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We show that the system of weakly bound molecules of heavy and light fermionic atoms is char-
acterized by a long-range intermolecular repulsion and can undergo a gas-crystal quantum transition if the
mass ratio exceeds a critical value. For the critical mass ratio above 100 obtained in our calculations, this
crystalline order can be observed as a superlattice in an optical lattice for heavy atoms with a small filling
factor. We also find that this novel system is sufficiently stable with respect to molecular relaxation into
deep bound states and to the process of trimer formation.
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The use of Feshbach resonances for tuning the interac-
tion in two-component ultracold Fermi gases of 6Li or 40K
has led to remarkable developments, such as the observa-
tion of superfluid behavior in the strongly interacting re-
gime through vortex formation [1], and Bose-Einstein
condensation of weakly bound molecules of fermionic
atoms on the positive side of the resonance (the atom-
atom scattering length a > 0) [2]. Being highly excited,
these extremely large diatomic molecules are remarkably
stable with respect to collisional relaxation into deep
bound states, which is a consequence of the Pauli exclusion
principle for identical fermionic atoms [3].

Currently, a new generation of experiments is being set
up for studying mixtures of different fermionic atoms, with
the idea of revealing the influence of the mass difference on
superfluid properties and finding novel types of superfluid
pairing. Weakly bound heteronuclear molecules on the
positive side of the resonance are unique objects [4,5],
which should manifest collisional stability and can pave
a way to creating ultracold dipolar gases.

So far it was believed that dilute Fermi mixtures should
be in the gas phase, like Fermi gases of atoms in two
different internal states. In this Letter we find that the
system of molecules of heavy (mass M) and light (mass
m) fermions can undergo a phase transition to a crystalline
phase. This is due to a repulsive intermolecular potential
originating from the exchange of light fermions and in-
versely proportional to m. As the kinetic energy of the
molecules has a prefactor 1=M, above a certain mass ratio
M=m the system can crystallize.

We show that the interaction potential in a sufficiently
dilute system of molecules is equal to the sum of their pair
interactions and then analyze the case where the motion of
heavy atoms is confined to two dimensions, whereas the
light fermions can be either 2D or 3D [6]. We calculate the
zero-temperature gas-crystal transition line using the dif-
fusion Monte Carlo (DMC) method and draw the phase

diagram in terms of the mass ratio and density. This phase
transition resembles the one for the flux lattice melting in
superconductors, where the flux lines are mapped onto a
system of bosons interacting via a 2D Yukawa potential [7].
In this case the Monte Carlo studies [8,9] identified the first
order liquid-crystal transition at zero and finite tempera-
tures. Aside from the difference in the interaction poten-
tials, a distinguished feature of our system is related to its
stability. The molecules can undergo collisional relaxation
into deep bound states, or form weakly bound trimers. We
analyze resulting limitations on the lifetime of the system.

We first derive the Born-Oppenheimer interaction po-
tential in the system of N molecules. In this approach the
state of light atoms adiabatically adjusts itself to the set of
heavy-atom coordinates fRg � fR1; . . . ;RNg and one cal-
culates the wave function and energy of light fermions in
the field of fixed heavy atoms. Omitting the interaction
between light (identical) fermions, it is sufficient to find N
lowest single-particle eigenstates, and the sum of their
energies will give the interaction potential for the mole-
cules. For the interaction between light and heavy atoms
we use the Bethe-Peierls approach [10] assuming that the
motion of light atoms is free everywhere except for their
vanishing distances from heavy atoms.

The wave function of a single light atom then reads

 ��fRg; r� �
XN
i�1

CiG��r�Ri�; (1)

where r is its coordinate, and the Green function G�
satisfies the equation ��r2

r � �
2�G��r� � ��r�. The en-

ergy of the state (1) equals � � �@2�2=2m, and here we
only search for negative single-particle energies (see be-
low). The dependence of the coefficients Ci and � on fRg is
obtained using the Bethe-Peierls boundary condition:

 ��fRg; r� / G�0
�r�Ri�; r! Ri: (2)
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Up to a normalization constant, G�0
is the wave function of

a bound state of a single molecule with energy �0 �
�@2�2

0=2m and molecular size ��1
0 . From Eqs. (1) and

(2) one gets a set of N equations:
P
jAijCj � 0, where

Aij � �����ij �G��Rij��1� �ij�, Rij � jRi �Rjj, and
���� � limr!0�G��r� �G�0

�r��. The single-particle en-
ergy levels are determined by the equation

 det�Aij��; fRg�� � 0: (3)

For Rij ! 1, Eq. (3) gives an N-fold degenerate ground
state with � � �0. At finite large Rij, the levels split into a
narrow band. Given a small parameter

 � � G�0
� ~R�=�0j�

0
���0�j � 1; (4)

where ~R is a characteristic distance at which heavy atoms
can approach each other, the bandwidth is �� 	 4j�0j��
j�0j. It is important for the adiabatic approximation that all
lowest N eigenstates have negative energies and are sepa-
rated from the continuum by a gap 
j�0j.

We now calculate the single-particle energies up to
second order in �. To this order we write ���� 	 �0 �
�0��� �

00
���

2=2 and turn from Aij��� to Aij���:

 Aij � ��ij � �G�0
�Rij� � �0��@G�0

�Rij�=@���1� �ij�;

(5)

where all derivatives are taken at � � 0. Using Aij (5) in
Eq. (3) gives a polynomial of degree N in �. Its roots �i
give the light-atom energy spectrum �i � �@2�2��i�=2m.
The total energy E �

PN
i�1 �i is then given by

 E���@2=2m�
�
N�2

0�2�0�
0
�

XN
i�1

�i����
0
��
0
�

XN
i�1

�2
i

�
: (6)

Keeping only the terms up to second order in � and using
basic properties of determinants and polynomial roots we
find that the first order terms vanish, and the energy reads
E � N�0 �

1
2

P
i�jU�Rij�, where

 U�R� � �
@

2

m

�
�0��0��

2
@G2

�0
�R�

@�
� ���0��

0
�G

2
�0
�R�

�
: (7)

Thus, up to second order in � the interaction in the system
of N molecules is the sum of binary potentials (7).

If the motion of light atoms is 3D, the Green function is
G��R� � �1=4�R� exp���R�, and ���� � ��0 � ��=4�,
with the molecular size ��1

0 equal to the 3D scattering
length a. Equation (7) then gives a repulsive potential

 U3D�R� � 4j�0j�1� �2�0R�
�1� exp��2�0R�=�0R; (8)

and the criterion (4) reads �1=�0R� exp���0R� � 1. For
the 2D motion of light atoms we have G��R� �
�1=2��K0��R� and ���� � ��1=2�� ln��=�0�, where K0

is the decaying Bessel function, and ��1
0 follows from [6].

This leads to a repulsive intermolecular potential

 U2D�R� � 4j�0j��0RK0��0R�K1��0R� � K
2
0��0R��; (9)

with the validity criterion K0��0R� � 1. In both cases,
which we denote 2� 3 and 2� 2 for brevity, the validity
criteria are well satisfied already for �0R 	 2.

The Hamiltonian of the many-body system reads

 H � ��@2=2M�
X
i

�Ri
�

1

2

X
i�j

U�Rij�; (10)

and the state of the system is determined by two parame-
ters: the mass ratioM=m and the rescaled 2D density n��2

0 .
At a largeM=m, the potential repulsion dominates over the
kinetic energy and one expects a crystalline ground state.
For separations Rij < ��1

0 the adiabatic approximation
breaks down. However, the interaction potential U�R� is
strongly repulsive at larger distances. Hence, even for an
average separation between heavy atoms �R close to 2=�0,
they approach each other at distances smaller than ��1

0

with a small tunneling probability P / exp���
�����������
M=m

p
� �

1, where �
 1. We extended U�R� to R & ��1
0 in a way

providing a proper molecule-molecule scattering phase
shift in vacuum and checked that the phase diagram for
the many-body system is not sensitive to the choice of this
extension.

Using the DMC method [11] we solved the many-body
problem at zero temperature. For each phase, gaseous and
solid, the state with a minimum energy was obtained in a
statistically exact way. The lowest of the two energies
corresponds to the ground state, the other phase being
metastable. The phase diagram is displayed in Fig. 1.
The guiding wave function was taken in the Nosanow-
Jastrow form [12]. Simulations were performed with 30
particles and showed that the solid phase is a 2D triangular
lattice. For the largest density we checked that using more
particles has little effect on the results.

For both 2� 3 and 2� 2 cases the (Lindemann) ratio �
of the rms displacement of molecules to �R on the transition

FIG. 1 (color online). DMC gas-crystal transition lines for 3D
(triangles) and 2D (circles) motion of light atoms. Solid curves
show the low-density hard-disk limit, and dashed curves the
results of the harmonic approach (see text).
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lines ranges from 0.23 to 0.27. At low densities n the
de Broglie wavelength of molecules is �
 � �R� ��1

0 ,
and U�R� can be approximated by a hard-disk potential
with the diameter equal to the 2D scattering length. Then,
using the DMC results for hard-disk bosons [13], we obtain
the transition lines shown by solid curves in Fig. 1. At
larger n, we have �< ��1

0 and use the harmonic expansion
of U�R� around equilibrium positions in the crystal, calcu-
late the Lindemann ratio, and select � for the best fit to the
DMC data points (dashed curves in Fig. 1).

The mass ratio above 100, required for the observation
of the crystalline order (see Fig. 1), can be achieved in an
optical lattice with a small filling factor for heavy atoms.
Their effective mass in the lattice M
 can be made very
large, and the discussed solid phase should appear as a
superlattice. There is no interplay between the superlattice
order and the shape of the underlying optical lattice, in
contrast to the recently studied solid and supersolid phases
in a triangular lattice with the filling factor of order one
[14]. Our superlattice remains compressible and supports
two branches of phonons.

The gaseous and solid phases of weakly bound mole-
cules are actually metastable. The main decay channels are
the relaxation of molecules into deep bound states and the
formation of trimer states by one light and two heavy
atoms. A detailed analysis of scattering properties of these
molecules will be given elsewhere, and here we focus on
their stability in an optical lattice.

For a large effective mass ratio M
=m, the relaxation
into deep states occurs when a molecule is approached by
another light atom and both light-heavy separations are of
the order of the size of a deep state, Re � ��1

0 [15]. The
released binding energy is taken by outgoing particles
which escape from the sample. The rate of this process is
not influenced by the optical lattice.

We estimate this rate in the solid phase and near the gas-
solid transition to the leading order in ��0

�R��1. At light-
heavy separations r1;2 � ��1

0 the initial-state wave func-
tion reads ~� � B���1

0 ; �R� �r1; r2�. Writing it as an anti-
symmetrized product of wave functions (1), for the 2� 3
case (��1

0 � a) we find B 	 �1= �Ra2� exp�� �R=a�. The
quantity W � B2R6

e is the probability of having both light
atoms at distances 
Re from a heavy atom, and the re-
laxation rate is 	3D / W. As the short-range physics is
characterized by the energy scale @

2=mR2
e, we restore the

dimensions and write

 	3D � C�@=m��Re=a�4�1= �R2� exp��2 �R=a�; (11)

where �R�2 	 n. The coefficient C depends on a particular
system and is 
1 within an order of magnitude. The
relaxation rate 	3D is generally rather low. For the K-Li
mixture where Re 	 50 �A, even at na2 � 0:24 (see Fig. 1)
the relaxation time exceeds 10 s for n � 109 cm�2 and
a � 1600 �A. In the 2� 2 case, for the same n and ��1

0 the
probability W is smaller and the relaxation is slower.

The formation of trimer bound states by one light and
two heavy atoms occurs when two molecules approach
each other at distances R & ��1

0 . It is accompanied by a
release of the second light atom. The existence of the
trimer states is seen considering a light atom interacting
with two heavy ones. The lowest energy solution of Eq. (3)
for N � 2 is the gerade state (C1 � C2). Its energy ���R�
introduces an effective attractive potential acting on the
heavy atoms, and the trimer states are bound states of two
heavy atoms in this potential.

In an optical lattice the trimers are eigenstates of the
Hamiltonian H0 � ��@

2=2M
�
P
i�1;2�Ri

� ���R12�. In a
deep lattice one can neglect all higher bands and regard Ri
as discrete lattice coordinates and � as the lattice
Laplacian. Then, the fermionic nature of the heavy atoms
prohibits them to be in the same lattice site. For a very large
mass ratio M
=m the kinetic energy term in H0 can be
neglected, and the lowest trimer state has energy �tr 	
���L�, where L is the lattice period. It consists of a pair
of heavy atoms localized at neighboring sites and a light
atom in the gerade state. Higher trimer states are formed by
heavy atoms localized in sites separated by distances R>
L. This picture breaks down at large R, where the spacing
between trimer levels is comparable with the tunneling
energy @

2=M
L2 and the heavy atoms are delocalized.
In the many-body molecular system the scale of energies

in Eq. (10) is much smaller than j�0j. Thus, the formation
of trimers in molecule-molecule ‘‘collisions’’ is energeti-
cally allowed only if the trimer binding energy is �tr < 2�0.
Since the lowest trimer energy in the optical lattice is
���L�, the trimer formation requires the condition
���L� & 2�0, which is equivalent to ��1

0 * 1:6L in the
2� 3 case and ��1

0 * 1:25L in the 2� 2 case. This means
that for a sufficiently small molecular size or large lattice
period L the formation of trimers is forbidden.

At a larger molecular size or smaller L the trimer for-
mation is possible. For finding the rate we consider the
interaction between two molecules as a reduced 3-body
problem, accounting for the fact that one of the light atoms
is in the gerade and the other one in the ungerade state
(C1 � �C2). The gerade light atom is integrated out and is
substituted by the effective potential ���R�. For the unger-
ade state the adiabaticity breaks down at interheavy sepa-
rations R & ��1

0 , and the ungerade light atom is treated
explicitly. The wave function of the reduced 3-body prob-
lem satisfies the Schrödinger equation

 �H0 � @
2r2

r=2m� E� �fRg; r� � 0; (12)

where the energy E is close to 2�0, fRg denotes the set
fR1;R2g, and r is the coordinate of the ungerade atom. The
interaction between this atom and the heavy ones is re-
placed by the boundary condition (2) on  . The 3-body
problem can then be solved by encoding the information on
the wave function  in an auxiliary function f�f ~Rg� [16]
and representing the solution of Eq. (12) in the form
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  �
X
f ~Rg;	


	�fRg�

	�f ~Rg�f�f ~Rg�F�	�r; f ~Rg�; (13)

where 
	�fRg� is an eigenfunction of H0 with energy �	,
and F�	�r; f ~Rg� � G�	�r� ~R1� �G�	�r� ~R2� with

�	 �
��������������������������������
2m��	 � E�=@2

p
. For �	 < E the trimer formation

in the state 	 is possible. This is consistent with imaginary
�	 and the Green function G�	 describing an outgoing
wave of the light atom and trimer.

We derive an equation for the function f in a deep
lattice, where the tunneling energy @

2=M
L2 � j�0j.
Then the main contribution to the sum in Eq. (13) comes
from the states 	 for which j�	 � ���R12�j & @

2=M
L
2.

The sum is calculated by expanding �	 around ��R12� ��������������������������������������������
2m����R12� � E�=@

2
p

up to first order in ��	 �
���R12��=�0 and using the equation �H0 � �	�
	 � 0.
The equation for f is then obtained by taking the limit r!
R1 in the resulting expression for  and comparing it with
the boundary condition (2). This yields

 

�
��@2=2M
�

X
i�1;2

�Ri
�Ueff�R12�

�
f�R1;R2� � 0; (14)

where the effective potential Ueff�R12� is given by

 Ueff�R� �
@

2��R�
m

����R���G��R��R�

�@=@�������R���G��R��R��
: (15)

At large distances one has Ueff 	 U�R� � 2�0 � E, and
for smaller R where ���R�<E, the potential Ueff acquires
an imaginary part accounting for the decay of molecules
into trimers. The number of trimer states that can be
formed grows with the molecular size. Eventually it be-
comes independent of L and so does the loss rate.

In this limit, we solve Eq. (14) for two molecules with
zero total momentum under the condition that f�R1;R2� is
maximal for jR1 �R2j � �R 	 n�1=2. We thus obtain E as
a function of the density and mass ratio, and its imaginary
part gives the loss rate 	 for the many-body system.
Numerical analysis for 0:06< n��2

0 < 0:4 and 50<
M
=m< 2000 is well fitted by 	 	 �D@n=M
��n��2

0 ��

exp��J
�������������
M
=m

p
�, withD � 7 and J � 0:95–1:4�n��2

0 � for
the 2� 3 case, and D � 102, J � 1:45–2:8�n��2

0 � in the
2� 2 case. One can suppress 	 by increasing M
=m,
whereas for M
=m & 100 the trimers can be formed on a
time scale � & 1 s.

In conclusion, we have shown that the system of weakly
bound molecules of heavy and light fermionic atoms can
undergo a gas-crystal quantum transition. The necessary
mass ratio is above 100 and the observation of such crys-
talline order requires an optical lattice for heavy atoms,
where it appears as a superlattice. A promising candidate is
the 6Li-40K mixture as the Li atom may tunnel freely in a
lattice while localizing the heavy K atoms to reach high

mass ratios. A lattice with period 250 nm and K effective
mass M
 � 20M provide a tunneling rate 
103 s�1 suffi-
ciently fast to let the crystal form. Near a Feshbach reso-
nance, a value a � 500 nm gives a binding energy 300 nK,
and lower temperatures should be reached in the gas. The
parameters n��2

0 of Fig. 1 are then obtained at 2D densities
in the range 107–108 cm�2 easily reachable in experi-
ments. For n � 108 cm�2 the rate of the trimer formation
is of the order of seconds, and these peculiar bound states
can be detected optically.
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