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Quantized conductance through the quantum evaporation of bosonic atoms
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We analyze theoretically the quantization of conductance occurring with cold bosonic atoms trapped in two
reservoirs connected by a constriction with an attractive gate potential. We focus on temperatures slightly above
the condensation threshold in the reservoirs. We show that a conductance step occurs, coinciding with the
appearance of a condensate in the constriction. Conductance relies on a collective process involving the quantum
condensation of an atom into an elementary excitation and the subsequent quantum evaporation of an atom,
in contrast with ballistic fermion transport. The value of the bosonic conductance plateau is strongly enhanced
compared to fermions and explicitly depends on temperature. We highlight the role of the repulsive interactions
between the bosons in preventing them from collapsing into the constriction. We also point out the differences
between the bosonic and fermionic thermoelectric effects in the quantized conductance regime.
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I. INTRODUCTION

In mesoscopic systems, where the motion of quantum
particles occurs over distances of the order of their coherence
length, transport phenomena exhibit quantum signatures [1].
The quantization of conductance [2] is a hallmark among these
effects. It reflects the discrete nature of the transport channels
inside a strongly constricted geometry and occurs if the spread
in energies of the incident particle distribution is smaller than
the energy separation of these channels. It was first observed
in electronic transport through a quantum point contact [3] as
a series of plateaus in the conductance when the distance be-
tween the gate electrodes was increased. In this fermionic case,
the conductance quantum GK = e2/h involves fundamental
constants only, making it relevant for metrology [4]. Unlike the
quantum Hall effect [5], it occurs in the absence of a magnetic
field and has been predicted to affect neutral helium atoms [6].
The recently observed universal value for the low-temperature
thermal conductance [7–10] is a related effect.

Conductance quantization has recently been observed in ul-
tracold fermionic gases [11]. Atomic gases allow a clean obser-
vation in a simple setup involving two reservoirs connected by
a constriction within which an attractive gate potential EG < 0
is varied (see Fig. 1). Experiments on ultracold fermions
aim at simulating electronic systems using neutral particles
[11–14]. In the fermionic experiment of Ref. [11], conductance
quantization has been observed at temperatures much lower
than both the Fermi temperature TF and the confinement
energy of the constriction, in analogy with the original results
on electronic transport [3] where only particles near the Fermi
surface take part in transport phenomena. This raises the
question of whether conductance quantization also affects
bosons. Previous observations in an optical setup [15,16]
and predictions with cold matter waves [17] have focused
on systems where all particles have the same incident energy,
mimicking fermionic transport at the Fermi energy. To our
knowledge, the specific role of bosonic statistics in quantized
conductance situations has not yet been investigated. Cold
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atom setups allow the exploration of mesoscopic physics in
situations where the Bose distribution plays a key role [18–20].
They are also expected to exhibit the phenomenon of quantum
evaporation, whereby an elementary excitation of a superfluid
reaches its surface and causes the evaporation of a single atom.
This phenomenon had so far been studied experimentally
[21,22] and theoretically [23,24] in superfluid 4He, and we
consider it here in the context of superfluid atomic gases.

In this article, we show that conductance quantization
occurs with bosonic atoms as well, and that the Bose statistics
strongly enhance the value of the conductance step compared
to fermions. Unlike for fermions, this value explicitly depends
on temperature, and the effect occurs with bosons up to
temperatures higher than with fermions. Furthermore, we
show that the underlying transmission mechanism is very
different from the fermionic case and leads to the occurrence
of a single conductance plateau as the gate potential is
varied, coinciding with the appearance of a condensate in the
constriction. Transmission through the constriction relies on
quantum condensation followed by quantum evaporation: an
atom impinging on one end of the constriction excites a phonon
in the condensate, which travels through the constriction and
causes the evaporation of a single atom at its other end.
Hence, transport through the constriction involves a collective
mechanism, as in Ref. [25]. However, we focus on weakly
interacting Bose gases with temperatures T slightly above the
critical temperature TB in the reservoirs, so that these contain a
thermal gas and no superflow occurs, in contrast to Refs. [25–
27] where the condensate is also present in the reservoirs.

The two reservoirs L and R of Fig. 1 can exchange particles
via a constriction of length lC produced by the potential
VC(r,z). At its most stringent point z = 0, we model it by
the radial harmonic trap V (r,0) = mω2

0r
2/2. We assume that

the gate potential EG(z) < 0 also reaches its maximum value
|EG0| at z = 0.

II. EQUILIBRIUM STATE

We first state two conditions on the strength of the
interatomic interactions which are required for our analysis
to hold for bosons. These interactions should be (i) weak
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FIG. 1. Two reservoirs (L, R) can exchange particles through a
smoothly tapered constriction inside which the spatially dependent
and attractive gate potential EG is varied.

enough for the reservoir thermodynamics to be dominated by
single-particle effects for temperatures T � TB , and (ii) strong
enough to avoid a collapse of the system into the attractive
constriction. These conditions are compatible and easily
realized with bosonic atoms trapped in box-like potentials [28].

(i) The effects of weak interactions in uncondensed
Bose gases are well described by Hartree-Fock theory
(see Chap. 13 in Ref. [29]). It predicts the chemical
potential μ(n,T ) = μ(0)(n,T ) + 2gn, with μ(0) < 0 being the
ideal-gas value, n the density, and g > 0 the interaction
strength. In this theory, the Bose distribution reads
f B(E) = 1/[e(E+2gn−μ)/kBT − 1] = 1/[z−1eE/kBT − 1],
where the ideal-gas fugacity z = exp (μ(0)/kBT ) and
E = p2/2m. The quantity ∂f B/∂μ|T , relevant for linear
response, can be replaced by ∂f B/∂μ(0)|T if 2gnκT � N .
Here, N is the atom number in one reservoir, and the isothermal
compressibility κT = ∂N/∂μ|T is linked to its ideal-gas value
by N/κT = 2gn + N/κ

(0)
T . For T � TB , κ

(0)
T kBTB/N =√

π/[ζ (3/2)
√

1 − z], and the condition 2gnκT � N means
1 − z � (gn/kBTB)24π/ζ 2(3/2). For a uniform gas, this
condition is well satisfied for T/TB � 1.1. We focus on
box-trap reservoirs which, for Bose gases, are more favorable
than the harmonically trapped case, as interactions play a
weaker role within uniform gases (gn/kBTB ≈ 0.02) than
in trapped geometries (gn/kBTB ≈ 0.2) [19]. Thus, we can
describe the atoms in the reservoirs as an ideal Bose gas with μ

negative and small. We take μ/�ω0 ≈ −0.01 in the following.
(ii) Despite the assumption T > TB , condensation occurs in

the constriction [30–32] if the gate potential EG0 < −�ω0 + μ

is attractive enough for the energy of the first transverse state
in the constriction to match the chemical potential of the
gas in the reservoirs. Then, in the absence of interactions,
the atoms would collapse into the constriction, impeding the
investigation of transport. The presence of weak repulsive
interactions between the bosons prevents this collapse by
making the presence of too many atoms in the constriction
energetically disfavored. Neglecting the dilute thermal cloud,
the condensate wave function �0(r) at z = 0, which depends
only on the distance r to the axis, is the lowest energy solution
to the Gross-Pitaevskii (GP) equation:

(μ − EG0)�0 =
(

− �
2

2m
�r + 1

2
mω2

0r
2 + g|�0|2

)
�0 , (1)

where the radial Laplacian satisfies r�r�0 =
d(rd�0/dr)/dr , g = 4π�

2a/m, and a is the scattering
length encoding the interactions. The density |�0|2 at
the point z = 0 is determined by the effective chemical
potential μ − EG0 > 0. Figure 2 shows the linear density
n1 = ∫

2πrdr|�0|2 as a function of EG0. For μ − EG0 < �ω0,
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FIG. 2. Linear condensate density at the center of the constriction
as a function of the gate potential. The exact numerical result (thick
red line) interpolates in between the Gaussian approximation (dashed
blue), valid for |EG0| � �ω0, and the Thomas-Fermi result (dotted
green), holding for large |EG0|.

the constriction is empty. For (μ − EG0) just above �ω0, the
condensate wave function is nearly a Gaussian with the extent
l0 = (�/mω0)1/2, and gn1/l2

0 = 2π (μ − EG0 − �ω0). For
more attractive gate potentials, the Thomas-Fermi profile is
quickly reached, leading to gn1/l2

0 = π (μ − EG0)2/�ω0. In
all three cases, for EG0 up to a few �ω0, the atom number
in the constriction NC < lC/a. Hence, NC/N is small if the
constriction is short enough, in which case the atom number
in the reservoirs is unaffected by the small condensate in the
constriction. On the other hand, the one-dimensional (1D)
density n1 � a/l2

0 , so that the condensate does not enter the
strongly confined 1D regime ([29], Chap. 24).

III. TRANSPORT PROPERTIES

We focus on small deviations from the equilibrium situation
where both reservoirs are characterized by the same chemical
potential μ and temperature T . An important difference
between fermionic and bosonic transport phenomena concerns
the energies of the particles undergoing transport. In the
linear response regime, these are the energies for which the
derivative ∂f F,B/∂μ|E,T of the (Fermi or Bose) distribution
function with respect to μ is non-negligible. For fermions,
this derivative is strongly peaked near the Fermi energy kBTF

with a width ∼kBT [see Fig. 3(b)], confirming the key role of
the Fermi surface. These fermions have nonvanishing energies
and efficiently traverse even sharply defined constrictions [33].
By contrast, for bosons, the derivative ∂f B/∂μ|E,T nearly
diverges for the energy E = 0, and the mobile particles have
energies � (1 − z)kBTB ≈ |μ| [see Fig. 3(c)]. This divergent
behavior leads to the bosonic enhancement of conductance.
Our choice of T � TB means that |μ| � kBTB , and we assume
in the following that kBTB � �ω0, hence, mobile bosonic
atoms have energies ��ω0. Low-energy reflections at the ends
of the constriction [34] can be made negligible by smoothly
connecting it to the reservoirs [35] with a radius of curvature R

which is large compared to the characteristic atom wavelength
(�2/m|μ|)1/2 ∼ 10l0. Such a smoothly tapered constriction
was already used in the experiment of Ref. [11] where the
Fermi momentum kF satisfies kF R ∼ 100.
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FIG. 3. (a) Transport function of an isotropic harmonic constriction for fermions (thin dashed line) and for bosons (full solid curve).
(b) and (c): Derivatives ∂f F /∂μ|T and ∂f B/∂μ|T of the Fermi (T/TF = 0.1) and Bose (T/TB = 1.2) distributions.

Introducing the small differences in atom numbers, δN =
NR − NL, and chemical potentials, δμ = μR − μL, between
the reservoirs, we define the isothermal conductance G by
the relation ∂t δN = −G∂δμ (we go beyond the isothermal
approximation in Sec. V). The Landauer-Büttiker formalism
(see Chap. 1 in Ref. [1]) leads to the expression hG(EG) = L0,
where for any α, Lα reads

Lα =
∫ +∞

0
dE �F,B(E − EG)

(
E − μ

kBT

)α
∂f F,B

∂μ

∣∣∣∣
E,T

. (2)

This equation holds for both fermionic and bosonic systems. It
is applicable whatever the reservoir geometry, encoded in the
value of the degeneracy temperature TD = TF,B ([29], Chap.
10). Equation (2) shows that G(EG) is the convolution of
two functions, which both depend on the quantum statistics:
(i) the transport function �F,B(E) of the constriction, and
(ii) the derivative of the (Fermi or Bose) distribution function
f F,B(E) = 1/[z−1 exp(E/kBT ) ± 1] of the reservoirs.

We first summarize the fermionic results of Ref. [11].
Pauli exclusion ensures that the constriction remains empty,
so that transmission is a single-particle ballistic effect. The
transport function �F (E), which counts the transport channels
whose threshold energies are � E, is determined by the
most stringent part of the constriction. It reads �F (E/�ω0) =
�E/�ω0	(�E/�ω0	 + 1)/2, where �x	 stands for the integer
part of x. It exhibits jumps for energies that are integer
multiples p�ω0 of the constriction strength, reflecting the
opening of additional transport channels [dashed green line
in Fig. 3(a)]. These jumps are the cause of the quantization of
conductance.

We now consider bosonic atoms. If the gate potential
EG0 > −�ω0 + μ, the constriction is empty (see Fig. 2). For
sufficiently smooth spatial variations of VC(r) and EG(z),
the motion of single thermal particles impinging on it is
quasiclassical [35]. These experience a repulsive barrier of
height (�ω0 + EG0), so that low-energy transmission through
the constriction is blocked. Instead, for EG0 < −�ω0 + μ,
the constriction is filled with a condensate whose presence
strongly affects the nature of the transport mechanism within
the channel. The energies � |μ| of the incident atoms are
smaller than gn0 at the center of the constriction, so that
transport is now a collective process. It involves quantum
condensation followed by quantum evaporation [21,23,24],
which rely on the superfluidity of the condensate and, hence,
on the presence of interactions in between the bosons. A

thermal atom in a reservoir impinging on the constriction
with energy E condenses into an elementary excitation inside
the superfluid with energy ε = E − μ, which crosses the
constriction and evaporates an atom at its other end. We
describe this process using the Bogoliubov equations (see
Ref. [29], Chap. 12). The condensate density n0(r,z), which
appears in these equations, varies along the z axis, and the
Bogoliubov equations reduce to the Schrödinger equation
in the reservoirs, where n0 = 0. Under our assumption of a
smoothly tapered constriction, the condensate can locally be
described as translationally invariant along the axial direction
for each z, and the corresponding Bogoliubov spectrum varies
adiabatically with z. The transport properties of the system
are dictated by the strongly constricted region near z = 0,
where the condensate density is maximal. There, the density
profile n0(r) is nearly that of a condensate trapped in the
elongated radial harmonic trap mω2

0r
2/2 with the effective

chemical potential (μ − EG0). The corresponding Bogoliubov
excitation spectrum has multiple branches reflecting the 3D
geometry [36]. However, the condensate occupies the lowest
energy solution of the GP, Eq. (1), hence, its low-energy
excitations belong to the first branch. For |EG0|/�ω0 � 1.1, the
incident atoms have energies � |μ| � gn0 and the excitations
crossing the constriction are phononic. Regardless of the value
of EG0, the second branch has the threshold energy 2ω0

[36,37], which is much greater than the incident energies, so
that this branch is never involved. The smooth spatial variation
of Vext(r) ensures a full conversion of the incident atoms into
excitations of the superfluid.

To sum up, if the constriction is empty because the energy
of its first transverse mode is >μ, bosonic transmission
is blocked; instead, if EG is sufficiently attractive for the
constriction to contain a condensate, transmission is allowed
and relies on a collective phenomenon involving quantum
condensation and evaporation. These two mechanisms lead to a
bosonic transport function which exhibits a single step. Under
our assumption of a smoothly tapered constriction, it reads
�B(E/�ω0) = 
(E/�ω0 − 1), where 
 is the Heaviside step
function [see Fig. 3(a)].

IV. QUANTIZED CONDUCTANCE

The conductance G(EG/�ω0) calculated from Eq. (2)
depends on T/TD and �ω0/kBTD . We compare the fermionic
and bosonic predictions in Fig. 4 (T/TF = 0.1 for fermions
and T/TB = 1.2 for bosons; �ω0/kBTD = 4 in both cases).
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The fermionic prediction has the multiple step structure
observed in Refs. [3,11] due to the stepwise structure of the
ballistic �F (E). By contrast, the bosonic graph exhibits one
single step, relating to the single step of �B(E). It occurs for
EG = −�ω0 and, hence, coincides with the appearance of the
condensate in the constriction (see Fig. 2). For bosons, Eq. (2)
can be integrated analytically; an analogous result is obtained
for the first fermionic step by accounting for a single transport
channel. We find

hGF,B =
{

1
z−1 exp[(EG+�ω0)/kBT ]±1 if EG > −�ω0,

1
z−1±1 if EG � −�ω0,

(3)

where the + and − signs respectively apply to fermions
and bosons. Equation (3) reveals three differences between
fermions and bosons, concerning the step positions, their
heights, and the widths of the transition regions between
two plateaus: (i) For fermions, the step is centered on EG =
−�ω0 + μ, reflecting the key role of the Fermi surface at
energies ∼μ. For bosons, the low-energy divergence discussed
above causes the step to occur at EG = −�ω0. (ii) For ultracold
fermions, the fugacity z → ∞, leading to the step height
1/(z−1 + 1) ≈ 1. Instead, for bosons, z � 1 for T � TB ,
leading to the very large step height 1/(z−1 − 1) ≈ 27 for
T/TB = 1.2. (iii) For fermions, the width of the transition
region is �EF

G ∼ 2kBT , whereas the corresponding width for
bosons is �EB

G ∼ (1 − z)kBT ≈ |μ|. The conductance step is
well defined if �EG � �ω0. Hence, Bose systems are greatly
favored, as seen on Fig. 4 where kBT /�ω0 is ten times as large
for bosons than for fermions, but the bosonic step width is
quenched by the factor (1 − z).

The conductance G is positive, hence, the current ∂t δN

opposes the atom number difference δN , which relaxes to
equilibrium as δN = δN0 exp(−t/τ1). The decay time τ1 =
κT /G is proportional to N and is conveniently expressed
in units of τD = Nh/kBTD . Its measurement allows for
an access to G(EG/�ω⊥). It has recently been measured
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FIG. 4. Quantized conductance for (a) ultracold fermions
(T/TF = 0.1) and (b) cold bosons (T/TB = 1.2). In both cases,
�ω0/kBTD = 4. For fermions, the thick solid line is the exact solution
G(EG0) and the thin dashed curve is the single-transport-channel
prediction of Eq. (3). The results have been vertically rescaled by the
step heights 1/(z−1 ± 1).

with fermions [11], where κT kBTF /N = 3/2 at small T ,
so that τ1 = 3τD/2 ∼ a few seconds for the first conduc-
tance plateau. For bosons, the isothermal compressibility
diverges as one approaches the critical temperature, but the
stronger divergence of G leads to shorter decay times τ1 =
τD(1 − z)1/2√π/ζ (3/2) ∼ a few hundred ms for the single
conductance plateau.

V. THERMOELECTRIC EFFECTS

The preceding analysis neglects the impact of temperature
changes δT (t) on the dynamics of δN . We evaluate this impact
using the transport model of Refs. [14,19]:

τ1
d

dt

(
δN/N

δT/T

)
=

( −1 S κT kBT
N

S NkB
CN

−τ1/τT

)(
δN/N

δT/T

)
. (4)

The coupling between particle and heat currents, proportional
to the Seebeck coefficient S = −∂μ/∂T |N − L1/L0, plays a
role over times of the order of the thermalization time τT =
CN/(hL2T ), where CN = T ∂S/∂T |N is the heat capacity
and the integrals Lα are given by Eq. (2). For short times
t � τ1, δT is negligible and Eq. (4) reduces to the isothermal
limit investigated above. Before the bosonic conductance
step or the first fermionic conductance step, both G and the
thermal conductance hL2 are small. This leads to times τT

which are longer than the characteristic time over which the
transport phenomenon can be observed (a few seconds in the
case of Ref. [11]) both for bosons and for fermions, which
justifies the isothermal analysis presented above. However,
τT becomes shorter with increasing |EG|. Starting from the
(first) conductance step, thermal effects cause the relaxation
of δN (t) towards equilibrium to slow down, and an accurate
modeling of this relaxation requires two exponential terms
accounting for both time scales τ1 and τT . This is illustrated in
Fig. 5. Both the fermionic and bosonic plots, resulting from a
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FIG. 5. Atom number difference δN (t)/N (thick solid line),
its isothermal approximation δN (t)/N |T (thin solid line), and
temperature difference δT (t)/T (dashed line), following an atom
number mismatch δN0, for (a) fermions and (b) bosons, obtained
by solving Eq. (4) numerically with the parameters of Fig. 4. The
value of EG is chosen at the conductance step for bosons, and at the
first conductance step for fermions. All plotted quantities should be
multiplied by δN0/N .
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numerical solution of Eq. (4) for values of EG corresponding
to the (first) conductance step, differ from the isothermal
prediction for times � τT . The coupling between particle
and heat currents also yields a thermoelectric effect, whereby
an initial atom imbalance δN0 yields a transient change in
temperature δT (t) [14,38]. This thermoelectric effect is weak
for bosons. However, for fermions, its amplitude is enhanced
for gate potentials corresponding to a step in the particle
conductance G. This is due to the existence of maxima in
the quantity S/τ1, appearing in the off-diagonal elements of
Eq. (4), which have previously been observed in electronic
transport experiments [39].

VI. DISCUSSION AND CONCLUSION

The quantization of bosonic conductance involving quan-
tum evaporation precludes its interpretation as the diffraction
of atomic matter waves, in contrast with previous studies
[3,15,17]. It also requires an attractive gate potential, unlike
for fermions where conductance may be scanned by varying
the constriction width [3,11].

The bosonic enhancement of conductance near the Bose-
Einstein condensate transition is the transport analog of the
enhancement of the isothermal compressibility. It is due to the
possibility of accommodating multiple bosons in the lowest
energy transport channel, which is more populated at tem-

peratures closer to TB . This enhancement signals a departure
from the fermionic conductance quantum GK = 1/h observed
both with electrons [3] and with neutral fermions [11]. Its
observation in a regime where conductance is not quantized
has recently been reported [20]. Both the compressibility κT

and the conductance G, which diverge in the ideal-gas model,
depend on many-body effects in the critical region near the
transition [40], where their characterization remains an open
problem from both the theoretical and experimental points of
view. The measurement of the relaxation time τ1 in bosonic
systems with temperatures very close to TB will provide more
insight into these two quantities.

Challenging open questions include (i) conductance quan-
tization in 2D bosonic systems, where the quasicondensate
enhances the role of interactions [41–43], and (ii) its impact
in the presence of a superfluid, whose investigation has been
initiated by recent experiments with strongly interacting Fermi
gases [13,44,45].
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Phys. Rev. Lett. 112, 100601 (2014).
[28] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and

Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
[29] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation

and Superfluidity, 2nd ed. (Oxford University, Oxford, 2016).
[30] P. W. H. Pinkse, A. Mosk, M. Weidemüller, M. W. Reynolds,

T. W. Hijmans, and J. T. M. Walraven, Phys. Rev. Lett. 78, 990
(1997).

023622-5

http://dx.doi.org/10.1063/1.881503
http://dx.doi.org/10.1063/1.881503
http://dx.doi.org/10.1063/1.881503
http://dx.doi.org/10.1063/1.881503
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1063/1.1611351
http://dx.doi.org/10.1063/1.1611351
http://dx.doi.org/10.1063/1.1611351
http://dx.doi.org/10.1063/1.1611351
http://dx.doi.org/10.1007/s10909-005-8223-3
http://dx.doi.org/10.1007/s10909-005-8223-3
http://dx.doi.org/10.1007/s10909-005-8223-3
http://dx.doi.org/10.1007/s10909-005-8223-3
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1038/35010065
http://dx.doi.org/10.1038/35010065
http://dx.doi.org/10.1038/35010065
http://dx.doi.org/10.1038/35010065
http://dx.doi.org/10.1038/nature05276
http://dx.doi.org/10.1038/nature05276
http://dx.doi.org/10.1038/nature05276
http://dx.doi.org/10.1038/nature05276
http://dx.doi.org/10.1126/science.1241912
http://dx.doi.org/10.1126/science.1241912
http://dx.doi.org/10.1126/science.1241912
http://dx.doi.org/10.1126/science.1241912
http://dx.doi.org/10.1038/nature14049
http://dx.doi.org/10.1038/nature14049
http://dx.doi.org/10.1038/nature14049
http://dx.doi.org/10.1038/nature14049
http://dx.doi.org/10.1126/science.1223175
http://dx.doi.org/10.1126/science.1223175
http://dx.doi.org/10.1126/science.1223175
http://dx.doi.org/10.1126/science.1223175
http://dx.doi.org/10.1038/nature11613
http://dx.doi.org/10.1038/nature11613
http://dx.doi.org/10.1038/nature11613
http://dx.doi.org/10.1038/nature11613
http://dx.doi.org/10.1126/science.1242308
http://dx.doi.org/10.1126/science.1242308
http://dx.doi.org/10.1126/science.1242308
http://dx.doi.org/10.1126/science.1242308
http://dx.doi.org/10.1038/350594a0
http://dx.doi.org/10.1038/350594a0
http://dx.doi.org/10.1038/350594a0
http://dx.doi.org/10.1038/350594a0
http://dx.doi.org/10.1103/PhysRevLett.83.3762
http://dx.doi.org/10.1103/PhysRevLett.83.3762
http://dx.doi.org/10.1103/PhysRevLett.83.3762
http://dx.doi.org/10.1103/PhysRevLett.83.3762
http://dx.doi.org/10.1103/PhysRevLett.109.084501
http://dx.doi.org/10.1103/PhysRevLett.109.084501
http://dx.doi.org/10.1103/PhysRevLett.109.084501
http://dx.doi.org/10.1103/PhysRevLett.109.084501
http://dx.doi.org/10.1103/PhysRevLett.113.170601
http://dx.doi.org/10.1103/PhysRevLett.113.170601
http://dx.doi.org/10.1103/PhysRevLett.113.170601
http://dx.doi.org/10.1103/PhysRevLett.113.170601
http://dx.doi.org/10.1103/PhysRevA.93.063619
http://dx.doi.org/10.1103/PhysRevA.93.063619
http://dx.doi.org/10.1103/PhysRevA.93.063619
http://dx.doi.org/10.1103/PhysRevA.93.063619
http://dx.doi.org/10.1103/PhysRevLett.16.1191
http://dx.doi.org/10.1103/PhysRevLett.16.1191
http://dx.doi.org/10.1103/PhysRevLett.16.1191
http://dx.doi.org/10.1103/PhysRevLett.16.1191
http://dx.doi.org/10.1103/PhysRevLett.52.1528
http://dx.doi.org/10.1103/PhysRevLett.52.1528
http://dx.doi.org/10.1103/PhysRevLett.52.1528
http://dx.doi.org/10.1103/PhysRevLett.52.1528
http://dx.doi.org/10.1016/0375-9601(69)90441-1
http://dx.doi.org/10.1016/0375-9601(69)90441-1
http://dx.doi.org/10.1016/0375-9601(69)90441-1
http://dx.doi.org/10.1016/0375-9601(69)90441-1
http://dx.doi.org/10.1103/PhysRevLett.75.2510
http://dx.doi.org/10.1103/PhysRevLett.75.2510
http://dx.doi.org/10.1103/PhysRevLett.75.2510
http://dx.doi.org/10.1103/PhysRevLett.75.2510
http://dx.doi.org/10.1103/PhysRevB.85.125102
http://dx.doi.org/10.1103/PhysRevB.85.125102
http://dx.doi.org/10.1103/PhysRevB.85.125102
http://dx.doi.org/10.1103/PhysRevB.85.125102
http://dx.doi.org/10.1103/PhysRevA.86.033619
http://dx.doi.org/10.1103/PhysRevA.86.033619
http://dx.doi.org/10.1103/PhysRevA.86.033619
http://dx.doi.org/10.1103/PhysRevA.86.033619
http://dx.doi.org/10.1103/PhysRevLett.112.100601
http://dx.doi.org/10.1103/PhysRevLett.112.100601
http://dx.doi.org/10.1103/PhysRevLett.112.100601
http://dx.doi.org/10.1103/PhysRevLett.112.100601
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.78.990
http://dx.doi.org/10.1103/PhysRevLett.78.990
http://dx.doi.org/10.1103/PhysRevLett.78.990
http://dx.doi.org/10.1103/PhysRevLett.78.990


D. J. PAPOULAR, L. P. PITAEVSKII, AND S. STRINGARI PHYSICAL REVIEW A 94, 023622 (2016)

[31] D. M. Stamper-Kurn, H. J. Miesner, A. P. Chikkatur, S.
Inouye, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 81, 2194
(1998).

[32] N. J. van Druten and W. Ketterle, Phys. Rev. Lett. 79, 549 (1997).
[33] A. Szafer and A. D. Stone, Phys. Rev. Lett. 62, 300 (1989).
[34] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-

relativistic Theory, 3rd ed. (Butterworth-Heinemann, Boston,
1977), Sec. 25.

[35] L. I. Glazman, G. B. Lesovik, D. E. Khmel’nitskii, and R. I.
Shekhter, JETP Lett. 48, 238 (1988).

[36] C. Tozzo and F. Dalfovo, New J. Phys. 5, 54 (2003).
[37] L. P. Pitaevskii and A. Rosch, Phys. Rev. A 55, R853(R)

(1997).
[38] A. Rançon, C. Chin, and K. Levin, New J. Phys. 16, 113072

(2012).

[39] L. W. Molenkamp, H. van Houten, C. W. J. Beenakker, R.
Eppenga, and C. T. Foxon, Phys. Rev. Lett. 65, 1052 (1990).

[40] L. Verney, L. Pitaevskii, and S. Stringari, Europhys. Lett. 111,
40005 (2015).

[41] N. Prokof’ev and B. Svistunov, Phys. Rev. A 66, 043608 (2002).
[42] R. J. Fletcher, M. Robert-de-Saint-Vincent, J. Man, N. Navon,

R. P. Smith, K. G. H. Viebahn, and Z. Hadzibabic, Phys. Rev.
Lett. 114, 255302 (2015).

[43] R. Desbuquois, T. Yefsah, L. Chomaz, C. Weitenberg, L.
Corman, S. Nascimbène, and J. Dalibard, Phys. Rev. Lett. 113,
020404 (2014).

[44] D. Husmann, S. Uchino, S. Krinner, M. Lebrat, T. Giamarchi,
T. Esslinger, and J.-P. Brantut, Science 350, 1498 (2015).

[45] S. Krinner, M. Lebrat, D. Husmann, C. Grenier, J.-P. Brantut,
and T. Esslinger, arXiv:1511.05961.

023622-6

http://dx.doi.org/10.1103/PhysRevLett.81.2194
http://dx.doi.org/10.1103/PhysRevLett.81.2194
http://dx.doi.org/10.1103/PhysRevLett.81.2194
http://dx.doi.org/10.1103/PhysRevLett.81.2194
http://dx.doi.org/10.1103/PhysRevLett.79.549
http://dx.doi.org/10.1103/PhysRevLett.79.549
http://dx.doi.org/10.1103/PhysRevLett.79.549
http://dx.doi.org/10.1103/PhysRevLett.79.549
http://dx.doi.org/10.1103/PhysRevLett.62.300
http://dx.doi.org/10.1103/PhysRevLett.62.300
http://dx.doi.org/10.1103/PhysRevLett.62.300
http://dx.doi.org/10.1103/PhysRevLett.62.300
http://dx.doi.org/10.1088/1367-2630/5/1/354
http://dx.doi.org/10.1088/1367-2630/5/1/354
http://dx.doi.org/10.1088/1367-2630/5/1/354
http://dx.doi.org/10.1088/1367-2630/5/1/354
http://dx.doi.org/10.1103/PhysRevA.55.R853
http://dx.doi.org/10.1103/PhysRevA.55.R853
http://dx.doi.org/10.1103/PhysRevA.55.R853
http://dx.doi.org/10.1103/PhysRevA.55.R853
http://dx.doi.org/10.1088/1367-2630/16/11/113072
http://dx.doi.org/10.1088/1367-2630/16/11/113072
http://dx.doi.org/10.1088/1367-2630/16/11/113072
http://dx.doi.org/10.1088/1367-2630/16/11/113072
http://dx.doi.org/10.1103/PhysRevLett.65.1052
http://dx.doi.org/10.1103/PhysRevLett.65.1052
http://dx.doi.org/10.1103/PhysRevLett.65.1052
http://dx.doi.org/10.1103/PhysRevLett.65.1052
http://dx.doi.org/10.1209/0295-5075/111/40005
http://dx.doi.org/10.1209/0295-5075/111/40005
http://dx.doi.org/10.1209/0295-5075/111/40005
http://dx.doi.org/10.1209/0295-5075/111/40005
http://dx.doi.org/10.1103/PhysRevA.66.043608
http://dx.doi.org/10.1103/PhysRevA.66.043608
http://dx.doi.org/10.1103/PhysRevA.66.043608
http://dx.doi.org/10.1103/PhysRevA.66.043608
http://dx.doi.org/10.1103/PhysRevLett.114.255302
http://dx.doi.org/10.1103/PhysRevLett.114.255302
http://dx.doi.org/10.1103/PhysRevLett.114.255302
http://dx.doi.org/10.1103/PhysRevLett.114.255302
http://dx.doi.org/10.1103/PhysRevLett.113.020404
http://dx.doi.org/10.1103/PhysRevLett.113.020404
http://dx.doi.org/10.1103/PhysRevLett.113.020404
http://dx.doi.org/10.1103/PhysRevLett.113.020404
http://dx.doi.org/10.1126/science.aac9584
http://dx.doi.org/10.1126/science.aac9584
http://dx.doi.org/10.1126/science.aac9584
http://dx.doi.org/10.1126/science.aac9584
http://arxiv.org/abs/arXiv:1511.05961



