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Quantum signatures of the mixed classical phase space for three interacting particles
in a circular trap
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We study theoretically two consequences of the mixed classical phase space for three repulsively interacting
bosonic particles in a circular trap. First, we show that the energy levels of the corresponding quantum system
are well described by a Berry-Robnik distribution. Second, we identify stationary quantum states whose density
is enhanced along the stable classical periodic trajectories, and calculate their energies and wave functions using
the semiclassical Einstein-Brillouin-Keller (EBK) theory. Our EBK results are in excellent agreement with our
full-fledged finite-element numerics. We discuss the impact of discrete symmetries, including bosonic exchange
symmetry, on these classically localized states. They are within experimental reach, and occur in the same range
of energies as the quantum scar reported in our previous work [Phys. Rev. A 107, 022217 (2023)].

DOI: 10.1103/PhysRevA.110.012230

I. INTRODUCTION

The suppression of ergodicity in quantum systems has long
been under intense scrutiny [1, Chap. 8], and atomic systems
are very well suited to its investigation [2, Chap. 4]. The
mechanisms leading to it in many-body systems, relying on,
e.g., integrability [3], the presence of disorder [4], many-body
scarring [5,6], or periodic driving [7], hold promise for quan-
tum information processing over long times, but may hinder
cooling mechanisms [8].

In the case of Hamiltonian systems, comparing the quan-
tum system to its classical analog has been very fruitful in
identifying such mechanisms [9]. Most classical systems have
a mixed phase space hosting both ergodic and nonergodic
trajectories. Ergodic trajectories densely cover a substantial
fraction of the energy surface; nonergodic ones wind around
tori found within the Kolmogorov-Arnold-Moser (KAM) re-
gions of phase space, well described using KAM theory [10,
Appendix 8]. Ergodicity in the quantum system may be sup-
pressed in a phase space region corresponding to classical
ergodic motion, e.g., by a quantum scar [11]. The quantum
system is also known to exhibit regular levels reflecting the
classical nonergodic trajectories [9, Sec. 4]. These levels may
be studied using the semiclassical Einstein-Brillouin-Keller
(EBK) theory [12,13]. In contrast to the semiclassical ap-
proaches applicable to the classically chaotic region, which
mainly provide information concerning the density of states
[14, Chap. 17], EBK theory applied to the classical KAM
regions yields both quantum energy eigenvalues and eigen-
functions constructed from classically nonergodic trajectories.
The full energy spectrum, including both the regular levels to
which EBK theory applies and the remaining levels related to
chaotic dynamics [9, Sec. 5], exhibits energy level statistics
which significantly deviate [15,16] from both the Poisson
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and Wigner distributions respectively associated with classical
integrability and chaos [14, Chap. 16].

Mixed classical phase spaces are relevant for the descrip-
tion of many-body systems. The many-body scar affecting the
spin dynamics of a Rydberg atom chain observed in Ref. [5]
provides a recent example. The classical analog system,
whose construction is involved [17], exhibits mixed phase
space, and KAM regions play a key role in the many-body
quantum revivals [18]. Motivated by these recent develop-
ments, we introduced in our previous article [19] the system of
three interacting particles in a circular trap. We analyzed this
experimentally accessible system through well-established
theories applied to a phase space whose dimension matches
the number of independent parameters introduced in Ref. [18],
and identified a quantum scar affecting the motion of the
atoms.

In this paper, we analyze the role of its mixed classical
phase space. First, we show that the parameters we inves-
tigated in Ref. [19] fall within a range where the quantum
energy level statistics are well described by the Berry-Robnik
distribution [16]. Then, we identify quantum states whose
probability density is enhanced near stable classical periodic
trajectories. Using EBK theory, we characterize their energy
eigenvalues and explicitly construct their wave functions.
Our results are in excellent agreement with our full-fledged
numerical solution of the Schrödinger equation using the
finite-element method. We highlight the role of discrete sym-
metries, including bosonic exchange symmetry, and their
observable consequence, on the energies and wave functions
of the considered localized states.

We formulate our analysis in terms of trapped Ryd-
berg atoms, made accessible by recent experimental ad-
vances [20,21]. However, similar phenomena are expected
to occur with systems of magnetic atoms [22] or polar
molecules [23] exhibiting the same symmetries. The classi-
cally localized states [24, Chap. 22] identified in the present
paper occur for the same parameters and energy range as
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FIG. 1. (a) The periodic trajectories A0, A1, A2 (straight blue lines) and C+, C− (the closed green trajectory is followed anticlockwise for
C+ and clockwise for C−), shown in the (x, y) plane for the energy ε = 7C6/R6. The dotted brown line shows the classically accessible region.
The inset shows the considered physical system: three interacting particles in a circular trap. (b) Periodic trajectory A0 as a function of time
for ε = 7C6/R6 in terms of its coordinates x(t ) (solid line) and y(t ) (dashed line). (c) Period TA(ε) of trajectory A as a function of the energy ε.
(d) and (e) show the corresponding quantities for trajectory C+. Trajectories A and C are stable for the considered range of energies.

the previously identified quantum scar [19]. One may ad-
dress one effect or the other simply by changing the initial
condition defining the atomic motion. Hence, the simple,
well-controlled atomic system we are proposing offers an
opportunity for a detailed experimental comparison of the two
effects.

The paper is organized as follows. In Sec. II, we introduce
the considered system, and briefly summarize its properties
described in detail in our previous article [19]. In Sec. III,
we show that its quantum energy levels are well represented
by the Berry-Robnik distribution. In Sec. IV, we apply EBK
theory to identify the energy levels for the quantum states
localized near stable periodic trajectories and construct the
corresponding EBK wave functions, and we compare them
to our finite-element numerical results. In Sec. V, we discuss
experimental prospects. The article ends with the conclusive
Sec. VI.

II. THE CONSIDERED SYSTEM

The system we analyze has been introduced in our previous
article [19]. We briefly summarize its key features.

We consider three identical bosonic particles of mass m
in a circular trap of radius R [Fig. 1(a), inset]. We as-
sume that the interaction v(di j ) between the particles i and
j only depends on their distance di j = 2R| sin[(θi − θ j )/2]|.
For circular Rydberg atoms whose electronic angular mo-
menta are perpendicular to the plane, v(di j ) = C6/d6

i j with
C6 > 0. We introduce the Jacobi coordinates x = [(θ1 +
θ2)/2 − θ3 + π ]/

√
3, y = (θ2 − θ1)/2 − π/3, z = (θ1 + θ2 +

θ3)/3 − 2π/3, and their conjugate momenta px, py, pz (which
carry the unit of action). Then, the Hamiltonian reads H =
p2

z/(6mR2) + H2D, where

H2D = p2
x + p2

y

4mR2
+ V (x, y) . (1)

Here, V (x, y) = v(x, y)C6/R6, with

v(x, y) = [sin−6(π/3 + y) + sin−6(π/3 + x
√

3/2 − y/2)

+ sin−6(π/3 − x
√

3/2 − y/2)]/64 − 1/9 (2)

energies being measured from the minimum V (0). The Hamil-
tonian H may be understood as describing either a classical
system or its quantum counterpart. It is invariant under the
point group C3v , generated by the rotation of order 3 about
the axis (x = y = 0) and the reflection in the plane (x = 0).
The free motion of the coordinate z reflects the conserva-
tion of the total angular momentum pz. Once the latter is
fixed, the system is reduced to an effective point in the two-
dimensional (2D) plane (x, y) within the equilateral triangle
ABC of Fig. 1(a), in the presence of the potential V (x, y).

From the quantum point of view, we seek the three-atom
eigenstates of H in the form �n(θ1, θ2, θ3) = ψn(r) einz, where
r = (x, y), and n is an integer setting the value of the quan-
tized angular momentum pz. The wave function ψn(r) is fully
determined by its values within the triangle ABC and van-
ishes along AB, BC, and CA. The constraint �n(θ1, θ2, θ3) =
�n(θ3 − 2π, θ1, θ2), combining bosonic symmetry and angu-
lar periodicity, yields

ψn(Rr) = ψn(r) e2inπ/3 , (3)

where R is the rotation of angle 2π/3 about O in the (x, y)
plane. We sort the energy levels in terms of the three irre-
ducible representations A1, A2, E of C3v . Owing to Eq. (3),
wave functions pertaining to the one-dimensional (1D) rep-
resentations A1 or A2 have n = 0 modulo 3, whereas those
pertaining to the 2D representation E have n �= 0 modulo 3.

As in Ref. [19], we set the ratio η = h̄R2/(mC6)1/2 to 0.01,
and we consider energies ε ∼ 7C6/R6.

III. MIXED CLASSICAL PHASE SPACE AND QUANTUM
ENERGY LEVEL STATISTICS

A. Classical periodic trajectories

We have characterized the periodic trajectories of the
model of Eq. (1) using our own C + + implementation of the
numerical approach of Ref. [25]. We find three families of
periodic trajectories existing for all energies ε > 0: we label
them A, B, C in analogy with those of the Hénon-Heiles poten-
tial [26]. We have analyzed the unstable trajectories of family
B (i.e., their Lyapunov exponent >0), along with the quantum
scar it yields, in our previous article [19]. By contrast, the
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FIG. 2. Surface of section for Eq. (2), with pz = 0, ε = 7C6/R6,
x = 0, and px > 0. The periodic trajectory A0 appears as the dark
blue closed boundary of the figure. All other periodic trajectories
appear as fixed points, shown in dark blue for A1 and A2; dark red for
B1, B2, and B3; and dark green for C+ and C−. The stable trajectories
Ai and Cj are surrounded by (light blue and light green) tori; no
tori are present near the unstable trajectories Bk . The ≈287 000 thin
brown dots all belong to the same ergodic trajectory.

trajectories of families A and C are stable for all considered
energies (i.e., their Lyapunov exponents = 0).

For a given energy ε, family A contains three straight-line
trajectories A0, A1, A2, which follow the medians of the tri-
angular configuration space, and transform into one another
under rotations of order 3. Family C contains two trajectories
C+ and C−, which are closed loops around the center O: C+ is
followed anticlockwise and C− clockwise, and they transform
into each other under reflections about any of the three medi-
ans. All five trajectories are represented on the (x, y) plane in
Fig. 1(a). The vertical trajectory A0 and the trajectory C+ are
shown as functions of time on Figs. 1(b) and 1(d). Trajectories
of a given family have the same period as a function of energy
TA(ε) and TC (ε): these are plotted in Figs. 1(c) and 1(e) and
are both of the order of (mR8/C6)1/2 for ε ∼ 7C6/R6.

The simultaneous existence of stable and unstable peri-
odic trajectories signals that the classical system represented
by H2D is neither integrable nor fully chaotic: its phase
space is mixed. This is apparent on the surface of section of
Fig. 2 [19]. There, the nonergodic trajectories are represented
by the closed blue and green curves, which are sections in
the two-dimensional plane of the KAM tori [10, Appendix 8]
surrounding the stable trajectories A and C. We numerically
find that the fraction of the surface of section not occupied
by tori is densely covered by the intersections from a single
ergodic trajectory, comprising the single ergodic zone visible
on Fig. 2, within which lie the three unstable trajectories of
family B.

B. Quantum energy level statistics

The quantum spectra of systems with mixed classical phase
space satisfy neither the Poisson nor the Wigner distribution
[14, Sec. 16.8]. We now verify this for the model of Eq. (2)
and show that its energy level statistics are well represented
by a Berry-Robnik distribution [16].

We numerically solve the Schrödinger equation for the
Hamiltonian of Eq. (1) using the finite-element software

FIG. 3. The histograms show the distribution of unfolded energy
level spacings sr,i = N̄r (εi + 1) − N̄r (εi ) for states belonging to the
three irreducible representations r = A1 (top), A2 (center), and E
(bottom), which are analyzed separately. They differ from the Pois-
son (dotted golden line) and Wigner (dashed red line) distributions.
They are well represented by the Berry-Robnik distribution, assum-
ing a single chaotic region in phase space, with parameter ρ1 = 0.6
for all three representations.

FREEFEM [27]. We calculate stationary states belonging to the
three irreducible representations A1, A2, E of the point group
C3v separately. We exploit discrete symmetries to reduce the
configuration space to a triangle which slightly exceeds 1/6
of the classically accessible region for a given energy: details
are given in our previous paper [19, Appendix 2]. We use a
triangular mesh comprising 1000 vertices along each edge.
We thus numerically obtain the energies and wave functions
for slightly more than 1200 consecutive energy levels for
Representation A1, 1200 levels for Representation A2, and
1700 nondegenerate levels for Representation E , in energy
windows centered on 7C6/R6.

For each irreducible representation r = A1, A2, and E of
C3v , we introduce the integrated density of states Nr (ε), which
is the staircase-like function giving the number of station-
ary quantum states whose energies are smaller than ε [14,
Sec. 16.2]. We describe its smooth component N̄r (ε) through
its Weyl expansion, accounting for discrete symmetries [28].
We retain the leading-order term, proportional to 1/h̄2, and
the first correction, proportional to 1/h̄. We calculate the
spacings sr,i = N̄r (εi + 1) − N̄r (εi) between consecutive “un-
folded” energies N̄r (εi ) [9, Sec. 5.4]. We plot their distribution
on Fig. 3, where it is seen to differ from both the Poisson and
the Wigner distributions [14, Secs. 16.3 and 16.4], as expected
for a system with mixed classical phase space.

Figure 3 shows that the distribution of unfolded energy
level spacings is well represented by the Berry-Robnik dis-
tribution [16], assuming that a single chaotic region in phase
space contributes to the statistics, with the same parameter
ρ1 = 0.6 for all three representations. Both the assumption of
a single chaotic region and the value ρ1 = 0.6, representing
the fraction of the energy surface over which motion is regular,
are compatible with the surface of section of Fig. 2. The
applicability of the Berry-Robnik distribution hinges on the
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statistical independence of the regular and chaotic sequences
of levels. Counterexamples have been identified, e.g., the
hydrogen atom in a magnetic field [29], and its numerical veri-
fication with billiards requires reaching the deep semiclassical
limit [30]. By contrast, our result provides a realization of
the Berry-Robnik distribution in an experimentally accessible
system involving smooth interatomic interactions rather than
sharp billiard walls.

IV. QUANTUM STATIONARY STATES LOCALIZED NEAR
THE CLASSICALLY STABLE PERIODIC

TRAJECTORIES A AND C

For the majority of the stationary quantum states of the
Hamiltonian H2D that we have obtained numerically, the prob-
ability density |ψ (x, y)|2 is not directly related to the periodic
trajectories of types A and C. Nevertheless, we find multiple
eigenstates whose probability density is enhanced along one
or the other of these trajectories. Figures 6(a) and 6(b) and
Figs. 7(a) and 7(b) illustrate this phenomenon for trajectories
A and C, respectively: in each case, we show the proba-
bility density for the quantum states closest to the energy
ε = 7C6/R6. This phenomenon superficially resembles the
quantum scars stemming from trajectory B, which we have
identified in our previous article [19]. However, the quantum
states we consider in the present article do not satisfy Heller’s
definition for a quantum scar [24, Chap. 22]. Indeed, in stark
contrast to the classically unstable trajectory B, trajectories A
and C are both classically stable. Hence, quantum mechanics
yields no qualitative change in the behavior of the system
in their vicinity. In this section, we illustrate this statement
with two results. First, calculating the energies of the quantum
states related to trajectories A and C semiclassically, we justify
that they obey selection rules, which we entirely explain in
terms of the symmetries of the classical KAM tori. Second,
we construct semiclassical wave functions for these quantum
states. Our semiclassical results for both the energies and
the wave functions are in excellent agreement with our full
quantum calculation.

A. Symmetries of the regular classical trajectories

We first consider the regular classical trajectories in the
KAM regions of phase space surrounding the stable periodic
trajectories of families A and C. Our numerical results show
that the tori lying close to the periodic trajectories inherit the
discrete symmetry properties of the corresponding periodic
trajectories, namely, (1) a torus TA near the periodic trajectory
of type A invariant under the reflection S exhibits reflection
symmetry, i.e., if the point (r, p) belongs to TA, then so does
(Sr,S p); and (2) a torus TC near a periodic trajectory of type
C is invariant under rotations R of order 3, i.e., if the point
(r, p) belongs to TC , then so does (Rr,Rp).

We justify properties (1) and (2) through the following
argument. We rely on an approximation introduced in Sec. 4.1
of Ref. [9]: we ignore narrow instability subregions and ap-
proximate the whole KAM region by a set of concentric tori.
Our numerical results for the surface of section, shown on
Fig. 2, confirm that it is very well satisfied for the inner tori,
close to the periodic trajectories, which are of interest in this

work (it breaks down for the outer tori in the vicinity of the
ergodic zone, which we do not consider). This allows for the
introduction of local action-angle coordinates, valid within
this region. These are defined through the consistent choice
of fundamental frequencies ω = (ω1, ω2) [31, Sec. III.E] on
each torus within the region. Then, any conditionally periodic
trajectory [r(t ), p(t )] winding around one such torus may be
written as a Fourier series [32, Sec. 52]:

r(t ) =
∑

k

rk exp(ik · ωt ), p(t ) = 2mR2dr/dt , (4)

the sum being taken over all integer pairs k = (k1, k2). The
considered torus is uniquely determined by its actions J =
(J1, J2), which are given by [33]

Jα =
∑

α′=1,2

∑

k

kα|rk|2kα′ωα′ . (5)

Let us justify statement (2), concerning tori in the vicinity
of a periodic trajectory of type C. We consider a point (r, p)
belonging to the KAM region surrounding trajectory C+, and
the rotated point (r′, p′) with r′ = R2π/3r and p′ = R2π/3 p.
Trajectory C+ is invariant under rotations of order 3, so that
(r′, p′) also belongs to the same KAM region. We compare the
two trajectories [q(t ), p(t )] and [q′(t ), p′(t )] obtained from the
initial conditions (r, p) and (r′, p′). Their Fourier components
rk and r′

k, defined by Eq. (4), satisfy r′
k = R2π/3rk, so that

|r′
k| = |rk|. According to Eq. (5), the actions Jα only depend

on the modulus |rk|, hence, they are the same for both trajec-
tories. Therefore, the points (r, p) and (r′, p′) belong to the
same torus TC+ . Statement (1) may be justified similarly.

B. EBK quantization: Energy levels

In this section, we obtain semiclassical predictions for the
energies of the quantum levels related to trajectories A and
C, which are in excellent agreement with the values obtained
through our numerical solution of the Schrödinger equation
[see Figs. 4(b) and 5(c)]. We also explain quasidegeneracies
and derive selection rules, both of which are direct conse-
quences of the discrete symmetries of the KAM tori presented
in Sec. IV A above.

Our semiclassical description relies on EBK theory [12],
accounting for the Maslov phase corrections [34, Sec. 7]. This
theory generalizes the Wentzel-Kramers-Brillouin (WKB) ap-
proach [35, Sec. 48] to the quantization of regular classical
motion with more than one degree of freedom [13]. We use
our own implementation as a PYTHON script of the EBK
approach, based on Refs. [31,36], which hinges on the rep-
resentation of conditionally periodic motion in terms of the
Fourier series of Eq. (4). We integrate classical trajectories
over time intervals of lengths up to tmax = 3700(mR8/C6)1/2

and keep up to 3200 terms in Eq. (4).
We now characterize the quantum stationary states lo-

calized near the classically stable trajectories A and C. In
Secs. IV B 1 and IV B 2 below, we derive the EBK energies
for these states, considered as eigenstates of H2D, whose wave
functions depend on r = (x, y). In Sec. IV B 3, we analyze
the role of angular momentum so as to discuss the station-
ary states of the three-particle Hamiltonian H , whose wave
functions depend on (x, y, z).
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FIG. 4. (a) Classical trajectory A (solid dark blue) for the energy ε = 7C6/R6, the nearest-energy trajectory satisfying Eq. (6) for η = 0.01
(densely covering the light blue area), and two independent circuits Cx (dotted purple) and Cy (dotted red) circling the torus, in terms of which
the quantum numbers are νx = 0 and νy = 300. The dashed gray lines show the caustics of this trajectory. The top left inset zooms in on
the narrow region near (x = 0, y = 1.2) to reveal the self-intersection of the caustics. (b) Top panel: energies of the EBK wave functions for
νx = 0 and 295 � νy � 305. Center and bottom panels: energies of the corresponding quasidegenerate quantum stationary states belonging
to representations A1 (center) and E (bottom), obtained through our finite-element numerical calculations. Because of the torus symmetries,
there are no states in representation A2 corresponding to the EBK quantum numbers (νx = 0, νy ). The integers in the center and bottom panels
specify the relative state indices within each representation, �νA1 and �νE/2, with respect to the quantum state related to trajectory A, whose
energy is closest to 7C6/R6. (c) Small energy differences between the quasidegenerate states of representations A1 and E .

1. Quantum states localized near trajectory A

For a given energy ε, the three periodic trajectories A0,
A1, and A2 [see Fig. 1(a)] and the tori surrounding them are
mapped one onto the other through the rotations R and R−1.
Hence, we focus on the vertical trajectory A0. In Eq. (4), we
choose the fundamental frequencies ω = (ω1, ω2) as in Ref.
[31, Fig. 8(b)]. This leads to the independent circuits Cx and Cy

on Fig. 4(a). Calculating their Maslov indices [13, Sec. II.C],
we obtain the EBK quantization condition for the tori near
trajectory A,

Ix = h̄(νx + 1/2) and Iy = h̄(νy + 1) , (6)

where Ix,y are the action integrals for the circuits Cx,y, h̄ is
the reduced Planck’s constant, and the integers νx,y � 0 are
the EBK quantum numbers. The action Ix � h̄/2, so that the

periodic trajectory A0 itself does not satisfy Eq. (6). The tori
satisfying Eq. (6) which are closest to trajectory A0 are those
with νx = 0: the corresponding energies within a window
centered on ε = 7C6/R6 are shown on the top line of Fig. 4(b).
We compare them to the energies of the stationary quantum
states of H2D belonging to representations A1 and E localized
near the trajectories A0, A1, and A2, obtained through our
finite-element calculations [see Figs. 6(a) and 6(b)]. These
are shown in Fig. 4(b), middle and bottom lines, and are in
excellent agreement with the EBK results.

Figure 4(b) reveals that each EBK energy corresponds to
quasidegenerate quantum states pertaining to representations
A1 and E . Furthermore, no quantum stationary states pertain-
ing to representation A2 exhibit density profiles similar to
Figs. 6(a) and 6(b). Both of these properties follow from the

FIG. 5. (a) Classical trajectory C (solid dark green) for the energy ε = 7C6/R6, the nearest-energy trajectory satisfying Eq. (9) for η = 0.01
(densely covering the light green area), and two independent circuits Cr (purple) and Cl (red) circling the torus, in terms of which the quantum
numbers are νr = 0, νl = 267. The dashed gray lines show the caustics of this trajectory, which self-intersect in the top left, top right, and
bottom regions. (b) Top panel: energies of the EBK wave functions for νr = 0 and 262 � νl � 271. Three lower panels: energies of the
corresponding quantum eigenstates belonging to representations A1, A2, and E , obtained through our finite-element numerical calculations.
States in representations A1 and A2 exhibit quasidegeneracies and correspond to the EBK quantum numbers νr = 0, νl = 0 modulo 3; each
EBK torus with quantum numbers νr = 0, νl �= 0 modulo 3 yields two degenerate states in representation E . The integers specify the relative
state indices within each representation, �νA1 , �νA2 , and �νE/2, with respect to the quantum state related to trajectory C whose energy is
closest to 7C6/R6. (c) Small energy differences between the quasidegenerate states of representations A1 and A2.
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FIG. 6. Quantum states localized near the trajectories of family A. (a and b) Wave function densities |ψA1 (r)|2 and |ψE (r)|2 for the two
quasidegenerate eigenstates of H2D localized near the periodic trajectories of family A whose energies are closest to C6/R6, obtained through
our finite-element numerical calculations. (c and d) The corresponding squared EBK wave functions |ψA1

EBK(r)|2 and |ψE
EBK(r)|2, built from

the KAM torus satisfying Eq. (6) with νx = 0, νy = 300 [see Fig. 4(a)]. On all four panels, the left inset details the region where the caustics
self-intersect, and the right one shows the region near (x = 0, y = 0).

symmetries of the regular trajectories identified in Sec. IV A
above, through a mechanism identified in Refs. [37] and [9,
Sec. 4.2] in the case where the discrete symmetry at play had
order 2. The system we consider provides examples of the
same phenomenon involving C3v symmetry, as we now show.

We consider the EBK wave function ψEBK(r), correspond-
ing to a torus in the vicinity of trajectory A0, with the energy
εEBK, satisfying Eq. (6) with νx = 0. This torus is invariant
under the reflection S about the vertical axis x = 0. Therefore,
as shown in Ref. [9, Sec. 4.2],

ψEBK(Sr) = (−1)νx ψEBK(r) = ψEBK(r) . (7)

The EBK wave function ψEBK reflects the symmetry of
the corresponding classical torus, but does not automati-
cally satisfy the symmetry requirements of any representation.
We now project it onto the irreducible representations [35,
Sec. 94] A1, A2, and E . This yields three linearly independent
wave functions, ψ

A1
EBK and ψE ,±

EBK, pertaining to the represen-
tations A1 and E , corresponding to the same semiclassical

energy. In terms of kets |ψ〉, with 〈r|R|ψ〉 = ψ (R−1r) and
〈r|S|ψ〉 = ψ (Sr), they read

∣∣ψA1
EBK

〉 = αA1 (1 + R + R−1) |ψEBK〉 ,
∣∣ψE ,+

EBK

〉 = αE (1 + j∗ R + j R−1) |ψEBK〉 ,
∣∣ψE ,−

EBK

〉 = αE (1 + j R + j∗ R−1) |ψEBK〉 . (8)

In Eq. (8), αA1,E are normalization coefficients, and
j = e2iπ/3. We have used the relations SRS = R−1 and
Eq. (7). The states |ψA1

EBK〉 and |ψE ,±
EBK〉 satisfy R |ψA1

EBK〉 =
|ψA1

EBK〉, R |ψE ,±
EBK〉 = ± j |ψE ,±

EBK〉, and |ψE ,−
EBK〉 = S |ψE ,+

EBK〉.
The component of ψEBK pertaining to representation A2, pro-
portional to (1 + R + R−1)(1 − S ) |ψEBK〉, is 0 because of
Eq. (7).

2. Quantum states localized near trajectory C

We proceed as in Sec. IV B 1. For a given energy ε,
the two periodic trajectories C+ and C− [see Fig. 1(a)] and
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FIG. 7. Quantum states localized near the trajectories of family C. (a) and (b) Wave-function densities |χA1 (r)|2 and |χA2 (r)|2 for the two
quasidegenerate eigenstates of H2D localized near the periodic trajectories of family C whose energies are closest to C6/R6, obtained through
our finite-element numerical calculations. (c) and (d) The corresponding squared EBK wave functions |χA1

EBK(r)|2 and |χA2
EBK(r)|2, built from the

KAM torus satisfying Eq. (9) with νr = 0 and νl = 267 [see Fig. 5(a)]. On all four panels, the left inset details the region where the caustics
self-intersect, and the right one shows the region near (x = 0, y = 0.4).

the tori surrounding them are mapped onto each other through
the reflection S . Hence, we focus on the trajectory C+. In
Eq. (4), we choose the fundamental frequencies ω = (ω1, ω2)
as in Ref. [31, Fig. 8(a)], leading to the independent circuits
Cr and Cl on Fig. 5(a). Calculating their Maslov indices,
we obtain the EBK quantization condition for the tori near
trajectory C,

Ir = h̄(νr + 1/2) and Il = h̄(νl + 1/2) , (9)

where Ir,l are the action integrals for the circuits Cr,l , and the
integers νr,l � 0 are the EBK quantum numbers. The trajec-
tory C+ does not satisfy Eq. (9). The tori satisfying it which
are closest to C+ are those with νr = 0; their energies are
shown on the top line of Fig. 5(b). We compare them to the
energies of the stationary quantum states of H2D belonging to
representations A1, A2, and E localized near the trajectories
C+ and C−, obtained through our finite-element calculations
[see Figs. 7(a) and 7(b)]. These are shown on the three lower

lines of Fig. 5(b), and are in excellent agreement with the EBK
results.

Figure 5(b) shows that each EBK energy with νr = 0 and
νl = 0 modulo 3 corresponds to two quasidegenerate quantum
states pertaining to representations A1 and A2. By contrast,
each EBK energy with νr = 0 and νl �= 0 modulo 3 corre-
sponds to two exactly degenerate quantum states spanning a
representation E . As for the states localized near trajectory
A (see Sec. IV B 1 above), these properties follow from the
symmetries of the regular trajectories (Sec. IV A). These are
different from the symmetries of the tori surrounding trajec-
tory A, leading to different selection rules, which we now
derive.

We consider the EBK wave function χEBK(r), correspond-
ing to a torus in the vicinity of trajectory C+, with the energy
εEBK, satisfying Eq. (9) with νr = 0. This torus is invariant
under the rotation R. A straightforward generalization of the
argument in Ref. [9, Sec. 4.2] to symmetry operations of
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FIG. 8. Quantum states localized near the trajectories of family A. Comparison of the EBK (a) and (b) wave function ψ
A1
EBK and (c) and (d)

density |ψE
EBK|2 (green) with the corresponding quantities obtained through finite-element numerics (red) shown in Fig. 4, along the horizontal

[(a) and (c)] and vertical [(b) and (d)] axes. The insets illustrate their behavior near the caustics (vertical dashed gray lines). Each EBK wave
function has been scaled to match the finite-element wave function at the point (x = 0, y = 0.5).

order 3 leads to χEBK(Rr) = jνl χEBK(r). We now project
χEBK onto the irreducible representations A1, A2, and E . For
each νl , this yields two linearly independent, degenerate EBK
wave functions. If νl = 0 modulo 3, the nonvanishing wave
functions pertain to representations A1 and A2:

∣∣χA1,A2
EBK

〉 = βA1,A2 (1 ± S ) |χEBK〉 , (10)

with βA1,A2 being two normalization factors, whereas the com-
ponent along E vanishes. By contrast, if νl �= 0 modulo 3, the
components along A1 and A2 vanish, whereas the two nonva-
nishing wave functions |χE ,±

EBK〉 span a representation E . For
νl = −1 modulo 3, |χE ,+

EBK〉 = |χEBK〉 and |χE ,−
EBK〉 = S |χEBK〉,

and the opposite assignment holds for νl = +1 modulo 3.

3. The role of angular momentum

To discuss the three-particle eigenstates of H in terms of
the eigenstates of H2D identified in Secs. IV B 1 and IV B 2,
we now analyze the role of angular momentum.

We first consider quantum states localized near the periodic
trajectories of family A. The two states ψE ,±

νy
(r) obtained for

a given νy, are exactly degenerate eigenstates of H2D which
span a 2D representation E . However, in terms of three-atom
eigenstates of H , the states ψE ,±

νy
(r)einz occur if the total an-

gular momentum n = ∓1 modulo 3 because of Eq. (3).
The states ψA1

νy
(r) and ψE ,±

νy
(r) obtained for a given νy

belong to different representations A1 and E . Their quaside-
generacy is lifted by small couplings neglected in the EBK

approach [9, Sec. 4.5], and the small energy difference is
resolved in our finite-element numerical results, as shown in
Fig. 4(c). Because of Eq. (3), the three-atom states ψA1

νy
(r)einz

occur if n = 0 modulo 3, so that none of the three states
ψA1,E±

νy
(r)einz may occur for the same value of n. They do not

reduce to an EBK wave function corresponding to a single
classical trajectory. Instead, Eq. (8) shows that they represent
coherent superpositions of the three atoms undergoing motion
near the trajectories A0, A1, and A2.

We now turn to quantum states localized near the periodic
trajectories of family C. The two states χE ,±

νl
(r), obtained

for a given νl �= 0 modulo 3, are exactly degenerate. The
three-atom states χE ,±

νl
(r)einz occur for n = ∓1 modulo 3, and

opposite values of n lead to atoms rotating along C in opposite
directions. The two states χA1,A2

νl
(r) obtained for a given νl = 0

modulo 3 belong to different representations and, hence, are
quasidegenerate: their small energy difference is shown in
Fig. 5(c). The three-atom states χA1,A2

νl
(r)einz may occur for

the same value of n = 0 modulo 3.

C. EBK quantization: Wave functions

To further illustrate the applicability of the EBK approach
to the quantum states localized near the stable periodic trajec-
tories of families A and C, we construct primitive EBK wave
functions for these states [38]. We focus on a given KAM
torus satisfying the quantization conditions of either Eq. (6)
or Eq. (9), depending on whether it lies near a trajectory
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FIG. 9. Quantum states localized near the trajectories of family C. Comparison of the EBK wave functions (green) (a) and (b) χ
A1
EBK and

(c) and (d) χ
A2
EBK and the corresponding wave functions obtained through finite-element numerics (red) shown in Fig. 5, along the horizontal

[(a) and (c)] and vertical [(b) and (d)] axes. The insets illustrate their behavior near the caustics (vertical dashed gray lines). Each EBK wave
function has been scaled to match the finite-element wave function at the point (x = 0.5, y = 0).

of family A or C. To obtain the corresponding EBK wave
functions ψEBK and χEBK of Secs. IV B 1 and IV B 2 above,
the key extra required step with respect to the approach of
Refs. [31,36] is to describe the torus in terms of multiple
sheets on each of which the classical momentum is univalued
[13, Sec. III.A]. These sheets join along the caustics of the
classical trajectory in the (x, y) plane, shown as the dashed
gray lines in Figs. 4(a) and 5(a). The caustics self-intersect,
signaling the occurrence of catastrophes [39], and the torus
sheetings must be constructed accordingly. We find that 12
sheets are required to describe tori near a trajectory of family
A with νx = 0, and that six sheets are required to describe
tori near a trajectory of family C with νr = 0. We then obtain
the wave functions ψEBK and χEBK from the Fourier series of
Eq. (4), in terms of linear superpositions of the contribution of
each sheet [13, Sec. III.C]. Finally, we project ψEBK and χEBK

onto the irreducible representations A1, A2, and E .
Figures 6(c) and 6(d) show the resulting EBK wave

functions for the quasidegenerate quantum states ψA1,E (r)
localized near the trajectories of family A whose energies are
closest to 7C6/R6. We compare them to the corresponding
wave functions obtained through our finite-element numerical
calculations [Figs. 6(a) and 6(b). We show the analogous
results for the states χA1,A2 (r), localized near the trajectories of
family C, in Fig. 7. The agreement between the finite-element
and EBK results is excellent, including in the catastrophe
regions where the classical caustics self-intersect, shown in
the upper left insets.

Primitive EBK wave functions do not account for the
quantum penetration of the wave functions through the
caustics. Instead, they diverge along the caustics as
in the WKB approach [35, Sec. 46] and vanish outside the
classical torus, as illustrated in Figs. 8 and 9 in the Appendix.
This causes the two limitations of the EBK wave functions
considered here. First, interference phenomena involving de-
caying waves outside the torus are not captured: the top left
insets of Fig. 7 provide an example. Second, the divergence
of the wave functions leads to numerical inaccuracies near the
caustics which hinder their normalization. Hence, each of our
EBK wave functions matches the finite-element wave function
up to an overall normalization factor of order 2. We eliminate
it by scaling the EBK wave function so that it matches the
finite-element result at one single point chosen far from the
caustics. The quantum penetration through the caustics may
be accounted for, and hence both limitations be overcome,
using a uniform approximation to the wave function [40,
Sec. 7.2]. This goes beyond the scope of the present work.

V. EXPERIMENTAL PROSPECTS AND OUTLOOK

The effects considered here may be realized, e.g., on the
system already considered in Ref. [19]: 87Rb atoms in the
circular Rydberg state 50C, for which C6/h = 3 GHz µm6.
Then, the value η = 0.01 is achieved in a circular trap of
radius R = 7 µm. The energy ε = 7C6/R6 = h × 200 kHz is
within experimental reach. For these parameters, the periodic
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trajectories of families A, B, and C all have periods of the
order of 1 ms. The position of the atoms may be detected at
a given time by turning on a 2D optical lattice to freeze the
dynamics, followed by atomic deexcitation and site-resolved
ground state imaging. We focus on realizations where the total
three-atom angular momentum n is well defined.

A key difference between the quantum scar of Ref. [19] and
the localization near stable orbits considered here concerns the
timescale over which quantum particles follow the classical
periodic trajectories. For the quantum scar, the timescale over
which quantum particles follow the classically unstable peri-
odic trajectory is expected to depend on its inverse Lyapunov
exponent [24, Chap. 22]. No such constraint exists for the
dynamics near a classically stable orbit, so that recurrences
of the initial state may be sought for over the lifetime of the
trapped atoms.

Next, we point out a consequence of quantum coherence.
According to Sec. IV B 3, the quantum states localized near
the trajectories of family A are equal-weight superpositions of
states localized near the three periodic trajectories of family A
(rather than just one trajectory). This is the impact of bosonic
symmetry. By contrast, motion along a single trajectory C+ or
C− may be observed.

The following point warrants further investigation. Three
atoms launched with angular momentum n = 0 modulo 3
near the periodic trajectory C+ may undergo dynamical tun-
neling [41] to the trajectory C−. The expected oscillation
period, set by h/(ενl ,A2 − ενl ,A1 ), is ∼25 s for the parame-
ters of Fig. 5(c). This very long timescale is out of reach
of current setups, but should become accessible in new
experiments currently under construction promising atomic
lifetimes ∼1 min [42,43]. Furthermore, the period may be
minimized by varying the energy ε and the parameter η.
Dynamical tunneling has already been observed for non-
interacting, periodically driven atoms [44,45]. The system
we consider would provide an example involving interacting
atoms described by a time-independent Hamiltonian.

VI. CONCLUSION

We have revisited the system of three interacting bosonic
particles in a circular trap that we had first considered in

Ref. [19]. We have illustrated the mixed nature of its classical
phase space, and shown that the statistics of the quantum
levels are well described by a Berry-Robnik distribution. We
have analyzed the symmetries of the quantum states localized
along the classically stable periodic trajectories A and C,
calculated their energies semiclassically using EBK theory,
and constructed the corresponding EBK wave functions. Our
semiclassical EBK results, regarding both the energies and the
wave functions, are in excellent agreement with the quantum
eigenstates and energies which we have obtained through
finite-element numerical calculations. Thus, the considered
system hosts both a quantum scar, analyzed in Ref. [19], and
classical localization near stable periodic orbits, analyzed in
the present work. These phenomena, all within experimental
reach, occur in the same energy range: to observe one or the
other, one simply adapts the initial conditions so as to launch
the three atoms along a classical periodic orbit which is either
unstable or stable. Hence, the system we propose appears
promising in view of a detailed experimental comparison be-
tween quantum scars and classically localized states.
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APPENDIX: COMPARISON BETWEEN SCHRÖDINGER
AND EBK WAVE FUNCTIONS

The Supplemental Figs. 8 and 9 on the next page compare
the behavior of the EBK wave functions to those obtained
by solving the Schrödinger equation for the Hamiltonian H2D

through finite-element numerics along the horizontal and ver-
tical axes. They show excellent agreement between the two
approaches, and highlight the key limitation of the EBK wave
functions: the quantum penetration through the caustics is
not accounted for, and is replaced by a divergence along
the caustics.
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