33] that with such calibrations the contribution
of the electron gas to the measured capacitance perfectly agrees with
the finite-element simulations (except for zero-resistance states). We
thus feel justified here not to focus on the relative scales between the
experimental and theoretical signals as we know that their amplitudes
coincide in the limit of low frequencies and use arbitrary units for
simplicity.
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FIG. 7. The frequency of the GMP mode is proportional to
the perpendicular electric field as predicted. The imaginary part of
the admittance of one of the segments (see discussion on the phase of
the resonance in Sec. 2 of the Appendix) is shown as a function of the
excitation frequency f,., the bias voltage is set to zero (V, = 0), and
the perpendicular electric field is givenby £, = V,;/h (h = 2.6 mm),
B = 0.23 T. The excitation frequency f,. is divided by the perpendic-
ular electric field, so that the position of the resonance remains fixed
when E is changed (different curves correspond to different E ).
The quality factor of the resonance increases with increasing E .

Similarly, the real part of the admittance from individual
segments behaves as a derivative (dispersive line shape), while
the sum from all segments follows the line shape of an in-
phase resonance. This 90° phase shift between the admittance
of a single segment and the isotropic average overall signal
is nicely reproduced in the finite-element simulations and is a
manifestation of the spatial structure of the oscillating charge
density shown in Fig. 5, where the sin 6 angular harmonic and
the isotropic component are out of phase with each other.

3. Perpendicular electric field dependence

Figure 7 shows that the frequency of the GMP mode is
proportional to the perpendicular electric field as predicted.

4. Tilting the refrigerator

In the experiment shown in Fig. 8, we check that the
frequency of the GMP mode can be changed by tilting the re-
frigerator, which modifies the angle «; the change in the
resonance frequency is shown in the top panel with an increase
in the resonance quality factor. The increase in the tilt angle
was estimated from the shift of the GMP mode. It was not
possible to confirm this value independently since the design
of our refrigerator was not optimized to allow the fine-tuning
of its inclination with respect to the vertical direction (the
estimated change is consistent with the indications of the
bubble level meters that were fixed on the refrigerator). We
are, however, certain that all other parameters remained fixed
while the refrigerator was tilted. The gate voltages were fixed
[V, =2 V (in the top panel), V; =7 V], and the trapped
magnetic field remained B = 0.3 T. The only parameter that
could change is in fact the number of electrons trapped in the
cloud as electrons could escape during the mechanical motion
of the refrigerator. We confirmed that this was not the case in
the bottom panel, which shows scans of the cell admittance

Re Y (arb. units)

initial fridge tilt, approximately 0.4 deg ——

new fridge tilt, approximately 0.5 deg ——
1 2 3 4 5 6 7 8
f (kHz)

initial fridge tilt, approximately 0.4 deg —— |
new fridge tilt, approximately 0.5 deg —— |

598
5.96 |
5.94
5.92

5.9
5.88
5.86
5.84
5.82

5.8

Im'Y (arb. units)

V,, (Volt)

FIG. 8. The top panel shows that the frequency of the GMP mode
can be changed by tilting the refrigerator, which modifies the angle
o; the change in the resonance frequency is shown in the top panel
with an increase in the resonance quality factor. The bottom panel
confirms that the number of trapped electrons did not change as the
refrigerator was tilted.

as a function of the bias voltage V,, before and after the tilt at
fac = 1.137 kHz. The voltage threshold indicated by the black
arrow at which the central region of the cell becomes filled
with electrons is directly related to the total number of trapped
electrons; it did not change before and after the tilt allowing
us to confirm that N, = 3 x 107 did not change during the tilt
of the refrigerator.

5. Gradient magnetoplasmons under microwave irradiation

We have shown that increasing the perpendicular electric
field E, and the tilt angle « increases the quality factor of the
GMP resonance; this probably occurs because the resonance
frequency increases while the loss rate remains fixed. It is also
possible to reduce the damping by applying microwave irradi-
ation at a frequency which can induce zero-resistance states.
The modulation of the GMP resonance in this case is shown
in Fig. 9 for two values of N,. When a microwave frequency
at resonance between the lowest and first excited Rydberg
state is sent into the cell (at the intersubband resonance in
quantum well terminology), a 1/B periodic modulation of the
quality factor of the GMP resonance is observed. At con-
ditions corresponding to minima of the microwave-induced
resistance oscillations the quality factor of the GMP resonance
is substantially increased. Figure 9 also shows the admittance
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FIG. 9. The color-scale diagrams [(a), (b), (d), and (e)] show the imaginary part of the admittance from one segment (see Fig. 6 for a
discussion on the phase of the signal) measured as a function of the perpendicular magnetic field B and the low-frequency ac excitation
frequency f,.. In the figure this frequency is multiplied by B to emphasize the 1/B dependence of the GMP resonance; indeed, with this
rescaling the position of the resonance remains fixed as the magnetic field is varied. Experiments are shown both in the dark and under
microwave (MW) irradiation at 139 GHz, a frequency which excites the transition between the two lowest-lying Rydberg levels leading to
microwave-induced resistance oscillations which appear in (b) and (e) as a 1/B periodic modulation of the GMP resonance quality factor. As
shown in the data slices in (c) and (f) the quality factor of the GMP resonance substantially increases at minima of the microwave-induced
resistance oscillations. (a)—(c) correspond to N, = 5 x 10°, while (d)—(f) were obtained for N, = 10 x 10°. In both cases the gate voltages

were V; =4.5VandV,=-35V.

Y (fac) without microwaves confirming that the frequency of
the GMP resonance scales as 1/B as a function of B; inter-
estingly, without microwave irradiation the quality factor of
the resonance does not seem to depend much on the magnetic
field. This is probably due to an approximate compensation
between the 1/B decrease in the resonance frequency and
the 1/B decrease in the ratio fiyc/tyy. Experimentally, this
leads to a plateau where the admittance of the cell becomes
independent of the magnetic field; thus due to the contribution
of the GMP mode an admittance plateau can appear even
when f,, still decreases with the magnetic field.

While we do not yet have a model for the resonant modes in
the zero-resistance state, it seems very likely that excitation of
the GMP mode plays an important role in the transition to the
zero-resistance state (ZRS). Experimentally, self-oscillations
at frequencies consistent with the GMP mode were reported
in Ref. [35]. We also showed that the ZRS for electrons on
helium is a collective state where the microwave excitation
must be at resonance with the transition between the lowest
Rydberg levels in the entire system (intersubband resonance);
detuning the edge of the electron cloud is enough to sup-
press the ZRS in the center of the cloud even if the edge is

separated from the center by a macroscopic distance larger
than the electrostatic screening length [33]. GMP is a col-
lective mode spreading through the entire electron cloud and
seems well placed to explain this collective behavior. Note
that in these experiments, anomalous compressibility values
(negative) were found close to V, = 0, a value that we now
understand to be singular for the resonance frequency of GMP.
Finally, we also know that due to inhomogeneous broadening,
only a small fraction of the electrons in the system should
actually be at resonance with the microwave photons; yet the
collective response seems to suggest that all the electrons are
excited. The GMP mode can also provide an explanation for
these apparently conflicting observations. Indeed, the density
oscillations in the GMP mode will also create an oscillation of
the perpendicular electric field. If the amplitude of the GMP
oscillation is sufficiently large, it can locally compensate the
detuning due to the static inhomogeneous broadening. In this
case, during a cycle of the GMP mode all the electrons will
cross the resonance and will be excited at least once in a
GMP oscillation period. These arguments show that accurate
modeling of the GMP resonance is an important step in the un-
derstanding of zero-resistance states for electrons on helium.
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