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Abstract

Trapped cold or Rydberg atoms are versatile systems in which to seek novel phenomena
and test established theories. In this memoir summarising the theoretical work I have per-
formed since obtaining my PhD (U–PSud, 2011), I illustrate four of their facets: (i) bosonic
transport, (ii) interatomic interactions, (iii) thermodynamics, and (iv) non–ergodicity.

Firstly, we have shown theoretically that the transport of cold bosonic atoms through a
constricted geometry relies on collective effects involving quantum evaporation, leading to
a single, enhanced conductance step.

Secondly, concerning interactions, we have characterised the Rydberg blockade affecting
two trapped atoms (87Rb and 85Rb) in the case where one of them is promoted to a Rydberg
state. In the course of a collaboration with experimentalists from Wuhan, China, we have
used it to realise the first CNOT gate for two distinguishable atoms, and to entangle them.

Thirdly, we have constructed a thermodynamic description for the evaporative cooling
of a chain of Rydberg atoms, and predicted that it will yield a unidimensional crystal
close to its ground state. Our analysis involves a truncated Boltzmann distribution for the
excitations of the chain, and a semiclassical expansion of the thermodynamic quantities.
It hinges on the assumption of ergodicity.

This assumption is not innocuous. For the fourth and most recent part of our work, we
have focussed on the system comprised of three interacting bosonic particles in a circular
trap. This system is within experimental reach owing to recent advances in Rydberg atom
trapping. We have theoretically identified two different mechanisms impeding ergodicity
in this system. First, a quantum scar, due to a classically unstable periodic trajectory,
impacts multiple quantum levels whose energies we have analysed using Gutzwiller’s trace
formula. Second, classical localisation occurs near stable periodic trajectories. We have
characterised the energies and wavefunctions of the localised quantum states using the
Einstein–Brillouin–Keller theory, highlighting the impact of discrete symmetries.
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Résumé

Les systèmes d’atomes piégés, froids ou dans des états de Rydberg, constituent des
systèmes polyvalents au sein desquels on peut chercher de nouveaux phénomènes ou tester
des théories bien établies. Ce mémoire résume l’activité théorique que j’ai effectuée depuis
l’obtention de mon doctorat (LPTMS, Université Paris–Sud, 2011). J’y illustre quatre
de leurs facettes: (i) le transport bosonique, (ii) les interactions entre atomes, (iii) la
thermodynamique, et (iv) les situations caractérisées par l’absence d’ergodicité.

Premièrement, nous avons montré théoriquement que le transport d’atomes froids boso-
niques dans une géométrie présentant un étranglement repose sur des effets collectifs qui
font intervenir l’évaporation quantique. Ceci conduit à un seul pallier de conductance,
dont la valeur est amplifiée par rapport à son équivalent fermionique.

Deuxièmement, en ce qui concerne les interactions, nous avons caractérisé le blocage
de Rydberg se produisant avec deux atomes piégés distinguables (87Rb et 85Rb) lorsque
l’un d’eux est excité dans un état de Rydberg. Dans le cadre d’une collaboration avec des
expérimentateurs du WIPM (Wuhan, Chine), nous l’avons utilisé pour réaliser la première
porte quantique CNOT pour deux atomes distinguables, et pour en obtenir un état intriqué.

Troisièmement, nous avons construit une description thermodynamique pour le refroidis-
sement évaporatif d’une châıne d’atomes de Rydberg. Nous avons montré que ce mécanisme
permettra l’obtention d’un cristal unidimensionnel proche de son état fondamental. Notre
analyse fait intervenir une distribution de Boltzmann tronquée appliquée aux excitations de
la châıne, ainsi qu’un développement en puissances de ℏ des fonctions thermodynamiques.
Cette approche repose sur l’hypothèse d’un comportement ergodique.

Cette hypothèse n’est pas anodine. Dans la quatrième phase de notre travail, qui en est
aussi la plus récente, nous nous sommes concentrés sur le système constitué de trois parti-
cules bosoniques en interaction dans un piège circulaire. Ce système est expérimentalement
réalisable à l’aide des récentes avancées dans les techniques de piégeage pour atomes de
Rydberg. Nous avons identifié pour ce système deux mécanismes s’opposant à l’ergodicité.
Tout d’abord, une cicatrice quantique, due à une trajectoire périoque classiquement in-
stable, a un impact sur plusieurs niveaux quantiques dont nous avons analysé les énergies
en termes de la formule de la trace de Gutzwiller. Ensuite, un phénomène de localisation
classique se produit au voisinage des trajectoires périodiques classiqment stables. Nous
avons caractérisé les énergies et les fonctions d’onde des états localisés à l’aide de la théorie
semi–classique d’Einstein–Brillouin–Keller, en soulignant le rôle des symétries discrètes.
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I am very grateful to Prof. S. Stringari and to the late Prof. L. Pitaevskii, both from the
University of Trento (Italy), for supervising my post–doctoral stay in their Institute, and
for fruitful discussions that have extended well beyond my appointment there. I am no less
grateful to my former PhD adviser, Prof. G. Shlyapnikov (LPTMS, Orsay, France), who
has introduced me to the experimentalists in Wuhan, China, in collaboration with whom
one of the activities illustrated in this memoir has been carried out.

My sincere thanks go to Profs. A. Sinatra (LKB) and Ph. Lecheminant (LPTM) for
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1 Introduction

This memoir illustrates the research activities I have carried out since my PhD defence (11
July 2011, at Université Paris–Sud, Orsay, France). I have chosen to focus on four articles
[1–4] and one recent preprint [5], all of which report work that I have performed after my
arrival, in October 2015, at Laboratoire de Physique Théorique et Modélisation (LPTM,
Cergy–Pontoise, France) as a faculty researcher at CNRS (chargé de recherche CRCN7).

My research activity is theoretical. I consider conceptually simple systems, made ex-
perimentally accessible by recent developments in atomic trapping. There, I seek to apply
known mechanisms to novel situations, such as the evaporative cooling [6] of a Rydberg
atom chain described in chapter 3, and to implement experimentally accessible analogs of
model Hamiltonians, such as the Hénon–Heiles model [7, chap. 8.2] which plays a role in
chapter 4. In this memoir, phenomena relying on longer–ranged interactions (rather than
the usual contact interactions of cold ground–state atoms) are emphasized.

I have thoroughly benefited from the proximity to experiments. One of the articles I
present (Ref. [2], discussed in Sec. 2.2), was co–written with Prof. M.S. Zhan’s experimental
group in Wuhan, China, and reports measurements in good agreement with my theoretical
results. Another article (Ref. 3, discussed in Chap. 3) was co–written with Dr. M. Brune,
who leads the experimental group focussing on Rydberg atoms at LKB–Collège de France
(Paris, France). All papers contain experimentally accessible proposals.

1.1 Two related families of atomic systems

The systems we consider are comprised of cold or Rydberg atoms, which are experimented
on around the world. In France, they are especially well represented in and near Paris1

We now briefly review these two families of atomic systems.

1.1.1 Cold ground–state atoms

Alkali (or alkaline–earth) atoms may be trapped and cooled, and then manipulated coher-
ently, using optical techniques. These are reviewed in Ref. [9], which is a book providing a

1Laboratories in the greater Paris area conducting experiments on cold and/or Rydberg atoms include
LAC (Orsay), LCF (Palaiseau), LKB (Paris), LP–ENS (Paris), SYRTE (Paris), and LPL (Villeta-
neuse). Experimental and theoretical laboratories whose activities involve “quantum technologies” are
federated in a single entity called QuanTiP, which LPTM takes part in.

1
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Figure 1.1: Potential V (r) characterising the
interaction between two 23Na atoms in their elec-
tronic ground states. (This is the triplet poten-
tial, see e.g. Ref. [8].)

general introduction to cold atoms illustrated with many experiments. In contrast to the
Rydberg states presented in Sec. 1.1.2, the atoms considered here are in their electronic
ground states. Systems of trapped cold atoms offer experimental control over multiple
parameters, including:

• The number of trapped atoms, ranging from 105 to two atoms or even a single one;

• The trapping geometry, e.g. a harmonic or box trap, or a spatially periodic lattice;

• The spatial dimensionality, which may be reduced from the usual 3D to 2D or 1D
using stringently confining potentials along one or two directions;

• The distinguishable or identical (bosonic or fermionic) nature of the trapped atoms;

• The attractive or repulsive nature of the interatomic interaction, and its strength.

Among these, the last point, concerning interactions, deserves a special discussion.

Interactions between two cold atoms. They play a role in all contemporary applica-
tions of cold atomic systems. Depending on the goal, their role may be minimised (as in
metrological applications with e.g. atomic fountain clocks [9, Sec. 18.2]), or they may be
the source of superfluid behaviour in an interacting ultracold gas [10, chaps. 14 & 19].
The interaction potential between two (non–magnetic) cold atoms is illustrated in Fig. 1.1

in the case of two cold 23Na atoms. Its long–distance behaviour is of the van der Waals
type, V (r) = −C6/r

6, where r is the interatomic distance and the coefficient C6 > 0 sets
the strength of the interaction. It sets the van der Waals length lvdW = (mC6/ℏ2)1/4, with
m being the mass of a single atom, which characterises the range of the interaction [11,
Sec. III.A]. The length lvdW, of the order of 100 a0 = 5nm for alkali atoms, should be
compared with the mean interatomic distance, which is typically of the order of 500 nm in
a cold atomic gas, i.e. 100 times larger. This highlights a key feature of cold atoms: the
interatomic interaction is short–ranged. This feature is both an advantage and a limitation.
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1.1 Two related families of atomic systems

It is an advantage because it allows for a representation of the interparticle interaction in
terms of an effective contact interaction [9, chap. 15] parametrised by a single parameter,
the scattering length a. The effective interaction is repulsive or attractive depending on the
sign of a, and its strength is set by the absolute value |a|. Both its sign and its amplitude are
routinely tuned in experiments by exploiting low–energy scattering resonance phenomena.
The limitation is that short–ranged interactions do not affect well–separated atoms.

This makes them less effective e.g. in the realisation of multiple–qubit gates [12, Sec. 1.3.2],
mentioned in Sec. 2.2. Neither do they directly yield crystallisation2, a phenomenon sought
in chap. 3. Finally, chaotic phenomena3 due to interatomic interactions, such as those
described in chap. 4, rely on the presence of longer–ranged interactions.

The restriction to short–ranged interactions may be overcome by exploiting the proper-
ties of the dipole–dipole interaction. This has been achieved experimentally in a variety of
ways, relying e.g. on magnetic atoms [17] or dipolar molecules [18]. These systems will not
be considered in the present report. We shall focus instead on a third family of systems
exhibiting dipole–dipole interactions, i.e. systems comprised of Rydberg atoms.

1.1.2 Rydberg atoms

A Rydberg state of a (usually alkali) atom [19] is a quantum state in which the outer
electron is characterised by a large principal quantum number n (typically the integer n is
the order of 50). Hence, unlike cold atoms, Rydberg atoms are in a highly excited electronic
state. Nevertheless, the lifetimes of these excited states are amenable to experiments.
Among all Rydberg states, the longest–lived are the circular states [20, Sec. 5.2.1], which
are such that the angular momentum l = n− 1 achieves its maximal value. Their lifetime
exceeds 30ms for n = 50. They have been exploited experimentally for more than forty
years [21]. The lifetime of low–angular–momentum Rydberg states, though shorter (of
the order of 100µs for n = 50), is still experimentally viable [22, 23]. Thanks to recent
experimental advances [24–26], atoms in Rydberg states may now be optically trapped in
various geometries, enhancing the similarity with cold atoms.
The key feature offered by atoms in Rydberg states is their very large off–diagonal dipole

moment, proportional to d = |q|a0 n2 with a0 being the Bohr radius. This entails that
Rydberg atoms strongly couple to external electromagnetic fields, a property that has been
thoroughly exploited in earlier experiments. The focus has now turned to the strong dipole–
dipole interaction which also stems from this large dipole moment [23, 27, 28]. Depending
on the considered Rydberg states and distances, the obtained interaction behaves either
like C3/r

3 or like C6/r
6 (both regimes are illustrated in this memoir). In both cases, the

corresponding length scales are comparable to, or greatly exceed, the interatomic distance,
which is of the order of 5 to 10µm. Hence, Rydberg atoms provide the longer–ranged
interaction required for the applications mentioned at the end of Sec. 1.1.1.

2Nevertheless, spatially periodic structures, such as the Abrikosov vortex lattice, have been obtained
within ultracold gases exhibiting short–ranged interactions [13, 14].

3Cold atoms have been an excellent test–bed for chaotic phenomena involving single particles [15, 16].
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1 Introduction

1.2 Outline of the present memoir

My papers [1–5] are presented in chronological order.

Earlier work. Chapter 2 briefly presents two different papers cowritten with my former
postdoctoral supervisors and doctoral adviser. The first one [1], cowritten with my former
postdoctoral advisers Profs. L.P. Pitaevskii and S. Stringari (Trento, Italy), identifies the
role of evaporation in the transport properties of gases of cold bosonic atoms. The second
paper [2], cowritten with my former PhD adviser Prof. G.V. Shlyapnikov (LPTMS, Orsay,
France) along with experimentalists from Wuhan, China, describes the realisation of a
two–qubit gate used to entangle two distinguishable atoms. These ‘earlier’ papers contain
ideas that have played an important role in my subsequent activity. More specifically,
the evaporation mechanism identified in the first paper bears a resemblance to the one
analysed in chapter 3. The second paper is my first published work dealing with Rydberg
atoms, which are present in all other chapters of this memoir.

Evaporative cooling of Rydberg atom chains. In chapter 3, we present the article [3],
cowritten with Dr. M. Brune (LKB–Collège de France, Paris). There, we revisit evapora-
tion, now used as a cooling mechanism applied to a chain of Rydberg atoms to obtain a
(finite–sized) long unidimensional crystal. [3]. We describe the cooling mechanism thermo-
dynamically using a truncated Boltzmann distribution. Our description of the quantum
regime involves a semiclassical approximation to the thermodynamic functions. Our anal-
ysis of the cooling scheme relies on the key assumption of ergodicity.

Three Rydberg atoms in a circular trap. Chapter 4 describes our most recent activity.
It stemmed from a desire to illustrate that the ergodic hypothesis of chapter 3 is not
innocuous, and was stimulated by the observation, around that time, of a ‘many–body
scar’ [22, 29]. In the published article [4], we propose the experimentally accessible system
comprised of three Rydberg atoms in a circular trap, and identify a quantum scar in the
motion of the interacting atoms. We analyse it semiclassically in terms of Gutzwiller’s trace
fomula. In the recent preprint [5], we identify quantum eigenstates localised in the vicinity
of classically stable periodic orbits, for which we explicitly construct semiclassical Einstein–
Brillouin–Keller wavefunctions. Chapter 4 is the most detailed part of this memoir.

Prospects. In Chapter 5, we briefly present a few possible extensions of our work de-
scribed the preceding chap. 4. Our theoretical analysis of the interaction between Rydberg
atoms, illustrated in Sec. 2.2, also plays a role. We point out that the few–particle sys-
tems we are considering may shed additional light on the role of mixed phase space and
parametric excitation in recent experiments involving many Rydberg atoms [22, 30].
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2 Earlier work: bosonic transport,
atomic interactions

This brief chapter illustrates two different activities carried out during my earlier years in
Cergy–Pontoise (October 2015 – October 2017), which have influenced my later work.
Section 2.1 is devoted to the impact of quantum evaporation on the transport properties

of Bose gases. This work, published as Ref. [1], was performed in collaboration with my
former post–doctoral supervisors Profs. L.P. Pitaevskii and S. Stringari (Trento, Italy).
Section 2.2 presents the realisation of an entangled pair of two non–identical atoms using

a two–qubit gate. This work, published as Ref. [2], combines experiment and theory. It was
performed in collaboration with my former PhD adviser, Prof. G. Shlyapnikov (LPTMS,
Orsay, France), along with the experimental group led by Prof. M.S. Zhan (Wuhan, China).

2.1 Quantum evaporation of a Bose gas

This section describes my work on the transport properties of Bose gases [1]. We emphasize
the role of evaporation, considered again in a different context in the subsequent chap. 3.
My work illustrated here is the latest of three contributions [1, 31, 32], all involving the

same coauthors, devoted to the role of superfluidity in the transport properties of cold
bosonic gases trapped in geometries inspired from mesoscopic physics1.

1The book [10] reviews experimental and theoretical progress concerning superfluidity in dilute atomic
systems. Transport phenomena in mesoscopic systems are introduced in the book [33].
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Figure 2.1: Left: Two reservoirs L, R exchange particles through a constriction, inside which
the attractive gate potential EG is varied. Centre: Transport function of an isotropic harmonic
constriction for fermions (thin dashed line) and for bosons (full solid curve). Right: Quantised
conductance for (a) ultracold fermions (T ≪ TF ) and (b) cold bosons (T > TB), rescaled by the
step heights 1/(z−1 ± 1). Here, TF and TB are the Fermi and Bose temperatures, respectively.
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2 Earlier work: bosonic transport, atomic interactions

z
0

atom atomphonon
Figure 2.2: Bosonic transport through
the constriction involves the condensation
of an atom, exciting a phonon which prop-
agates through the constriction and causes
an atom to evaporate at its other end.

The phenomenon considered here is the quantisation of conductance, first observed in
the electronic conductance through a quantum point contact [34]. There, the conductance
G is defined in terms of the electric current I and the voltage U in between two reservoirs
as I = GU . It depends on the gate voltage EG applied to the quantum point contact. At
low temperatures, G(EG) exhibits a sequence of well–defined steps of height q2/h, where
q is the electron charge and h is Planck’s constant. The same effect was later observed
in a degenerate Fermi gas of neutral fermionic atoms at temperatures much smaller than
the Fermi temperature, trapped in a constricted geometry comprised of two reservoirs
separated by a constriction. In this novel neutral context, G relates the time derivative of
the number imbalance between two reservoirs, ∂tδN , to the chemical potential imbalance
δµ, through the relation ∂tδN = −Gδµ, and it is now quantised in units of 1/h.

We analyse the conductance quantisation in a Bose gas trapped in a similar constricted
geometry, focussing on the regime where the gas in the reservoirs is not Bose–condensed.

Equilibrium state. We consider a smoothly tapered constriction connecting the two reser-
voirs, as shown on the left panel of Fig. 2.1. At its most stringent point, we model it using
a 2D isotropic harmonic oscillator with the frequency ω0. The gate potential EG applied
in the constriction is negative. In the case of an ideal gas, all atoms would fall inside the
constriction, and Bose–condense there for EG + ℏω0 < µ, where the chemical potential
µ < 0 characterises the non–condensed gas in the reservoirs. This would preclude the
observation of transport between the reservoirs. The situation is more favourable in the
presence of a weak repulsive interaction between the atoms. Then, experimentally acces-
sible parameters may be chosen (box–trap reservoirs; temperature T > 1.1TB, with TB
being the Bose condensation temperature defined in the reservoirs; sufficiently stringent
constriction) such that a condensate does form inside the constriction, but it contains few
atoms, whereas most atoms remain in the reservoirs as a non–condensed gas.

Quantum evaporation. The transport of a thermal atom from one reservoir to the other
requires it to cross the condensate–filled constriction. In the considered situation, single–
particle transport is blocked by the mean–field shift it experiences due to collisions with
atoms in the condensate. Hence, transport must rely on a collective phenomenon, whereby
an atom impinges on one end of the condensate–filled constriction and excites a phonon
inside it (condensation). This phonon propagates to the other end of the constriction,
where an atom is emitted (evaporation). This mechanism is illustrated in Fig. 2.2. It is
the equivalent, for a superfluid Bose gas, of the quantum evaporation previously observed
[35, 36] and analysed theoretically [37, 38] in the context of liquid helium.

6



2.1 Quantum evaporation of a Bose gas

Linear–response description. We assume that the two reservoirs have the same tem-
perature T , and that the chemical potential imbalance δµ is small. In this linear regime,
the Landauer–Büttiker formalism [33, chap. 1] leads to the following expression for the
conductance G as a function of the gate potential EG:

G(EG) = h

∫ ∞

0

dE Φ(E − EG)
∂fB

∂µ

∣∣∣∣
E,T

. (2.1)

In Eq. (2.1), fB = 1/[z−1 exp(E/(kBT )) − 1] is the Bose distribution function character-
ising the reservoirs, with z = exp[µ/(kBT )]. The transport function Φ(E) characterises
the constriction: it counts the number of open channels at the energy E. We compare
the transport functions for Fermi and Bose gases on the centre panel of Fig. 2.1. In the
fermionic case, ΦF (E) exhibits multiple steps, leading to the multiple plateaux observed
there. However, for the bosonic case we consider, ΦB(E) exhibits a single step, which cor-
responds to the gate energy Estep

G such that Estep
G +ℏω0 = µ. It reflects the fact that bosonic

transport through quantum condensation followed by quantum evaporation is possible for
all gate energies EG ≤ Estep

G . Accordingly, unlike for fermions, we predict the occurrence of
a single step in the quantised conductance for bosonic gases, as shown on the right panel
of Fig. 2.1. Moreover, the height of this step is enhanced, with respect to fermions, by the
factor 1/(z−1−1), due to the large values taken by the Bose distribution function for small
energies. This enhancement factor is of the order of 30 for the experimentally accessible
parameters considered in Ref. [1].

To sum up, the quantisation of conductance in a weakly–interacting, non–condensed
Bose gas exhibits two important differences with respect to the fermionic case:

• A single conductance step occurs,
which is a signature of the collective transport mechanism at play;

• The height of the step is strongly enhanced with respect to its fermionic counterpart.

An experiment similar to that of Ref. [39], performed with a Bose gas at a temperature
just above the condensation temperature TB, would allow for a confirmation of our results:
To our knowledge, such an experiment2 has not yet been performed.

2The experiment reported in Ref. [40], though related, has not been performed in the linear response
regime giving direct access to the conductance.
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2 Earlier work: bosonic transport, atomic interactions

2.2 Entanglement of two distinguishable atoms using the
CNOT gate

This section illustrates my earliest article [2] dealing with atoms in Rydberg states. It is the
second of two papers involving the same coauthors, both of which report joint experimental
and theoretical investigations [2, 41].

In this work, Rydberg atoms are considered in view of their application to quantum
computation3. We consider two non–identical atoms: one 87Rb atom and one 85Rb atom,
trapped in separate single–atom microtraps. Each atom represents a qubit, i.e. a quantum
mechanical two–state system. Our key result is the realisation of an entangled pair of these
two atoms through the application of a Controlled–NOT (CNOT) quantum gate.

The CNOT gate. Quantum gates [12, Sec. 1.3] are unitary linear mappings applied to
a set of qubits. The simplest gates involve single qubits or two qubits. The CNOT gate is
a two–qubit gate. We call |↑⟩, |↓⟩ the basis states of the first, ‘control’, qubit, and |⇑⟩, |⇓⟩
those of the second, ‘target’ qubit. Then, the CNOT gate is represented by the following
matrix, expressed in the two–qubit basis (|↑⇑⟩ , |↑⇓⟩ , |↓⇑⟩ , |↓⇓⟩):

UCNOT =

|↑⇑⟩ |↑⇓⟩ |↓⇑⟩ |↓⇓⟩





⟨↑⇑| 0 1 0 0
⟨↑⇓| 1 0 0 0
⟨↓⇑| 0 0 1 0
⟨↓⇓| 0 0 0 1

(2.2)

The matrix UCNOT of Eq. (2.2) expresses the following behaviour. If the control qubit is
in the state |↓⟩, the target qubit is left unchanged. If the control qubit is in the state |↑⟩,
the target qubit is flipped, i.e. the state |⇓⟩ is mapped into |⇑⟩ and vice versa.

The importance of the CNOT gate stems from the following universality property [12,
Sec. 4.5.2]: any unitary operation involving multiple qubits may be written as a product of
single–qubit gates and two–qubit CNOT gates. In particular, the entangled state (|↑⇑⟩+
|↓⇓⟩)/

√
2 may be obtained in two steps from the initial state |↑⇑⟩. First, a single–qubit

gate is applied to the control qubit so as to map it into the superposition (|↑⟩ + |↓⟩)/
√
2.

Then, the CNOT gate is applied to the resulting two–qubit state:

UCNOT

[ |↑⟩+ |↓⟩√
2

|⇓⟩
]

=
UCNOT |↑⇓⟩+ UCNOT |↓⇓⟩√

2
=

|↑⇑⟩+ |↓⇓⟩√
2

. (2.3)

Single–qubit operations may be achieved by applying electromagnetic fields. The CNOT
gate, like all other two–qubit gates, requires interactions between the two qubits.

3The book [12] provides a general overview of the field of quantum computation, and realisations using
Rydberg atoms are reviewed in Ref. [27].
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2.2 Entanglement of two distinguishable atoms using the CNOT gate

79d5/2 79d5/2

87Rb
85Rb

Ω85

detunedBlockade

79d5/2 79d5/2

87Rb
85Rb

Ω85

Figure 2.3: Rydberg blockade. On the left half
of the figure, the 87Rb atom is in its ground state
|↑⟩, and the 85Rb atom undergoes Rabi oscilla-
tions between its ground |⇑⟩ and Rydberg |r85⟩
states. The right half of the figure shows the
blockade regime: the 87Rb atom is in the Ryd-
berg state |r87⟩, and the 85Rb atoms remains in
its ground state |⇑⟩.

The considered atomic states. The two selected states for 87Rb, |↓⟩ = |F = 1,MF = 0⟩
and |↑⟩ = |F = 2,MF = 0⟩, are both within its ground hyperfine manifold. Similarly, the
two selected states for 85Rb are |⇓⟩ = |F = 2,MF = 0⟩ and |⇑⟩ = |F = 3,Mf = 0⟩. The
atoms are separated by distances of the order of 5µm, which greatly exceeds the short
range of the interaction between atoms in their ground states (see Sec. 1.1.1).
In order to obtain longer–ranged interactions, we exploit their Rydberg states. For both

atoms, the considered Rydberg state is |r⟩ = |79D5/2,mj = 5⟩, meaning that the principal
and angular quantum numbers are n = 79 and l = 2, respectively. We highlight two
differences with respect to the situation considered in the subsequent chapters 3 and 4:

• This is a Rydberg state with low angular momentum (in contrast to circular Rydberg
states whose quantum numbers satisfy l = n− 1);

• In this experiment, atoms in the states |↓⟩, |↑⟩, |⇓⟩, |⇑⟩ are trapped, but atoms in
Rydberg states are not trapped.

Rydberg blockade. This is the key phenomenon in the experiment. It has already been
demonstrated e.g. for two identical 87Rb atoms in Refs. [42, 43]. We have realised it for two
distinguishable atoms. The principle of the blockade is illustrated in Fig. 2.3. The states
|⇑⟩ and |r85⟩ of the 85Rb atom are coupled by a two–photon transition. If the 87Rb is not
in the Rydberg state |r87⟩, the 85Rb atom undergoes Rabi oscillations between these two
states. However, if the 87Rb is excited to the Rydberg state |r87⟩, the strong interaction
between the two Rydberg states shifts the state |r85⟩ away from resonance, and the Rabi
oscillations of 85Rb no longer occur: this is the blockade regime.

Numerical approach. We analyse the Rydberg blockade numerically by considering the
two–atom Hamiltonian H which accounts for:

• the dipole–dipole interaction between the atoms in Rydberg states;

• the Rydberg level structure;

• the Zeeman term due to the static magnetic field B present in the experiment;
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Figure 2.4: Left: Calculated blockade shift ∆E (left axis) and double excitation probabil-
ity P2 (right axis) as a function of the offset y in the atomic positions. Centre: Calculated
double–excitation probability P2 averaged over the spatial density distribution as a function
of the temperature T . The vertical dashed red line shows the experimental temperature Texp.
Right: Measured probability of finding 85Rb in the state |⇑⟩ as a function of time, in the case
where 87Rb is in the state |↑⟩ (black Rabi oscillations) or |r87⟩ (red points in the blockade regime).

• the state mixing due to the misalignment between B and the internuclear axis.

We restrict the Hamiltonian to a subspace spanning 437 two–atom states. These include
the initial two–atom state |r87 ⇑⟩, and 436 two–atom states representing both atoms in
Rydberg states, including the state |r87, r85⟩. We account for an offset y = |y87 − y85| in
the positions of the two atoms within their respective microtraps. We calculate the time–
dependent double excitation probability, P2(y, t) = 1 − | ⟨r87 ⇑ |e−iHt/ℏ|r87 ⇑⟩ |2, its time–
averaged value P2(y), and the corresponding blockade shift, ∆E(y) = ℏΩ85(1/P2(y)−1)1/2,
shown on the left panel of Fig. 2.4. Here, the Rabi frequency Ω85 characterises the coupling
between the states |↑⟩ and |r85⟩ of the 85Rb atom. Finally, we account for the thermal
broadening by averaging P2(y) over the spatial probability distribution for the atoms.
Our numerical results for the thermal–averaged P2(T ) are shown on the central panel of
Fig. 2.4. At the mean experimental temperature Texp, we predict the average double–
excitation probability P2(Texp) ≈ 0.013. This is of the same order of magnitude as the
observed quench of the Rabi oscillation amplitude shown on the right panel of Fig. 2.4.

The CNOT gate is realised by combining the Rydberg blockade with single–atom oper-
ations, and used to entangle the atoms according to Eq. 2.3. The fidelity [12, Sec. 9.2.2] of
the realised entangled state is on par with the similar experiments realised with identical
atoms [42, 43]. The originality of our work resides in the fact that the entangled atoms
are distinguishable: ours is the first realisation of a CNOT gate for distinguishable atoms,
and we provide an explicit example of an entangled state of two distinguishable particles.
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2LPTM, UMR 8089 of CNRS and Université de Cergy-Pontoise, 95302 Cergy-Pontoise, France
3Kapitza Institute for Physical Problems, Kosygina 2, 119334 Moscow, Russia

(Received 9 June 2016; published 17 August 2016)

We analyze theoretically the quantization of conductance occurring with cold bosonic atoms trapped in two
reservoirs connected by a constriction with an attractive gate potential. We focus on temperatures slightly above
the condensation threshold in the reservoirs. We show that a conductance step occurs, coinciding with the
appearance of a condensate in the constriction. Conductance relies on a collective process involving the quantum
condensation of an atom into an elementary excitation and the subsequent quantum evaporation of an atom,
in contrast with ballistic fermion transport. The value of the bosonic conductance plateau is strongly enhanced
compared to fermions and explicitly depends on temperature. We highlight the role of the repulsive interactions
between the bosons in preventing them from collapsing into the constriction. We also point out the differences
between the bosonic and fermionic thermoelectric effects in the quantized conductance regime.

DOI: 10.1103/PhysRevA.94.023622

I. INTRODUCTION

In mesoscopic systems, where the motion of quantum
particles occurs over distances of the order of their coherence
length, transport phenomena exhibit quantum signatures [1].
The quantization of conductance [2] is a hallmark among these
effects. It reflects the discrete nature of the transport channels
inside a strongly constricted geometry and occurs if the spread
in energies of the incident particle distribution is smaller than
the energy separation of these channels. It was first observed
in electronic transport through a quantum point contact [3] as
a series of plateaus in the conductance when the distance be-
tween the gate electrodes was increased. In this fermionic case,
the conductance quantum GK = e2/h involves fundamental
constants only, making it relevant for metrology [4]. Unlike the
quantum Hall effect [5], it occurs in the absence of a magnetic
field and has been predicted to affect neutral helium atoms [6].
The recently observed universal value for the low-temperature
thermal conductance [7–10] is a related effect.

Conductance quantization has recently been observed in ul-
tracold fermionic gases [11]. Atomic gases allow a clean obser-
vation in a simple setup involving two reservoirs connected by
a constriction within which an attractive gate potential EG < 0
is varied (see Fig. 1). Experiments on ultracold fermions
aim at simulating electronic systems using neutral particles
[11–14]. In the fermionic experiment of Ref. [11], conductance
quantization has been observed at temperatures much lower
than both the Fermi temperature TF and the confinement
energy of the constriction, in analogy with the original results
on electronic transport [3] where only particles near the Fermi
surface take part in transport phenomena. This raises the
question of whether conductance quantization also affects
bosons. Previous observations in an optical setup [15,16]
and predictions with cold matter waves [17] have focused
on systems where all particles have the same incident energy,
mimicking fermionic transport at the Fermi energy. To our
knowledge, the specific role of bosonic statistics in quantized
conductance situations has not yet been investigated. Cold

*david.papoular@u-cergy.fr

atom setups allow the exploration of mesoscopic physics in
situations where the Bose distribution plays a key role [18–20].
They are also expected to exhibit the phenomenon of quantum
evaporation, whereby an elementary excitation of a superfluid
reaches its surface and causes the evaporation of a single atom.
This phenomenon had so far been studied experimentally
[21,22] and theoretically [23,24] in superfluid 4He, and we
consider it here in the context of superfluid atomic gases.

In this article, we show that conductance quantization
occurs with bosonic atoms as well, and that the Bose statistics
strongly enhance the value of the conductance step compared
to fermions. Unlike for fermions, this value explicitly depends
on temperature, and the effect occurs with bosons up to
temperatures higher than with fermions. Furthermore, we
show that the underlying transmission mechanism is very
different from the fermionic case and leads to the occurrence
of a single conductance plateau as the gate potential is
varied, coinciding with the appearance of a condensate in the
constriction. Transmission through the constriction relies on
quantum condensation followed by quantum evaporation: an
atom impinging on one end of the constriction excites a phonon
in the condensate, which travels through the constriction and
causes the evaporation of a single atom at its other end.
Hence, transport through the constriction involves a collective
mechanism, as in Ref. [25]. However, we focus on weakly
interacting Bose gases with temperatures T slightly above the
critical temperature TB in the reservoirs, so that these contain a
thermal gas and no superflow occurs, in contrast to Refs. [25–
27] where the condensate is also present in the reservoirs.

The two reservoirs L and R of Fig. 1 can exchange particles
via a constriction of length lC produced by the potential
VC(r,z). At its most stringent point z = 0, we model it by
the radial harmonic trap V (r,0) = mω2

0r
2/2. We assume that

the gate potential EG(z) < 0 also reaches its maximum value
|EG0| at z = 0.

II. EQUILIBRIUM STATE

We first state two conditions on the strength of the
interatomic interactions which are required for our analysis
to hold for bosons. These interactions should be (i) weak

2469-9926/2016/94(2)/023622(6) 023622-1 ©2016 American Physical Society
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FIG. 1. Two reservoirs (L, R) can exchange particles through a
smoothly tapered constriction inside which the spatially dependent
and attractive gate potential EG is varied.

enough for the reservoir thermodynamics to be dominated by
single-particle effects for temperatures T � TB , and (ii) strong
enough to avoid a collapse of the system into the attractive
constriction. These conditions are compatible and easily
realized with bosonic atoms trapped in box-like potentials [28].

(i) The effects of weak interactions in uncondensed
Bose gases are well described by Hartree-Fock theory
(see Chap. 13 in Ref. [29]). It predicts the chemical
potential μ(n,T ) = μ(0)(n,T ) + 2gn, with μ(0) < 0 being the
ideal-gas value, n the density, and g > 0 the interaction
strength. In this theory, the Bose distribution reads
f B(E) = 1/[e(E+2gn−μ)/kBT − 1] = 1/[z−1eE/kBT − 1],
where the ideal-gas fugacity z = exp (μ(0)/kBT ) and
E = p2/2m. The quantity ∂f B/∂μ|T , relevant for linear
response, can be replaced by ∂f B/∂μ(0)|T if 2gnκT � N .
Here, N is the atom number in one reservoir, and the isothermal
compressibility κT = ∂N/∂μ|T is linked to its ideal-gas value
by N/κT = 2gn + N/κ

(0)
T . For T � TB , κ

(0)
T kBTB/N =√

π/[ζ (3/2)
√

1 − z], and the condition 2gnκT � N means
1 − z � (gn/kBTB)24π/ζ 2(3/2). For a uniform gas, this
condition is well satisfied for T/TB � 1.1. We focus on
box-trap reservoirs which, for Bose gases, are more favorable
than the harmonically trapped case, as interactions play a
weaker role within uniform gases (gn/kBTB ≈ 0.02) than
in trapped geometries (gn/kBTB ≈ 0.2) [19]. Thus, we can
describe the atoms in the reservoirs as an ideal Bose gas with μ

negative and small. We take μ/�ω0 ≈ −0.01 in the following.
(ii) Despite the assumption T > TB , condensation occurs in

the constriction [30–32] if the gate potential EG0 < −�ω0 + μ

is attractive enough for the energy of the first transverse state
in the constriction to match the chemical potential of the
gas in the reservoirs. Then, in the absence of interactions,
the atoms would collapse into the constriction, impeding the
investigation of transport. The presence of weak repulsive
interactions between the bosons prevents this collapse by
making the presence of too many atoms in the constriction
energetically disfavored. Neglecting the dilute thermal cloud,
the condensate wave function �0(r) at z = 0, which depends
only on the distance r to the axis, is the lowest energy solution
to the Gross-Pitaevskii (GP) equation:

(μ − EG0)�0 =
(

− �2

2m
�r + 1

2
mω2

0r
2 + g|�0|2

)
�0 , (1)

where the radial Laplacian satisfies r�r�0 =
d(rd�0/dr)/dr , g = 4π�2a/m, and a is the scattering
length encoding the interactions. The density |�0|2 at
the point z = 0 is determined by the effective chemical
potential μ − EG0 > 0. Figure 2 shows the linear density
n1 = ∫

2πrdr|�0|2 as a function of EG0. For μ − EG0 < �ω0,
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FIG. 2. Linear condensate density at the center of the constriction
as a function of the gate potential. The exact numerical result (thick
red line) interpolates in between the Gaussian approximation (dashed
blue), valid for |EG0| � �ω0, and the Thomas-Fermi result (dotted
green), holding for large |EG0|.

the constriction is empty. For (μ − EG0) just above �ω0, the
condensate wave function is nearly a Gaussian with the extent
l0 = (�/mω0)1/2, and gn1/l2

0 = 2π (μ − EG0 − �ω0). For
more attractive gate potentials, the Thomas-Fermi profile is
quickly reached, leading to gn1/l2

0 = π (μ − EG0)2/�ω0. In
all three cases, for EG0 up to a few �ω0, the atom number
in the constriction NC < lC/a. Hence, NC/N is small if the
constriction is short enough, in which case the atom number
in the reservoirs is unaffected by the small condensate in the
constriction. On the other hand, the one-dimensional (1D)
density n1 � a/l2

0 , so that the condensate does not enter the
strongly confined 1D regime ([29], Chap. 24).

III. TRANSPORT PROPERTIES

We focus on small deviations from the equilibrium situation
where both reservoirs are characterized by the same chemical
potential μ and temperature T . An important difference
between fermionic and bosonic transport phenomena concerns
the energies of the particles undergoing transport. In the
linear response regime, these are the energies for which the
derivative ∂f F,B/∂μ|E,T of the (Fermi or Bose) distribution
function with respect to μ is non-negligible. For fermions,
this derivative is strongly peaked near the Fermi energy kBTF

with a width ∼kBT [see Fig. 3(b)], confirming the key role of
the Fermi surface. These fermions have nonvanishing energies
and efficiently traverse even sharply defined constrictions [33].
By contrast, for bosons, the derivative ∂f B/∂μ|E,T nearly
diverges for the energy E = 0, and the mobile particles have
energies � (1 − z)kBTB ≈ |μ| [see Fig. 3(c)]. This divergent
behavior leads to the bosonic enhancement of conductance.
Our choice of T � TB means that |μ| � kBTB , and we assume
in the following that kBTB � �ω0, hence, mobile bosonic
atoms have energies ��ω0. Low-energy reflections at the ends
of the constriction [34] can be made negligible by smoothly
connecting it to the reservoirs [35] with a radius of curvature R

which is large compared to the characteristic atom wavelength
(�2/m|μ|)1/2 ∼ 10l0. Such a smoothly tapered constriction
was already used in the experiment of Ref. [11] where the
Fermi momentum kF satisfies kF R ∼ 100.
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(b) and (c): Derivatives ∂f F /∂μ|T and ∂f B/∂μ|T of the Fermi (T/TF = 0.1) and Bose (T/TB = 1.2) distributions.

Introducing the small differences in atom numbers, δN =
NR − NL, and chemical potentials, δμ = μR − μL, between
the reservoirs, we define the isothermal conductance G by
the relation ∂t δN = −G∂δμ (we go beyond the isothermal
approximation in Sec. V). The Landauer-Büttiker formalism
(see Chap. 1 in Ref. [1]) leads to the expression hG(EG) = L0,
where for any α, Lα reads

Lα =
∫ +∞

0
dE �F,B(E − EG)

(
E − μ

kBT

)α
∂f F,B

∂μ

∣∣∣∣
E,T

. (2)

This equation holds for both fermionic and bosonic systems. It
is applicable whatever the reservoir geometry, encoded in the
value of the degeneracy temperature TD = TF,B ([29], Chap.
10). Equation (2) shows that G(EG) is the convolution of
two functions, which both depend on the quantum statistics:
(i) the transport function �F,B(E) of the constriction, and
(ii) the derivative of the (Fermi or Bose) distribution function
f F,B(E) = 1/[z−1 exp(E/kBT ) ± 1] of the reservoirs.

We first summarize the fermionic results of Ref. [11].
Pauli exclusion ensures that the constriction remains empty,
so that transmission is a single-particle ballistic effect. The
transport function �F (E), which counts the transport channels
whose threshold energies are � E, is determined by the
most stringent part of the constriction. It reads �F (E/�ω0) =
�E/�ω0	(�E/�ω0	 + 1)/2, where �x	 stands for the integer
part of x. It exhibits jumps for energies that are integer
multiples p�ω0 of the constriction strength, reflecting the
opening of additional transport channels [dashed green line
in Fig. 3(a)]. These jumps are the cause of the quantization of
conductance.

We now consider bosonic atoms. If the gate potential
EG0 > −�ω0 + μ, the constriction is empty (see Fig. 2). For
sufficiently smooth spatial variations of VC(r) and EG(z),
the motion of single thermal particles impinging on it is
quasiclassical [35]. These experience a repulsive barrier of
height (�ω0 + EG0), so that low-energy transmission through
the constriction is blocked. Instead, for EG0 < −�ω0 + μ,
the constriction is filled with a condensate whose presence
strongly affects the nature of the transport mechanism within
the channel. The energies � |μ| of the incident atoms are
smaller than gn0 at the center of the constriction, so that
transport is now a collective process. It involves quantum
condensation followed by quantum evaporation [21,23,24],
which rely on the superfluidity of the condensate and, hence,
on the presence of interactions in between the bosons. A

thermal atom in a reservoir impinging on the constriction
with energy E condenses into an elementary excitation inside
the superfluid with energy ε = E − μ, which crosses the
constriction and evaporates an atom at its other end. We
describe this process using the Bogoliubov equations (see
Ref. [29], Chap. 12). The condensate density n0(r,z), which
appears in these equations, varies along the z axis, and the
Bogoliubov equations reduce to the Schrödinger equation
in the reservoirs, where n0 = 0. Under our assumption of a
smoothly tapered constriction, the condensate can locally be
described as translationally invariant along the axial direction
for each z, and the corresponding Bogoliubov spectrum varies
adiabatically with z. The transport properties of the system
are dictated by the strongly constricted region near z = 0,
where the condensate density is maximal. There, the density
profile n0(r) is nearly that of a condensate trapped in the
elongated radial harmonic trap mω2

0r
2/2 with the effective

chemical potential (μ − EG0). The corresponding Bogoliubov
excitation spectrum has multiple branches reflecting the 3D
geometry [36]. However, the condensate occupies the lowest
energy solution of the GP, Eq. (1), hence, its low-energy
excitations belong to the first branch. For |EG0|/�ω0 � 1.1, the
incident atoms have energies � |μ| � gn0 and the excitations
crossing the constriction are phononic. Regardless of the value
of EG0, the second branch has the threshold energy 2ω0

[36,37], which is much greater than the incident energies, so
that this branch is never involved. The smooth spatial variation
of Vext(r) ensures a full conversion of the incident atoms into
excitations of the superfluid.

To sum up, if the constriction is empty because the energy
of its first transverse mode is >μ, bosonic transmission
is blocked; instead, if EG is sufficiently attractive for the
constriction to contain a condensate, transmission is allowed
and relies on a collective phenomenon involving quantum
condensation and evaporation. These two mechanisms lead to a
bosonic transport function which exhibits a single step. Under
our assumption of a smoothly tapered constriction, it reads
�B(E/�ω0) = 
(E/�ω0 − 1), where 
 is the Heaviside step
function [see Fig. 3(a)].

IV. QUANTIZED CONDUCTANCE

The conductance G(EG/�ω0) calculated from Eq. (2)
depends on T/TD and �ω0/kBTD . We compare the fermionic
and bosonic predictions in Fig. 4 (T/TF = 0.1 for fermions
and T/TB = 1.2 for bosons; �ω0/kBTD = 4 in both cases).
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The fermionic prediction has the multiple step structure
observed in Refs. [3,11] due to the stepwise structure of the
ballistic �F (E). By contrast, the bosonic graph exhibits one
single step, relating to the single step of �B(E). It occurs for
EG = −�ω0 and, hence, coincides with the appearance of the
condensate in the constriction (see Fig. 2). For bosons, Eq. (2)
can be integrated analytically; an analogous result is obtained
for the first fermionic step by accounting for a single transport
channel. We find

hGF,B =
{

1
z−1 exp[(EG+�ω0)/kBT ]±1 if EG > −�ω0,

1
z−1±1 if EG � −�ω0,

(3)

where the + and − signs respectively apply to fermions
and bosons. Equation (3) reveals three differences between
fermions and bosons, concerning the step positions, their
heights, and the widths of the transition regions between
two plateaus: (i) For fermions, the step is centered on EG =
−�ω0 + μ, reflecting the key role of the Fermi surface at
energies ∼μ. For bosons, the low-energy divergence discussed
above causes the step to occur at EG = −�ω0. (ii) For ultracold
fermions, the fugacity z → ∞, leading to the step height
1/(z−1 + 1) ≈ 1. Instead, for bosons, z � 1 for T � TB ,
leading to the very large step height 1/(z−1 − 1) ≈ 27 for
T/TB = 1.2. (iii) For fermions, the width of the transition
region is �EF

G ∼ 2kBT , whereas the corresponding width for
bosons is �EB

G ∼ (1 − z)kBT ≈ |μ|. The conductance step is
well defined if �EG � �ω0. Hence, Bose systems are greatly
favored, as seen on Fig. 4 where kBT /�ω0 is ten times as large
for bosons than for fermions, but the bosonic step width is
quenched by the factor (1 − z).

The conductance G is positive, hence, the current ∂t δN

opposes the atom number difference δN , which relaxes to
equilibrium as δN = δN0 exp(−t/τ1). The decay time τ1 =
κT /G is proportional to N and is conveniently expressed
in units of τD = Nh/kBTD . Its measurement allows for
an access to G(EG/�ω⊥). It has recently been measured

 0
 1
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 3

-1  0  1

Fermi, T/TF=0.1, kBTF/ ω0=0.25
ΔEG/ ω0=0.05

(a)
(z-1+1)hG

(EG0-μ)/ ω0+1

 0
 1
 2
 3

-1  0  1

Bose, T/TB=1.2, kBTB/ ω0=0.25
ΔEG/ ω0=0.01

(b)
(z-1-1)hG

EG0/ ω0+1

FIG. 4. Quantized conductance for (a) ultracold fermions
(T/TF = 0.1) and (b) cold bosons (T/TB = 1.2). In both cases,
�ω0/kBTD = 4. For fermions, the thick solid line is the exact solution
G(EG0) and the thin dashed curve is the single-transport-channel
prediction of Eq. (3). The results have been vertically rescaled by the
step heights 1/(z−1 ± 1).

with fermions [11], where κT kBTF /N = 3/2 at small T ,
so that τ1 = 3τD/2 ∼ a few seconds for the first conduc-
tance plateau. For bosons, the isothermal compressibility
diverges as one approaches the critical temperature, but the
stronger divergence of G leads to shorter decay times τ1 =
τD(1 − z)1/2√π/ζ (3/2) ∼ a few hundred ms for the single
conductance plateau.

V. THERMOELECTRIC EFFECTS

The preceding analysis neglects the impact of temperature
changes δT (t) on the dynamics of δN . We evaluate this impact
using the transport model of Refs. [14,19]:

τ1
d

dt

(
δN/N

δT/T

)
=

( −1 S κT kBT
N

S NkB
CN

−τ1/τT

)(
δN/N

δT/T

)
. (4)

The coupling between particle and heat currents, proportional
to the Seebeck coefficient S = −∂μ/∂T |N − L1/L0, plays a
role over times of the order of the thermalization time τT =
CN/(hL2T ), where CN = T ∂S/∂T |N is the heat capacity
and the integrals Lα are given by Eq. (2). For short times
t � τ1, δT is negligible and Eq. (4) reduces to the isothermal
limit investigated above. Before the bosonic conductance
step or the first fermionic conductance step, both G and the
thermal conductance hL2 are small. This leads to times τT

which are longer than the characteristic time over which the
transport phenomenon can be observed (a few seconds in the
case of Ref. [11]) both for bosons and for fermions, which
justifies the isothermal analysis presented above. However,
τT becomes shorter with increasing |EG|. Starting from the
(first) conductance step, thermal effects cause the relaxation
of δN (t) towards equilibrium to slow down, and an accurate
modeling of this relaxation requires two exponential terms
accounting for both time scales τ1 and τT . This is illustrated in
Fig. 5. Both the fermionic and bosonic plots, resulting from a

 0

 0.5

 1

 0  5  10
Time t/τD

Fermi

δN/N
δN/N|T

-δT/T

(a)

 0

 0.5

 1

 0  5  10
Time t/τD

Bose

δN/N
δN/N|T-δT/T

(b)

FIG. 5. Atom number difference δN (t)/N (thick solid line),
its isothermal approximation δN (t)/N |T (thin solid line), and
temperature difference δT (t)/T (dashed line), following an atom
number mismatch δN0, for (a) fermions and (b) bosons, obtained
by solving Eq. (4) numerically with the parameters of Fig. 4. The
value of EG is chosen at the conductance step for bosons, and at the
first conductance step for fermions. All plotted quantities should be
multiplied by δN0/N .

023622-4



QUANTIZED CONDUCTANCE THROUGH THE QUANTUM . . . PHYSICAL REVIEW A 94, 023622 (2016)

numerical solution of Eq. (4) for values of EG corresponding
to the (first) conductance step, differ from the isothermal
prediction for times � τT . The coupling between particle
and heat currents also yields a thermoelectric effect, whereby
an initial atom imbalance δN0 yields a transient change in
temperature δT (t) [14,38]. This thermoelectric effect is weak
for bosons. However, for fermions, its amplitude is enhanced
for gate potentials corresponding to a step in the particle
conductance G. This is due to the existence of maxima in
the quantity S/τ1, appearing in the off-diagonal elements of
Eq. (4), which have previously been observed in electronic
transport experiments [39].

VI. DISCUSSION AND CONCLUSION

The quantization of bosonic conductance involving quan-
tum evaporation precludes its interpretation as the diffraction
of atomic matter waves, in contrast with previous studies
[3,15,17]. It also requires an attractive gate potential, unlike
for fermions where conductance may be scanned by varying
the constriction width [3,11].

The bosonic enhancement of conductance near the Bose-
Einstein condensate transition is the transport analog of the
enhancement of the isothermal compressibility. It is due to the
possibility of accommodating multiple bosons in the lowest
energy transport channel, which is more populated at tem-

peratures closer to TB . This enhancement signals a departure
from the fermionic conductance quantum GK = 1/h observed
both with electrons [3] and with neutral fermions [11]. Its
observation in a regime where conductance is not quantized
has recently been reported [20]. Both the compressibility κT

and the conductance G, which diverge in the ideal-gas model,
depend on many-body effects in the critical region near the
transition [40], where their characterization remains an open
problem from both the theoretical and experimental points of
view. The measurement of the relaxation time τ1 in bosonic
systems with temperatures very close to TB will provide more
insight into these two quantities.

Challenging open questions include (i) conductance quan-
tization in 2D bosonic systems, where the quasicondensate
enhances the role of interactions [41–43], and (ii) its impact
in the presence of a superfluid, whose investigation has been
initiated by recent experiments with strongly interacting Fermi
gases [13,44,45].
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We report on the first experimental realization of the controlled-NOT (CNOT) quantum gate and
entanglement for two individual atoms of different isotopes and demonstrate a negligible cross talk between
two atom qubits. The experiment is based on a strong Rydberg blockade for 87Rb and 85Rb atoms confined
in two single-atom optical traps separated by 3.8 μm. The raw fidelities of the CNOT gate and entanglement
are 0.73� 0.01 and 0.59� 0.03, respectively, without any corrections for atom loss or trace loss. Our work
has applications for simulations of many-body systems with multispecies interactions, for quantum
computing, and for quantum metrology.

DOI: 10.1103/PhysRevLett.119.160502

Quantum entanglement is crucial for simulating and
understanding exotic physics of strongly correlated many-
body systems [1–3] and it is the key quantity for quantum
information processing [4–6]. Entanglement of nonident-
ical particles provides a richer correlation physics, and for
quantum information the interspecies entanglement has
unique advantages in connecting quantum networks [7] for
quantum nondemolition readout and for memory protection
[8,9]. The entanglement of different qubits [10] has
recently been demonstrated for two different ions [11,12].
Among various platforms that have allowed the reali-

zation of quantum entanglement, trapped neutral atoms
offer unique possibilities for quantum computing and
simulations. This is because, in contrast to ions, they allow
for an excellent control of the interaction strength over 12
orders of magnitude [5,13] and for the creation of tunable
multidimensional arrays of single atoms [14]. Although
important experiments have been done towards realizing
useful quantum information processing and quantum sim-
ulation with atomic systems [14–20], there are several
primary challenges to be solved [10]. One of them is
quantum nondemolition (QND) and low cross talk qubit
measurement with a few μm qubit spacing. The two-
element neutral atom system shows an important advantage
here, since substantially different resonant frequencies of
the two species allow the spectral isolation and individual
addressing of the qubits. Also, manipulating multielement
single atoms can provide extra degrees of freedom for
quantum simulations. In realizing a Rydberg quantum

simulator [21] another species atomic qubit can work as
an auxiliary qubit to manipulate or mediate the many-body
spin interaction in target qubits, or provide a dissipative
element when being optically pumped.
In this Letter, we present the first realization of quantum

entanglement of two individual neutral atoms of different
isotopes. We obtain an entangled state of 87Rb and 85Rb
atoms confined in single-atom optical traps separated by
3.8 μm. The entanglement is generated from a heteronu-
clear CNOT quantum gate, which is created using the
Rydberg blockade. We encode the control qubit in the
ground hyperfine states jF ¼ 1;MF ¼ 0i ¼ j↓i and
j2; 0i ¼ j↑i of 87Rb, whereas the target qubit is encoded
in the states j2; 0i ¼ j⇓i and j3; 0i ¼ j⇑i of 85Rb. For both
atoms, the Rydberg state is jri ¼ j79D5=2; mj ¼ 5=2i.
Unlike in the case of the same atoms, we exploit the
difference in the resonant frequencies of the two atoms to
individually address and manipulate them. In this way, we
ensure a negligible cross talk during state measurements
and qubit operations at short interatomic separations. This
makes the entanglement of different isotopes very different
from the entanglement of identical atoms that are distin-
guishable by their spatial location with no overlap of their
wave functions like in the experiment of Ref. [22].
The experimental apparatus and the single-atom trapping

procedure for 87Rb and 85Rb atoms have been described in
our recent work [23] [see Fig. 1(b)]. We then optically
pump 87Rb to the j↑i state and 85Rb to the j⇑i state. After
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that the trapping potentials are adiabatically lowered from
0.6 to 0.1 mK. Both microtraps have trapping frequencies
ωy=2π ¼ 1.39� 0.01 kHz in the longitudinal direction
and ωr=2π ¼ 16.9� 0.1 kHz in the radial direction [see
Fig. 1(b)]. We measure the atom temperatures T87 ¼ 8� 1
and T85 ¼ 9� 1 μK using the release and recapture
method [24]. Next, we combine Rydberg excitation pulses
and single qubit operations with Raman lasers in order to
demonstrate the heteronuclear Rydberg blockade, imple-
ment the CNOT gate, and entangle the two heteronuclear
atoms. It is worth noting that both dipole traps are turned
off during 6 μs for adding the Rydberg excitation pulses.
The atom loss induced by turning off the traps is less than
2% in our setup. At the end of each sequence, we detect the
qubit state by using a resonant laser to “blow away” j↑i and
j⇑i atoms, so that the survival probabilities refer to the
atoms in the j↓i and j⇓i states.
As the first step of our experiment, we show a negligible

cross talk between the two atom qubits in state

measurements and qubit operations. This is crucial for our
setup because all lasers cover both atoms, and the individual
addressing of a single atom relies on the frequency difference
of 87Rband 85Rb rather than on the spatial distribution.During
qubit state measurements the resonant blow away laser of
85Rb may destroy the coherent state of 87Rb due to unwanted
scattering since the laser is detuned 1.1 GHz from 87Rb, and
vice versa We check this influence by adding the blow away
pulse of 85Rb in between the 87Rb ground state Rabi
oscillation and the 87Rb blow away pulse. We then compare
the Rabi oscillations of 87Rb with and without the pulse of
85Rb as shown in Fig. 2(a). The amplitudes of the Rabi
oscillations are equal within the measurement uncertainty,
which shows a negligible cross talk in the state measurement.
For Rydberg excitation, we use the two-photon transitions
with the total Rabi frequency of about 1 MHz as shown in
Fig. 1. Thus, the GHz spectral difference can provide enough
protection for the qubit operations with each single atom.We
also observe almost no excitation of 85Rb when adding the
Rydberg excitation laser of 87Rb as shown inFig. 2(b). Thanks
to the negligible cross talk between the two atom qubits, we
can put two atoms close enough to each other to reach a
sufficiently strong Rydberg interaction for suppressing the
blockade errors.
To demonstrate the heteronuclear Rydberg blockade,

we first calculate the expected Rydberg blockade shift, which
is different from that for the same atoms. If both atoms are in
the jri state, their interaction is dominated by the Förster
resonance between the two-atom states in the ð79d5=2;
79d5=2Þ, ð80p3=2; 78fÞ, and ð81p3=2; 77fÞ manifolds. We
restrict the Förster interaction Hamiltonian to a subspace
spanned by 436 states corresponding to distinguishable

(a)

(b)

FIG. 1. Experimental setup. (a) Energy levels and lasers for
87Rb and 85Rb. Atoms are excited to Rydberg states through
Raman transitions using 480 (Ryd480) and 780 nm (Ryd780) σþ-
polarized lasers. The laser Ryd480 is blue detuned by 4.8 GHz
from the intermediate state, and its waist 12.8 μm covers both
atoms. The lasers Ryd780 − 87 and Ryd780 − 85, whose frequen-
cies differ by 1.13 GHz, address 87Rb and 85Rb. The degeneracy
of the Rydberg states j79D5=2; mji is lifted by the static magnetic
field B ¼ 3 G along the quantization axis y, and the laser
frequencies are resonant with the mj ¼ 5=2 state. Single qubit
operations are performed through Raman transitions using the
795 nm lasers Ram85 and Ram87, which are red detuned by
50 GHz from the 5S1=2 → 5P1=2 transition. (b) Experimental
geometry. Two 830 nm lasers have the beam waist 2.1 μm to form
two dipole traps separated by 3.8 μm along the z direction.

FIG. 2. Cross talk between 85Rb and 87Rb. (a) Rabi oscillations
between the 87Rb j↑i and j↓i states of 87Rb (black squares). The
red circles show the experimental data obtained when using
the 85Rb blow away laser before measuring the state of 87Rb. The
solid curves are damped sinusoidal fits P ¼ P0 þ Ae−t=t0 cos
½2πfðt − tcÞ�, with A ¼ 0.49� 0.01, f ¼ 0.625� 0.002 MHz,
and t0 ¼ 28� 7 μs for black squares and A ¼ 0.50� 0.02,
f ¼ 0.625� 0.003 MHz, t0 ¼ 27� 15 μs for red circles.
(b) The 87Rb Rydberg excitation laser covers both 87Rb in trap
1 (black squares) and 85Rb in trap 2 (red circles). The 87Rb atom
shows coherent Rabi oscillations between the j↑i and jri states.
The solid curves are damped sinusoidal fits with A ¼ 0.41� 0.01,
f ¼ 0.685� 0.008 MHz, and t0 ¼ 19� 5 μs. The 85Rb atom is
almost unaffected, which shows a negligible cross talk.
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atoms. Taking the initial two-atom state jr⇑i we account for
its coupling to the Förster states and calculate the time
evolution of the probability for both atoms to be in any of
the excited Rydberg states taking part in the Förster reso-
nance, P85ðy; tÞ ¼ 1 − jhr⇑je−iHt=ℏjr⇑ij2, and its average
over time, P85ðyÞ. The latter depends on the offset y ¼
jy2 − y1j of the two atoms along the y direction. The blockade
shift ΔEðyÞ is deduced from the relation P85ðyÞ ¼
ðℏΩ85Þ2=½ðℏΩ85Þ2 þ ΔE2� [25], where Ω85 is the effective
Rabi frequency for 85Rb. At zero temperature, for the distance
z ¼ 3.8 μmbetween themicrotraps, assuming a spatial offset
y ¼ 1 μm, the effective Rydberg interaction between the
atoms is close to the strongly interacting Förster regime [5].
Accordingly, the numerical results yield P85 ≈ 10−6 and a
very large blockade shiftΔE=h ¼ 600 MHz [26]. The finite
temperature of the atoms causes them to explore larger values
of the offset, y≳ 10 μm, leading to the mean double-
excitation probability hP85i ≈ 0.013 for our temperatures
T87 ¼ 8 and T85 ¼ 9 μK.
We realize the Rydberg blockade by applying a Rydberg

π pulse on 87Rb, waiting for 0.3 μs, and applying a Rydberg
pulse of variable duration on 85Rb [Fig. 3(a)]. We measure
the Rabi oscillations between the 85Rb j⇑i and jri states as
a function of the second pulse duration [Fig. 3(b)]. The
Rydberg states are detected through the atom loss with an
efficiency of ∼90%, and the Rydberg excitation efficiency
for 87Rb and 85Rb is ∼96% (see Supplemental Material
[26]). The lifetime of the jri state is over 180 μs, providing
a long enough blockade for 85Rb. We do not record the
experimental data when 87Rb is still in the trap after the
sequence, so as to eliminate unblockaded events when 87Rb
is not excited to the jri state. The peak-to-peak amplitude
of 85Rb Rabi oscillations between the j⇑i and jri states is
0.91� 0.02 in the absence of 87Rb in trap 1 [Fig. 3(b)]. In

its presence, the experimental data show a strong Rydberg
blockade that suppresses the oscillation amplitude to
0.03� 0.01, in accordance with our theoretical prediction.
The remaining weak oscillations of 85Rb are mainly due to
not perfect experimental conditions, including the loss of
87Rb and transitions to other Rydberg states.
Next, we use the Rydberg blockade to generate a

heteronuclear CNOT gate following the protocol of
Ref. [32]. This involves three Rydberg pulses [Fig. 4(a)]:
(i) a π pulse on 87Rb between the j↑i and jri states, (ii) a 2π
pulse on 85Rb between j⇑i and jri, and (iii) a π pulse on
87Rb between jri and j↑i. Then, combining two Hadamard
gates realized using Raman π=2 pulses between the j⇑i and
j⇓i states, we demonstrate the heteronuclear CNOT gate
shown in Fig. 4. Its intrinsic coherence is illustrated by
measuring the oscillation of the output probabilities as a
function of the relative phase between the two Hadamard
gates [Fig. 4(b)]. Setting the relative phase to 0 (π), the CNOT

gate will flip the target qubit if the control qubit is j↑i (j↓i).
The fidelity of the CNOT gate is determined by measuring

its truth table probabilities [Fig. 4(c)]. We add an extra
Raman π pulse before acting with the blow away laser to
transfer the j↑i state 87Rb atoms to j↓i and the j⇑i state
85Rb atoms to j⇓i, in order to exclude other atom losses as
in Ref. [33]. The raw fidelity of the CNOT gate is
F ¼ Tr½jUT

idealjUCNOT�=4 ¼ 0.73ð1Þ. It is mainly limited
by technical reasons and can be improved by stabilizing the
Raman pulse powers and by increasing the Rydberg
excitation efficiency.
Finally, we generate a heteronuclear entangled state

of 87Rb and 85Rb. Starting with the two-atom state

(a) (b)

FIG. 3. Heteronuclear Rydberg blockade. (a) Time sequence.
(b) Rabi oscillations between the 85Rb j⇑i and jri states. The
experimental data are shown both in the absence (black squares)
and in the presence (red circles) of 87Rb in trap 1. The solid
curves are damped sinusoidal fittings with P ¼ P0 þ Ae−t=t0 cos
½2πfðt − tcÞ�. The fitting parameters are A ¼ 0.455� 0.008,
f ¼ 0.600� 0.003 MHz, t0 ¼ 10� 1 μs for black squares.
We preset f ¼ 0.6 MHz, t0 ¼ 10 μs for red circles to get
A ¼ 0.017� 0.006. Each data point is an average value of
150 measurements.

(a)

(b) (c)

FIG. 4. Heteronuclear CNOT gate. (a) Experimental time se-
quence. (b) Output states as a function of the relative phase
between the Raman π=2 pulses, for the initial states j↓⇑i (black
squares) and j↑⇑i (red circles). The solid curves are sinusoidal
fits yielding the phase difference of ð0.94� 0.01Þπ between the
two signals. (c) Measured truth table matrix UCNOT for the CNOT

gate with the relative phase between the π=2 pulses set to 0.
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ðj↑i þ ij↓iÞj⇓i= ffiffiffi

2
p

, we apply the CNOT gate to create the
entangled state ðj↑⇑i þ j↓⇓iÞ= ffiffiffi

2
p

. In order to quantify
the entanglement of our created Bell state, we measure the
coherence C1 between the j↑⇑i and j↓⇓i states by
studying the response of the system to the simultaneous
rotation of the two qubits [34]. For that purpose, we apply
to both atoms π=2 pulses carrying the same phase ϕ1

relative to the initial pulses [Fig. 5(a)] and measure the
oscillations of the parity signal P ¼ P↑⇑ þ P↓⇓ − P↑⇓ −
P↓⇑ as a function of ϕ1 [Fig. 5(c)]. This gives us access
[30,34] to the coherence jC1j ¼ 0.16� 0.01 which, com-
bined with the populations P↑⇑ ¼ 0.41 and P↓⇓ ¼ 0.44
[Fig. 5(b)], leads to the entangled state fidelity F ¼
ðP↑⇑ þ P↓⇓Þ=2þ jC1j ¼ 0.59� 0.03. The obtained fidel-
ity is clearly above the threshold of 0.5 ensuring the
presence of entanglement. We obtain it without any
corrections for atom or trace losses. It is lower than the
fidelity of our CNOT gate mainly because of the motion of
87Rb. Following Ref. [30] we evaluate that at our temper-
atures and CNOT gate fidelity the upper bound of the
entanglement fidelity is Fent−max ¼ 0.65, which is some-
what above our experimental result.
To conclude, we have realized a CNOT gate between two

individual single atoms of different isotopes and demon-
strated a negligible cross talk between two atom qubits. The
gate is based on a strong heteronuclear Rydberg blockade,
and the raw fidelity is 0.73� 0.01. The entanglement of
two different atoms is then deterministically generated with
the raw fidelity 0.59� 0.03. Our work makes a significant
step towards the manipulation of heteronuclear atom
systems. We use a difference in the transition frequencies
to individually address a single atom. Therefore, two atoms
can be put at a short separation while maintaining indi-
vidual addressing to explore the physics in a very strong
Rydberg interaction regime [35]. Moreover, the atoms of

different species can be trapped in an array with an arbitrary
geometry to realize a Rydberg quantum simulator of exotic
spin models, such as the Kitaev toric code, color code, or
coherent energy transfer [21]. The difficulty for one to
create a pattern with dozens of single atoms of different
species is no more than those works done recently with the
same species atoms [19,20]. That is, single atoms are first
loaded into a large ensemble of dipole traps randomly, and
then a deeper moveable trap is used to transport single
atoms into different traps of desired pattern. Our results
pave a way towards quantum computing with heteronuclear
systems [10] and towards the realization of high fidelity
state detection, which has recently been predicted not to
have any fundamental limit even at room temperature [31].
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3 Evaporative cooling of a chain of
Rydberg atoms

This chapter deals with the evaporative cooling of a chain of Rydberg atoms1. It sum-
marises the work reported in my published paper [3], co–written with Dr. M. Brune. This
work has initiated my discussions with his experimental group which continue to this day.
Many–particle systems whose constituents interact via long–ranged, repulsive interac-

tions exhibit crystalline phases. For example, crystallisation occurs in systems comprised
of electrons [45, 46] or trapped ions [47] due to their Coulomb repulsion. Crystallisation
in low–dimensional systems has attracted specific interest. In this context, thermal and
quantum fluctuations both preclude long–ranged order in infinite systems [48]. However,
finite–sized crystals do exist. In particular, unidimensional crystals have been obtained,
in the absence of any external periodic potential, in small systems comprising 18 ions [49]
or 10 electrons [50]. The realisation of longer 1D crystals requires going deep into the
quantum regime. There, thermal fluctuations are suppressed, and long–range order is only
limited by quantum fluctuations, which are less stringent [48].
The key result of this work is a proposal for the realisation of long unidimensional crystals

close to their quantum ground state. The considered crystals are comprised of alkali atoms
which are all in the same Rydberg state. These atoms exhibit strong repulsive interactions,
so that crystallisation is achieved for low temperatures. We rely on an evaporative cooling
scheme applicable to chains of Rydberg atoms initially proposed in Ref. [28, appendix E]
in terms of a classical dynamics simulation. We provide a thermodynamic description for
this scheme which is applicable in the quantum regime of low temperatures.
Our thermodynamic analysis combines two fruitful ideas from other contexts:

• The truncated Boltzmann distribution has been used to describe the evaporative
cooling of gases of cold ground–state atoms [6], where it is applied to individual
atoms. We apply it to the collective excitations of the Rydberg chain, and highlight
the enhancement of the role of truncation in this novel context.

• The consecutive atomic expulsions providing the cooling are driven by a many–body
mechanism whereby the phonons hosted by the trapped chain lead to the expulsion
of a single atom. Hence, this mechanism is related to the quantum evaporation of
liquid helium [35, 37, 38]. I have taken part in the theoretical characterisation of the
similar effect which occurs with cold bosonic atoms [1], briefly described in Sec. 2.1.

1General references on evaporative cooling in the context of atomic systems include the articles [6, 44].
The exploration of many–body phenomena with Rydberg atoms is reviewed in Refs. [23, 28].
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3 Evaporative cooling of a chain of Rydberg atoms

Unlike for gases [51], the Rydberg chain in the quantum regime is not represented by
a truncated Bose–Einstein distribution. Instead, we exploit a semiclassical approxima-
tion to the thermodynamic functions [52, §33] which smoothly relates to non–truncated
thermodynamics for very low temperatures.

3.1 From cold atomic gases to Rydberg atom chains

3.1.1 Evaporative cooling of cold atomic gases

Evaporative cooling was first demonstrated in the context of trapped atomic gases with
magnetically trapped hydrogen [53]. Since then, it has been an essential step for reaching
quantum degeneracy in almost2 all experiments on degenerate quantum gases [9, Secs. 15.1].
This cooling scheme does not conserve the number of trapped particles: the system is made
quantum degenerate at the expense of losing the highest–energy atoms [9, Sec. 21.3]. This
is achieved using a truncated trap with the finite depth U0. Elastic two–body collisions
between the trapped atoms may lead to an atom acquiring an energy greater than U0. This
atom is no longer trapped and escapes from the trap. The kinetic energy per particle of the
remaining trapped atoms is lower than the one characterising the system before the atom
was expelled. The evaporation process, involving consecutive atomic expulsions, may be
represented thermodynamically using a non–equilibrium distribution [6, Secs. VI and VII].
We highlight three essential features of the evaporative cooling of cold atomic gases :

1. Any single atom whose energy exceeds the trap depth is expelled;

2. The final temperature is set by the depth of the trap, which must be lowered during
the evaporation sequence to achieve quantum degeneracy [9, Sec. 21.3.3];

3. Quantum degenerate bosonic gases undergoing evaporation may be described using
a truncated Bose–Einstein distribution [51, Sec. II.A].

We shall show in this chapter that the evaporative cooling of a chain of Rydberg atoms
exhibits none of these three properties.

3.1.2 Evaporative cooling of a chain of Rydberg atoms

The cooling mechanism we analyse in this chapter was first proposed in Ref. [28]. We
consider N alkali atoms, all in the same circular Rydberg state, are confined in a unidi-
mensional3 geometry. As shown in Fig. 3.1, the atoms are trapped between two optical
plugs providing the longitudinal potential:

VT (x) = VL exp[−2(x− xL)
2/w2] + VR exp[−2(x− xR)

2/w2] . (3.1)

2The experiments reported in Refs. [54–56] are notable exceptions.
3The required radial trapping may be achieved using a Laguerre–Gauss laser beam [57].
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3.2 Quasi–equilibrium thermodynamics of a chain

L

VL

VR
Rydberg atom chain

xL xR

Figure 3.1: A chain of Rydberg atoms (orange
disks) confined in a 1D trap of size L. The po-
tential maxima VL and VR satisfy VL < VR, so
that atoms are expelled from the left edge of the
trap.

No periodic potential is included. The barrier width w and heights VL < VR are kept
constant. The chain is compressed by slowly decreasing the trap size L = xR−xL from its
initial value. This induces successive atomic expulsions, providing the evaporative cooling.
In Ref. [28, appendix E], this scheme was illustrated numerically in the classical regime,

by solving the equations of motion for the trapped atoms. There, the authors consider the
initial number NI = 100 of trapped 87Rb atoms, all in the circular Rydberg state4 50C.
Two such atoms interact via the strong, repulsive van der Waals interaction C6/d

6, with d
being the interatomic distance, C6 = h×3GHzµm6 the interaction strength, and h Planck’s
constant. The barrier width and heights are, respectively, w = 30µm, VL/h = 3MHz, and
VR/h = 4MHz. The numerical results show that, proceeding with the evaporation until
NF = 40 atoms are left in the trap, the final kinetic energy per particle for the trapped
atoms is reduced by a factor ten with respect to its initial value.

3.2 Quasi–equilibrium thermodynamics of a chain

We describe the evaporation process thermodynamically. Our motivation is two–fold:

• Our thermodynamic description holds both in the classical and the quantum regimes;

• It is applicable to longer atom chains
(we have considered chains initially comprised of up to NI = 1000 atoms).

Our description hinges on the use of a truncated Boltzmann distribution generalising that
of Ref. [6] to that of a trapped chain of interacting atoms. We illustrate our model with
the parameters summarised in Sec. 3.1.2, which are accessible in current experiments [28].
In this section, we consider a fixed number N of atoms, confined in the 1D trapping

potential of Eq. (3.1) with the fixed size L = xR − xL (we relax the constraints of fixed N
and L in Sec. 3.3 below).

3.2.1 The considered system

The equilibrium positions x01, . . . , x
0
N of the N atoms are evenly spaced in the bulk of the

chain, two neighbouring atoms being distant by l ≈ 5µm. However, they are not evenly

4The cicular Rydberg state 50C bears the electronic quantum numbers n = 50 and l = m = 49.
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3 Evaporative cooling of a chain of Rydberg atoms

spaced near the edges, because the barrier widths w cover multiple atom spacings l. We
describe the atomic vibrations in terms of a quadratic Hamiltonian:

H =
N∑

k=1

[
p̃2k
2m

+
1

2
mω2

kũ
2
k

]
with ũk =

N∑

n=1

Rnkun . (3.2)

In Eq. (3.2), the N collective vibrational modes {ũk} have the frequencies ω1 < . . . < ωN ,
and the {p̃k} are their conjugate momenta. They are related to the atomic displacements
{un = xn − x0n} through the orthogonal matrix R. The applicability of Eq. (3.2) requires

that the averages ⟨(un+1 − un)
2⟩1/2 involving two neighboring atoms remain small compared

to the mean distance l = L/N . This is well satisfied for all the chains we have considered,
including the longer ones of Sec. 3.3.2.

3.2.2 Classical thermodynamics

A given configuration, i.e. a solution to the classical equations of motion for the Hamiltonian
H, is specified by giving the mode energies ϵk and phases ϕk, for 1 ≤ k ≤ N . We focus
on the leftmost atom, i.e. the one closest to the barrier with the lower maximum VL. Its
displacement u1 with respect to its equilibrium position x01 reads, as a function of time t:

u1(t) =
∑

k

R1k

(
2ϵk
mω2

k

)1/2

cos(ωkt+ ϕk) . (3.3)

Up to this point, no coupling between the vibrational modes k has been taken into
account. We introduce this coupling now. It results from the condition that the leftmost
atom should remain trapped. This condition reads |u1(t)| < uM , where uM = x01 − xL.

Expulsion criterion. We consider the time–averaged mean–square displacement ⟨u21⟩ =
u2M

∑N
k=1 ϵk/EMk. Here, the energies EMk = mω2

ku
2
M/R

2
1k increase with the mode index k.

We shall assume that the configurations satisfying ⟨u21⟩
1/2

> αuM , for a suitable value of α,
are expelled from the trap. The value of α is selected through the following argument. For

a given α, the lowest–energy configurations such that ⟨u21⟩
1/2

= αuM are those where only
the mode k = 1 is excited, with the energy ϵ1 = α2EM1. Then, Eq. (3.3) provides u1(t) =√
2α uM cos(ω1t + ϕ1). Thus, choosing α = 1/

√
2, the leftmost atom barely reaches xL

with vanishing velocity. This corresponds to the lowest–energy untrapped configurations.
Their energy Ecl

M = mω2
1u

2
M/(2R

2
11) is not directly related to the barrier maxima VL or VR.

Ergodicity. The numerical results of Ref. [28, appendix E] indicate that the trapped
atoms undergo chaotic classical motion. This motivates the assumption that the system
is ergodic for the considered parameter range. This is not an innocuous assumption, and
mechanisms hindering ergodicity in a simpler system will be described in chapter 4. In the
present context, ergodicity is assumed to be ensured by the anharmonic effects coupling
the vibrational modes, which are neglected in the quadratic Hamiltonian of Eq. (3.2).
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Figure 3.2: Left: Normalised incomplete gamma function P (a, z), as a function of z = βEM ,
for a = 3 (blue, case of a trapped gas), 50, and 100. Right: Probability density, extracted
from Eq. (3.4) with N = 100 atoms, for finding a (classical) configuration with the energy E, for
NkBT/E

cl
M = 0.1 (blue), 1 (orange), and 10 (red).

Quasi–equilibrium distribution. Exploiting ergodicity, the trapped configurations are
those whose energies satisfy E < Ecl

M . We describe the quasi–equilibrium thermodynamics
of the chain using a Boltzmann distribution for the vibrational configurations, truncated
at the energy Ecl

M . The partition function Zcl representing the classical regime reads:

Zcl =

∫

E<Ecl
M

∏
[dp̃kdũk]

hN
e−βE =

P (N, βEcl
M)

βNℏω1 . . . ℏωN

. (3.4)

In Eq. (3.4), β = 1/(kBT ) is the inverse temperature, E = H({p̃k, ũk}) and P (a, z) =
γ(a, z)/Γ(N) is the normalised lower incomplete gamma function. The mean energy
U cl(L, T ) and the entropy Scl(L, T ) may be extracted from Zcl through the usual statistical
physics relations [58, Sec. 7.1], namely, U cl = −∂β lnZcl and Scl/kB = lnZcl − β∂β lnZ

cl.

Incomplete gamma function. The function P (a, z) entering Eq. (3.4) is defined as [59]:

P (a, z) =
γ(a, z)

Γ(a)
=

1

Γ(a)

∫ a

0

dt e−ttz−1 . (3.5)

It is illustrated on the left panel of Fig. 3.2. It resembles a step function which is equal to 0
for small z = βEcl

M (accounting for the truncation for large T ) and 1 for large z (truncation
plays no role for small T ). The smooth transition occurs for z ≈ a.

Comparison between trapped gases and trapped Rydberg chains. The function P (a, z)
also plays a role in the thermodynamic description of the evaporation of a trapped gas [6].
For a gas in a three–dimensional harmonic trap, a = 3, reflecting the 3 spatial degrees of
freedom. By contrast, for Rydberg chains comprised of N trapped atoms, a = N ranges
from 40 to 1000. Hence, the role of truncation is strongly enhanced with respect to gases.
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3 Evaporative cooling of a chain of Rydberg atoms

For gases, atomic expulsions quickly follow collisions during which one atom has acquired
enough energy. The situation is different in a chain of Rydberg atoms trapped in the poten-
tial represented on Fig. 3.1. There, only the left–most atom of the chain may be expelled.
Anharmonic processes occur along the chain, driving it toward quasi–equilibrium. This
makes it possible to access the high–temperature regime, where kBT ≳ Ecl

M/N . For large
T , the exponential factor in Eq. (3.4) is approximately 1, so that all trapped configura-
tions are equally populated. The probability density for a configuration to have the energy
E is NEN−1/(Ecl

M)N , hence, nearly all configurations have energies ∼ Ecl
M (see the right

panel of Fig. 3.2). Both U cl(T ) and Scl(T ) reach finite maxima. These may be determined
analytically from the following expansion of ln(Zcl) for small β = 1/(kBT ):

ln(Zcl) = ln

(
(Ecl

M)N/N !

ℏω1 · · · ℏωN

)
− N

N + 1
βEcl

M +O[(βEcl
M)2] . (3.6)

Equation (3.6) yields the expressions for the maximum energy U
(N)
max(L) and entropy S

(N)
max(L):

U (N)
max =

NEcl
M

N + 1
and S(N)

max = kB ln

(
(Ecl

M)N/N !

ℏω1 · · · ℏωN

)
. (3.7)

3.2.3 Quantum thermodynamics

For lower quadratic energies, we use a quantum description, presented in Ref. [3, Sec. IV].

Difference with respect to gases. For gases of cold ground–state atoms, the truncation
selects trapped single–particle modes without constraining their populations, yielding a
truncated Bose–Einstein distribution [51]. Instead, for Rydberg chains, the truncation
involves the energies of the N–particle configurations. This prevents Zquant from factorising
and reflects the correlations between the trapped phonon modes. Thus, the corresponding
quasi–equilibrium state is not characterised by a truncated Bose–Einstein distribution.

Calculation of U(T ) and S(T ) for all temperatures. The threshold energy Equant
M for

trapped configurations in the quantum regime exceeds both Ecl
M and the zero–point energy

of the chain, EZP =
∑N

k=1 ℏωk/2. We assume Equant
M ≫ EZP + ℏωN , a condition which

is well satisfied for all parameters we have considered. Then, we consider two different
regimes depending on the value of temperature with respect to Equant

M /N :

• For kBT < Equant
M /N , the truncation plays no role: the energy U(T ) and entropy

S(T ) are those of a non–truncated chain of harmonic oscillators, whose partition
function is Z0 =

∏N
k=1[csch(βℏωk/2)/2].

• For kBT ≳ Equant
M /N , our description involves Eq. (3.4), but quantum effects are

not negligible: we account for the leading–order quantum correction. Following the
procedure outlined in Ref. [52, §33], we seek the quantum partition function in the
form Zquant = Zcl(1+ ℏ2 ⟨χ2⟩), where the correction ⟨χ2⟩ is expressed in terms of the
moments ⟨u2k⟩cl, ⟨p2k⟩cl and ⟨u2kp2k⟩cl of the classical distribution represented by Zcl.
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Figure 3.3: (a) Entropy s = S/N and (b) energy u = U/N per particle for N = 100 atoms in
a trap of size L = 550µm, at the beginning of the evaporation in Fig. 3.5. The solid and dashed
lines show the quantum and classical predictions, respectively. Panels (c) and (d) show s and u
for N = 50 atoms in a trap of size L = 243µm, close to the end of the evaporation in Fig. 3.5.
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Figure 3.4: The first few expulsions for a chain
initially comprising NI = 100 atoms in a trap of
length LI = 550m, with various initial energies.
Panels (a) and (b) show the entropy S/N and

energy U/N per particle. The maxima S
(N)
max/N

and U
(N)
max/N are shown in gray. Each expulsion

leads to a discontinuity in both S and U .

The thermodynamic functions extracted from Z0 overlap with those extracted from Zquant

for a range of values of T , yielding the full quantum thermodynamic functions S(T ) and
U(T ). These satisfy the expected low–temperature behaviours, namely, S(T = 0) = 0 and
U(T = 0) = EZP > 0. The functions S(T ) and U(T ) are compared to the corresponding
classical results on Fig. 3.3. At the beginning of the evaporation (panels (a) and (b)), they
only differ over a narrow range of temperatures near T = 0; the difference becomes more
pronounced at the end of the evaporation (panels (c) and (d)).

3.3 Thermodynamics of the evaporation process

In this section, we relax the assumption of fixed atom number N and trap size L of
Sec. 3.2, so as to characterise the evaporative cooling process. This process is driven by
a slow compression of the chain due to a trap length L(t) which decreases as a function
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3 Evaporative cooling of a chain of Rydberg atoms

of time. Our key assumption is that, apart from the atomic expulsions, the trapped chain
is at all times in a quasi–equilibrium state characterised by the truncated distribution of
Sec. 3.2. This requires the compression of the chain to occur adiabatically.
We first formulate our thermodynamic description without assuming that the chain is

long. We illustrate it on the chain of 100 atoms of Ref. [28, appendix E], and extend the
description given there to account for quantum phenomena occurring at low temperatures.
Then, turning to a chain initially comprising 1000 atoms, we highlight the quasi–universal
features that the evaporation curve exhibits for longer chains.

3.3.1 Thermodynamic description without assuming a long chain

We start from a chain initially comprised ofN = NI atoms confined in a trap with the initial
length L = LI . Its quadratic energy is UI = U (NI)(LI). For all considered parameters, the
two following assumptions concerning the initial state I are well satisfied:

• The energy UI is much greater than the zero–point energy of the chain,
so that the chain is initially well described by classical physics;

• The energy UI is much smaller than the threshold energy Ecl
MI ,

so that its thermodynamics is initially not affected by the truncation.

Under these two assumptions, the equipartition theorem [58, Sec. 6.4] relates the initial
energy UI to the initial temperature TI through UI = NkBTI . The initial temperature
determines the entropy S = S

(N)
I .

Now, we adiabatically compress the chain by slowly decreasing L. As long as no atom
is expelled, the process is reversible and the entropy S(N) remains constant. However,
decreasing L means that the maximum value S

(N)
max(L) decreases, as shown by the gray

lines on Fig. 3.4(a). Hence, the adiabatic phase continues until the trap size L reaches

the value L
(N)
f such that S

(N)
max = S(N). At this point, adiabatic compression is no longer

possible, and the leftmost atom is expelled from the trap.
Just before the expulsion, the condition S(N) = S

(N)
max means T → ∞, so that U

(N)
f =

U
(N)
max. We assume that the expelled atom leaves the trap with the minimal energy VL

allowing it to overcome the left barrier. Just after the expulsion, the remaining N − 1
trapped atoms reach a new quasi–equilibrium state at the energy U

(N−1)
i such that:

V
(N)
0 + U

(N)
f = V

(N−1)
0 + U

(N−1)
i + VL . (3.8)

In Eq. (3.8), the quantities V
(N)
0 and V

(N−1)
0 are the static equilibrium energies for N and

N − 1 atoms in a trap of the same size L
(N)
f = L

(N−1)
i . The value of U

(N−1)
i sets the

new entropy S(N−1). Then, adiabatic compression resumes until the next expulsion, which
occurs for the trap size L

(N−1)
f such that Smax(L

(N−1)
f ) = S(N−1). The complete evaporation

curve consists of a repeated sequence of adiabatic compressions and expulsions.
Figure 3.4 shows the entropy and energy per particle along the beginning of the evap-

oration curve for the trapped chain characterised by the initial parameters NI = 100,
LI = 550µm of Ref. [28, appendix E]. We highlight two of its important features:
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• During each adiabatic compression phase, the energy U/N and entropy S/N increase;

• Both quantities undergo a discontinuous decrease each time an atom is expelled.

The chain undergoes evaporative cooling if the net effect of the two phases is a decrease in
energy and entropy. This occurs for all parameters considered in this chapter.
Figure 3.5 shows the full evaporation curve for the same initial conditions, with the

initial energy UI/(NIh) = 65 kHz. Starting from NI = 100 atoms and expelling 60 of
them, the quadratic energy per particle of the final chain is UF/(NFh) = 7 kHz, so that
it has been reduced by a factor of almost 10. The final energy is just above the quantum
zero–point energy EZP(LF )/(NFh) = 5.9 kHz.

Uncertainty on the initial energy. Under the two assumptions stated at the beginning of
the present section, the initial chain is well described by Boltzmann statistics applied to NI

uncoupled harmonic oscillators (these are the vibrational modes entering the Hamiltonian
of Eq. 3.2). This leads [58, Sec. 7.2] to the fluctuations ∆UI = UI/

√
NI about the mean

energy UI = NIkBTI . These fluctuations, shown on Fig. 3.5, wash out the jaggedness of
the quadratic and interaction energies due to the atomic expulsions.

Numerical calculation. We calculate the evaporation curves of Figs. 3.5 and 3.6 nu-
merically using our own C++ code. The evaluation of the thermodynamic functions
S(L, T ) and U(L, T ) hinges on the calculation of the function P (a, z), where a = N , the
trapped atom number, ranges from 40 to 1000. To capture the steep variation of this
function in the transition region z ∼ a, we resort to arbitrary–precision numerics using the
Boost.Multiprecision C++ library [60].

3.3.2 Quasi–universality for longer chains

Finally, we focus on longer chains. Under this assumption, the spatial inhomogeneities
near the trap edges are negligible. Hence, the entropy s = S/N and energy u = U/N per
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Figure 3.6: Quasi–universal evaporation of a
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particle depend only on the mean interparticle spacing l = L/N and the temperature T .
Their maxima smax(l) = Smax(L,N)/N and umax(l) = Umax(L,N)/N depend only on l.
Figure 3.6 illustrates the evaporation of a long chain on the case where the initial number

of atoms is NI = 1000. The mean interparticle spacing lI = L/NI = 5.5µm and the
considered initial quadratic energies per particle are the same as for Figs. 3.4 and 3.3.
The evaporation curve may now be divided in two different stages:

1. The initial adiabatic compression phase, which depends on the initial energy per
particle ui. Its role is to bring the system from the thermal regime into the regime
where the thermodynamics is dominated by truncation effects;

2. All subsequent expulsions and adiabatic compressions, during which the thermody-
namic functions s and u remain close to the universal curves smax(l) and umax(l).

Hence, starting from the first expulsion, the entropy and energy per particle nearly follow
a universal law. By contrast, the fraction n = N/NI of remaining trapped atoms is not
universal, as shown on Fig. 3.6(c). It reaches a stationary value which is a decreasing
function of the initial energy per particle ui = UI/NI .
The mean distance l decreases during each adiabatic compression, and increases at each

expulsion. On average, l decreases, and the evaporation brings the system towards the
zero–point energy per particle eZP(l) = EZP(N,L)/N . The curves in Fig. 3.6 are truncated
at the minimum value lmin = 4.4µm. For l < lmin, the assumption Equant

M ≳ EZP + ℏωN

we have made in Sec. 3.2.3 no longer holds. Then, the calculation of the thermodynamic
functions in the quantum regime is more involved and goes beyond the scope of this work.
Starting from the initial temperature kBTI/h = 65 kHz, the final chain comprises NF =

764 atoms with the energy UF/(NFh) = 8.5 kHz, close to EZP/(NFh) = 6.6 kHz. In the
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evaporation represented in Fig. 3.6.

final state, the averages ⟨(un − um)
2⟩ are all much smaller than l2 (see Fig. 3.7). Hence,

this final state is a unidimensional crystal.

3.4 Conclusion

We have introduced a thermodynamic model for the evaporative cooling scheme of unidi-
mensional chains of Rydberg atoms initially introduced in Ref. [28, appendix E]. Unlike the
classical dynamics results presented there, our model is applicable in the quantum regime
of low temperatures, and it allows for the analysis of long chains.
Our thermodynamic model relies on the use of a truncated Boltzmann distribution ap-

plied to the excitations in the chain. Truncated Boltzmann distributions had already been
introduced [6] to describe the evaporative cooling of gases. For gases, the evaporation
criterion involves single atoms. By contrast, for Rydberg atom chains, it involves N–
particle configurations. This has two consequences. Firstly, it means that the statistical
distribution in the quantum regime is not a truncated Bose–Einstein distribution. Sec-
ondly, it leads to a strong enhancement of the role of truncation, which strongly affects the
thermodynamics of the evaporation. In particular, the final temperatures obtained after
evaporation are set by the maximum energy supported by a trap of given length, which is
smaller than the barrier heights by three orders of magnitude.
Using experimentally accessible parameters, we have shown that this evaporative cooling

scheme leads to a unidimensional Rydberg crystal near its quantum ground state. The
spatial order arises on a length scale which is comparable to the size of the system, despite
the absence of any spatially periodic potential. It may be fully characterised experimentally
through microwave spectroscopy and spatially–resolved ground–state imaging [61, 62].
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We theoretically show how to obtain a long one-dimensional crystal near its quantum ground state. We
rely on an evaporative cooling scheme applicable to many-body systems with nonzero-ranged interactions.
Despite the absence of periodic potentials, the final state is a crystal that exhibits long-range spatial order. We
describe the scheme thermodynamically, applying the truncated Boltzmann distribution to the collective
excitations of the chain, and we show that it leads to a novel quasiequilibrium many-body state. For longer chains,
comprising about 1000 atoms, we emphasize the quasiuniversality of the evaporation curve. Such exceptionally
long one-dimensional (1D) crystals are only accessible deep in the quantum regime. We perform our analysis on
the example of an initially thermal chain of circular Rydberg atoms confined to a 1D geometry. Our scheme may
be applied to other quantum systems with long-ranged interactions such as polar molecules.

DOI: 10.1103/PhysRevResearch.2.023014

I. INTRODUCTION

Systems presenting long-ranged interactions exhibit
strongly correlated crystalline phases [1–4]. Among them,
quantum crystals are those whose constituents undergo
large-amplitude zero-point motion [5]. The collective
nature of their excitations leads to spectacular phenomena
including the Tkachenko oscillations of a vortex lattice in a
superfluid [6,7], the giant plasticity of helium crystals [8],
and supersolidity in ultracold gases presenting interactions
beyond the contact limit [9–13].

Up to now, the investigation of one-dimensional (1D) quan-
tum crystals has been hindered by the difficulty of obtaining
large crystals in this geometry, where thermal and quantum
fluctuations both destroy long-range order in macroscopic sys-
tems [14]. Nevertheless, crystallization does occur in finite-
sized systems [15]. It has been unambiguously observed in
the absence of any external periodic potential only in small
systems of up to 50 ions [16–19] or 10 electrons [20,21]. The
realization of larger 1D crystals requires going deep into the
quantum regime. There, thermal fluctuations are suppressed,
and long-range order is only limited by quantum fluctuations,
which are less stringent [14]. The realization of large 1D crys-
tals will pave the way toward the investigation of 1D quantum
crystals, where one may look for, e.g., giant plasticity through
the tunneling of defects [22,23].

We focus on one way of obtaining spatial order that
relies on strong nonzero-range dipole interactions between
Rydberg atoms [24]. Rydberg atoms are ideally suited
for quantum information processing [25,26] and quantum

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

simulation [27,28]. Nontrivial many-body states [29–31] of up
to 50 atoms manipulated with optical tweezers have been pre-
pared through resonant coupling to Rydberg states [32–35].
Rydberg states may be weakly admixed to the atomic ground
state [36–38] or resonantly excited [39] so as to study the
interplay between anisotropic interactions and disorder or
frustration [40]. Quantum gases resonantly coupled to Ryd-
berg states have been predicted to exhibit a quantum phase
transition to a Rydberg crystal [41], leading to a universal
scaling behavior observed in the critical region [42].

In all those cases, low-angular-momentum Rydberg states
were considered, leading to a strong limitation on the lifetime
(100 μs per atom, a few μs for many atoms), limiting the size
of the system. Circular Rydberg atoms [43–46], whose excited
electron has maximal orbital and magnetic quantum numbers,
overcome this limitation and offer a very promising platform
for the quantum simulation of many-body problems [27].
Using spontaneous emission inhibition [47,48], their already
long lifetime (30 ms) is expected to be extended to more than
1 min. This timescale allows for implementing an evaporative
cooling scheme applicable to Rydberg atoms [27], whose
classical analysis shows great promise for reaching extremely
low temperatures.

In this article, we show that large 1D Rydberg crystals may
be prepared very close to their quantum ground state in real-
istic experimental conditions [27,49] through this evaporative
cooling scheme. Despite the absence of any spatially periodic
potential, these crystals exhibit long-range spatial order. This
is in stark contrast to the classical analysis of 1D systems,
which would predict the absence of long-range order [14].
We introduce a quantum thermodynamic model, applying the
truncated Boltzmann distribution to the collective excitations
of the chain. We show that it leads to a novel quasiequi-
librium regime that differs from the truncated Bose-Einstein
distribution applicable to quantum-degenerate gases [50]. In
contrast to dilute systems in which the evaporation is driven
by two-body collisions [51], the mechanism we describe here

2643-1564/2020/2(2)/023014(9) 023014-1 Published by the American Physical Society
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FIG. 1. A Rydberg-atom chain (orange) confined in a 1D trap of
size L. The potential maxima VL and VR satisfy VL < VR, so that atoms
are expelled from the left edge of the trap.

hinges on many-body physics, whereby the phonons present
in the chain lead to the expulsion of a single atom. Hence, it is
related to the quantum evaporation of liquid helium [52–54],
also predicted to affect cold bosonic atoms [55].

II. THE SYSTEM AND THE HAMILTONIAN
UNDER CONSIDERATION

We first consider a fixed number N of Rydberg atoms con-
fined in a 1D trap of fixed size L (see Fig. 1). We illustrate our
model using the parameters of Ref. [27]. The atoms are con-
fined radially using the ponderomotive potential [56] induced
by a Laguerre-Gaussian laser beam (Ref. [57], Chap. 2). They
are trapped axially between two optical plugs yielding the
potential VT (x) = VL exp[−2(x − xL )2/w2] + VR exp[−2(x −
xR)2/w2]. The barrier width and heights are, respectively,
w = 30 μm, VL/h = 3 MHz, and VR/h = 4 MHz. The trap
size L = xR − xL is slowly decreased from its initial value so
as to induce successive atomic expulsions, providing the evap-
orative cooling. Unlike for gases, the barrier heights remain
constant during the whole process. The atoms interact via
the strongly repulsive van der Waals interaction V (xi, x j ) =
C6/|xi − x j |6 with C6/h = 3 GHz μm6, corresponding to 87Rb
atoms with the principal quantum number n = 50. The equi-
librium positions x0

1, . . . , x0
N are evenly spaced in the bulk of

the chain, but not on the edges, due to the finite spatial extent
of the barriers. Two neighboring atoms are distant by l ≈
5 μm, leading to interaction energies C6/l6 ≈ h × 200 kHz.

We describe the atomic vibrations in terms of a quadratic
Hamiltonian:

H =
N∑

k=1

[
p̃2

k

2m
+ 1

2
mω2

k ũ2
k

]
with ũk =

N∑
n=1

Rnkun. (1)

In Eq. (1), the N vibrational modes {ũk} have the frequencies
ω1 < · · · < ωN , and the { p̃k} are their conjugate momenta.
They are related to the atomic displacements {un = xn − x0

n}
through the orthogonal matrix R. The applicability of Eq. (1)
only requires local order (see Appendix A 1): the averages
〈(un+1 − un)2〉1/2 involving two neighboring atoms should
remain small compared to l = L/N . For a thermal chain at
the temperature T , this requires kBT < 2C6/l6, and is well
satisfied for up to 1000 atoms with l ∼ 5 μm and kBT �
h × 100 kHz ≈ kB × 5 μK.

III. CLASSICAL THERMODYNAMICS

For a given configuration characterized by the phonon
mode energies {εk}1�k�N and phases {φk}1�k�N , the
position of the leftmost atom at time t is u1(t ) =∑

k R1k[2εk/(mω2
k )]1/2 cos(ωkt + φk ). It remains trapped

as long as |u1(t )| < uM , where uM = x0
1 − xL. We

consider the time-averaged mean-square displacement
〈u2

1〉 = u2
M

∑N
k=1 εk/EMk , where the quantities EMk =

mω2
k u2

M/R2
1k increase with k. Hence, for a given α, the

lowest-energy configurations for which 〈u2
1〉1/2 = αuM are

those where only the mode k = 1 is excited, with the energy
E = ε1 = α2EM1. For α = 1/

√
2, they correspond to atom

1 barely reaching u1 = −uM , i.e., to the lowest-energy
untrapped configurations. Their energy E cl

M = mω2
1u2

M/(2R2
11)

is set by ω1. Furthermore, numerical simulations of the
classical (cl) dynamics of the atom chain [58] have shown
the atomic motion to be chaotic. Hence, exploiting ergodicity,
the trapped configurations are those with E < E cl

M . We
describe the quasiequilibrium thermodynamics of the chain
using a Boltzmann distribution truncated at the energy E cl

M ,
whose partition function reads

Zcl =
∫

E<E cl
M

∏
[d p̃kdũk]

hN
e−βE = P

(
N, βE cl

M

)
βN h̄ω1 · · · h̄ωN

. (2)

In Eq. (2), β = 1/(kBT ) is the inverse temperature, E =
H ({ p̃k, ũk}), and P(a, z) = γ (a, z)/�(N ) is the normalized
lower incomplete gamma function [59]. The mean (quadratic)
energy U cl(L, T ) associated with the Hamiltonian H and the
entropy Scl(L, T ) follow from U cl = −∂β ln Zcl and Scl/kB =
ln Zcl − β∂β ln Zcl.

The function P(a, z) also appears in the thermodynamics
of the evaporation of a gas (a = 3 for a harmonic trap) [51].
Here, a = N ranges from 40 to 1000, so that the role of trunca-
tion is strongly enhanced with respect to gases of ground-state
atoms (see Appendix A 3). It is important for kBT � E cl

M/N .
For larger T , all trapped configurations are equally populated.
The probability density for a configuration to have the energy
E is NEN−1/(E cl

M )N , hence nearly all configurations have
energies ∼E cl

M . Both U cl and Scl reach finite maxima U N
max(L)

and SN
max(L) (see Fig. 2), where

U (N )
max = NE cl

M

N + 1
and S(N )

max = kB ln

( (
E cl

M

)N
/N!

h̄ω1 · · · h̄ωN

)
. (3)

For fixed N , both maxima increase with L, because less strin-
gent traps will accommodate higher-energy excitations. This
novel regime is inaccessible with gases, where an atom whose
energy is close to the evaporation threshold is expelled when
it undergoes a collision [51,60]. However, it is accessible for
a Rydberg chain (see Appendix A 2).

IV. QUANTUM THERMODYNAMICS

For lower quadratic energies, we use a quantum (quant)
description. Assuming ergodicity in the quantum regime, we
introduce the energy En = ∑N

k=1 h̄ωk (nk + 1/2) of the con-
figuration labeled by the integer multiplet n = {nk}1�k�N . The
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FIG. 2. (a) Entropy and (b) energy per particle for N = 50 atoms
in a trap of size L = 243 μm (close to the end of the evaporation
for the chain of Fig. 4). The solid (dashed) lines show the quantum
(classical) prediction.

threshold energy Equant
M for trapped configurations satisfies

Equant
M = min

n

[
En with

N∑
k=1

h̄ωk (nk + 1/2)

EMk
� α2

]
, (4)

where we choose α = 1/
√

2 as in the classical case. The en-
ergy Equant

M exceeds both E cl
M and the zero-point energy EZP =∑N

k=1 h̄ωk/2. The quantum partition function reads Zquant =∑
n e−βEn 
(Equant

M − En), where 
 is the Heaviside function,
illustrating an important difference with respect to gases of
ground-state atoms. There, the truncation selects the trapped
single-particle modes without constraining their populations,
yielding a truncated Bose-Einstein distribution [50]. Instead,
for Rydberg chains, the truncation involves the configuration
energies En. This prevents Zquant from factorizing and reflects
the correlations between the trapped phonon modes, leading to
a novel quasiequilibrium state that does not obey a truncated
Bose-Einstein distribution.

We assume Equant
M � EZP + h̄ωN , which is well satisfied

for all parameters considered in this paper. Then, Equant
M ≈

E cl
M + EZP. For kBT � Equant

M /N , we evaluate the quantum en-
ergy U quant (L, T ) and entropy Squant (L, T ) (see Appendix A 3)
starting from Eq. (2), replacing E cl

M by Equant
M and including

the leading quantum correction, proportional to h̄2 (Ref. [61],
Sec. 33). For kBT < Equant

M /N , the energy and entropy reflect
the nontruncated thermodynamics of a harmonic-oscillator
chain. They overlap with U quant, Squant for a range of values
of T , yielding the full quantum thermodynamic functions (see
Fig. 2).

V. EVAPORATION

We now describe the evaporation process. Initially, the
chain is comprised of N = NI atoms in a trap of size L(N ) =
LI , with the energy U (N ) = UI . For all considered parameters,
UI � EZP, signaling the classical regime, and UI � E cl

MI , so
that it is described by nontruncated thermodynamics. Thus,

FIG. 3. The first few expulsions for a chain with NI = 100 atoms
and LI = 550 μm, in terms of (a) entropy S/N and (b) energy U/N
per particle, for various initial energies. The maxima S(N )

max(L)/N and
U (N )

max(L)/N are shown in gray. Each expulsion yields a discontinuity
in both S and U .

UI/NI = kBTI is the initial temperature. We adiabatically com-
press the chain by slowly decreasing L (see Fig. 3). Hence,
the entropy S(N ) remains constant. Expelling an atom is irre-
versible, therefore N also remains constant. However, T and
U (N ) increase, whereas U (N )

max(L) and S(N)
max(L) decrease. The

compression proceeds until the trap no longer accommodates
the entropy, i.e., up to the trap size L(N )

f such that S(N )
max(L(N )

f ) =
S(N ). This implies T → ∞, hence U (N )

f = U (N )
max(L(N )

f ). At this
point, the leftmost atom is expelled from the trap, its kinetic
energy being the barrier height VL. The (N − 1) remaining
atoms thermalize to the new initial energy U (N−1)

i , where

U (N−1)
i = U (N )

f + V (N )
0 − V (N−1)

0 − VL. (5)

Here, V (N )
0 and V (N−1)

0 are the static equilibrium energies for
N and (N − 1) atoms in a trap of size L(N )

f . Then, adiabatic
compression resumes until the next expulsion.

The complete evaporation curve consists of a repeated
sequence of these two steps. Figure 4 compares our classical
(dark red) and quantum (red) predictions, down to the trap
size LF = 200 μm, where Equant

M � EZP + h̄ωN . The result of
our classical model closely matches the classical-dynamics
simulations reported in Ref. [27] (Fig. 14, phase II). Our quan-
tum approach predicts that, starting from NI = 100 atoms,
the final state with NF = 40 atoms obeys a Bose-Einstein
distribution with UF /(NF h) = 7.0 kHz, slightly above the
zero-point energy EZP/(NF h) = 5.9 kHz. The shown average
energies account for the uncertainty �UI = UI/

√
NI = h ×

6.5 kHz on UI , which washes out their jaggedness due to
the expulsions (see Fig. 3 and Appendix A 4). The final
state is in the 1D regime if the radial confinement frequency
ω⊥/(2π ) � UF /(NF h). Smaller values of ω⊥ will lead to
quasi-1D chains exhibiting the “zigzag” transition observed
with ion chains [23,62] and in electronic systems [63].
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FIG. 4. Classical (dark red) and quantum (red) predictions for the
mean quadratic energy, interaction (blue), and ground-state (green)
energies per particle during the evaporation, starting from NI = 100,
LI = 550 μm, down to NF = 40, LF = 200 μm. The shaded red and
blue areas show the standard deviations on the quadratic and inter-
action energies. Energies are measured in kHz, with h × 100 kHz ∼
kB × 5 μK.

VI. QUASIUNIVERSALITY FOR LONGER CHAINS

Finally, we focus on long chains with NI ≈ 1000, keeping
lI = LI/NI = 5.5 μm. Then, the inhomogeneities near the
trap edges are negligible, and both S/N = s(l, T ) and U/N =
u(l, T ) only depend on l = L/N and T . The evaporation
is conveniently described in terms of l , s, u, and the atom
number fraction n = N/NI . The evaporation curve consists
of two parts (see Fig. 5). First, the initial compression at
constant NI depends on uI = UI/NI . The second part consists
of all subsequent expulsions and compressions. The mean
distance l increases at each expulsion and decreases during
each compression; on average, l decreases. The quantities s
and u always remain close to the universal curves smax(l ) =
Smax(N, L)/N and umax(l ) = Umax(N, L)/N , respectively (see
Appendix A 5). Their fluctuations, visible in the insets of
Fig. 5 for NI = 1000 and kBTI/h = 65 kHz, decrease with
increasing NI for two reasons. First, the changes δu and δs in
the energy and entropy per particle upon expelling an atom are
decreasing functions of N . Second, larger NI lead to smaller
�UI = UI/

√
NI , and hence to smaller uncertainties on s and

u. Quasiuniversality also applies to the fluctuations �u and
�s on the energy and entropy (see Appendix A 5).

The fraction n = N/NI [Fig. 5(c)] is not universal (see
Fig. 11 in the Appendix). For NI = 1000, n reaches a sta-
tionary value nF as u goes to eZP(l ) = EZP(l )/N . The value
nF (uI ) is a decreasing function of uI = UI/NI . The curves in
Fig. 5 are truncated at the minimum value l = 4.4 μm, where
Equant

M � EZP + h̄ωN . Then, for kBTI/h = 65 kHz, the chain
comprises NF = 764 atoms with the energy UF /(NF h) =
8.5 kHz, close to EZP/(NF h) = 6.6 kHz.

The final state of such a long chain is a crystal exhibit-
ing true long-range order, with all spatial correlators Cnm =
〈(un − um)2〉 � l2 [see Fig. 6(c) in the Appendix]. This is
only possible deep in the quantum regime, where thermal
fluctuations are suppressed [14]. The crystalline order may be

FIG. 5. Quasiuniversal evaporation of a chain with NI = 1000
and lI = 5.5 μm, in terms of the mean (a) entropy and (b) energy
per particle, for various initial energies. The thin gray lines show
Smax(L/N )/N and Umax(L/N )/N for N = 50, 100, 200, 400, and 800
(from right to left), which converge toward smax(l ) and umax(l ) (thick
gray lines). (c) Nonuniversal atom fraction N/NI . The vertical red
line shows the first expulsion for UI/(NI h) = 65 kHz. The insets
zoom in on the same small fraction of the curves for UI/(NI h) =
65 kHz, and show the jagged curves obtained before averaging; the
shaded areas show the standard deviations.

fully characterized experimentally through microwave spec-
troscopy, revealing the regularity and fluctuations of the lat-
tice parameter, combined with spatially resolved ground-state
imaging [33,64].

VII. CONCLUSION AND OUTLOOK

We have introduced a quantum thermodynamic model for
the evaporative cooling of 1D Rydberg-atom chains [27].
Unlike the evaporative cooling of ground-state atoms, the
final temperatures accessible with our scheme are not of the
order of the barrier heights. Instead, they are determined
by the maximum energy umax(l ) compatible with the trap.
This reflects the many-body character of the evaporation
scheme and leads to final temperatures that are radically lower
than the barrier heights by three orders of magnitude. We
have shown that, under realistic experimental conditions, this
scheme yields large near-ground-state Rydberg crystal. The
long-range spatial order of these 1D structures is a feature
of the deep quantum regime. Our scheme will also apply to
other interacting 1D systems such as polar molecules [65,66].
There, the nonzero-ranged interaction between the particles is
provided by the dipole-dipole interaction, which scales with
1/r3 and may be made purely repulsive in low-dimensional
geometries [67].
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The following directions warrant further investigation. (i)
For higher initial temperatures or mean atom spacings, the ini-
tial state is a liquid and Eq. (1) does not hold, but our scheme
will still drive the system toward its crystalline ground state.
(ii) For longer chains, a prolonged evaporation going beyond
the regime of Fig. 5 leads to Equant

M � EZP + h̄ωN , in which
case the calculation of the quantum thermodynamic functions
is more involved. (iii) The timescale ensuring adiabaticity is
set by the anharmonic processes neglected in Eq. (1). (iv)
Our scheme is also applicable in two dimensions, where the
expected ground state is a hexagonal crystal that we shall
investigate both theoretically and experimentally.
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APPENDIX

This Appendix provides complementary information on
the following topics: (i) the applicability of the quadratic
Hamiltonian; (ii) the anharmonic terms and their twofold
role; (iii) the partition function and its numerical evaluation;
(iv) the observability of the adiabatic plateaus with constant
atom numbers; and (v) the quasiuniversal description for long
chains and its limits.

1. The quadratic Hamiltonian

The Hamiltonian describing the harmonic vibrations of
the atoms about their equilibrium positions {x0

n} [Eq. (1)] is
applicable as soon as the chain exhibits local order. Indeed, in
the chain bulk, the trapping potential is negligible and, within
the nearest-neighbor approximation, the interaction energy of
atom n is EI

n = C6[1/(xn − xn−1)6 + 1/(xn − xn+1)6]. Here,
xn = x0

n + un is the position of atom n. Expanding EI
n to

second order in the displacements {un}, and exploiting the
near-translational invariance, we find that the harmonic ap-
proximation is valid if ηn = 21 〈(un+1 − un)2〉 /l2 < 1, where
l = L/N is the mean interatomic distance and the average
〈(un+1 − un)2〉 is the spatial correlator between two neighbor-
ing atoms. For a thermal distribution, this condition reduces
to kBT < 2C6/l6. Accounting for the trap and the truncated

thermodynamics, we find this criterion to be well satisfied
all along the evaporation [see Fig. 6(a)] for the long chain of
Fig. 5.

The present criterion is less stringent than asking for the
chain to be in a crystalline phase. This is especially true in
one dimension, where thermal fluctuations quickly rule out
long-range order [14]. For example, the long chain of Fig. 5
exhibits no long-range spatial correlations in its initial state
(Ni = 1000, li = 5.5 μm, kBTi/h = 65 kHz). This can be seen
in Fig. 6(b): the correlator 〈(un − um)2〉 /l2 > 1 for distant
atoms. However, our scheme brings the chain close to its
quantum ground state, which does exhibit long-range corre-
lations [〈(un − um)2〉 /l2 � 1 for all n and m; see Fig. 6(c)].

2. Anharmonic effects

The leading anharmonic contribution to the Hamiltonian
follow from the third- and fourth-order terms in the displace-
ments {un}. For gases, they yield two-body collisions that are
essentially instantaneous. By contrast, for Rydberg chains,
they generate many-body correlations over the characteristic
time τpropag for propagation along the chain, set by the sound
velocity. They are mostly due to interactions and occur in
the chain bulk, where their probability does not depend on
position (see Fig. 7). They are much less probable near the
edges, where the trapping potential leads to larger distances
between the static equilibrium positions of the atoms.

The role of these anharmonic processes is twofold. First,
they are responsible for thermalization and ergodicity on
a timescale involving τpropag. Second, they set the (longer)
timescale ensuring the adiabaticity of the compression be-
tween two atomic expulsions. The classical-dynamics simu-
lations reported in Ref. [27] have shown that, for the shorter
chain of Fig. 3 (Ni = 100), compression rates of the order of
40 μm/ms are adequate. The optimal compression rate will
be investigated elsewhere.

For gases, anharmonic processes directly drive the atomic
expulsions, which immediately follow two-atom collisions
during which one atom has acquired enough energy. Their
relation to expulsions is more involved for Rydberg chains. If
the trap size is such that an expulsion is expected (T → ∞),
ergodicity causes the system to explore various configurations
until the leftmost atom is expelled with the energy VL. If no
expulsion is expected (T finite), the compression of the trap
causes an increase in energy due to the atoms on the edges of

(a) (b) (c)

FIG. 6. (a) Harmonicity ratio ηn for the long chain of Fig. 5, at the beginning of the evaporation (red), just before the first expulsion (green),
and at the end of the evaporation (blue). (b) and (c) Spatial correlator 〈(un − um )2〉 /l2 at the beginning [(b), N = 1000, L = 5500 μm] and the
end [(c), N = 764, L = 3820 μm] of the evaporation, in units of l = L/N .
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FIG. 7. Third- (blue crosses) and fourth-order (golden lines)
anharmonic amplitudes from the interaction energy (nonzero ampli-
tudes) and the trapping potential (negligible amplitudes), calculated
for the shorter chain of Fig. 3, just before the first expulsion. They
are expressed in units of their bulk values, namely 56C6/l9 and
126C6/l10.

the chain being set in motion toward the bulk. Expelling the
leftmost atom before thermalization has taken place (i.e., with
an energy >VL) is likely to involve a two-atom collision at the
open end of the trap. There, anharmonic terms are strongly
suppressed (see Fig. 7), so that these higher-energy expulsions
are rare. Instead, the energy increase is most often mediated,
through harmonic vibrations, to the chain bulk where ther-
malization occurs. The rare cases in which the leftmost atom
is expelled are not captured by our thermodynamic model.
However, they are not a hindrance as long as their rate remains
small: instead, they speed up the evaporation process with
respect to our thermodynamic prediction. The presence of a
single open end (the left end in Fig. 1) is favorable for two
reasons: (i) it leads to longer propagation times, and hence
more efficient thermalization; and (ii) it helps reduce the rate
of nonthermalized expulsions.

3. The partition function

a. Normalized lower incomplete γ function

The thermodynamics of the (classical or quantum) trun-
cated Boltzmann distribution involve the normalized lower

incomplete γ function P(a, z), defined as [59]

P(a, z) = γ (a, z)

�(a)
= 1

�(a)

∫ a

0
dt e−t t z−1. (A1)

For given values of the trap size L and atom number
N , the classical partition function Zcl is proportional to
P(N, βEM )/βN . Hence, a is of the order of N , whereas z =
βEM is the ratio of the threshold energy to the temperature.
For a given a, the function P(a, z) resembles a step function
[see Fig. 8(a)] which is equal to 0 for small z (representing the
truncation for large T ) and to 1 for large z (truncation plays no
role for small T ). The smooth transition occurs for z ≈ a, so
that truncation plays a role for kBT/EM � 1/a. The parameter
a = 3 for a gas in a truncated 3D harmonic trap [51], whereas
for Rydberg chains a ≈ N ranges from 40 to 1000. Hence,
Rydberg chains are affected by the truncation starting from
much lower temperatures than gases are.

b. Quantum partition function

For a given L, and assuming Equant
M � EZP + h̄ωN , we

evaluate the quantum partition function Zquant for kBT �
Equant

M /N using Eq. (2) in the main text, replacing E cl
M by

Equant
M . We go beyond the quasiclassical integral expression

and include the leading-order quantum correction, propor-
tional to h̄2 (Ref. [61], Sec. 33). Hence, we write Zquant =
Zcl(1 + 〈h̄2χ2〉), where the correction 〈h̄2χ2〉 is expressed in
terms of the moments 〈x2

k 〉cl, 〈p2
k〉cl, and 〈x2

k p2
k〉cl of Zcl. We

find

〈
h̄2χ2

〉
E2

M/

N∑
k=1

(h̄ωk )2

= z2

24

(
−1 + [3z − 5(N + 1)]

zN e−z

�(N + 2)

1

P(N, z)

)
,

(A2)

with z = βEM . For kBT < EM/N , we use the quantum parti-
tion function Z0 = ∏N

k=1[csch(β h̄ωk/2)/2] of a nontruncated
chain. The functions U quant and Squant overlap with those
extracted from Z0 for a range of values of kBT , thus yielding
the full quantum thermodynamic functions. The classical and
quantum predictions for U and S are compared in Fig. 8.
At the beginning of the evaporation [panel (b)], they only
differ over a narrow range of temperatures near T = 0; the

FIG. 8. (a) Normalized incomplete γ function P(a, z) as a function of z = βEM for a = 3, 50, and 100. (b) and (c) s = S/N and u = U/N
as a function of T for 100 atoms in a trap of size L = 550 μm (beginning of the evaporation in Fig. 4 of the main text). (d) and (e) s and u for
50 atoms with L = 243 μm (close to the end of the evaporation in Fig. 4).
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FIG. 9. Mean trapped atom number as a function of the trap size
L for the short chain initially comprising NI = 100 atoms with LI =
550 μm for various initial temperatures. The red curve, calculated
for kBTI = 65 kHz, corresponds to Fig. 4 of the main text. The
discrete steps on the atom number become visible at the end of the
evaporation; for lower initial temperatures, they are well resolved
earlier on. The shaded areas show the mean standard deviation due
to the initial fluctuations �UI = UI/

√
NI on the quadratic energy.

difference is more striking near the end of the evaporation
[panel (c)].

c. Numerical evaluation

The evaluation of U (L, T ) and S(L, T ) involves calculating
P(a, z) for 40 � a � 1000. To capture the steep variation
of these functions for z ∼ a, we resort to arbitrary-precision
numerics using the BOOST.MULTIPRECISION C++ library [68].

4. Constant atom number plateaus

Between two atomic expulsions, the chain undergoes an
adiabatic compression during which N remains constant (see

Fig. 3). For kBTI/h ∼ 65 kHz, these constant-N plateaus are
smoothed out for most of the evaporation because of the
uncertainty �UI = UI/

√
NI on the initial energy. Indeed, it

reflects on the entropy as �SI = �UI/TI , and leads to sizable
fluctuations �S(N ) during most of the evaporation. These yield
the uncertainty �L(N )

f = �S(N )/S(N )′
max (L f ) on the trap size L(N )

f
at which the atom N is expelled.

For shorter chains, the constant-N plateaus become well
resolved at the end of the evaporation, as the chain approaches
its ground state. For Fig. 4 and kBTI/h = 65 kHz, these
plateaus are visible when the remaining trapped atom number
N � 45 (see Fig. 9), in agreement with the classical-dynamics
results of Ref. [27]. The plateaus are resolved earlier on for
lower initial temperatures and later on for higher ones.

5. Quasiuniversality

We now focus on longer chains with N ∼ 1000 and l ∼
5 μm. Then, the quadratic energy U (N, L, T ) = Nu(l, T ), the
entropy S(N, L, T ) = Ns(l, T ), their maxima Umax(N, L) =
Numax(l ) and Smax(N, L) = Nsmax(l ), and the zero-point en-
ergy EZP(N, l ) = NeZP(l ) are all extensive.

a. Energy and entropy

We consider two consecutive adiabatic plateaus corre-
sponding to N and N − 1 trapped atoms. Equation (5) pro-
vides the initial energy per particle u(N−1)

i = U (N−1)
i /(N − 1)

for the second plateau in terms of its final value for the first
one, u(N )

f = U (N )
f /N , and the mean distance l (N )

f = L(N )
f /N :

u(N−1)
i = u(N )

f + (
u(N )

f + 7C6/l (N )6
f − VL

)
/N. (A3)

Hence, starting from the first atomic expulsion, u remains
close to the universal curve u = umax(l ), within small devia-
tions that decrease like 1/N . Furthermore, the entropies s(N ) =
smax(l (N )

f ), which are constant during each plateau, all lie near

FIG. 10. Standard deviations (a) �s, (b) �u, and (c) �n on the entropy per particle s = S/N , the energy per particle u = U/N , and the
remaining atom fraction n = N/NI , for the long chain of Fig. 5 in the main text. The ratios (d) �s/�l and (e) �u/�l , with �l = (l/n)�n,
closely follow the derivatives dsmax/dl and dumax/dl starting from the first expulsion.
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0.71

0.67

FIG. 11. (a) Scaled atom fraction n = N/NI for NI = 1000 and various uI , showing an approximate scaling whose breakdown is visible in
the inset. (b) The derivative ∂s/∂l|u calculated along the horizontal dark red path in panel (c). This path crosses the curve u = umax(l ) (dashed
gray line) at the first expulsion point (l1, u1) for uI/h = 65 kHz. The dotted-dashed red line shows the isentropic curve followed up to the first
expulsion.

the universal curve s = smax(l ). Both of these properties are
illustrated in Fig. 5 for various uI = UI/NI , which set the mean
atomic distance l1 at which the first expulsion occurs.

b. Fluctuations

The quasiuniversality of the evaporation constrains the
fluctuations �u and �s on the energy and entropy per par-
ticle to follow those on the atomic distance, �l . Neglecting
the small deviations from the universal curves u = umax(l )
and s = smax(l ), they satisfy �u/�l = u′

max(l ) and �s/�l =
s′

max(l ) (see Fig. 10).
The constraint on �u/�l has an important consequence.

As l decreases, umax(l ) tends toward eZP(l ) [see Fig. 5(b)].
Hence, the derivative u′

max(l ) goes to zero. The fluctuations
�u do not vanish, therefore �l increases and so does �n =
(n/l )�l [see Fig. 10(a)]. Thus, as long as the quasiuniversal
regime holds, the constant-N plateaus will be poorly resolved.
If the evaporation proceeds further, it will eventually drive
the system out of the universal regime. Then, we expect to
recover the short-chain behavior described in Appendix A 4.
For the chain considered in Figs. 5 and 10, this occurs beyond
the validity range of our assumption Equant

M � EZP + h̄ωN , and
will be investigated elsewhere.

c. Nonuniversality of N/NI

The entropy per particle s(l, u) may be seen as a function
of l and u. The derivative ∂s/∂u|l = 1/T goes to zero on the
curve u = umax(l ), which is reached for T → ∞. However,
our numerical results show that ∂s/∂l|u diverges along the
curve u = umax(l ) [see Fig. 11(b)]. Therefore, s(l, u) may
not be linearized near this curve, and the entropy difference
s(N−1) − s(N ) = s(l (N−1)

i , u(N−1)
i ) − s(l (N )

f , u(N )
f ) goes to zero

slower than 1/N . This rules out any exact universal behavior
for the atom number fraction n = N/NI . However, the devia-
tion from universality is small. For a given NI , we consider
two initial energies uI1 < uI2, and we compare the curves
nuI1 (l ) and nuI2 (l ) for l < l1, where l1 is the mean atom spacing
leading to the first expulsion for uI1. Our numerical results
show that these two curves nearly satisfy the scaling relation,
which would have been exact had ∂s/∂l|u not been divergent,
namely nuI2 (l1)nuI1 (l ) ≈ nuI2 (l ) [see Fig. 11(a), whose inset
highlights the breakdown of this scaling behavior].

The divergence of ∂s/∂l|u = p/T along the curve u =
umax(l ) signals that the pressure p goes to infinity faster than
T does. This starkly contrasts with the behavior of the ideal
gas, where p/T = nkB is finite, its constant value being set by
the particle density n.
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4 Mechanisms hindering ergodicity for
three Rydberg atoms in a circular trap

This chapter summarises my most recent activity, devoted to semiclassical physics and
chaos1 in a three–body system. It is largely inspired by my published paper [4] and my
recent preprint [5]. Both involve, as the sole other author, my PhD student Benôıt Zumer.
This activity was initiated as my work on the evaporative cooling of a Rydberg atom

chain, presented in chapter 3, was drawing to a close. There, my thermodynamic analysis
hinged on the assumption that the system behaved ergodically during the evaporation.
This assumption is not innocuous. The investigation of mechanisms impeding ergodicity,
and their possible interplay with the evaporative cooling scheme, was a logical next step.
Various mechanisms impeding ergodicity have been investigated in the context of atomic

systems. Among these, many–body localisation [68] usually relies on the presence of dis-
order. Integrability [69] is a property of specific models whose observation has required
fine–tuning the trapping geometry [70]. Neither of these effects were expected to directly
affect chains of Rydberg atoms.
By contrast, many–body scarring [29] had recently been experimentally identified in

such a chain [22], and has been under intense theoretical scrutiny since then [71]. A key
difficulty in its interpretation resides in it being observed in the quantum dynamics of a
spin system, for which the construction of a classical analog is not straightforward [72].
This motivated the search for a simple system, involving spatial motion rather than

spin dynamics, in which to look for ergodicity breaking. Inspired by recent experimental
advances in Rydberg atom trapping [25, 26], we chose to focus on a trapped interacting
few–body system. We consider a circular trapping geometry [73, Sec. II.C.2], with no
dependence on the trapping potential in the longitudinal direction so as to avoid spurious
single–particle effects. In this geometry, the total angular momentum along the axis of the
trap is conserved, so that the two–particle problem is separable. We focus on the simplest
non–separable case, namely, three repulsively interacting particles in a circular trap.
We formulate our proposal in terms of three identical bosonic Rydberg atoms, with

parameters that are accessible in current experiments [28]. Then, the range of the inter-
particle interaction, which is of the order of 70µm, exceeds the typical distance between
the atoms, of the order of 12µm. Hence, the system is not dilute, and the interaction
may not be modelled by a contact potential. This sets our system apart from previous
investigations of the three–body problem in the context of e.g. cold atoms [74, Sec. 2.1].
Similar phenomena are expected with magnetic atoms [17] or dipolar molecules [18].

1General references on these topics include the books [7, 63, 64] and the review articles [65–67].
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𝜃1

𝜃2

𝜃3

d12

d23

d31R

Figure 4.1: Three identical bosonic particles (orange disks) in a
circular trap (blue) of radius R. Their positions are characterised by
the three angular coordinates θ1, θ2, θ3. Their distances dij satisfy
dij = 2R| sin(θi − θj)/2|.

4.1 The considered system

We consider three identical bosonic particles of mass m. Their internal state is assumed to
be the same for all particles at all times, so that it drops out of the description. They are
confined in a circular trap of radius R whose axis is perpendicular to the plane of Fig. 4.1.
No single–particle trapping potential is added along the circle. The Hamiltonian reads:

H =
l21 + l22 + l23

2mR2
+ V (θ1, θ2, θ3) , (4.1)

where li = mR2 dθi/dt is the component of the angular momentum of particle i along the
axis of the trap. The term V represents pair–wise interaction between the particles:

V (θ1, θ2, θ3) = v(d12) + v(d23) + v(d31) with dij = 2R| sin[(θi − θj)/2]|, (4.2)

where we assume that the interaction v(dij) between particles i and j depends only on
their distance dij. For circular Rydberg atoms whose electronic angular momenta are
perpendicular to the plane, v(dij) = C6/d

6
ij, where the interaction strength C6 > 0, i.e. the

two–atom interaction is repulsive.

4.1.1 Experimental prospects

We consider e.g. 87Rb atoms in the circular Rydberg state 50C, and consider energies (of
the order of h× 200 kHz = kB × 10µK) and a spatial size for the trap (radius 7µm) which
are within the reach of ongoing experiments in the group led by M. Brune at LKB/Collège
de France in Paris [28]. The considered geometry may be achieved owing to recent ad-
vances in Rydberg atom trapping [25, 26]. The ring–shaped trap may be realised optically
using Laguerre–Gauss beams and light sheets [73, Sec. II.C]. The position of the atoms
may be detected at a given time by turning on a 2D optical lattice trapping individual
Rydberg atoms [24, 28] which freezes the dynamics, followed by atomic deexcitation and
site–resolved ground–state imaging [75].

4.1.2 Rotational invariance: reduction to two degrees of freedom

In this section, we exploit a continuous symmetry to reduce the three–particle Hamiltonian
of Eq. (4.1) to an effective Hamiltonian involving two degrees of freedom.

46



4.1 The considered system

The interaction term of Eq. (4.2) satisfies V (θ1, θ2, θ3) = V (θ1 + θ0, θ2 + θ0, θ3 + θ0) for
any θ0, i.e. the system exhibits rotational invariance. Hence, its total angular momentum
is conserved. We separate it out using the Jacobi coordinates2 (x, y, z) defined as:





x = [(θ1 + θ2)/2− θ3 + π] /
√
3 ,

y = (−θ1 + θ2)/2− π/3 ,

z = (θ1 + θ2 + θ3)/3− 2π/3 ,

that is,





θ1 = x/
√
3− y + z ,

θ2 = x/
√
3 + y + z + 2π/3 ,

θ3 = −2x/
√
3 + z + 4π/3 .

(4.3)

The constants π/
√
3, −π/3, −2π/3 appearing in Eq. (4.3) have been chosen such that

the equilibrium position characterised by θ1 = 0, θ2 = 2π/3, θ3 = 4π/3 corresponds to
x = y = z = 0. The momenta px, py, pz conjugate to the coordinates x, y, z read
px = (l1+ l2−2l3)/

√
3, py = −l1+ l2, and pz = l1+ l2+ l3. In particular, pz is the conserved

total angular momentum. In terms of the coordinates x, y, z, and the momenta px, py, pz,
the Hamiltonian of Eq. (4.1) reads H = p2z/(6mR

2) +H2D, where:

H2D = (p2x + p2y)/(4mR
2) + V (x, y) . (4.4)

The effective Hamiltonian H2D describes a fictitious particle of mass 2m and position
r = (x, y), evolving in a 2D plane due to the potential V (r) = (C6/R

6) Ṽ (r)/64, with

Ṽ (r) =


 1

sin6
[
π
3
+ y

] + 1

sin6
[
π
3
−

√
3
2
x− 1

2
y
] +

1

sin6
[
π/3 +

√
3
2
x− 1

2
y
] − 64

9


 . (4.5)

In Eq. (4.5), we take V (r) = V (θ) − 64/9 × C6/R
6 so that V (r = 0) = 0. The potential

V (r) does not depend on z, in accordance with the conservation of pz.
The left panel of Figure 4.2 shows a few contour lines of V (x, y) within the equilateral

triangular region defined by the points A(−π/
√
3,−π/3), B(+π/

√
3,+π/3) and C(0, 2π/3)

in the (x, y) plane. This region corresponds to the condition θ1 < θ2 < θ3 < θ1 + 2π on
the angular coordinates. Each edge of the triangle corresponds to a collision between two
particles, and V (x, y) → +∞ along all three edges, e.g. V (x, y) ≈ C6/(y+π/3)

6 near [AB].

2The Jacobi coordinates play a role similar to the separation of the motion of two particles in terms of
that of the centre of mass and that of the reduced particle. We use Faddeev’s definition [76, Sec. 1.2.2]
(rather than other existing definitions, see e.g. Ref. [77, Sec. 3.2]) because it leads to the momenta
px, py appearing with the same mass 2m in the effective Hamiltonian H2D of Eq. (4.4), hence easing
the comparison with well–known models such as the Hénon–Heiles Hamiltonian of Eq. (4.11).
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Figure 4.2: Left: Contour plot of the potential V of Eq. (4.5) within the equilateral triangular
region ABC in the (x, y) plane, corresponding to θ1 < θ2 < θ3 < θ1 + 2π. Right: The (x, y)
configuration space is the inside of the equilateral triangle defined by the points A(−π/

√
3,−π/3),

B(+π/
√
3,−π/3), C(0, 2π/3). The dashed golden line limits the classically accessible region for

the energy ϵ = 7C6/R
6. The dotted red lines show the three classical periodic trajectories of

type B for this energy. The small green triangle OLB is the asymmetric unit, i.e. the reduced
configuration space within which wavefunctions are calculated.

4.1.3 Discrete symmetries of the interaction potential V

4.1.3.1 From angular coordinates to Jacobi coordinates

The interaction potential V (θ) of Eq. (4.2) exhibits three additional symmetry properties:

(S1) Angular periodicity:
V (θ1, θ2, θ3) = V (θ1 + 2π, θ2, θ3) = V (θ1, θ2 + 2π, θ3) = V (θ1, θ2, θ3 + 2π);

(S2) Symmetry under particle exchange: V (θ1, θ2, θ3) = V (θ2, θ1, θ3) = V (θ1, θ3, θ2);

(S3) Three operations conserving both the particle ordering and their distances:
V (θ1, θ2, θ3) = V (−θ1 − 2π,−θ3,−θ2) = V (−θ3,−θ2,−θ1) = V (−θ2,−θ1,−θ3 + 2π) .

We now show that each of the properties (S1), (S2), and (S3) yields a discrete symmetry
leaving V (r) invariant. These symmetries are defined in terms of the equilateral triangle
ABC of Fig. 4.2 and the points O, H, K, L all defined on the right panel of the figure.

Angular periodicity. We start with the property (S1). The operation expressed in terms
of the angular coordinates as θ → θ′, with (θ′1, θ

′
2, θ

′
3) = (θ1 + 2π, θ2, θ3), corresponds

to a translation in terms of Jacobi coordinates: r, z → r′, z′ with r′ = r + CB and
z′ = z + 2π/3. The potential V (r) does not depend on z, hence, it is invariant under the
translation r → r+CB. Similarly, it is invariant under the translations r → r+AC and
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4.1 The considered system

r → r + BA. The associated shift z → z + 2π/3, reflecting the change in the quantity
(θ1+ θ2+ θ3)/3, is unimportant for classical mechanics, but it does play a role in quantum
mechanics: see below and the third column of Table 4.1.

Symmetry under particle exchange. We turn to the property (S2). The operation
θ′1 = θ2, θ

′
2 = θ1, θ

′
3 = θ3 exchanges particles 1 and 2. In terms of Jacobi coordinates, it

corresponds to r′ = S(AB)r and z′ = z, where S∆ is the reflection, in the (x, y) plane, about
the axis ∆. Hence, V (r) is invariant under the reflection S(AB). Similarly, it is invariant
under the reflections S(BC) and S(CA).

Three operations conserving both the particle ordering and their distances. Finally,
we consider the property (S3). Each of the three transformations considered there leaves
the set of distances {d12, d23, d31} globally unchanged. Therefore, each leaves the potential
V invariant. In terms of Jacobi coordinates, these operations read, respectively, (r′ =
S(AH)r, z

′ = −z − 2π), (r′ = S(BK)r, z
′ = −z − 4π/3), and (r′ = S(CL)r, z

′ = −z − 2π/3).
Here, S(AH), S(BK), and S(CL) are the reflections, in the (x, y) plane, about the medians
(AH), (BK), and (CL) of the triangle ABC. The potential V (r) does not depend on z.
Hence, V (r) is invariant under these three reflections.

4.1.3.2 Plane group leaving the potential V (r) invariant

The translations and reflections listed above generate the plane group leaving V (r) invari-
ant. This is an infinite group which contains, in particular,

(i) the translations through the vectors AB and AC;

(ii) the rotation of order 6 about the point A: RA,π/3;

(iii) the reflections about the medians of the triangle ABC: S(AH), S(BK), and S(CL);

(iv) the reflections about the edges of the triangle ABC: S(AB), S(BC), and S(CA).

The plane group generated by these elements [78, part 6] is p6mm. This symbol should
be interpreted as follows, using the elements (i)–(iv). The initial lowercase ‘p’ means
“primitive 2D lattice” (generated by (i) the vectors AB and BC). The number ‘6’ signals
the presence of a rotation of order 6 (the rotation (ii) RA,π/3). The two letters ‘m’ signals
the presence of two independent families of mirrors (the reflections about (iii) the medians
of the triangle and (iv) its edges).

The reflections about the medians may not be expressed in terms of those about the
edges (without using the rotation of order 6), because the product of two symmetries
about lines that make up an angle π/3 (like (AB) and (AC)) is a rotation of angle 2π/3,
whereas rotations of angle π/6 or π/2 are required to relate the edges to the medians.
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4.1.4 Classical mechanics

The Hamiltonian H of Eq. (4.1), or equivalently H2D of Eq. (4.4), may represent either a
classical system or a quantum one. We now examine these two points of view in turn.
In this section, we interpret H2D as the Hamiltonian for a classical system. The classical

trajectories of the system are identified by solving Newton’s equation, dp/dt = −∇rH2D.
In the change of variables specified by Eq. (4.3), the new coordinates (x, y, z) depend

only on the old coordinates θ = (θ1, θ2, θ3) (and not on the momenta li). Hence, this is a
canonical transformation [79, §45], represented by the generating function Φ(θ; px, py, pz) =
x(θ) px + y(θ) py + z(θ) pz.

4.1.4.1 Scaling property of the classical problem

The coordinates x, y are linear combinations of angles, hence, their conjugate momenta px,
py carry the unit of action. Throughout this chapter, we express momenta, energies, and
times in units of Pref = (mC6/R

4)1/2, Eref = C6/R
6, and Tref = (mR8/C6)

1/2, respectively.
Let p̃ = p/Pref and t̃ = t/Tref . Then, Newton’s equation governing the classical motion is

dp̃/dt̃ = −∇rṼ , which does not involve any of the experimental parameters m, C6, and
R. Hence, in these units, all classical3 results are independent of these parameters.

4.1.4.2 Discrete symmetries within the equilateral triangle ABC

The fact that V (r) → +∞ along the edges of the triangle ABC of Fig. 4.2 prevents the
particles from crossing. Therefore, if the point r(t), representing classical motion in the
(x, y) plane, is within the triangle at some initial time t0, it remains within it at all times.
Hence, we assume θ1 < θ2 < θ3 < θ1 + 2π at all times, and the classical problem is
reduced to a point moving in the 2D plane (x, y) within the equilateral triangle ABC, in
the presence of the potential V (x, y).
We focus on the interior of this triangle. Within it, the Hamiltonian H2D of Eq. (4.4)

is invariant under the point group C3v, the centre O being a fixed point for all symmetry
operations (see e.g. Ref. [80, §93]). The finite group4 C3v is a subgroup of the plane group
p6mm which consists of 6 discrete symmetry operations: the identity; the two rotations
of order 3 about the origin O, namely, RO,+2π/3 and RO,−2π/3); and the three reflections
about the medians (AH), (BK), (CL), namely, S(AH), S(BK), S(CL). The points O, H, K,
L involved in their definition all appear on the right panel of Fig. 4.2.
Each symmetry of the group C3v transforms one classical trajectory with given energy

ϵ into another one with the same energy, which may coincide with the initial one. For
example, the right panel of Fig. 4.2 shows the three periodic trajectories of type B with
the energy ϵ = 7C6/R

6 (see Sec. 4.3 for details) which correspond to each other through
the rotations of C3v, or equivalently its reflections. There are three, and not six, such

3This scaling no longer holds in quantum mechanics: see Sec. 4.1.5 below.
4We call the group C3v (rather than D3) because the potential V (x, y) is translationally invariant under
the direction z. Hence, the reflections S(AH), S(BK), S(CL) are specular reflections within planes
perpendicular to the (x, y) plane (rather than rotations about C2 axes within the plane as in D3).
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trajectories because each of the corresponding curves in the (x, y) plane exhibits reflection
symmetry about one median (S(AH) or S(BK) or S(CL)).

4.1.5 Quantum mechanics

The Hamiltonian H of Eq. (4.1) is now an operator representing a quantum system. The
angles (θi)1≤i≤3 and angular momenta li = −iℏ∂θi are also operators. Equation (4.3) maps
them onto six operators (xi) = (x, y, z) and (pi) = (px, py, pz). These satisfy the relation
pi = −iℏ∂xi

and, hence, the commutation rules [xi, pi] = iℏδij, [xi, xj] = 0, [pi, pj] = 0. We
find the stationary states Ψ of the system by solving the stationary Schrödinger equation,
HΨ = EΨ, with E being the energy corresponding to the eigenstate Ψ of H.
The reduced Planck constant ℏ enters the description of the quantum system through

the dimensionless ratio η = ℏ/Pref = ℏR2/(mC6)
1/2. The presence of this additional

parameter with respect to classical mechanics signals the inapplicability of the classical
scaling. Smaller values of η signal deeper quasiclassical behaviour. We choose η = 0.01,
corresponding to realistic experimental parameters involving 87Rb atoms in the circular
Rydberg state 50C [28], for which C6/h = 3GHzµm6.

4.1.5.1 Accounting for rotational invariance

We now analyze the role of the continuous and discrete symmetries identified in Secs. 4.1.2
and 4.1.3 above for the quantum system. We start with (continuous) rotational invariance.
We consider wavefunctions corresponding to a well–defined value of the total angular

momentum pz. Hence, we seek the eigenfunctions of H in the form Ψn(θ) = ψn(r)e
inz.

Here, Ψn is an eigenstate of H with the energy En. The wavefunction ψn(r), which
depends on the two coordinates r = (x, y), is an eigenstate of H2D with the energy ϵn.
The parameter n sets the value pz = nℏ. The energies En and ϵn are related through
En = ϵn + ℏ2n2/(6mR2), where the term proportional to n2 is the centrifugal energy.

4.1.5.2 Discrete symmetries of the wavefunction

There are two types of discrete symmetries of the wavefunction [69, chap. 2.5]. These are
related to the properties (S1) and (S2) for the potential identified in Sec. 4.1.3, but come
from physical considerations:

(S1) Univaluedness of the wavefunction:
Ψ(θ1 + 2π, θ2, θ3) = Ψ(θ1, θ2 + 2π, θ3) = Ψ(θ1, θ2, θ3 + 2π) = Ψ(θ1, θ2, θ3);

(S2) Bosonic symmetry: Ψ(θ1, θ2, θ3) = Ψ(θ2, θ1, θ3) = Ψ(θ1, θ3, θ2).

Imposing conditions (S1) and (S2) on the wavefunction Ψn(θ) amounts to requiring that
Ψn be a simultaneous eigenstate of H (eigenvalue ϵ, stationary Schrödinger equation); the
single–particle rotation operators of angle 2π, e−i2πl1/ℏ, e−i2πl2/ℏ, e−i2πl3/ℏ (eigenvalue 1,
condition (S1)); and the permutation operators S1,2, S2,3 exchanging the particles 1 and 2
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Image of θ1, θ2, θ3 Image of r, z Consequence for ψn(r)

Angular periodicity

θ1 + 2π, θ2, θ3 r +CB, z + 2π/3 ψn(r +CB) = ψn(r)e
−i2nπ/3

θ1, θ2 + 2π, θ3 r +AC, z + 2π/3 ψn(r +AC) = ψn(r)e
−i2nπ/3

θ1, θ2, θ3 + 2π r +BA, z + 2π/3 ψn(r +BA) = ψn(r)e
−i2nπ/3

One pair of particles is exchanged
θ2, θ1, θ3 S(AB)r, z ψn(S(AB)r) = ψn(r)
θ1, θ3, θ2 S(BC)r, z ψn(S(BC)r) = ψn(r)

θ3 − 2π, θ2, θ1 + 2π S(CA)r, z ψn(S(CA)r) = ψn(r)

Two pairs of particles are exchanged

θ3 − 2π, θ1, θ2 R(O,2π/3)r, z − 2π/3 ψn(R(O,2π/3)r) = ψn(r)e
i2nπ/3

Table 4.1: Symmetry operations expressed in terms of the angular coordinates (θ1, θ2, θ3) (left
column) and in terms of the Jacobi coordinates r = (x, y), z (centre column). The right column
shows their consequence for the wavefunction ψn(r). The symbol S∆ represents a reflection about
the straight line ∆ in the (x, y) plane. The symbol R(Ω,2π/3) represents a rotation about the point

Ω through the angle 2π/3 in the (x, y) plane. (Both S∆ and R(Ω,2π/3) leave z unchanged.)

or 2 and 3 (eigenvalue 1, condition (S2)). We now derive the consequences of these two
properties, which are summarised in Table 4.1.

Univaluedness of the wavefunction. We consider the operation θ → θ′, where θ′1 =
θ1+2π, θ′2 = θ2, θ

′
3 = θ3. In terms of Jacobi coordinates, it corresponds to (r, z) → (r′, z′),

with r′ = r +CB, z′ = z + 2π/3. The wavefunction Ψn satisfies Ψn(θ) = Ψn(θ
′), that is,

ψn(r)e
inz = ψn(r

′)einz
′
. Hence, ψn(r +CB) = ψn(r)e

−i2πn/3. Considering translations by
2π of the angles θ2 and θ3, we similarly obtain ψn(r +AC) = ψn(r +BA) = ψn(r)e

inz.
Hence, the wavefunction ψn(r) acquires a phase upon translation by a lattice vector5 CB,
AC, or BA. These conditions are compatible if ψn(r+CB+BA+AC) = ψn(r), which
implies that n is an integer. Hence, the total angular momentum along the axis of the
trap, pz = l1 + l2 + l3, is quantised, as expected [80, §27].

Bosonic symmetry. We now consider the operation represented by θ′1 = θ2, θ
′
2 = θ1,

θ′3 = θ3, that is, we exchange particles 1 and 2. In terms of Jacobi coordinates, this reads
r′ = S(AB)(r) and z

′ = z. Here S(AB) is the reflection, in the (x, y) plane, about the line
(AB). Bosonic symmetry Ψ(θ) = Ψ(θ′) then leads to ψn(S(AB)r) = ψn(r). Exchanging
particles 2 and 3, or 3 and 1, we find similar conditions involving reflections about the lines
(BC) and (CA): ψn(r) = ψn(S(BC)r) = ψn(S(CA)r). No phase is involved here, because
the exchange of two particles leaves the quantity (θ1 + θ2 + θ3)/3 unchanged.

5The wavefunction ψn(r) satisfies Bloch’s theorem for discrete translations along the lattice spanned by
(a1 = AB, a2 = AC). For a given integer n, a single Bloch vector in the Brillouin zone is allowed. If
n = 0 modulo 3, this vector is k = 0. If n = 1 modulo 3, it is k = +2π(b∗1 − b∗2). If n = −1 modulo 3,
it is k = −2π(b∗1 − b∗2). Here, (b∗1, b

∗
2) is the reciprocal basis of the direct basis (a1,a2) [81, chap. 1].
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O

A B

C

Figure 4.3: Tiling the (x, y) plane with the equilateral
triangle ABC (in black) and its images (orange and pur-
ple triangles) through the symmetry operations of the
right column of Table 4.1. Translations, leading to the
orange triangles, are related to angular periodicity (e.g.
(θ1, θ2, θ3) → (θ1 + 2π, θ2, θ3)). Reflections, leading to the
purple triangles, are related to bosonic exchange symme-
try (e.g. (θ1, θ2, θ3) → (θ2, θ1, θ3)). Within each triangle,
the dotted red lines show the three periodic trajectories of
type B with energy ϵ = 7C6/R

6, illustrating the symme-
tries with respect to the three medians of each triangle.

Combining the translations and rotations corresponding to the properties (S1) and (S2),
we obtain:

Rotations about the point O. The transformation laws stated in the two previous para-
graphs impose the behaviour of the wavefunction under the rotations of order 3, RO,2π/3

and RO,−2π/3, about the centre O of the equilateral triangle ABC. This follows from the
following identities involving translations T and reflections S:

R(O,2π/3) = S(AB) TCA S(BC) = S(BC) TAB S(CA) = S(CA) TBC S(AB) . (4.6)

All three relations of Eq. (4.6) lead to the same condition:

ψn(R(O,2π/3)r) = ei2π/3ψn(r) . (4.7)

4.1.5.3 Reduction to the triangle ABC for the quantum problem

The derivation given above of the quantisation of the total angular momentum pz hinges
on translating the wavefunction ψn(r) by lattice vectors. Hence, the wavefunction should
be considered as defined over the whole (x, y) plane. We tile this plane with triangles as on
Fig. 4.3. Combining lattice–vector translations and symmetries with respect to the three
edges of the triangle ABC, the wavefunction ψn is invariant under the reflections about
the edges of all triangles (only a few of which are shown on the figure). Therefore, it is
fully determined by giving its values within the equilateral triangle ABC (see Sec. 4.1.4).

As stated in Sec. 4.1.2, the potential V (x, y) strongly diverges along the edges of the
triangle ABC, e.g. V (x, y) ≈ C6/(y + π/3)6 near [AB]. Therefore, ψn(x, y) = 0 along
all three edges. Hence, the wavefunction ψn may be calculated within the interior of the
triangle ABC with this boundary condition. This domain coincides with the configuration
space considered in classical physics (cf. Sec. 4.1.4).
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4.1.5.4 Wavefunctions and representations of the C3v group

The potential V (x, y) exhibits one further symmetry property, (S3). As stated in Sec. 4.1.4,
once the problem has been restricted to the interior of the triangle ABC, this property
leads to C3v symmetry for the potential, the fixed point being the centre O of the triangle.
The classification of the eigenstates of H2D in terms of the symmetry group C3v hinges

on its irreducible representations [80, §94–96]. Under a symmetry transformation, the
wavefunctions of the stationary states of the system corresponding to a given energy level
transform into linear combinations of one another. Hence, the eigenspace corresponding to
a given energy is stable under the action of the symmetry group, i.e. it gives a representation
of the group. Barring accidental degeneracies or additional symmetries not accounted in
the symmetry group, the stable subspace may not be separated into two subspaces of
strictly smaller dimension that would also be stable, i.e. the representation is irreducible.
The irreducible representations of the group C3v are well known (see e.g. Table 7 in

Ref. [80, §95]). There are three of them, named A1, A2, and E. Representations A1 and A2

are unidimensional, whereas representation E is two–dimensional6. The transformation
laws for these representations may be formulated in terms of the rotation R = RO,2π/3

about the point O through the angle 2π/3, and the reflection S = S(CK) about the vertical
median, which generate the group C3v:

• Representation A1:
the non–degenerate level ψn satisfies ψn(Rr) = +ψn(r), ψn(Sr) = +ψn(r).

• Representation A2:
the non–degenerate level ψn satisfies ψn(Rr) = +ψn(r), ψn(Sr) = −ψn(r).

• Representation E:
the two–fold degenerate level is spanned by 2 orthogonal wavefunctions. Because of
Eq. (4.7), we choose basis functions7 ψ

(+)
n , ψ

(−)
n which diagonalise the action of R:

ψ
(+)
n (R−1r) = e+i2π/3ψ

(+)
n (r), ψ

(+)
n (Sr) = ψ

(−)
n (r);

ψ
(−)
n (R−1r) = e−i2π/3ψ

(−)
n (r), ψ

(−)
n (Sr) = ψ

(+)
n (r).

The choice of a representation A1, A2, or E defines the action of the symmetry elements
S and R = RO,2π/3 within the triangle ABC. Comparing the transformation laws for the
representations with Eq. (4.7), we conclude that the value of the angular momentum n
modulo 3 pilots the accessible representations:

• If n = 0 modulo 3, ψn belongs to a 1D representation A1 or A2;

• If n = ±1 modulo 3, ψn belongs to a 2D representation E.

6The existence of the 2D representation follows from the non–commutativity of the group C3v: for any
rotation R and any reflection S in it, SR = R−1S.

7The alternative basis vectors ψ
(+)
n ± ψ

(−)
n would lead to a representation of R and S in terms of real

matrices. However, this choice is incompatible with Eq. (4.7).
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Asymmetric unit. We focus on an eigenstate ψn(r) of H2D which transforms, under
the symmetry elements of C3v, according to a given representations A1, A2, or E. The
transformation laws further reduce the domain containing the independent values of the
function ψn(r) to the small green triangle of the right panel of Fig. 4.2, whose area is one
sixth of that of the complete triangle ABC.

4.1.5.5 Numerical solution of the stationary Schrödinger equation

We numerically solve the stationary Schrödinger equation for the Hamiltonian H2D of
Eq. (4.4) using the finite–element software FreeFEM [82]. We calculate stationary states
belonging to the three irreducible representations A1, A2, E of the group C3v separately.
The calculation is performed within the asymmetric unit defined in the previous paragraph,
and we formulate the transformation laws for each representation as a boundary condition
applied on its edges. We use a triangular mesh which covers and slightly exceeds the
classically accessible region (limited by the dashed golden line on the right panel of Fig. 4.2).
The mesh comprises 1000 vertices along each edge. We thus numerically obtain the energies
and wavefunctions for slightly more than 1200 consecutive energy levels for Representation
A1, 1200 levels for Representation A2, and 1700 non–degenerate levels for Representation
E, in energy intervals centred on 7C6/R

6.

We shall exploit these numerical results in the subsequent sections of this chapter. More
specifically, we shall analyse the energy spectra in Sec. 4.2, and a few specific eigenstate
wavefunctions (those localised near classical periodic trajectories) in Secs. 4.4 and 4.5.

Technical details for representations A1 and A2. Representations A1 and A2 are uni-
dimensional. Hence, the wavefunctions ψn(r) of the stationary states pertaining to them
may be chosen to be real [80, §18]. The finite–element method hinges on formulating the
weak form [83, chap. 3] of the considered eigenvalue problem H2D ψn = ϵψn, which involves
a bilinear form in the sought function ψn and a test function ϕ. For Representations A1

and A2, it reads:

∫
d2r

[
+

ℏ2

4mR2
(∇ϕ) · (∇ψn) + V (r)ϕψn

]
= ϵ

∫
d2r ϕn ψ . (4.8)

Equation (4.8) is supplemented by the boundary conditions, which depend on the con-
sidered representation. For the representation A1, ψn = 0 along [LB], and the normal
derivative ∂ψn/∂n = 0 along [BO] and [OL]. For the representation A2, ψn = 0 along all
three edges [LB], [BO], and [OL].

Technical details for Representation E. Representation E is two–dimensional. It allows
for some freedom in the choice of the basis vectors ψ

(+)
n and ψ

(−)
n (the transformation laws

should then be adapted accordingly). Exploiting time–reversal symmetry, these may be

chosen to be complex–conjugate: ψ
(+)
n (r) = ψ

(−)∗
n (r). Then, with a suitable choice for the
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phases [4, Appendix, Sec. 2b], ψ
(+)
n is characterised by:

ψ(+)
n (R−1r) = ei2π/3 ψ(+)

n (r) and ψ(+)
n (Sr) = ψ(+)∗

n (r) . (4.9)

The proof that a basis (ψ
(+)
n , ψ

(−)
n ) for representation E exists which satisfies Eq. (4.9)

along with ψ
(+)
n (r) = ψ

(−)∗
n (r) is given in the next paragraph. In view of the numerical

calculations, we write ψ
(+)
n (r) = (x − iy)[u1(r) + iu2(r)], where u1 and u2 are two real

functions satisfying coupled Schrödinger equations. The factor (x − iy) accounts for the

fact that ψ
(+)
n (0) = 0, like for the states of the 2D isotropic harmonic oscillator carrying

angular momentum [80, §112]. The boundary conditions read u1 = u2 = 0 along [LB],
and u1 = 0, ∂u2/∂n = 0 along [BO] and [OL]. A weak form may be written in terms of
the functions u1 and u2: it is similar to, but lengthier than, Eq. (4.8). In accordance with

the last line of Table 4.1, the physical wavefunction ψn(r) satisfies ψn = ψ
(−)
n if n = +1

modulo 3, and ψn = ψ
(+)
n if n = −1 modulo 3.

Proof of the existence of the basis (ψ
(+)
n , ψ

(−)
n ) satisfying Eq. (4.9). We start from a

basis of functions (ϕ
(+)
n , ϕ

(−)
n ), both normalised to 1, which satisfy the usual conditions for

representation E [84, Sec. 5.3]:
{
ϕ
(+)
n (R−1r) = e i2π/3 ϕ

(+)
n (r) ,

ϕ
(−)
n (R−1r) = e−i2π/3 ϕ

(−)
n (r) ,

{
ϕ
(+)
n (Sr) = ϕ

(−)
n (r) ,

ϕ
(−)
n (Sr) = ϕ

(+)
n (r) .

(4.10)

Complex–conjugating the two relations in the left half of Eq. (4.10), we obtain ϕ
(+)∗
n (R−1r) =

e−i2π/3ϕ
(+)∗
n (r) and ϕ

(−)∗
n (R−1r) = ei2π/3ϕ

(−)∗
n (r). Therefore, ϕ

(+)∗
n = αϕ

(−)
n and ϕ

(−)∗
n =

βϕ
(+)
n , with α and β being complex numbers. The complex–conjugate functions ϕ

(+)∗
n and

ϕ
(−)∗
n also have norm 1, so that |α| = |β| = 1. The identity [ϕ

(+)∗
n (r)]∗ = ϕ

(+)
n (r) leads to

α∗β = 1, so that α = β. At this point, ϕ
(+)
n (Sr) = α∗ϕ

(+)∗
n (r). Now, choose any complex

number γ such that γ2 = α, and let ψ
(+)
n = γϕ

(+)
n , ψ

(−)
n = γϕ

(−)
n . Then, all sought conditions

hold: ψ
(+)
n (R−1r) = ei2π/3 ψ

(+)
n (r), ψ

(+)
n (Sr) = ψ

(+)∗
n (r), and ψ

(+)∗
n (r) = ψ

(−)
n (r).

4.1.6 Analogy with the Hénon–Heiles Hamiltonian

The Hénon–Heiles Hamiltonian (see e.g. Ref. [7, chap. 8.2]) has been extensively studied
in the literature, both from the classical point of view and from the quantum one. It reads:

HHH = (p2x + p2y)/(2m) + mω2
0(x

2 + y2)/2 + α(x2y − y3/3) . (4.11)

In Eq. (4.11), the coordinates x and y carry the unit of length, the quantities px and py are
their conjugate momenta, the parameters m and ω0 denote a mass and a frequency, and
the coefficient α sets the strength of the cubic term. The model supports bound classical
trajectories with energies smaller than (mω2

0)
3/(6α2).

The Hénon–heiles model of Eq. (4.11) exhibits C3v symmetry [85]. This allows for an
analogy with the system we consider. In particular, the analysis of the symmetries of
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x

(yn+1,py,n+1) (yn,pyn)

x=0

Figure 4.4: Left: Schematic representation of the definition of the surface of section. Right:
Surface of section of the classical Hamiltonian H2D, for the energy ϵ = 7C6/R

6 and x = 0, px > 0.

classical periodic trajectories for the Hénon–Heiles potential [86] may be adapted to the
potential of Eq. (4.5). The analogy with the Hénon–Heiles model is actually far–reaching:
in addition to their shared symmetry group, both models also exhibit a mixed classical
phase space (see Sec. 4.2.1 below). The realisation of our proposed system may thus
be understood as the ‘simulation’ of the Hénon–Heiles Hamiltonian using a system from
atomic physics.

The difference between the Hénon–Heiles model and the three–particle system we anal-
yse resides in the considered geometry. The Hénon–Heiles Hamiltonian is defined over
the whole (x, y) plane, whereas the circular trap leads us to restrict both the classical
configuration space and the wavefunctions of the eigenstates of H2D to the interior of the
equilateral triangle ABC of Fig. 4.2. For the energies we consider (∼ 7C6/R

6), the classi-
cally accessible region is noticeably smaller than the classical configuration space, and the
wavefunctions of the quantum eigenstates do not substantially extend outside of it. Hence,
the role8 of this difference is minimal.

4.2 Mixed classical phase space, Berry–Robnik statistics

The nature of the classical phase space of a system is known to have an important impact
on the statistics of the energy levels of the corresponding quantum system [7, chap. 16].
The effect should be sought in the fluctations of the ‘unfolded’ (i.e. scaled, see below)
energy level spacings. Two limiting cases allow for a straightforward formulation of the
correspondence between classical phase space and quantum level statistics:

8The circular geometry yields a selection rule relating the eigenstates of H2D belonging to different
irreducible representations of the group C3v to different values of the total angular momentum n
modulo 3: see Sec. 4.1.5.4.
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• Classical integrable systems [63, §49] (e.g. the 2D square billiard), which only support
non–ergodic trajectories, lead to Poissonian level statistics;

• Classical chaotic systems (e.g. the 2D Bunimovich stadium billiard; general references
include [65, §8], [64, chap. 3], and [7, chap. 10]), almost all of whose trajectories are
ergodic, lead to Wigner level statistics.

This correspondence, put forward in Refs. [87, 88], has been extensively investigated numer-
ically and experimentally (see [89, chap. 2] for a review of experiments involving billiards).

Most classical systems are neither integrable nor fully chaotic. Their classical phase space
is mixed [67, Sec. 1], in the sense that they support both both non–ergodic trajectories
and ergodic ones. The Hénon–Heiles model is such a system [7]. Their quantum energy
level statistics are expected to obey neither the Poisson nor the Wigner distribution. More
sophisticated distributions have been proposed to represent these level statistics [90, 91].

The goal of this section is two–fold. Firstly, we show that the classical phase space of the
Hamiltonian H2D of Eq. (4.4) is mixed. Secondly, turning to the corresponding quantum
system, we justify that its energy level spacings obey Berry–Robnik statistics [91].

4.2.1 Mixed classical phase space

4.2.1.1 Regular and irregular trajectories

The Hamiltonian H2D represents an effective system with two degrees of freedom, so that
the classical phase space has dimension 4 (two coordinates x, y; two momenta px, py).
The Hamiltonian H2D does not depend on time, so that each classical trajectory has a
well–defined energy ϵ. Hence, a given trajectory explores a subset of phase space whose
dimension is at most 3. This trajectory densely covers a subset of phase space. We now
consider two cases, depending on the dimension of this subset:

• If the dimension of the subset is 2 (or 1 for periodic trajectories), the trajectory is
regular. In the case of bound motion considered here, it typically winds around a
torus [63, §49 and appendix 8]. It is non–ergodic, because its dimension is strictly
smaller than that of the energy surface (dimension 3);

• If the dimension of the subset is 3, the trajectory is irregular, and it ergodically
explores part of phase space [7, Sec. 8.3].

The subset considered here is obtained by considering the whole classical trajectory,
obtained from all times ranging from −∞ to +∞. The result is an object which no
longer depends on time, and which may hence be compared to the eigenstates of the
quantum Hamiltonian obtained by solving the stationary Schrödinger equation. For regular
trajectories, the comparison may be formulated precisely [92, Table V], and it plays a key
role in the semiclassical approach employed in Sec. 4.5 below.
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4.2 Mixed classical phase space, Berry–Robnik statistics

4.2.1.2 Surface of section

The surface of section [93, Sec. 1.2] allows for a graphical representation of the classical
phase space of a system, and the distinction between regular and irregular trajectories.
To each point (x, y, px, py) in phase space corresponds the energy of the single classical

trajectory defined by the initial condition (x, y, px, py). The energy surface comprised of
all points with the same energy ϵ has dimension 3; the intersection of this set with the
hyperplane characterised by x = 0 has dimension 2. The conservation of the energy ϵ
reads p2x = 4mR2[ϵ − V (x = 0, y)] − p2y, so that to each point with energy ϵ, x = 0, and
given values of y and py correspond two different trajectories which differ by the sign of px.
Therefore, the surface of section is defined as the set of points in phase space having the
energy ϵ with x = 0 and px > 0. Then, any point of the surface of section may be specified
by the two values y and py, and leads to a single classical trajectory.
We show the surface of section for H2D, calculated for the experimentally accessible

energy ϵ = 7C6/R
6, on the right panel of Fig. 4.4. It may be directly compared to the

surfaces of section for the Hénon–Heiles model [7, Sec. 8.3]. In particular, the surfaces of
section for both models exhibit reflection symmetry about the horizontal axis of the figure
[(y, py) → (y,−py)], which results from the simultaneous presence of (i) spatial reflection
symmetry about the x = 0 axis in the (x, y) plane, and (ii) time reversal symmetry.

Regular and irregular trajectories may be told apart visually by considering their inter-
sections with the surface of section:

• Regular, non–ergodic trajectories, which wind around tori, lead to concentric closed
curves. A few of these appear on Fig. 4.4 in blue and green.

• Non–regular, ergodic trajectories densely cover a fraction of the area of the surface
of section. On Fig. 4.4, the ≈ 287 000 thin brown dots represent intersections which
all belong to the same single ergodic trajectory.

Finally, the fixed points represent periodic trajectories, of which there are two types.
(i) The fixed points A0, A1, C+, C− are surrounded by concentric closed curves signalling
regular trajectories. Hence, the corresponding periodic trajectories are stable. (ii) The
three fixed points represented in red are within the area covered by the ergodic trajectory.
These fixed points signal the unstable trajectories B1, B2, and B3. Periodic trajectories
are analysed in detail in Sec. 4.3 below.

The key result of this paragraph is that the surface of section for H2D, calculated for the
energy ϵ = 7C6/R

6, exhibits both regular and irregular trajectories. Hence, the classical
system has a mixed phase space, as does the Hénon–Heiles model.

Numerical calculations. We obtain the classical trajectories, and their intersections with
the surface of section of Fig. 4.4, by solving the equations of motion for the Hamiltonian
H2D numerically, using Python and its numerical libraries NumPy and SciPy [94, 95].
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Figure 4.5: Integrated density of states Nr(ϵ)
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NE(ϵ) highlighting its staircase–like behaviour.
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We use an integration algorithm of the Runge–Kutta type [96, Sec. 17.2.4], ‘DOP853’,
already used in our previous work involving the coupled–channels approach to quantum
scattering [97, Sec. 12.4].

4.2.2 Berry–Robnik statistics for the quantum energy levels

In this section, we analyse the spectra of eigenvalues of the Hamiltonian H2D obtained,
for each of the three irreducible representations r = A1, A2, and E of the group C3v, by
solving the stationary Schrödinger equation.

The object we consider is Nr(ϵ), the integrated density of states [7, Sec. 16.2] for the
Hamiltonian H2D restricted to the representation r. This is a staircase–like function (see
the inset in Fig. 4.5) counting the number of eigenstates of H2D whose energies are ≤ E.
It has a smooth component, N̄(ϵ), and exhibits fluctuations Nfl(ϵ) about this smooth
component [67, Sec. 5.4], so that N(ϵ) = N̄(ϵ) +Nfl(ϵ).

The link between the spectral fluctuations and the Poisson, Wigner, and Berry–Robnik
distributions highlighted at the beginning of Sec. 4.2 does not apply to Nfl(ϵ) directly.
It holds for the ‘unfolded’ spectrum, i.e. the energy levels should be rescaled through
ϵ̂i = N̄r(ϵi) so that their mean spacing is equal to unity [67]. This allows for the comparison
of the spectral fluctuations of systems whose smooth integrated densities are not the same.

The parameter η = 0.01. For each representation, our analysis involves more than 1000
consecutive eigenvalues within an energy interval centred on 7C6/R

6. We proceed in two
steps. Firstly, we characterise the smooth component N̄r(ϵ) of the integrated density of
states, for each representation r. Secondly, we show that the unfolded level spacings are
well represented by Berry–Robnik statistics [91].

4.2.2.1 Smooth component of the integrated density of states

The integrated density of states Nr(ϵ) depends on the considered irreducible representation
r = A1, A2, or E [98] (see also Ref. [99] which focuses on quantum billiards). Indeed, even
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though the differential operator H2D has the same form within the interior of the asymmet-
ric unit, the boundary condition imposed on its edges differs from one representation to
another, leading to different eigenstates and eigenvalues for H2D. For the symmetry group
C3v considered in this work, the first few terms of the expansion of the smooth component
N̄r(ϵ) in powers of ℏ are known [98, Eqs. 33 and 50]. We retain the leading–order term,
proportional to 1/ℏ2, and the first correction, proportional to 1/ℏ, which leads to:

N̄A1(ϵ) = N̄−2(ϵ)/6 + N̄−1(ϵ)/2 +O(ℏ0),
N̄A2(ϵ) = N̄−2(ϵ)/6 − N̄−1(ϵ)/2 +O(ℏ0),
N̄E(ϵ) = 2N̄−2(ϵ)/3 +O(ℏ0),

(4.12)

where the quantities N−2(ϵ) and N−1(ϵ), proportional to 1/ℏ2 and 1/ℏ respectively, read:

N̄−2(ϵ) =

∫
d2r d2p

(2πℏ)2
θ(ϵ−H2D) and N̄−1(ϵ) =

1

2

∫
dy dpy
2πℏ

θ(ϵ−H2D)|x=0,px=0 . (4.13)

These integrals are taken over the part of classical phase space corresponding to energies
smaller than ϵ. Their evaluation does not require the knowledge of the quantum eigenstates.
On Figure 4.5, we compare the full Nr(ϵ), calculated numerically from the spectrum of

quantum energy eigenvalues, to its smooth component N̄r(ϵ), calculated from Eq. (4.12)
without using our quantum–mechanical results, for all three representations r = A1, A2,
and E. The agreement is excellent for all considered energies: the staircase–like features
of Nr(ϵ), visible in the inset, closely follow the smooth function N̄r(ϵ).

4.2.2.2 Quantum energy level statistics

For each representation r = A1, A2, or E, we calculate the spacings si,r = N̄r(ϵi+1)−N̄r(ϵi)
between consecutive ‘unfolded’ energies [67, Sec. 5.4]. We plot their distribution on Fig. 4.6,
where it is seen to differ from both the Poisson and the Wigner distributions [7, Secs. 16.3
& 16.4], as expected for a system with mixed classical phase space.
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For a given representation r, we now compare the distribution of the unfolded energy
spacings si,r to the Berry–Robnik distribution [91], specially devised to represent systems
with mixed classical phase space. In its simplest form, achieved when a single chaotic
region in phase space contributes to the statistics, this distribution depends on a single
parameter, the regular fraction ρ1 (see Eq. 28 in Ref. [91]), and it smoothly interpolates
between the Wigner distribution (ρ1 = 0) and the Poisson distribution (ρ1 = 1).
Figure 4.6 shows that the distribution of the unfolded energy spacings is well represented

by this simplest Berry–Robnik distribution, with the same parameter ρ1 = 0.6 for all three
representations. Both the assumption of a single chaotic region and the value of the regular
fraction ρ1 = 0.6, are compatible with the surface of section of Fig. 4.4. Indeed, the single
chaotic region represented on this figure occupies an area which is comparable to the total
area covered by the concentric closed curves signalling regular trajectories.
The applicability of the Berry–Robnik distribution relies, in particular, on the statistical

independence of the regular and chaotic sequences of levels. Counter–examples to this
distribution have been identified, e.g. the hydrogen atom in a magnetic field [100] where
Brody’s phenomenological distribution [90] better represents the statistics of the level spac-
ings for some choices of the parameters. The verification of Berry–Robnik statistics with
billiards requires reaching the deep semiclassical limit [101]. By contrast, our result pro-
vides a realisation of the Berry–Robnik distribution in an experimentally accessible system
involving smooth interatomic interactions rather than sharp billiard walls.

4.3 Classical periodic trajectories

Among the many trajectories supported by the classical Hamiltonian H2D of Eq. (4.4),
some are periodic in time. These play an essential role in the analysis of the corresponding
quantum system in at least two respects, both illustrated in Secs. 4.4 and 4.5 below:

• Some eigenstates ψn of the quantum Hamiltonian H2D are localised in the vicinity of
these periodic trajectories, i.e. the density |ψn(r)|2 is enhanced there, due to quantum
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Figure 4.8: Periodic trajectories of type (a, b) A, (c, d) B, and (e,f) C. The top panels (a,c,e)
represent the trajectories for the energy ϵ = 7C6/R

6 (corresponding to Fig. 4.9) as a function of
time t over one period (TA, TB, or TC) in terms of the Jacobi coordinates x and y. The bottom
panels (b,d,f) show the periods of each trajectory for 0 ≤ ϵ ≤ 7C6/R

6. The unstable trajectory B
has a non–zero Lyapunov exponent λB, plotted as a function of ϵ on panel (d) (brown dash–dotted
curve related to the vertical axis on the right edge of the figure).

scarring or classical localisation [102, chap. 22];

• The quantum density of states for the representation r, n(r)(ϵ) = dNr/dϵ, is related
to the classical periodic trajectories through the trace formula [7, chap. 17].

Stable and unstable trajectories. As previously mentioned in Sec. 4.2.1.2, classical pe-
riodic trajectories may be either stable or unstable against small perturbations. They yield
fixed points on the surface of section (see Fig. 4.4), the stable trajectories being surrounded
by tori whereas the unstable trajectories are embedded within the ergodic sea. Finding a
periodic trajectory very close to an ergodic one may seem surprising at first sight. However,
periodic trajectories are known to exist e.g. in chaotic billiards such as the Bunimovich sta-
dium [102, chap. 3]. Their unstable character means that a slight perturbation in the initial
conditions will grow exponentially with time and lead to a different, ergodic, trajectory.

Lyapunov exponent. The Lyapunov exponent λ [103] of a periodic trajectory is a positive
quantity, carrying the unit of inverse time, which measures its instability. For stable
trajectories, λ = 0. For unstable trajectories, λ > 0, and larger values of λ signal stronger
instabilities. The value of λ is extracted from the monodromy matrix of the periodic
trajectory [104], which encodes the evolution of a small mismatch in the positions and
momenta at a given point on the trajectory in classical phase space, after it is propagated
for a full period T under the linearised equation of motion. For stable periodic trajectories,
its eigenvalues all have modulus 1. For unstable trajectories, its eigenvalue µ whose absolute
value is the largest determines the Lyapunov exponent λ > 0 through |µ| = exp(λT ).

Numerical calculations. We characterise the periodic trajectories of H2D using our own
implementation, in C++, of the numerical approach of Ref. [105, Sec. III]. This iterative
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Figure 4.9: Periodic trajectories of types A (left), B (centre), and C (right) for the energy
ϵ = 7C6/R

6 (corresponding to the panels (a,c,e) of Fig. 4.8), plotted as a function of time in
terms of the three angular coordinates θ1, θ2, θ3, in the rotating frame with pz = 0 and z = 0.
The vertical dotted lines highlight times at which collisions occur. We also show θ1 + 2π and
θ3 − 2π so as to make collisions between atoms 1 and 3 apparent.

approach is a variant of the Newton–Raphson algorithm [96, Sec. 9.6] which simultane-
ously determines a periodic trajectory and its monodromy matrix. We have tested it by
recovering the results of Ref. [86] concerning the Hénon–Heiles potential (Eq. (4.11) above).

Three families of periodic trajectories. The simplest periodic trajectories supported by
the classical Hamiltonian H2D belong to three families existing for all energies ϵ > 0. They
are represented in the (x, y) plane, for the energy ϵ = 7C6/R

6, on Fig. 4.7. For a given
ϵ, there are three trajectories A0, A1, and A2 which correspond to each other through
rotations RO,±2π/3 of order 3 about the centre O of the triangle ABC. Similarly, there are
three trajectories B0, B1, and B2. There are two closed trajectories of type C, labelled
C+ and C− according to whether they rotate counterclockwise or clockwise as a function
of time. They lead to a single closed curve on Fig. 4.7. The top panels (a,c,e) of Fig. 4.8
show the time dependence (x(t), y(t)) of the coordinates for one member of each family A,
B, C over one period: this discriminates between C+ (shown on panel (e)) and C−. The
three panels of Figure 4.9 show the same three periodic trajectories in terms of the atomic
angular coordinates (θ1(t), θ2(t), θ3(t)), in the rotating frame such that pz = 0 and z = 0.
For the considered range of energies, the periods TA, TB, TC of the periodic trajectories

of the three families A, B, C are comparable, i.e. a few (mR8/C6)
1/2 (see the lower panels

b,d,f of Fig. 4.8). Using the experimentally accessible parameters of Sec. 4.1.1, all three
periods are of the order of 1ms. Thus, the ∼ 30ms lifetime of circular Rydberg atoms in
current experiments [106] corresponds to a few tens of periods.
The trajectories of types A and C are stable for all considered energies (i.e. their Lya-

punov exponent λ = 0). We shall analyse their impact on the quantum eigenstates of H2D

in Sec. 4.5. By contrast, the trajectories of type B are unstable for all energies, as shown
by their Lyapunov exponent λB > 0 plotted as a function of ϵ on Fig. 4.8(d). This figure
shows that Trajectory B satisfies both conditions heralding a quantum scar: λBTB < 2π
[102, chap. 22], and lower values of λB signal stronger scarring [64, Sec. 9.3]. We shall
examine the corresponding quantum scarred states in Sec. 4.4.
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4.4 Quantum scars: Eigenstates localised near the unstable Trajectory B

Figure 4.10: Quantum states scarred by the unstable trajectories of family B. We show the
probability density |ψ(x, y)|2 of the scarred quantum eigenstate whose energy is closest to 7C6/R

6

in each irreducible representation r = (a) A1, (b) A2, and (c) E. The dashed red lines show
the three classically unstable periodic trajectories of type B for the corresponding energy ϵ. The
densities are maximal near the unstable trajectories, signalling the quantum scar. The integer
ν(r) is an approximation to the index of the shown quantum state in the representation r.

4.4 Quantum scars:
Eigenstates localised near the unstable Trajectory B

4.4.1 Quantum scarred eigenstates for the Hamiltonian H2D

For the majority of the numerically calculated quantum eigenstates of H2D, the probability
density |ψn(x, y)|2 is unrelated to the periodic trajectories of type B. Nevertheless, for
each irreducible representation r = A1, A2, E, we find multiple quantum states whose
probability density is maximal near the three classically unstable trajectories B for the
corresponding eigenenergy. Figure 4.10 shows one such state for each representation r.
The energies of the multiple scarred states found in each representation are shown as the
vertical dashed red lines in Fig. 4.11.

These states satisfy Heller’s definition for a quantum scar as stated in Ref. [102, chap. 22].
Indeed, the mechanism stabilizing the classically unstable trajectory B requires quantum
mechanics9. The effect is not present classically, because the unstable periodic trajectory
is within the ergodic region of classical phase space, so that a small perturbation will drive
the classical system away from the periodic trajectory and into a new, ergodic, trajectory.

Symmetry of the probability density |ψn|2. The probability densities of the quantum
scarred eigenstates shown on Fig. 4.10 are enhanced along all three trajectories of family
B for the corresponding energy. More generally, the densities |ψn(r)|2 of all numerically
calculated eigenstates exhibit C3v symmetry, i.e. |ψn(Rr)|2 = |ψn(Sr)|2 = |ψn(r)|2 for any
rotationR and any reflection S in the group C3v. For the unidimensional representationsA1

and A2, this follows from the fact that ψn(Rr) and ψn(Sr) are both proportional to ψn(r),

9This contrasts with the classical localisation near stable periodic orbits described in Sec. 4.5 below.
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Figure 4.11: Semiclassical analysis of the en-
ergies of the quantum scarred eigenstates. For
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the solid curve shows the semiclassical contribu-
tion ∆n

(r)
B [Eq. (4.14)] to the density of states

n(r) due to the periodic trajectory B, as a func-
tion of the energy ϵ. The dashed vertical lines
show the energies of the scarred quantum states,

which closely match the maxima of ∆n
(r)
B . The

integers above them specify the relative state in-
dices ∆ν(A1), ∆ν(A2), ∆ν(E) with respect to the
index ν(r) of the scarred states in Fig. 4.10.

T
(r)
B S

(r)
B α

(r)
B k(r)

A1 TB/2 SB/2 λBTB/2 k
A2 TB/2 SB/2 λBTB/2 k − 1/2
E 2TB SB λBTB k + 1/2

Table 4.2: Parameters T
(r)
B , S

(r)
B , α

(r)
B , k(r) en-

tering Eq. 4.14, depending on the irreducible rep-
resentation r = A1, A2, or E.

with eigenvalues ±1. For the two–dimensional representation, it follows from our choice of
basis vectors ψ

(+)
n , ψ

(−)
n such that ψ

(+)
n (Sr) = ψ

(+)∗
n (r) and ψ

(+)
n (R−1r) = ei2π/3ψ

(+)
n (r).

4.4.2 Semiclassical analysis of quantum scars: trace formula

The semiclassical link between quantum mechanics and classical chaotic dynamics10 is
obtained through the trace formula [7, Sec. 17.4]. It relates the quantum density of states
for the representation r, namely, n(r)(ϵ) = dNr/dϵ to a sum over all periodic orbits of the

classical system. We isolate the contribution ∆n
(r)
B (ϵ) to n(r) coming from the unstable

periodic trajectory B [64, Sec. 9.3], which depends on the representation r [107, 108]:

(∆n
(r)
B 2πℏ/T (r)

B + 1)/α
(r)
B =

∞∑

k=0

{
[S

(r)
B /ℏ− 2π(k(r) + 1/2)]2 + (α

(r)
B /2)2

}−1

. (4.14)

The parameters T
(r)
B , S

(r)
B , α

(r)
B and kr are defined in Table 4.2. They are directly related

to classical quantities characterising the trajectory B at the energy ϵ: its period TB(ϵ), the
action SB(ϵ) =

∮
p · dx along the trajectory, and the product λBTB with λB(ϵ) being its

Lyapunov coefficient (see Sec. 4.3 above). The integer k is the summation index. Figure

4.11 shows the quantity ∆n
(r)
B , over an energy window centred on 7C6/R

6, for r = A1, A2,

and E. In all three cases, ∆n
(r)
B exhibits resonances, i.e. peaks with finite widths in energy.

Equation (4.14) is best understood in terms of the variable S
(r)
B , which is proportional

to the classical action SB(ϵ). In terms of this variable, the resonance maxima are evenly

10By contrast, in the case of regular classical dynamics, considered in Sec. 4.5 below, both the energy
spectrum and the wavefunctions for the eigenstates may be constructed semiclassically.
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spaced: S
(r)
B,max/(2πℏ) = (k(r) + 1/2). The resonance widths δS

(r)
B = α

(r)
B , proportional to

λBTB, reflect the instability of trajectory B encoded in λB(ϵ). Within the considered energy
range, SB(ϵ) varies linearly with ϵ, as shown on Fig. 4.12. Thus, both of these properties

translate directly to ∆n
(r)
B (ϵ) considered as a function of ϵ. In particular, the series of

scarred states found in each irreducible representation reflects the multiple resonances in
∆n

(r)
B (ϵ), and the regularity of their energy spacing follows from the resonance maxima

being evenly spaced in terms of the classical action S
(r)
B .

4.4.3 Comparison with other quantum scars and many–body scars

Quantum scars were discovered by Heller in 1984 [109] and first observed in microwave
cavities in 1992 [110]. They have benefited from renewed interest following a recent ex-
periment involving chains of Rydberg atoms [22]. We now briefly compare the three–body
scar we have introduced in the present Sec. 4.4 to other experiments and proposals.

4.4.3.1 Single–particle physics versus interacting systems

Heller’s theoretical proposal [109] was formulated in terms of a single particle in the 2D
stadium billiard, which is classically chaotic. Its early experimental demonstration involved
microwaves in a stadium–shaped cavity. The eigenvalue problem defining the solutions of
Maxwell’s equations compatible with this cavity is analogous to Schrödinger’s equation for
the stationary quantum states of a single particle in a billiard [89, 2.2]. In both cases, the
required classical chaotic character is due to the shape of the considered enclosure.
By contrast, in the three–particle system we consider, classical chaos hinges on the pres-

ence of three interacting particles. Indeed, the single–particle problem and the interacting
two–particle problem are both classically integrable, whereas the three–particle problem is
not, as signalled by the presence of the ergodic sea on the surface of section of Fig. 4.4.
The essential role of the interparticle interaction allows for a comparison between the

three–body quantum scar considered here and many–body scars [22, 29, 111] (though the
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4 Mechanisms hindering ergodicity for three Rydberg atoms in a circular trap

considered systems are not equivalent, as argued in Sec. 4.4.3.2 below). The use of Jacobi
coordinates (Eq. (4.3)) reduces the three–body problem to an effective single–particle prob-
lem governed by the Hamiltonian H2D(r). However, the theoretical analysis of many–body
scars also hinges on an effective description involving few degrees of freedom. Incidentally,
the phase–space dimensionality of the three–particle problem we analyse (4, see Sec. 4.2.1.1
above) matches the maximum number of independent parameters introduced so far in the
variational approaches applied to the many–body PXP model [112, Sec. III.A].

4.4.3.2 Spatial motion version internal–state dynamics

In the experiment of Ref. [22], the quantum dynamics affects the internal states of the
individual atoms, each of which may be, at a given time, either in its ground state or in a
Rydberg state. Hence, this system is described in terms of a spin model (the ‘PXP’ model,
see e.g. Ref. [113]), the construction of whose classical analog is non–trivial and approximate
[72]. By contrast, our three–body system affords an exact reduction to four parameters
(see Sec. 4.1.2 above), and the identification of the classical analog is straightforward.

4.4.3.3 One important shared feature: ‘towers’ of scarred states

The system we consider exhibits ‘towers’ of quantum scarred states which are approx-
imately evenly spaced in energy (see Fig. 4.11). These are also a recurring feature of
many–body scars [71, 72]. In the present context, we fully explain them semiclassically
(see Sec. 4.4.2 and Fig. 4.12) in the spirit of Heller’s original argument [114, Fig. 22].

4.4.3.4 Quantum scar versus classical localisation

Despite the intense theoretical scrutiny [71], only two experiments [22, 115] and one explicit
proposal [116] explore many–body scarring so far. In all three cases, the observed non–
ergodic behaviour is linked to classical physics.
The proposal of Ref. [116] refers to spin helices. Their classical limit is stable, and from

the quantum point of view they generalise helices predicted and observed in the integrable
XXZ chain. Hence, the proximity of integrable models is expected to play a key role.
We now turn to the experiments of Refs. [22, 115]. These both probe the PXP model

in regimes where the classical analog system explores the vicinity of classically stable
periodic trajectories. Hence, the absence of thermalisation may be traced back to the
classical Kolmogorov–Arnold–Moser theorem [112, Sec. VI]. In particular, on the surfaces
of section shown as Figs. 2a and 5a of that reference, the considered periodic trajectories
appear as fixed points surrounded by concentric closed curves, signalling their stability.

The suspected role of classical physics in these experiments suggests that further insight
may be gained by considering another mechanism impeding ergodicity, namely, classical
localisation in the vicinity of classically stable periodic trajectory. This second mechanism
also occurs in the three–particle system we put forward in the present chapter, where one

68



4.5 Classical localisation: Eigenstates localised near the stable Trajectories A, C

may address either the quantum scar or classical localisation simply by changing the initial
condition defining the atomic motion. We analyse this second mechanism in section 4.5.

4.5 Classical localisation:
Eigenstates localised near the stable Trajectories A and C

In this section, we focus on quantum eigenstates of H localised in the vicinity of the stable
classical periodic trajectories A and C.
This localisation phenomenon superficially resembles the quantum scars stemming from

the unstable periodic trajectory B, analysed in Sec. 4.4. However, the quantum states we
consider in the present section do not satisfy Heller’s definition for a quantum scar [102,
chap. 22]. Indeed, in stark contrast to trajectory B, trajectories A and C are already stable
from the classical point of view, so that quantum mechanics brings about no qualitative
change in the behaviour of the system in their vicinity. This has at least two consequences
which set the classically localised eigenstates of H2D apart from the quantum scarred ones:

1. They obey selection rules reflecting the symmetries of the classical KAM tori;

2. Their energies and wavefunctions may be explicitly obtained semiclassically.

We analyse both features in detail, for trajectories A and C, in our recent preprint [5]. In
this memoir, we focus on the second of these features, in the case of trajectory A.

Our analysis hinges on a well–established semiclassical approach. Among these, the
Wentzel–Kramers–Brillouin (WKB) approach [80, §46, 47] is widely known, but its usual
formulation is not generally applicable to problems involving two or more degrees of
freedom. We employ its generalisation, the Einstein–Brillouin–Keller (EBK) approach
[92, 117], which does not suffer from this limitation.
The EBK approach is only applicable if the classical motion winds around a torus [66,

Sec. 3.2]. For systems involving a single degree of freedom, any bounded trajectory satisfies
this property [79, §50], so that this restriction is not usually mentioned in the context of
the WKB approach. However, for systems involving two or more degrees of freedom,
irregular motion may occur. The presence of the brown ‘sea’ on the surface of section of
Fig. 4.4, comprised of intersections due to a single irregular trajectory, confirms that it
does occur for the Hamiltonian H2D we are considering. The unstable periodic trajectories
B, responsible for the quantum scars, are embedded within this sea. Therefore, the EBK
approach is not applicable there. This is why our semiclassical analysis of the scars has
relied on Gutzwiller’s trace formula (see Sec. 4.4.2), which does account for the contribution
of unstable periodic trajectories to the density of states, but provides neither specific
energies11 nor wavefunctions for the quantum states.
By contrast, in the cases where it is applicable, the semiclassical EBK approach provides

both specific energies and wavefunctions. In this section, we obtain them for the quantum

11The finite widths of the resonances predicted by Eq. (4.14) cover multiple quantum states [64, Sec. 9.3].
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4 Mechanisms hindering ergodicity for three Rydberg atoms in a circular trap

Figure 4.13: A classical trajectory winding
around a torus, densely covering its surface. The
angular frequencies ω1 and ω2, corresponding
to motion around the tube and about the axis
of the torus respectively, satisfy ω1/ω2 =

√
3.

The trajectory is drawn for times t satisfying
0 ≤ ω2 t ≤ 300.

states localised near trajectories A and C, and compare these semiclassical predictions
to our numerical solution of the stationary Schrödinger equation (see Sec. 4.1.5.5). Our
quantum and semiclassical results are in excellent agreement.

We now describe our own implementation of the EBK approach. This implementation
is heavily influenced by Refs. [66, Secs. 3.1 & 3.2], [118], and [119]. The corresponding
numerical calculations are performed in Python, using the libraries NumPy and Scipy
[94, 95].

4.5.1 Fourier analysis of conditionally periodic motion

We consider a non–ergodic classical trajectory supported by the Hamiltonian H2D, stem-
ming from initial conditions which are not too different from those yielding a stable periodic
trajectory (e.g. trajectory A). We assume that this trajectory (i) is not periodic and (ii)
that it winds around a torus12 The considered system has two degrees of freedom (i.e.
the effective coordinates r = (x, y)), so that the torus is a two–dimensional surface in
phase space which is equivalent to a usual torus in standard three–dimensional space (see
Fig. 4.13). Hence, the motion r(t) is conditionally periodic, i.e. it may be written as a
Fourier series involving two independent frequencies ω = (ω1, ω2) [79, §52]:

r(t) =
∑

k

rk exp(ik · ωt), p(t) = 2mR2dr/dt , (4.15)

the sum being taken over all integer pairs k = (k1, k2). We extract the Fourier coefficients
rk entering Eq. (4.15) from the real–time trajectory r(t) by taking its fast Fourier transform

12A non–ergodic trajectory may densely cover an invariant surface which is not a torus: an explicit example
is given in Ref. [120]. We have not encountered this scenario in our numerical calculations with H2D.
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Figure 4.14: Squared moduli |xk|2, |yk|2 of the Fourier series of a regular trajectory in the
vicinity of the stable trajectory A (note the logarithmic scale along the vertical axes). The Fourier
components rk = (xk, yk) entering Eq. (4.15) are obtained through the fast Fourier transform
of the classical unfiltered trajectory (panels (a) and (b)) or after applying the Blackman–Harris
filter suggested in Ref. [118] (panels (c) and (d)). The red disks appearing on all four panels
show our choices for the fundamental frequencies ω = (ω1, ω2). The blue disks on panels (c) and
(d) are their integer combinations k · ω, which are in excellent agreement with the peaks in the
spectrum.

[121, chap. 9], using the Blackman–Harris filtering procedure suggested in Ref. [118]. The
fundamental frequencies (ω1, ω2) are not uniquely defined: we choose them as in Ref. [118,
Fig. 8(b)]. This Fourier analysis procedure is illustrated in Fig. 4.14.

Action–angle coordinates. We have assumed that the considered trajectory is dense on
the surface of the invariant torus. This allows for the introduction of angle coordinates
θ = (θ1, θ2) on the torus [118, Sec. II.A]. These are defined by setting ωt = θ in Eq. (4.15),
so that r(θ) =

∑
k rk exp(ik · θ), with a similar expression for p(θ). Two independent

closed circuits C1 and C2 may be drawn on the torus (i) either by varying θ1 from 0 to 2π
while keeping θ2 fixed, (ii) or by varying θ2 from 0 to 2π while keeping θ1 fixed. These
depend on the choice of (ω1, ω2). Those reflecting our choice are shown in Fig. 4.15(a).

We now consider the stability region surrounding trajectory A as a whole. Following
Ref. [67, Sec. 4.1], we ignore narrow instability subregions and approximate the whole
stability region by a set of concentric tori. We introduce angle coordinates on each of torus
in the region. A given such torus is uniquely determined by its actions Ix, Iy, defined by
Ii =

∮
p · dr/(2π) for i = x, y. This leads to a set of action–angle coordinates (I,θ) valid

over the whole stability region (but not over all phase space).
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Figure 4.15: (a) Classical trajectory A (solid dark blue) for the energy ϵ = 7C6/R
6, the nearest–

energy trajectory satisfying the quantisation condition for η = 0.01 (densely covering the light
blue area), and two independent circuits Cx (dotted purple) and Cy (dotted red) circling the
torus. The dashed gray lines show the caustics of this trajectory. The top left inset zooms in on
the narrow region near (x = 0, y = 1.2) to reveal the self–intersection of the caustics. (b) Top
panel: energies of the EBK wavefunctions for νx = 0 and 295 ≤ νy ≤ 305. Centre and bottom
panels: energies of the corresponding quasidegenerate quantum states in representations A1 and
E, obtained through our finite–element numerical calculations, labelled by their relative indices
with respect to the quantum state related to Trajectory A whose energy is closest to 7C6/R

6.

4.5.2 Semiclassical energies

4.5.2.1 Quantisation conditions

Up to now, our analysis has been completely classical. We now turn to semiclassical
mechanics. Among the tori in the stability region surrounding trajectory A, the EBK
approach associates a quantum eigenstate to those satisfying a quantisation condition of
the form Ii = ℏ(νi + αi/4) for i = x, y [92, Sec. V]. Here, the νi are positive integers,
and the Maslov index αi is a number characterising the condition to be applied along the
circuit Ci. In the usual one–dimensional context, α = 2 [80, §48], but this is not always
true for systems involving two or more degrees of freedom. The Maslov index αi for the
circuit Ci is calculated using the algorithm presented in Ref. [92, Sec. II.C], in terms of the
following quantities, all available in our numerical calculation (see Fig. 4.16):

• The signature of the Jacobian matrix ∂p/∂r, i.e. the number of its positive eigenval-
ues minus the number of its negative eigenvalues;

• The intersections of Ci with the r–caustics and p–caustics of the trajectory, along
which the Jacobian determinants det[∂r/∂θ] = 0 or det[∂p/∂θ] = 0, respectively.

We thus obtain the quantisation condition for the tori near trajectory A:

Ix = ℏ(νx + 1/2) and Iy = ℏ(νy + 1) , (4.16)
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Figure 4.16: Quantities entering the determi-
nation of the Maslov index αi along the circuits
(a) Cx and (b) Cy. The solid purple and red
lines show the signature of the Jacobian ma-
trix ∂p/∂r. The zeros of the Jacobian deter-
minants det[∂r/∂θ] = 0 (dashed black line) and
det[∂p/∂θ] = 0 (dotted golden line) signal that
the circuit Ci encounters an r–caustic or a p–
caustic, respectively.

where the positive integers νx and νy are the EBK quantum numbers. The action Ix ≥ ℏ/2,
so that the periodic trajectory A0 itself does not satisfy Eq. (4.16).

4.5.2.2 Numerical procedure

For any torus, quantised or not, in the stability region near trajectory A, we integrate the
classical equation of motion over a time interval of duration up to tmax = 3700(mR8/C6)

1/2.
We represent the resulting conditionally–periodic motion in terms of the Fourier series of
Eq. (4.15), keeping up to 3200 terms in the series. We calculate the actions Jx and Jy
specifying the considered torus in terms of the Fourier components [122]:

Ji =
∑

i′=1,2

∑

k

ki |rk|2ki′ ωi′ . (4.17)

We find the tori satisfying Eq. (4.16) numerically in the following way. We choose target
values I0x = ℏ(ν0x + 1/2) and I0y = ℏ(ν0y + 1). We start from an initial condition chosen
near the periodic trajectory A and adjust it to achieve (Jx − I0x, Jy − I0y ) = (0, 0) through
Scipy’s multidimensional root finding algorithm.

4.5.2.3 Comparison of the EBK energies to our finite–element results.

The tori satisfying Eq. (4.16) which are closest to trajectory A0 are those with νx = 0:
the corresponding energies within a window centered on ϵ = 7C6/R

6 are shown on the top
line of Fig. 4.15(b). We compare them to the energies of the stationary quantum states of
H2D belonging to representations A1 and E localized near the trajectories A0, A1, and A2,
obtained through our finite–element calculations. These are shown on Fig. 4.15(b), middle
and bottom lines, and are in excellent agreement with the EBK results.
Figure 4.15(b) shows that the energy of each EBK state with the quantum number

νx = 0 corresponds to three eigenstates of H2D found using the finite–element method:
one state in the representation A1 and two degenerate states in the representation E.
This is because the EBK wavefunction reflects the symmetries of the classical torus, but
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Figure 4.17: Representation of the invariant torus corresponding to the trajectory of
Fig. 4.15(a) in terms of 12 sheets. Their boundaries are shown in the (θ1, θ2) plane (left panel)
and in the (x, y) plane (centre panel). The right panel shows a zoom, in the (x, y) plane, of the
region where the caustics self–intersect.

does not automatically satisfy the symmetry requirements of any representation. Hence, it
should then be projected onto the irreducible representations A1, A2, and E [80, §94]. The
projection is non–zero for representations A1 and E. By contrast, the projection vanishes
for representation A2: we justify this in Ref. [5, Secs. IV.A & IV.B.1]. This explains the
absence of quantum states localised near Trajectory A belonging to the representation A2.

The quasidegeneracy of the quantum states belonging to different representations A1

and E, but related to the same EBK state with quantum numbers (νx = 0, νy), is lifted
by small couplings neglected in the EBK approach. Their small energy difference, of the
order of 10−6C6/R

6, is resolved in our finite–element results.

4.5.3 Semiclassical wavefunctions

We now turn to the construction of EBK wavefunctions. We illustrate it on the specific
case of the EBK state in the vicinity of trajectory A, with the quantum numbers νx = 0,
νy = 300, whose energy is closest to 7C6/R

6. The corresponding classical trajectory and
its caustics are shown in Fig. 4.15.

4.5.3.1 Sheeting the torus

The classical trajectory defines the coordinate vector r(θ) and the momentum p(θ) every-
where on the surface of the invariant torus, parametrised by the angle variables θ = (θ1, θ2)
of Sec. 4.5.1. We represent this torus in terms of multiple sheets, on each of which the
relation p(r) is univalued. The r–caustics, represented by the thick black lines of the
various panels of Fig. 4.17, provide some of the boundaries between these sheets. However,
when drawn in the (x, y) plane, these caustics self–intersect (see the inset of Fig. 4.15(a)),
and the sheeting must be constructed accordingly. We find that the univaluedness of p(r)
may be achieved using the twelve sheets represented in Fig. 4.17.
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4.5.3.2 Construction of the EBK wavefunction

The EBK wavefunction results from the interference of the contributions coming from
individual sheets [64, Sec. 7.2]:

ψEBK(r) = c
∑

j

|det [∂θ/∂r]|1/2 exp[i(Sj(r)/ℏ+ αj)] . (4.18)

In Eq. (4.18), the sum is taken over the sheets j = 1 to 12. The amplitude of each contribu-
tion is set by the Jacobian determinant det[∂θ/∂r] representing the change of coordinates
from r to θ. The classical action Sj(r) is calculated along the classical trajectory. The
Maslov phases αj are chosen such that the total phase [Sj(r)/ℏ+αj] decreases by π/2 each
time the classical trajectory traverses a caustic. Finally, c is a normalisation coefficient.

Numerical evaluation. We calculate the quantities ∂θ/∂r and Sj entering Eq. (4.18) as
a function of the angles θ, starting from Eq. (4.15). Then, we isolate the contribution of
the various sheets using masks whose boundaries are shown on Fig. 4.17.

4.5.3.3 Comparison between our semiclassical and finite–element results

Figure 4.18 compares the semiclassical wavefunctions obtained from Eq. (4.18), after pro-
jection onto the irreducible representations A1 and E, to our corresponding finite–element
results. The agreement between the two approaches is excellent, including in the regions
where the caustics self–intersect, shown in the upper left insets.
Primitive EBK wavefunctions do not account for the quantum penetration of the wave-

functions through the caustics. Instead, they diverge along the caustics as in the WKB
approach [80, §46] and vanish outside the classical torus. This is illustrated in Fig. 4.19,
which compares the semiclassical wavefunctions to the full numerical ones along the hori-
zontal and vertical axes. This limitation of the semiclassical wavefunctions leads to numer-
ical inaccuracies near the caustics which hinder their normalization. Hence, each of our
EBK wavefunctions matches the finite–element wavefunction up to an overall normaliza-
tion factor of order 2. We eliminate it by scaling the EBK wavefunction so that it matches
the finite–element result at one single point chosen far from the caustics.
The quantum penetration through the caustics may be accounted for, and hence this

limitation be overcome, using a uniform approximation to the wavefunction [64, Sec. 7.2].
This goes beyond the scope of the present work.
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Figure 4.18: Quantum states localized near the trajectories of family A. (a,b) Wavefunction
densities |ψA1(r)|2 and |ψE(r)|2 for the two quasidegenerate eigenstates of H2D localized near the
periodic trajectories of family A whose energies are closest to C6/R

6, obtained through our finite–
element numerical calculations. (c,d) The corresponding squared EBK wavefunctions |ψA1

EBK(r)|2
and |ψE

EBK(r)|2, built from the KAM torus satisfying Eq. (4.16) with νx = 0, νy = 300 (see
Fig. 4.15(a)). On all four panels, the left inset details the region where the caustics self–intersect,
and the right one shows the region near (x = 0, y = 0).
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Figure 4.19: Quantum states localized near the classical trajectory A: sections along the axes.
Comparison of the EBK (a,b) real wavefunction ψA1

EBK and (c,d) density |ψE
EBK|2 associated with

the complex wavefunction ψE
EBK (green) with the corresponding quantities obtained through

finite–element numerics (red) shown on Fig. 4.18. The semiclassical and quantum quantities are
compared along the horizontal (a,c) and vertical (b,d) axes. The insets illustrate their behaviour
near the caustics (vertical dashed gray lines). Each EBK wavefunction has been scaled to match
the finite–element wavefunction at the point (x = 0, y = 0.5).
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4.6 Conclusion

The system comprised of three interacting atoms in a circular trap may be described
theoretically using an exact mapping to a single effective particle in a plane, described by
a Hamiltonian which is reminiscent of the Hénon–Heiles model. In particular, the effective
problem exhibits C3v symmetry and its classical phase space is mixed.
We have analysed this system using well–established tools presented e.g. in Ref. [67] in

the context of model potentials. By contrast, the system we put forward has been made
experimentally accessible by recent advances in Rydberg atom trapping.
First, focussing on experimentally viable values for the parameters and energies, we have

studied the spectral statistics for each of the irreducible representations, and found that
they are well described by Berry–Robnik statistics.
Second, we have identified two mechanisms hindering ergodicity in this system. The first

mechanism is a quantum scar, analysed in Sec. 4.4. It leads to the existence of quantum
eigenstates which are localised in the vicinity of a classically unstable periodic trajectory.
The second mechanism is deeply rooted in classical mechanics. The stable classical periodic
trajectories supported by the system are surrounded by aperiodic non–ergodic trajectories
winding around tori. These lead to quantum eigenstates localised in the vicinity of the
stable periodic trajectories. We have obtained both their energies and their wavefunctions
using the EBK semiclassical approach. Our semiclassical results are in excellent agreement
with our full–fledged finite–element solution of the Schrödinger equation.
These mechanisms occur for the same values of the atomic mass, interaction strength,

and trap radius. They also occur within the same range of energies. One may address
one effect or the other simply by changing the initial condition defining the motion of the
atoms. This is promising in view of an experimental comparison of the two mechanisms.
The chosen circular geometry, with no longitudinal dependence of the potential along

the circle, minimises the role of single–particle traps. Accordingly, the mechanisms we have
described rely on the interaction between the particles. Hence, they may be compared to
many–body scars, with which they share at least one observable feature, namely, localised
states that are approximately evenly spaced in energy.
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We propose theoretically a quantum scar affecting the motion of three interacting particles in a circular trap.
We numerically calculate the quantum eigenstates of the system and show that some of them are scarred by a
classically unstable periodic trajectory, in the vicinity of which the classical analog exhibits chaos. The few-body
scar we consider is stabilized by quantum mechanics, and we analyze it along the lines of the original quantum
scarring mechanism [Phys. Rev. Lett. 53, 1515 (1984)]. In particular, we identify towers of scarred quantum
states which we fully explain in terms of the unstable classical trajectory underlying the scar. Our proposal is
within experimental reach owing to very recent advances in Rydberg atom trapping.
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I. INTRODUCTION

The thermalization of closed interacting quantum systems
[1] may be impeded by various mechanisms [2,3] whose
investigation is strongly motivated by contemporary appli-
cations [4,5]. Indeed, slowly thermalizing systems retain
memory of their initial state over longer times [6], making
them useful for quantum simulation [4] and quantum informa-
tion processing [5]. Atomic systems are an excellent test-bed
for chaos [7–9], and techniques for the individual manipula-
tion [10] of Rydberg atoms [11] have extended its exploration
to interacting systems. A recent experiment on Rydberg atom
arrays [12] has initiated the investigation of weak ergodicity
breaking in many-body systems [13,14]. Systems exhibiting
this phenomenon thermalize rapidly for most initial condi-
tions, but specific initial states yield nonergodic dynamics.
This behavior is analogous to the quantum scars initially pre-
dicted [15] and observed [16] in the absence of interactions,
which also lead to weak ergodicity breaking [17] by impacting
some [[18], chap. 22] quantum eigenstates. Hence, it is also
called “many–body scarring” [19]. A similar phenomenon
has been predicted in the context of the Dicke model [20],
where the quantum scars are due to the collective light–matter
interaction and impact many quantum eigenstates [21].

Despite the intense theoretical scrutiny [22], only two
experiments [12,23] and one explicit proposal [19] explore
many-body scarring so far [12,19,23]. In all three cases, the
observed nonergodic behavior is linked to classical physics.
The experiments of Refs. [12,23] both probe the PXP model
[24] in regimes where the classical analog system [25] ex-
plores the vicinity of classically stable periodic trajectories,
so that the absence of thermalization may be traced back
to the classical Kolmogorov–Arnold–Moser theorem [[26],
Sec. VI]. The proposal of Ref. [19] refers to spin helices in
various geometries. Their classical limit is stable [27], and
from the quantum point of view they generalize helices pre-
dicted [28] and observed [19] in the integrable XXZ chain.

*david.papoular@cyu.fr

Hence, the proximity of integrable models is expected to play
a key role.

In this article, we propose a three-body system hosting a
quantum scar which relies on the interaction between parti-
cles. It may be realized experimentally owing to very recent
advances in Rydberg atom trapping [29,30]. It is simple
enough to be fully analyzed by combining the numerical
calculation of stationary states and well-established tools for
the analysis of chaotic systems [31], in the spirit of Heller’s
original proposal [15].

The system we consider exhibits “towers” of scarred states
which are approximately evenly spaced in energy. These are a
key feature of both quantum scars [32] and many-body scars
[13,14,22,23,33]. In the present context, we explain them in
terms of the classically unstable periodic trajectory causing
the scar, in the spirit of Heller’s original argument [[32],
Fig. 22]. The phase-space dimensionality of the few-body
system we consider [(4), see below] matches the maximum
number of independent parameters introduced so far in the
variational approaches applied to the many-body PXP model
and its generalizations [[26], §III.A]. In stark contrast with
the many-body PXP model where approximate classical limits
have to be cleverly constructed [25], our few-body system
affords an exact reduction to four parameters and the iden-
tification of the classical analog is straightforward.

We formulate our proposal in terms of trapped Rydberg
atoms [29,30]. However, we expect other interacting systems
with the same symmetries to exhibit similar quantum scars.
We substantiate this claim in the Appendix (Sec. A 1) by iden-
tifying the quantum scar for the Hénon–Heiles (HH) potential
[34]. In particular, the scar may be probed using three dipolar
particles [35].

II. THE CONSIDERED SYSTEM

We consider three identical bosonic particles of mass m in
a circular trap of radius R. The Hamiltonian reads

H = (
l2
1 + l2

2 + l2
3

)/
(2mR2) + v(d12) + v(d23) + v(d31),

(1)
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1

2

3

d12

d23
d31R

(a)

FIG. 1. (a) Three particles (orange disks) interacting via a re-
pulsive van der Waals interaction of strength C6 > 0, constrained
to move on a circle of radius R, their angular coordinates θi and
distances di j . (b) The (x, y) configuration space is the inside of the tri-
angle defined by the points A(−π/

√
3, −π/3), B(+π/

√
3,−π/3),

C(0, 2π/3). The dashed golden line limits the classically accessible
region for the energy E = 7C6/R6. The three dotted red lines show
the three classical periodic trajectories of type B for this energy. The
small green triangle OLB is the reduced configuration space within
which quantum wave functions are calculated.

where li is the component of the angular momentum of
particle i along the rotation axis, which is perpendicular
to Fig. 1(a). We assume that the interaction v(di j ) be-
tween the particles i and j only depends on their distance
di j = 2R| sin[(θi − θ j )/2]|. For circular Rydberg atoms whose
electronic angular momenta are perpendicular to the plane,
v(di j ) = C6/d6

i j with C6 > 0 [[36], Appendix A].
We introduce the Jacobi coordinates [[38], §1.2.2]

x = [(θ1 + θ2)/2 − θ3 + π ]/
√

3, y = (θ2 − θ1)/2 − π/3, z =
(θ1 + θ2 + θ3)/3 − 2π/3, and their conjugate momenta px,
py, pz (which carry the unit of action). In terms of these,
H = p2

z/(3mR2) + H2D, where

H2D = (
p2

x + p2
y

)/
(4mR2) + V (x, y). (2)

Here, V (x, y) = v(x, y)C6/R6, with

v(x, y) = [sin−6(π/3 + y) + sin−6(π/3 + x
√

3/2 − y/2)

+ sin−6(π/3 − x
√

3/2 − y/2)]/64 − 1/9, (3)

energies being measured from the minimum V (0). The free
motion of the coordinate z reflects the conservation of the total
angular momentum pz = l1 + l2 + l3. The Hamiltonian H is
invariant1 under the point group C3v [[40], §93], generated
by the threefold rotation about the axis (x = y = 0) and the
reflection in the plane (x = 0).

III. CLASSICAL PHYSICS

We first analyze the classical dynamics described by the
Hamiltonian H . Expressing momenta, energies, and times in
units of Pref = (mC6/R4)1/2, C6/R6, and (mR8/C6)1/2, respec-
tively, the classical results are independent of m, C6, and R,
leading to the scaled predictions in Figs. 1–4. We choose
the rotating reference frame such that pz = 0 and z = 0. The

1The full plane group characterizing the symmetries of v(x, y) is
p6mm [[39], Part 6].

FIG. 2. (a) Periodic trajectory B for the energy ε = 7C6/R6, de-
scribed by its coordinates x(t ) and y(t ) as a function of time t . (b) The
period TB(ε), and the product λBTB of the Lyapunov exponent and the
period, for the periodic trajectory B as a function of the energy ε.

divergence of v(di j ) prevents the particles from crossing, so
that we assume θ1 < θ2 < θ3 < θ1 + 2π at all times. Hence,
the classical problem is reduced to a point moving in the two-
dimensional (2D) plane (x, y) within the equilateral triangle
of Fig. 1(b), in the presence of the potential V (x, y).

We have characterized the periodic trajectories of V using
our own C++ implementation of the numerical approach of
Ref. [41]. We find three families of periodic trajectories, ex-
isting for all energies ε > 0: we label them A, B, C in analogy
with the results for the HH potential [42]. We shall analyze
them and their bifurcations in a forthcoming presentation [43].
Here, we focus on family B, which yields the quantum scar.
For a given ε, there are three trajectories of type B, due to
the threefold rotational symmetry of the potential V . They are
represented in the (x, y) plane in Fig. 1(b), and the one which

FIG. 3. Classical surface of section [[37], §1.2] for the Hamil-
tonian of Eq. (2) with pz = 0, ε = 7C6/R6, x = 0, and px � 0. The
dark blue dots and outer curve indicate the periodic trajectories of
type A; the red and green dots show those of types B, and C. The
closed blue and green curves show nonergodic trajectories near A
and C. The ≈287 000 thin brown dots all belong to the same ergodic
trajectory. The periodic trajectories of type B, which yield the quan-
tum scar, are all within the classically ergodic region.
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FIG. 4. Probability density |ψ (x, y)|2 of the scarred quantum eigenstate whose energy is closest to 7C6/R6 in each irreducible representation
ρ = (a) A1, (b) A2, and (c) E . The dashed red lines show the three classically unstable periodic trajectories of type B for the corresponding
energy ε. The densities are maximal near the unstable trajectories, signaling the quantum scar. The integer ν (ρ ) in an approximation to the
index of the shown quantum state in the representation ρ.

is symmetric about the vertical axis is shown as a function of
time in Fig. 2(a). They are unstable for all energies, as shown
by the Lyapunov exponent λB > 0 in Fig. 2(b). Figure 2(b)
shows that trajectory B satisfies both conditions heralding a
quantum scar: λBTB < 2π [[18], ch. 22], and lower values
of λBTB signal stronger scarring [[44], §9.3]. The unstable
trajectory B does not bifurcate [[44], §2.5], so that the scar
strengths associated with it for all E > 0 do not benefit from
the classical enhancement due to the proximity of bifurcations
[45]. This sets it apart from a previous proposal involving
a scar hinging on this enhancement [46] so that, in stark
contrast to ours, it is captured by Einstein–Brillouin–Keller
quantization [47].

To visualize effects beyond the linear regime, Fig. 3 shows
the surface of section [[37], §1.2] of H for ε = 7C6/R6 and
the conditions x = 0, px > 0 (allowing for a comparison
with the HH potential [48]). It exhibits both nonergodic re-
gions comprising tori [[49], Appendix 8] and an ergodic
region, as is typical for a nonintegrable system [[50], §1].
The three fixed points corresponding to trajectories B are all
located in the ergodic region. This precludes their stabilization
by any classical mechanism.

IV. QUANTUM PHYSICS

We seek the eigenfunctions of H in the form
	n(θ1, θ2, θ3) = ψn(r)einz, where r = (x, y) and n = pz/h̄.
The wave function ψn is an eigenstate of H2D with the energy
ε. It is defined on the whole (x, y) plane. Its symmetries are
related to (i) angular periodicity, (ii) bosonic symmetry, and
(iii) the point group C3v .

We first discuss (i) and (ii). (i) The 2π periodicity of
	n in terms of (θi )1�i�3 yields ψn(r − BC) = ψn(r − CA) =
ψn(r − AB) = ψn(r)e−i2πn/3, so that n is an integer. (ii) The
bosonic symmetry of 	n leads to ψn(Sr) = +ψn(r), where S
is the symmetry about any of the lines (AB), (BC), or (CA)
in the (x, y) plane. Hence, we may restrict the configuration
space to the inside of the triangle ABC of Fig. 1(b). Along
its edges, v(x, y) strongly diverges [e.g., v ≈ (y + π/3)−6

near [AB]], so that ψn = 0 there. Combining (i) and (ii), and
calling R the rotation of angle 2π/3 about O, ψn(Rr) =
ψn(r)e2inπ/3.

We now analyze the role of the point group C3v . We
classify the energy levels in terms of its three irreducible
representations ρ = A1, A2, and E [[40], §95]. Hence, the
Hilbert space is split into three unconnected blocks. These
may be told apart through the behavior of ψn under two oper-
ations in the (x, y) plane [51]: R and the reflection S
 about
the line 
 = (CL) [see Fig. 1(b)]. Wave functions pertaining
to the one-dimensional (1D) representations A1 or A2 satisfy
ψn(Rr) = ψn(r), so that n = 0 modulo 3. Under reflection,
ψn(S
r) = ±ψn, where the + and − signs hold for A1 and A2,
respectively. Wave functions pertaining to the 2D representa-
tion E satisfy ψn(Rr) = exp(±2iπ/3)ψn(r), so that n = ±1
modulo 3 [52]. Then, exploiting time-reversal invariance we
may choose the two degenerate basis states to be ψn and its
complex conjugate ψ∗

n with ψn(S
r) = ψ∗
n (r).

These symmetry considerations further reduce the config-
uration space to the green triangle OLB of Fig. 1(b). We deal
with representations A1, A2, and E separately by applying
different boundary conditions on its edges (see Sec. A 2b in
the Appendix). We solve the resulting stationary Schrödinger
equations using the finite-element software FREEFEM [53].
The classical scaling no longer holds. Instead, the energy
spectra and wave functions depend on the dimensionless ra-
tio η = h̄/Pref = h̄R2/(mC6)1/2. Smaller values of η signal
deeper quasiclassical behavior: we choose η = 0.01. We fo-
cus on energies ε ∼ 7C6/R6, which are large enough for the
classical ergodic trajectory (brown dots on Fig. 3) to occupy a
substantial part of phase space.

Figure 4 shows the probability density for the quantum
scarred state whose energy is closest to 7C6/R6 for each ρ. It
is maximal near the three classical trajectories B. This signals
a stabilization of trajectory B, whose origin is purely quantum
since the unstable trajectories belong to the ergodic region of
classical phase space (see Fig. 3).

V. SEMICLASSICAL ANALYSIS

For the majority of the calculated quantum states, the
probability density |ψ (x, y)|2 is unrelated to the periodic tra-
jectories of type B. Nevertheless, for each representation,
we find multiple scarred quantum states, represented by the
vertical dashed lines in Fig. 5, whose energy spacing is ap-
proximately regular. This is analogous to the tower of scarred
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FIG. 5. For each irreducible representation ρ = (a) A1, (b) A2,
and (c) E , the solid curve shows the semiclassical contribution 
nB

[Eq. (4)] to the density of states n due to the periodic trajectory B, as a
function of the energy ε. The dashed vertical lines show the energies
of the scarred quantum states, which closely match the maxima of

nB. The integers above them specify the relative state indices 
νA1 ,

νA2 , 
νE/2 with respect to the index ν (ρ ) of the scarred states in
Fig. 4.

many-body states with an approximately constant energy sep-
aration found in a PXP chain [13], which is a recurrent
feature in theoretical analyses of weak ergodicity breaking
[14,22,33]. In the present context, we explain the series of
scarred quantum states semiclassically. We use Gutzwiller’s
trace formula [[31], chap. 17] describing the impact of the
classical periodic trajectories on the quantum density of states
n(ε). We isolate the contribution 
n(ρ)

B to n coming from the
unstable trajectory B, which depends on the representation ρ

[54,55]:(

n(ρ)

B 2π h̄/T (ρ)
B + 1

)/
α

(ρ)
B

=
∞∑

k=0

{[
SB(ρ)/h̄ − 2π (k(ρ) + 1/2)

]2 + (
α

(ρ)
B

/
2
)2}−1

. (4)

The parameters T (ρ)
B (ε), S(ρ)

B (ε), α
(ρ)
B (ε), and k(ρ) in Eq. (4)

are defined in Table I for each representation. They are di-
rectly related to the classical period TB(ε) and action SB(ε) =∮

p · dx along one trajectory B, the product λB(ε)TB(ε), and
the summation index k, respectively. Figure 5 shows 
n(ρ)

B (ε)
for each representation. Its maxima agree with the energies
of the scarred states. Hence, the series of scarred states found
in each representation reflects the multiple resonances in n(ε)
due to the unstable trajectory B. The regularity in their energy

TABLE I. Parameters T (ρ )
B , S(ρ )

B , α
(ρ )
B , k(ρ ) for Eq. (4), depending

on the irreducible representation ρ = A1, A2, or E .

T (ρ )
B S(ρ )

B α
(ρ )
B k(ρ )

A1 TB/2 SB/2 λBTB/2 k
A2 TB/2 SB/2 λBTB/2 k − 1/2
E 2TB SB λBTB k + 1/2

spacing follows from the resonance maxima being evenly
spaced in terms of the classical action, S(ρ)

Bmax/h̄ = 2π (k(ρ) +
1/2).

VI. EXPERIMENTAL PROSPECTS AND OUTLOOK

We consider e.g., 87Rb atoms in the 50C circular Rydberg
state [36,56], for which C6/h = 3 GHzμm6. The value η =
0.01 corresponds to R = 7 μm. The ring-shaped trap may be
realized optically using Laguerre–Gauss laser beams and light
sheets [[57], §II.C.2]. The energy ε = 7C6/R6 = h × 200 kHz
is within experimental reach [36]. For small angular momenta,
the centrifugal energy, which is proportional to (ηn)2/3, is
negligible compared with ε. The position of the atoms may
be detected at a given time by turning on a 2D optical lattice
trapping individual Rydberg atoms [36,58], which freezes the
dynamics, followed by atomic deexcitation and site-resolved
ground-state imaging [59].

Further investigation will be devoted to the stability of the
quantum scar. Recent experiments [23,60] have shown that it
may be enhanced by periodically modulating the parameters.
Depending on the stabilization mechanism (see, e.g., Ref. [61]
or Ref. [[62], §27]), this may lead to a discrete time crystal
[63] which is either quantum or classical.
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APPENDIX

The goal of this Appendix is twofold. In Sec. A 1,
we identify quantum scars supported by the Hénon–Heiles
Hamiltonian, and characterize them using the same semiclas-
sical argument as in the main text. In Sec. A 2, for each of the
three irreducible representations of the group C3v , we derive
boundary conditions defining quantum stationary states within
the reduced configuration space.

1. Quantum scars in the Hénon–Heiles model

In this Section, we briefly describe our results, analogous
to those of the main text, for the Henon–Heiles Hamiltonian
[34] HHH = (p2

x + p2
y )/(2m) + VHH, where

VHH = mω2
0(x2 + y2)/2 + α(x2y − y3/3). (A1)

Equation (A1) is written in the dimensional form of Refs.
[[64], §5.6.4] which assumes that the coordinates x and y
carry the unit of length. The quantities px, py are their con-
jugate momenta, the parameters m and ω0 denote a mass
and a frequency, and the coefficient α sets the strength of
the cubic term. If lengths, momenta, energies, and times are
expressed in units of LHH = mω2

0/α, PHH = m2ω3
0/α, EHH =

m3ω6
0/α

2, THH = 1/ω0, the dimensionless form matches that
of Ref. [34]. As in the main text, in terms of these units, the
classical dynamics is independent of m, ω0α. As for quantum
physics, the classical scaling no longer holds, and the en-
ergy spectra and wave functions depend on the dimensionless
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FIG. 6. Probability density |ψ(x,y)|2 of the scarred quantum eigenstate of the Hénon–Heiles Hamiltonian HHH whose energy is closest
to 0.13EHH in each irreducible representation (a) A1, (b) A2, and (c) E . The dashed red lines show the three classically unstable periodic
trajectories of type B for the corresponding energy ε. The densities are maximal near the unstable trajectories, signaling the quantum scar. The
integer ν (ρ ) is the index of the shown quantum state in the representation ρ. (This figure is the analog, for the Hénon–Heiles potential, of Fig. 4
in the main text.)

parameter ηHH = h̄/(LHHPHH) = h̄α2/(m3ω5
0 ). Smaller val-

ues of ηHH signal deeper quasiclassical behavior.
The Hénon–Heiles potential is related to our main discus-

sion for two reasons. First, its symmetry group is C3v [55],
which is the point group of the system analyzed in the main
text. Second, expanding Eq. (3) there to third order in x and
y near the equilibrium position O shows that it reduces to
Eq. (A1) in the low-energy limit.

The Hénon–Heiles Hamiltonian has been extensively stud-
ied (see, e.g., Ref. [[37], §1.4]). Our goal in revisiting it was
twofold. First, we have calibrated our codes against published
results for this potential. Second, we have identified quantum
scars for the Hénon–Heiles Hamiltonian. At the end of the sec-
tion, we point out the relevance of the Hénon-Heiles potential
in relation to a broad family of systems, which includes the
case of dipolar particles.

a. Calibration

We have used our codes to reproduce the known classi-
cal periodic trajectories of HHH, their periods and Lyapunov
exponents [42], and its surfaces of section for various ener-
gies [48]. We have also recovered the quantum energy levels
and wave functions, belonging to all three representations,
in Refs. [51,65] for ηHH = 1/80 and in Ref. [52] for ηHH =
0.062.

b. Quantum scars for the Hénon–Heiles potential

We now turn to the lower value η = 0.042, so as to con-
sider the deep quasiclassical regime. We focus on energies
ε ∼ 0.13 EHH: these are large enough for the ergodic region to
occupy a substantial part of phase space [48], while remaining
below the threshold energy EHH/6 above which HHH supports
trajectories that are not bound [42]. Figure 6 shows the prob-
ability density density for the scarred state with the energy ε

closest to 0.13 EHH for each representation. It is maximal near
the three trajectories B for the energy ε, signaling the scar.

In each irreducible representation ρ = A1, A2, and E , we
find multiple scarred quantum states for the Hénon–Heiles po-
tential (vertical dashed lines in Fig. 7) whose energy spacing
is approximately regular, in direct analogy with the results
of the main text. They may be explained by using the same

semiclassical argument relying on Gutzwiller’s trace formula.
We isolate the contribution 
n(ρ)

B to the density of states n for
each representation ρ due to the unstable trajectory B. Both
Eq. (4) and Table I in the main text are applicable to the
Hénon–Heiles potential with no change. We have calculated
the required period TB, action SB and Lyapunov exponent λB

characterizing the periodic trajectory B in the Hénon–Heiles
potential as a function of the energy ε using our codes.
Figure 7 shows 
n(ρ)

B for each representation ρ. Just like in
the main text, its maxima coincide with the energies of the
scarred states. Hence, the same conclusion holds, and we may
ascribe the regularity in their energy spacing to the resonance
maxima being equally spaced in terms of the classical action
SB.

FIG. 7. For each irreducible representation ρ = (a) A1, (b) A2,
and (c) E , the solid curve shows the semiclassical contribution 
nB

to the density of states n of the Hénon–Heiles potential due to the
periodic trajectory B as a function of the energy ε. The dashed
vertical lines show the energies of the scarred quantum states, which
closely match the maxima of 
nB. The integers above them specify
the relative state indices 
νA1 , 
νA2 , 
νE/2 with respect to the
index ν (ρ ) of the scarred states in Fig. 6. (This figure is the analog,
for the Hénon–Heiles potential, of Fig. 5 in the main text.)
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c. Generality of the Hénon–Heiles potential

The potential VHH combines a 2D isotropic harmonic trap
with a two-variable cubic polynomial function. Hence, it may
be seen as the simplest possible 2D potential exhibiting C3v

symmetry. The three-body Hamiltonian given by Eq. (1) in the
main text reduces to it near one of its (equivalent) minima for
the repulsive pair-wise interaction v(di j ) = a d−α

i j regardless
of the power-law exponent α > 0. The presence of quantum
scars in the Hénon–Heiles model leads us to expect similar
scars in all of these systems. In particular, the dipole–dipole
interaction [35] in the case where all three dipole moments are
polarized perpendicular to the plane, corresponding to α = 3,
is expected to yield the same phenomena.

2. Boundary conditions defining a basis
of quantum stationary states

In this section, we exploit the spatial symmetries of the
point group C3v and time-reversal symmetry to state boundary
conditions uniquely defining a basis of quantum stationary
states. We state our reasoning in terms of the system con-
sidered in the main text, but it applies without change to the
Hénon–Heiles Hamiltonian discussed in Sec. A 1 above.

We expect the quantum states scarred by the classically
unstable periodic trajectory B to exhibit an enhanced proba-
bility density along all three trajectories B at a given energy
[red dotted lines in Figs. 1(a) and 4(a)–4(c) in the main text
for the system discussed there, and in Figs. 6(a)–6(c) in the
present Appendix for the Hénon–Heiles model]. Hence, the
probability density for the scarred states is expected to exhibit
C3v symmetry. Therefore, we construct a basis of quantum sta-
tionary states whose corresponding density profiles all exhibit
this symmetry. This property is not automatically satisfied and
requires choosing appropriate basis functions. For example,
Figs. 7(a) and 7(b) in Ref. [51] show probability densities cor-
responding to eigenstates of the Hénon–Heiles model which
do not exhibit C3v symmetry despite the fact that the Hamilto-
nian does, see Sec. A 1 above.

The group C3v admits three irreducible representations,
ρ = A1, A2, and E [[40], §95]. Representations A1 and A2 are
1D, whereas representation E is 2D. For each representation,
we shall formulate a boundary condition defining basis func-
tions belonging to it. All wave functions ψ (r) are normalized
according to

∫∫
ABC d2r|ψ (r)|2 = 1, the integral being taken

over the triangle ABC.

a. One-dimensional representations A1 and A2

We first consider a 1D representation ρ = A1 or A2. Let ψ

be an eigenstate of H2D for the energy ε transforming accord-
ing to ρ. We call S1, S2, S3 = S
 the reflections about (AH ),
(BK ), (CL) in the (x, y) plane (see Fig. 8). The wave function
ψ (Sir) is also an eigenstate of H2D for the same energy ε.
Because ρ is 1D, ψ (Sir) = χiψ (r) for some complex number
χi. The reflections Si satisfy S2

i = 1, so that χi = ±1. They
also satisfy S2S1 = S3S2 = R, with R being the rotation of
angle 2π/3 about the point O. The transformation R3 = 1, so
that (χ1χ2)3 = (χ2χ3)3 = 1. Hence, χ1 = χ2 = χ3 = ±1.

The case χ1 = χ2 = χ3 = 1 leads to ρ(R) = ρ(Si ) = 1,
so that ρ = A1 [[40], §95, Table 7]. Then, ψ (Sir) = +ψ (r),

FIG. 8. The black triangle ABC is the classical configuration
space for the Hamiltonian H2D of the main text. The smaller green
triangle OLB is the reduced configuration space within which we
solve for the quantum stationary states. The classically accessible
region, limited by the dotted golden line, is shown for the energy
ε = 7C6/R6. We enforce the boundary condition ψ = 0 on the quan-
tum wave functions along the horizontal dashed green line. The three
classical periodic trajectories B (dotted red lines) are also shown.

leading to the boundary condition ∂nψ = 0 along the sides
[LO] and [OB] of the green triangle OBL in Fig. 8. Combined
with the condition ψ = 0 along the side [LB] derived in the
main text, it defines a basis of wave functions ψ for Repre-
sentation A1.

The case χ1 = χ2 = χ3 = −1 leads to ρ(R) = 1 and
ρ(Si ) = −1, so that ρ = A2. Then, ψ (Sir) = −ψ (r), leading
to the condition ψ = 0 along the sides [LO] and [OB]. Hence,
imposing the Dirichlet boundary condition on the three edges
of the triangle OBL defines a basis of wave functions ψ for
Representation A2.

The energy levels transforming according to the 1D
representations A1 and A2 are nondegenerate, hence, the time-
reversal invariance of H2D allows us to choose all basis wave
functions ψ (r) to be real [[40], §18]. Furthermore, ψ (r) =
ψ (R−1r) = χiψ (Sir) differ by a sign at most. Hence, the cor-
responding probability densities coincide, and |ψ (r)|2 does
exhibit C3v symmetry.

b. Two-dimensional representation E

We now turn to the 2D representation ρ = E . Let ε be
a twice–degenerate energy level of H2D. The corresponding
eigenspace is spanned by two complex wave functions, φ+
and φ− which transform according to ρ:

φ±(R−1r) = e±i2π/3φ±(r), (A2a)

φ±(S
r) = φ∓(r), (A2b)

where the transformations R and S
 are defined as in
Sec. A 2 a above and the main text.

The time-reversal invariance [[40], §18] of H2D entails that
the complex-conjugate wave functions φ∗

+(r) and φ∗
−(r) are

also eigenstates of H2D with the same energy ε. Complex-
conjugating Eqs. (A2a), accounting for normalization, and
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writing (φ∗
+)∗ = φ+ lead to φ∗

± = eiαφ∓, where eiα is a com-
plex number of modulus 1. Introducing the new basis wave
functions ψ+(r) = eiα/2φ+(r) and ψ−(r) = ψ∗

+(r), Eqs. (A2)
reduce to two conditions on ψ+:

ψ+(R−1r) = ei2π/3ψ+(r), (A3a)

ψ+(S
r) = ψ∗
+(r). (A3b)

The probability densities |ψ+(r)|2 = |ψ+(R−1r)|2 =
|ψ+(S
r)|2 coincide. Hence, |ψ+(r)|2 exhibits C3v symmetry:
this is the probability density plotted in Figs. 4(a)–4(c) of
the main text (three Rydberg atoms) and Figs. 6(a)–6(c)
(Hénon–Heiles model).

We seek ψ+(r) in the following form, which is more
amenable to numerical computation:

ψ+(r) = (x − iy)[u1(r) + iu2(r)], (A4)

where u1 and u2 are two real functions satisfying coupled
Schrödinger equations. In Eq. (A4), the factor (x − iy) ac-
counts for the fact that ψ+(0) = 0, like for the stationary
states of the 2D isotropic harmonic oscillator carrying angular
momentum [[40], §112]. Equations (A3) yield the boundary
conditions u1 = 0, ∂nu2 = 0 along both [LO] and [OB] (see
Fig. 8). Combined with the condition ψ = 0 along [LB] de-
rived in the main text, they define a basis of stationary states
related to Representation E . For each of the twice-degenerate
energy levels, ψ+(r) is given by Eq. (A4) and the second basis
function is ψ∗

+(r).

c. Spatial extent of the wave functions

For a given energy level ε, the spatial extent of the sta-
tionary states defined in Secs. A 2 a and A 2 b barely exceeds
the classically accessible region (limited by the dotted golden
line in Fig. 8 for the Hamiltonian H2D of the main text and
ε = 7C6/R6). Therefore, we restrict the region within which
we solve for the wave functions to a part of the triangle OLB
which slightly exceeds this region. In other words, we enforce
the condition ψ = 0 not on [LB], but on the horizontal dashed
line in Fig. 8.

d. Indices of the quantum states

We order the quantum states pertaining to a given irre-
ducible representation ρ by increasing energies. This gives
rise to the state index ν (ρ) appearing in Figs. 4 and 5 in
the main text, and Figs. 6 and 7 in the present Appendix.
The irreducible representations A1 and A2 have dimension
1, so that, barring accidental degeneracies, the corresponding
energy levels are nondegenerate. By contrast, the irreducible
representation E has dimension 2, meaning that each energy
level is twice degenerate. For this representation, we consis-
tently indicate one half of the state index, ν (E )/2, and one half
of the density of states contribution 
n(E )

B /2.
The relative level indices 
ν (ρ) given in Fig. 5 of the main

text and in Fig. 7 of this Appendix are exact. The level indices
of Fig. 6, concerning the Hénon–Heiles model, are also ex-
act. We obtain approximations to the level indices of Fig. 4
in the main text, concerning three Rydberg atoms moving
along a circle, using the semiclassical approximation to the
density of states, accounting for the role of discrete spatial
symmetries [66].
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Quantum signatures of the mixed classical phase space
for three interacting particles in a circular trap

D.J. Papoular∗ and B. Zumer
LPTM, UMR 8089 CNRS & CY Cergy Paris Université, Cergy–Pontoise, France

(Dated: April 30, 2024)

We study theoretically two consequences of the mixed classical phase space for three repulsively–
interacting bosonic particles in a circular trap. First, we show that the energy levels of the corre-
sponding quantum system are well described by a Berry–Robnik distribution. Second, we identify
stationary quantum states whose density is enhanced along the stable classical periodic trajecto-
ries, and calculate their energies and wavefunctions using the semiclassical Einstein–Brillouin–Keller
(EBK) theory. Our EBK results are in excellent agreement with our full–fledged finite–element nu-
merics. We discuss the impact of discrete symmetries, including bosonic exchange symmetry, on
these classically localized states. They are within experimental reach, and occur in the same range
of energies as the quantum scar reported in our previous work [Phys. Rev. A 107, 022217 (2023)].

I. INTRODUCTION

The suppression of ergodicity in quantum systems has
long been under intense scrutiny [1, chap. 8], and atomic
systems are very well suited to its investigation Refs. [2,
chap. 4]. The mechanisms leading to it in many–body
systems, relying on e.g. integrability [3], the presence of
disorder [4], many–body scarring [5, 6], or periodic driv-
ing [7], hold promises for quantum information processing
over long times, but may hinder cooling mechanisms [8].
In the case of Hamiltonian systems, comparing the

quantum system to its classical analog has been very
fruitful in identifying such mechanisms [9]. Most clas-
sical systems have a mixed phase space hosting both er-
godic and non–ergodic trajectories. Ergodic trajectories
densely cover a substantial fraction of the energy sur-
face; non–ergodic ones wind around tori found within
the Kolmogorov–Arnold–Moser (KAM) regions of phase
space, well described using KAM theory [10, appendix 8].
Ergodicity in the quantum system may be suppressed in a
phase space region corresponding to classical ergodic mo-
tion, e.g. by a quantum scar [11]. The quantum system is
also known to exhibit regular levels reflecting the classical
non–ergodic trajectories [9, Sec. 4]. These levels may be
studied using the semiclassical Einstein–Brillouin–Keller
(EBK) theory [12, 13]. In contrast to the semiclassi-
cal approaches applicable to the classically chaotic re-
gion, which mainly provide information concerning the
density of states [14, chap. 17], EBK theory applied to
the classical KAM regions yields both quantum energy
eigenvalues and eigenfunctions constructed from classi-
cally non–ergodic trajectories. The full energy spectrum,
including both the regular levels to which EBK theory
applies and the remaining levels related to chaotic dy-
namics [9, Sec. 5], exhibits energy level statistics which
significantly deviate [15, 16] from both the Poisson and
Wigner distributions respectively associated with classi-
cal integrability and chaos [14, chap. 16].

∗ Electronic address: david.papoular@cyu.fr

Mixed classical phase spaces are relevant for the de-
scription of many–body systems. The many–body scar
affecting the spin dynamics of a Rydberg atom chain ob-
served in Ref. [5] provides a recent example. The clas-
sical analog system, whose construction is involved [17],
exhibits mixed phase space, and KAM regions play a key
role in the many–body quantum revivals [18]. Motivated
by these recent developments, we introduced in our previ-
ous article [19] the system of three interacting particles in
a circular trap. We analyzed this experimentally accessi-
ble system through well–established theories applied to a
phase space whose dimension matches the number of in-
dependent parameters introduced in Ref. [18], and iden-
tified a quantum scar affecting the motion of the atoms.
In this paper, we analyze the role of its mixed clas-

sical phase space. First, we show that the parameters
we investigated in Ref. [19] fall within a range where the
quantum energy level statistics are well described by the
Berry–Robnik distribution [16]. Then, we identify quan-
tum states whose probability density is enhanced near
stable classical periodic trajectories. Using EBK theory,
we characterize their energy eigenvalues and explicitly
construct their wavefunctions. Our results are in ex-
cellent agreement with our full–fledged numerical solu-
tion of the Schrödinger equation using the finite–element
method. We highlight the role of discrete symmetries,
including bosonic echange symmetry, and their observ-
able consequence, on the energies and wavefunctions of
the considered localized states.
We formulate our analysis in terms of trapped Ryd-

berg atoms, made accessible by recent experimental ad-
vances [20, 21]. However, similar phenomena are ex-
pected to occur with systems of magnetic atoms [22] or
polar molecules [23] exhibiting the same symmetries. The
classically–localized states [24, chap. 22] identified in the
present paper occur for the same parameters and energy
range as the previously identified quantum scar [19]. One
may address one effect or the other simply by changing
the initial condition defining the atomic motion. Hence,
the simple, well–controlled atomic system we are propos-
ing offers an opportunity for a detailed experimental com-
parison of the two effects.
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(e) Trajectory C

FIG. 1. (a) The periodic trajectories A0, A1, A2 (straight blue lines) and C+, C− (the closed green trajectory is followed
anticlockwise for C+ and clockwise for C−), shown in the (x, y) plane for the energy ǫ = 7C6/R

6. The dotted brown line shows
the classically accessible region. The inset shows the considered physical system: three interacting particles in a circular trap.
(b) Periodic trajectory A0 as a function of time for ǫ = 7C6/R

6 in terms of its coordinates x(t) (solid line) and y(t) (dashed
line). (c) Period TA(ǫ) of trajectory A as a function of the energy ǫ. Panels (d) and (e) show the corresponding quantities for
trajectory C+. Trajectories A and C are stable for the considered range of energies.

The paper is organized as follows. In Sec. II, we in-
troduce the considered system, and briefly summarize its
properties described in detail in our previous article [19].
In Sec. III, we show that its quantum energy levels are
well represented by the Berry–Robnik distribution. In
Sec. IV, we apply EBK theory to identify the energy lev-
els for the quantum states localized near stable periodic
trajectories and construct the corresponding EBK wave-
functions, and we compare them to our finite–element
numerical results. In Sec. V, we discuss experimental
prospects. The article ends with the conclusive Sec. VI.

II. THE CONSIDERED SYSTEM

The system we analyze has been introduced in our pre-
vious article [19]. We briefly summarize its key features.
We consider three identical bosonic particles of massm

in a circular trap of radius R (Fig. 1(a),inset). We assume
that the interaction v(dij) between the particles i and j
only depends on their distance dij = 2R| sin[(θi −θj)/2]|.
For circular Rydberg atoms whose electronic angular mo-
menta are perpendicular to the plane, v(dij) = C6/d

6
ij

with C6 > 0. We introduce the Jacobi coordinates
x = [(θ1 + θ2)/2 − θ3 + π]/

√
3, y = (θ2 − θ1)/2 − π/3,

z = (θ1 + θ2 + θ3)/3 − 2π/3, and their conjugate mo-
menta px, py, pz (which carry the unit of action). Then,
the Hamiltonian reads H = p2z/(3mR

2) +H2D, where

H2D =
p2x + p2y
4mR2

+ V (x, y) . (1)

Here, V (x, y) = v(x, y)C6/R
6, with

v(x, y) = [sin−6(π/3 + y) + sin−6(π/3 + x
√
3/2 − y/2)

+ sin−6(π/3 − x
√
3/2 − y/2)]/64− 1/9, (2)

energies being measured from the minimum V (0). The
Hamiltonian H may be understood as describing either a

classical system or its quantum counterpart. It is invari-
ant under the point group C3v, generated by the rotation
of order 3 about the axis (x = y = 0) and the reflection
in the plane (x = 0). The free motion of the coordinate z
reflects the conservation of the total angular momentum
pz. Once the latter is fixed, the system is reduced to an
effective point in the two–dimensional (2D) plane (x, y)
within the equilateral triangle ABC of Fig. 1(a), in the
presence of the potential V (x, y).
From the quantum point of view, we seek the 3–atom

eigenstates of H in the form Ψn(θ1, θ2, θ3) = ψn(r) e
inz,

where r = (x, y), and n is an integer setting the value of
the quantized angular momentum pz. The wavefunction
ψn(r) is fully determined by its values within the tri-
angle ABC and vanishes along AB, BC, and CA. The
constraint Ψn(θ1, θ2, θ3) = Ψn(θ3−2π, θ1, θ2), combining
bosonic symmetry and angular periodicity, yields:

ψn(Rr) = ψn(r) e
2inπ/3 , (3)

where R is the rotation of angle 2π/3 about O in the
(x, y) plane. We sort the energy levels in terms of the
three irreducible representations A1, A2, E of C3v. Ow-
ing to Eq. (3), wavefunctions pertaining to the one–
dimensional (1D) representations A1 or A2 have n = 0
modulo 3, whereas those pertaining to the 2D represen-
tation E have n 6= 0 modulo 3.
As in Ref. [19], we set the ratio η = h̄R2/(mC6)

1/2 to
0.01, and we consider energies ǫ ∼ 7C6/R

6.

III. MIXED CLASSICAL PHASE SPACE AND
QUANTUM ENERGY LEVEL STATISTICS

A. Classical periodic trajectories

We have characterized the periodic trajectories of the
model of Eq. (1) using our own C++ implementation
of the numerical approach of Ref. [25]. We find three
families of periodic trajectories existing for all energies
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FIG. 2. Surface of section for Eq. (2), with pz = 0, ǫ =
7C6/R

6, x = 0, and px > 0. The periodic trajectory A0

appears as the dark blue closed boundary of the figure. All
other periodic trajectories appear as fixed points, shown in
dark blue for A1 and A2; dark red for B1, B2, and B3; and
dark green for C+ and C−. The stable trajectories Ai and
Cj are surrounded by (light blue and light green) tori; no tori
are present near the unstable trajectories Bk. The ≈ 287000
thin brown dots all belong to the same ergodic trajectory.

ǫ > 0: we label them A, B, C in analogy with those
of the Hénon–Heiles potential [26]. We have analyzed
the unstable trajectories of family B (i.e their Lyapunov
exponent > 0), along with the quantum scar it yields,
in our previous article [19]. By contrast, the trajectories
of families A and C are stable for all considered energies
(i.e. their Lyapunov exponents = 0).

For a given energy ǫ, family A contains three straight–
line trajectories A0, A1, A2, which follow the medians
of the triangular configuration space, and transform into
one another under rotations of order 3. Family C con-
tains two trajectories C+ and C−, which are closed loops
around the center O: C+ is followed anticlockwise and
C− clockwise, and they transform into each other under
reflections about any of the three medians. All five trajec-
tories are represented in the (x, y) plane on Fig. 1(a). The
vertical trajectory A0 and the trajectory C+ are shown
as functions of time on Figs. 1(b, d). Trajectories of a
given family have the same period as a function of energy
TA(ǫ) and TC(ǫ): these are plotted on Figs. 1(c, e) and
are both of the order of (mR8/C6)

1/2 for ǫ ∼ 7C6/R
6.

The simultaneous existence of stable and unstable pe-
riodic trajectories signals that the classical system repre-
sented by H2D is neither integrable nor fully chaotic: its
phase space is mixed. This is apparent on the surface of
section of Fig. 2 [19]. There, the non–ergodic trajecto-
ries are represented by the closed blue and green curves,
which are sections in the two–dimensional plane of the
KAM tori [10, appendix 8] surrounding the stable tra-
jectories A and C. We numerically find that the fraction
of the surface of section not occupied by tori is densely

FIG. 3. The histograms show the distribution of unfolded
energy level spacings sr,i = N̄r(ǫi + 1) − N̄r(ǫi) for states
belonging to the three irreducible representations r = A1

(top), A2 (center), E (bottom), which are analyzed separately.
They differ from the Poisson (dotted golden line) and Wigner
(dashed red line). They are well represented by the Berry–
Robnik distribution, assuming a single chaotic region in phase
space, with parameter ρ1 = 0.6 for all three representations.

covered by the intersections from a single ergodic trajec-
tory, comprising the single ergodic zone visible on Fig. 2,
within which lie the 3 unstable trajectories of family B.

B. Quantum energy level statistics

The quantum spectra of systems with mixed classical
phase space satisfy neither the Poisson nor the Wigner
distribution [14, Sec. 16.8]. We now verify this for the
model of Eq. (2), and show that its energy level statistics
are well represented by a Berry–Robnik distribution [16].
We numerically solve the Schrödinger equation for the

Hamiltonian of Eq. (1) using the finite–element software
FreeFEM [27]. We calculate stationary states belong-
ing to the three irreducible representations A1, A2, E of
the point group C3v separately. We exploit discrete sym-
metries to reduce the configuration space to a triangle
which slightly exceeds 1/6 of the classically accessible re-
gion for a given energy: details are given in our previous
paper [19, Appendix 2]. We use a triangular mesh com-
prising 1000 vertices along each edge. We thus numer-
ically obtain the energies and wavefunctions for slightly
more than 1200 consecutive energy levels for Represen-
tation A1, 1200 levels for Representation A2, and 1700
non–degenerate levels for Representation E, in energy
windows centered on 7C6/R

6.
For each irreducible representation r = A1, A2, and

E of C3v, we introduce the integrated density of states
Nr(ǫ), which is the staircase–like function giving the
number of stationary quantum states whose energies are
smaller than ǫ [14, Sec. 16.2]. We describe its smooth
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component N̄r(ǫ) through its Weyl expansion, account-
ing for discrete symmetries [28]. We retain the leading–
order term, proportional to 1/h̄2, and the first correc-
tion, proportional to 1/h̄. We calculate the spacings
sr,i = N̄r(ǫi+1)− N̄r(ǫi) between consecutive ‘unfolded’
energies N̄r(ǫi) [9, Sec. 5.4]. We plot their distribution
on Fig. 3, where it is seen to differ from both the Poisson
and the Wigner distributions [14, Secs. 16.3 & 16.4], as
expected for a system with mixed classical phase space.
Figure 3 shows that the distribution of unfolded energy

level spacings is well represented by the Berry–Robnik
distribution [16], assuming that a single chaotic region in
phase space contributes to the statistics, with the same
parameter ρ1 = 0.6 for all three representations. Both
the assumption of a single chaotic region and the value
ρ1 = 0.6, representing the fraction of the energy sur-
face over which motion is regular, are compatible with
the surface of section of Fig. 2. The applicability of the
Berry–Robnik distribution hinges on the statistical inde-
pendence of the regular and chaotic sequences of levels.
Counter–examples have been identified, e.g. the hydro-
gen atom in a magnetic field [29], and its numerical ver-
ification with billiards requires reaching the deep semi-
classical limit [30]. By contrast, our result provides a
realization of the Berry–Robnik distribution in an exper-
imentally accessible system involving smooth interatomic
interactions rather than sharp billiard walls.

IV. QUANTUM STATIONARY STATES
LOCALIZED NEAR THE CLASSICALLY STABLE

PERIODIC TRAJECTORIES A AND C

For the majority of the stationary quantum states of
the Hamiltonian H2D that we have obtained numerically,
the probability density |ψ(x, y)|2 is not directly related to
the periodic trajectories of types A and C. Nevertheless,
we find multiple eigenstates whose probability density is
enhanced along one or the other of these trajectories.
Figures 6(a,b) and 7(a,b) illustrate this phenomenon for
trajectories A and C, respectively: in each case, we show
the probability density for the quantum states closest to
the energy ǫ = 7C6/R

6. This phenomenon superficially
resembles the quantum scars stemming from trajectory
B which we have identified in our previous article [19].
However, the quantum states we consider in the present
article do not satisfy Heller’s definition for a quantum
scar [24, chap. 22]. Indeed, in stark contrast to the classi-
cally unstable trajectoryB, trajectoriesA and C are both
classically stable. Hence, quantum mechanics yields no
qualitative change in the behavior of the system in their
vicinity. In this section, we illustrate this statement with
two results. First, calculating the energies of the quan-
tum states related to trajectoriesA and C semiclassically,
we justify that they obey selection rules which we entirely
explain in terms of the symmetries of the classical KAM
tori. Second, we construct semiclassical wavefunctions
for these quantum states. Our semiclassical results for

both the energies and the wavefunctions are in excellent
agreement with our full quantum calculation.

A. Symmetries of the regular classical trajectories

We first consider the regular classical trajectories in
the KAM regions of phase space surrounding the stable
periodic trajectories of families A and C. Our numerical
results show that the tori lying close to the periodic tra-
jectories inherit the discrete symmetry properties of the
corresponding periodic trajectories, namely: (i) A torus
TA near the periodic trajectory of type A invariant under
the reflection S exhibits reflection symmetry, i.e. if the
point (r, p) belongs to TA, then so does (Sr,Sp); (ii) A
torus TC near a periodic trajectory of type C is invari-
ant under rotations R of order 3, i.e. if the point (r, p)
belongs to TC , then so does (Rr,Rp).
We justify properties (i) and (ii) through the follow-

ing argument. We rely on an approximation introduced
in Ref. [9, Sec. 4.1]: we ignore narrow instability subre-
gions and approximate the whole KAM region by a set of
concentric tori. Our numerical results for the surface of
section, shown on Fig. 2, confirm that it is very well sat-
isfied for the inner tori, close to the periodic trajectories,
which are of interest in this work (it breaks down for the
outer tori in the vicinity of the ergodic zone, which we do
not consider). This allows for the introduction of local
action–angle coordinates, valid within this region. These
are defined through the consistent choice of fundamental
frequencies ω = (ω1, ω2) [31, Sec. III.E] on each torus
within the region. Then, any conditionally–periodic tra-
jectory (r(t),p(t)) winding around one such torus may
be written as a Fourier series [32, §52]:

r(t) =
∑

k

rk exp(ik · ωt), p(t) = 2mR2dr/dt , (4)

the sum being taken over all integer pairs k = (k1, k2).
The considered torus is uniquely determined by its ac-
tions J = (J1, J2), which are given by [33]:

Jα =
∑

α′=1,2

∑

k

kα|rk|2kα′ωα′ . (5)

Let us justify statement (ii), concerning tori in the
vicinity of a periodic trajectory of type C. We consider
a point (r,p) belonging to the KAM region surround-
ing trajectory C+, and the rotated point (r′,p′) with
r′ = R2π/3r and p′ = R2π/3p. Trajectory C+ is invari-
ant under rotations of order 3, so that (r′,p′) also belongs
to the same KAM region. We compare the two trajecto-
ries (q(t),p(t)) and (q′(t),p′(t)) obtained from the initial
conditions (r,p) and (r′,p′). Their Fourier components
rk and r′

k, defined by Eq. (4), satisfy r′
k = R2π/3rk, so

that |r′
k| = |rk|. According to Eq. (5), the actions Jα

only depend on the modulus |rk|, hence, they are the
same for both trajectories. Therefore, the points (r,p)
and (r′,p′) belong to the same torus TC+ . Statement (i)
may be justified similarly.
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B. EBK quantization: energy levels

In this section, we obtain semiclassical predictions for
the energies of the quantum levels related to trajecto-
ries A and C, which are in excellent agreement with the
values obtained through our numerical solution of the
Schrödinger equation (see Figs. 4(b) and 5(c)). We also
explain quasidegeneracies and derive selection rules, both
of which are direct consequences of the discrete symme-
tries of the KAM tori presented in Sec. IVA above.
Our semiclassical description relies on Einstein–

Brillouin–Keller (EBK) theory [12], accounting for the
Maslov phase corrections [34, §7]. This theory general-
izes the Wentzel–Kramers–Brillouin approach [35, §48]
to the quantization of regular classical motion with more
than one degree of freedom [13]. We use our own imple-
mentation as a Python script of the EBK approach, based
on Refs. [31, 36], which hinges on the representation of
conditionally–periodic motion in terms of the Fourier se-
ries of Eq. (4). We integrate classical trajectories over
time intervals of lengths up to tmax = 3700(mR8/C6)

1/2

and keep up to 3200 terms in Eq. (4).
We now characterize the quantum stationary states lo-

calized near the classically stable trajectoriesA and C. In
Sections IVB1 and IVB2 below, we derive the EBK en-
ergies for these states, considered as eigenstates of H2D,
whose wavefunctions depend on r = (x, y). In Section
IVB3, we analyze the role of angular momentum so as to
discuss the stationary states of the three–particle Hamil-
tonian H , whose wavefunctions depend on (x, y, z).

1. Quantum states localized near trajectory A

For a given energy ǫ, the three periodic trajectories A0,
A1, and A2 (see Fig. 1(a)) and the tori surrounding them
are mapped one onto the other through the rotations
R and R−1. Hence, we focus on the vertical trajectory
A0. In Eq. (4), we choose the fundamental frequencies
ω = (ω1, ω2) as in Ref. [31, Fig. 8(b)]. This leads to the
independent circuits Cx and Cy on Fig. 4(a). Calculating
their Maslov indices [13, Sec. II.C], we obtain the EBK
quantization condition for the tori near trajectory A:

Ix = h̄(νx + 1/2) and Iy = h̄(νy + 1) , (6)

where Ix,y are the action integrals for the circuits Cx,y,
h̄ is the reduced Planck’s constant, and the integers
νx,y ≥ 0 are the EBK quantum numbers. The action
Ix ≥ h̄/2, so that the periodic trajectory A0 itself does
not satisfy Eq. (6). The tori satisfying Eq. (6) which
are closest to trajectory A0 are those with νx = 0:
the corresponding energies within a window centered on
ǫ = 7C6/R

6 are shown on the top line of Fig. 4(b). We
compare them to the energies of the stationary quantum
states of H2D belonging to representations A1 and E lo-
calized near the trajectories A0, A1, and A2, obtained
through our finite–element calculations (see Fig. 6(a,b)).

These are shown on Fig. 4(b), middle and bottom lines,
and are in excellent agreement with the EBK results.
Figure 4(b) reveals that each EBK energy corresponds

to quasidegenerate quantum states pertaining to repre-
sentations A1 and E. Furthermore, no quantum station-
ary states pertaining to representation A2 exhibit den-
sity profiles similar to Fig. 6(a,b). Both of these proper-
ties follow from the symmetries of the regular trajectories
identified in Sec. IVA above, through a mechanism iden-
tified in Refs. [37] and [9, Sec. 4.2] in the case where
the discrete symmetry at play had order 2. The system
we consider provides examples of the same phenomenon
involving C3v symmetry, as we now show.
We consider the EBK wavefunction ψEBK(r), corre-

sponding to a torus in the vicinity of trajectory A0, with
the energy ǫEBK, satisfying Eq. (6) with νx = 0. This
torus is invariant under the reflection S about the verti-
cal axis x = 0. Therefore, as shown in [9, Sec. 4.2]:

ψEBK(Sr) = (−1)νxψEBK(r) = ψEBK(r) . (7)

The EBK wavefunction ψEBK reflects the symmetry of
the corresponding classical torus, but does not automat-
ically satisfy the symmetry requirements of any represen-
tation. We now project it onto the irreducible represen-
tations [35, §94] A1, A2, and E. This yields three linearly

independent wavefunctions, ψA1

EBK and ψE,±
EBK, pertaining

to the representations A1 and E, corresponding to the
same semiclassical energy. In terms of kets |ψ〉, with
〈r|R|ψ〉 = ψ(R−1r) and 〈r|S|ψ〉 = ψ(Sr), they read:





|ψA1

EBK〉 = αA1(1 + R + R−1) |ψEBK〉
|ψE,+

EBK〉 = αE(1 + j∗ R + j R−1) |ψEBK〉 ,
|ψE,−

EBK〉 = αE(1 + j R + j∗ R−1) |ψEBK〉 ,
(8)

In Eq. (8), αA1,E are normalization coefficients, and

j = e2iπ/3. We have used the relations SRS =

R−1 and Eq. (7). The states |ψA1

EBK〉 and |ψE,±
EBK〉 sat-

isfy R|ψA1

EBK〉 = |ψA1

EBK〉, R|ψE,±
EBK〉 = ±j |ψE,±

EBK〉 and

|ψE,−
EBK〉 = S |ψE,+

EBK〉. The component of ψEBK pertaining
to representation A2, proportional to (1+R+R−1)(1−
S) |ψEBK〉, is 0 because of Eq. (7).

2. Quantum states localized near trajectory C

We proceed as in Sec. IVB 1. For a given energy ǫ, the
two periodic trajectories C+ and C− (see Fig. 1(a)) and
the tori surrounding them are mapped onto each other
through the reflection S. Hence, we focus on the trajec-
tory C+. In Eq. (4), we choose the fundamental frequen-
cies ω = (ω1, ω2) as in Ref. [31, Fig. 8(a)], leading to the
independent circuits Cr and Cl on Fig. 5(a). Calculating
their Maslov indices, we obtain the EBK quantization
condition for the tori near trajectory C:

Ir = h̄(νr + 1/2) and Il = h̄(νl + 1/2) , (9)
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EBK quantized tori Trajectory A
295 296 297 298 299 300 301 302 303 304 305

Representation A1
-228 -182 -140 -91 -45 0 47 93 140 187 234

Representation A2

no states due to symmetry

6.8 7 7.2
Quantum stationary-state energies R6/C6

Representation E
-456 -365 -274 -183 -89 0 95 186 279 373 466

(b)
295 300 305

EBK quantum number y

0
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6 /C
6 Trajectory A

(c)

FIG. 4. (a) Classical trajectory A (solid dark blue) for the energy ǫ = 7C6/R
6, the nearest–energy trajectory satisfying Eq. (6)

for η = 0.01 (densely covering the light blue area), and two independent circuits Cx (dotted purple) and Cy (dotted red) circling
the torus, in terms of which the quantum numbers are νx = 0 and νy = 300. The dashed gray lines show the caustics of this
trajectory. The top left inset zooms in on the narrow region near (x = 0, y = 1.2) to reveal the self–intersection of the caustics.
(b) Top panel: energies of the EBK wavefunctions for νx = 0 and 295 ≤ νy ≤ 305. Center and bottom panels: energies of the
corresponding quasidegenerate quantum stationary states belonging to representations A1 (center) and E (bottom), obtained
through our finite–element numerical calculations. Because of the torus symmetries, there are no states in representation A2

corresponding to the EBK quantum numbers (νx = 0, νy). The integers in the center and bottom panels specify the relative
state indices within each representation, ∆νA1 and ∆νE/2, with respect to the quantum state related to Trajectory A whose
energy is closest to 7C6/R

6. (c) Small energy differences between the quasidegenerate states of representations A1 and E.

where Ir,l are the action integrals for the circuits Cr,l,
and the integers νr,l ≥ 0 are the EBK quantum numbers.
The trajectory C+ does not satisfy Eq. (9). The tori
satisfying it which are closest to C+ are those with νr = 0:
their energies are shown on the top line of Fig. 5(b). We
compare them to the energies of the stationary quantum
states of H2D belonging to representations A1, A2, and
E localized near the trajectories C+ and C−, obtained
through our finite–element calculations (see Fig. 7(a,b)).
These are shown on the three lower lines of Fig. 5(b), and
are in excellent agreement with the EBK results.

Figure 5(b) shows that each EBK energy with νr = 0
and νl = 0 modulo 3 corresponds to two quasidegener-
ate quantum states pertaining to representations A1 and
A2. By contrast, each EBK energy with νr = 0 and
νl 6= 0 modulo 3 corresponds to two exactly degenerate
quantum states spanning a representation E. As for the
states localized near trajectory A (see Sec. IVB 1 above),
these properties follow from the symmetries of the regu-
lar trajectories (Sec. IVA). These are different from the
symmetries of the tori surrounding trajectory A, leading
to different selection rules, which we now derive.

We consider the EBK wavefunction χEBK(r), corre-
sponding to a torus in the vicinity of trajectory C+, with
the energy ǫEBK, satisfying Eq. (9) with νr = 0. This
torus is invariant under the rotation R. A straightfor-
ward generalization of the argument in Ref. [9, Sec. 4.2]
to symmetry operations of order 3 leads to χEBK(Rr) =
jνl χEBK(r). We now project χEBK onto the irreducible
representations A1, A2, and E. For each νl, this yields
two linearly independent, degenerate EBK wavefunc-
tions. If νl = 0 modulo 3, the non–vanishing wavefunc-
tions pertain to representations A1 and A2:

|χA1,A2

EBK 〉 = βA1,A2(1 ± S) |χEBK〉 , (10)

with βA1,A2 being two normalization factors, whereas the
component along E vanishes. By contrast, if νl 6= 0 mod-
ulo 3, the components along A1 and A2 vanish, whereas

the two non–vanishing wavefunctions |χE,±
EBK〉 span a rep-

resentation E. For νl = −1 modulo 3, |χE,+
EBK〉 = |χEBK〉

and |χE,−
EBK〉 = S |χEBK〉, and the opposite assignment

holds for νl = +1 modulo 3.

3. The role of angular momentum

To discuss the three–particle eigenstates of H in terms
of the eigenstates of H2D identified in Secs. IVB1 and
IVB2, we now analyze the role of angular momentum.

We first consider quantum states localized near the pe-
riodic trajectories of family A. The two states ψE,±

νy (r)
obtained for a given νy, are exactly degenerate eigen-
states of H2D which span a 2D representation E. How-
ever, in terms of three–atom eigenstates of H , the states
ψE,±
νy (r)einz occur if the total angular momentum n =

∓1 modulo 3 because of Eq. (3).

The states ψA1
νy (r) and ψE,±

νy (r) obtained for a given
νy belong to different representations A1 and E. Their
quasidegeneracy is lifted by small couplings neglected in
the EBK approach [9, Sec. 4.5], and the small energy
difference is resolved in our finite–element numerical re-
sults, as shown on Fig. 4(c). Because of Eq. (3), the
three–atom states ψA1

νy (r)e
inz occur if n = 0 modulo 3,

so that none of the three states ψA1,E±
νy (r)einz may occur

for the same value of n. They do not reduce to an EBK
wavefunction corresponding to a single classical trajec-
tory. Instead, Eq. (8) shows that they represent coher-
ent superpositions of the three atoms undergoing motion
near the trajectories A0, A1, and A2.
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EBK quantized tori Trajectory C
262 263 264 265 266 267 268 269 270 271

Representation A1
-156 0 161

Representation A2
-156 0 159

6.8 7 7.2
Quantum stationary-state energies R6/C6

Representation E
-419 -314 -107 0 210 314 528
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FIG. 5. (a) Classical trajectory C (solid dark green) for the energy ǫ = 7C6/R
6, the nearest–energy trajectory satisfying

Eq. (9) for η = 0.01 (densely covering the light green area), and two independent circuits Cr (purple) and Cl (red) circling the
torus, in terms of which the quantum numbers are νr = 0, νl = 267. The dashed gray lines show the caustics of this trajectory,
which self–intersect in the top left, top right, and bottom regions. (b) Top panel: energies of the EBK wavefunctions for νr = 0
and 262 ≤ νl ≤ 271. Three lower panels: energies of the corresponding quantum eigenstates belonging to representations
A1, A2, and E, obtained through our finite–element numerical calculations. States in representations A1 and A2 exhibit
quasidegeneracies and correspond to the EBK quantum numbers νr = 0, νl = 0 modulo 3; each EBK torus with quantum
numbers νr = 0, νl 6= 0 modulo 3 yields two degenerate states in representation E. The integers specify the relative state
indices within each representation, ∆νA1 , ∆νA2 and ∆νE/2, with respect to the quantum state related to trajectory C whose
energy is closest to 7C6/R

6. (c) Small energy differences between the quasidegenerate states of representations A1 and A2.

We now turn to quantum states localized near the pe-
riodic trajectories of family C. The two states χE,±

νl
(r),

obtained for a given νl 6= 0 modulo 3, are exactly de-
generate. The three–atom states χE,±

νl
(r)einz occur for

n = ∓1 modulo 3, and opposite values of n lead to atoms
rotating along C in opposite directions. The two states
χA1,A2
νl (r) obtained for a given νl = 0 modulo 3 belong

to different representations and, hence, are quasidegen-
erate: their small energy difference is shown on Fig. 5(c).
The three–atom states χA1,A2

νl
(r)einz may occur for the

same value of n = 0 modulo 3.

C. EBK quantization: wavefunctions

To further illustrate the applicability of the EBK ap-
proach to the quantum states localized near the stable pe-
riodic trajectories of families A and C, we construct prim-
itive EBK wavefunctions for these states [38]. We focus
on a given KAM torus satisfying the quantization condi-
tions of either Eq. (6) or Eq. (9), depending on whether
it lies near a trajectory of family A or C. To obtain
the corresponding EBK wavefunctions ψEBK and χEBK

of sections IVB 1 and IVB2 above, the key extra re-
quired step with respect to the approach of Refs. [31, 36]
is to describe the torus in terms of multiple sheets on
each of which the classical momentum is univalued [13,
Sec. III.A]. These sheets join along the caustics of the
classical trajectory in the (x, y) plane, shown as the
dashed gray lines on Figs. 4(a) and 5(a). The caustics
self–intersect, signalling the occurrence of catastrophes
[39], and the torus sheetings must be constructed accord-
ingly. We find that 12 sheets are required to describe tori
near a trajectory of family A with νx = 0, and that 6
sheets are required to describe tori near a trajectory of

family C with νr = 0. We then obtain the wavefunctions
ψEBK and χEBK from the Fourier series of Eq. (4), in
terms of linear superpositions of the contribution of each
sheet [13, III.C]. Finally, we project ψEBK and χEBK onto
the irreducible representations A1, A2, and E.

Figure 6(c,d) shows the resulting EBK wavefunctions
for the quasidegenerate quantum states ψA1,E(r) local-
ized near the trajectories of family A whose energies are
closest to 7C6/R

6. We compare them to the correspond-
ing wavefunctions obtained through our finite–element
numerical calculations (Fig. 6(a,b)). We show the anal-
ogous results for the states χA1,A2(r), localized near the
trajectories of family C, on figure 6. The agreement be-
tween the finite–element and EBK results is excellent,
including in the catastrophe regions where the classical
caustics self–intersect, shown in the upper left insets.

Primitive EBK wavefunctions do not account for the
quantum penetration of the wavefunctions through the
caustics. Instead, they diverge along the caustics as in
the WKB approach [35, §46] and vanish outside the clas-
sical torus, as illustrated on Figs. 8 and 9 in the appendix.
This causes the two limitations of the EBK wavefunctions
considered here. First, interference phenomena involving
decaying waves outside the torus are not captured: the
top left insets of Fig. 7 provide an example. Second, the
divergence of the wavefunctions leads to numerical in-
accuracies near the caustics which hinder their normal-
ization. Hence, each of our EBK wavefunctions matches
the finite–element wavefunction up to an overall normal-
ization factor of order 2. We eliminate it by scaling the
EBK wavefunction so that it matches the finite–element
result at one single point chosen far from the caustics.
The quantum penetration through the caustics may be
accounted for, and hence both limitations be overcome,
using a uniform approximation to the wavefunction [40,
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FIG. 6. Quantum states localized near the trajectories of family A. (a,b) Wavefunction densities |ψA1(r)|2 and |ψE(r)|2 for the
two quasidegenerate eigenstates of H2D localized near the periodic trajectories of family A whose energies are closest to C6/R

6,

obtained through our finite–element numerical calculations. (c,d) The corresponding squared EBK wavefunctions |ψA1
EBK(r)|2

and |ψE
EBK(r)|2, built from the KAM torus satisfying Eq. (6) with νx = 0, νy = 300 (see Fig. 4(a)). On all four panels, the left

inset details the region where the caustics self–intersect, and the right one shows the region near (x = 0, y = 0).

Sec. 7.2]. This goes beyond the scope of the present work.

V. EXPERIMENTAL PROSPECTS AND
OUTLOOK

The effects considered here may be realized e.g. on
the system already considered in Ref. [19]: 87Rb atoms
in the circular Rydberg state 50C, for which C6/h =
3GHzµm6. Then, the value η = 0.01 is achieved in a cir-
cular trap of radius R = 7µm. The energy ǫ = 7C6/R

6 =
h× 200 kHz is within experimental reach. For these pa-
rameters, the periodic trajectories of families A, B, and
C all have periods of the order of 1ms. The position of
the atoms may be detected at a given time by turning on
a 2D optical lattice to freeze the dynamics, followed by
atomic deexcitation and site–resolved ground state imag-
ing. We focus on realizations where the total three–atom
angular momentum n is well defined.

A key difference between the quantum scar of Ref. [19]

and the localization near stable orbits considered here
concerns the timescale over which quantum particles fol-
low the classical periodic trajectories. For the quantum
scar, the timescale over which quantum particles follow
the classically unstable periodic trajectory is expected to
depend on its inverse Lyapunov exponent [24, ch. 22]. No
such constraint exists for the dynamics near a classically
stable orbit, so that recurrences of the initial state may
be sought for over the lifetime of the trapped atoms.

Next, we point out a consequence of quantum coher-
ence. According to Sec. IVB 3, the quantum states lo-
calized near the trajectories of family A are equal–weight
superpositions of states localized near the three periodic
trajectories of family A (rather than just one trajectory).
This is the impact of bosonic symmetry. By contrast, mo-
tion along a single trajectory C+ or C− may be observed.

The following point warrants further investigation.
Three atoms launched with angular momentum n = 0
modulo 3 near the periodic trajectory C+ may undergo
dynamical tunneling [41] to the trajectory C−. The ex-
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FIG. 7. Quantum states localized near the trajectories of family C. (a,b) Wavefunction densities |χA1(r)|2 and |χA2(r)|2
for the two quasidegenerate eigenstates of H2D localized near the periodic trajectories of family C whose energies are closest
to C6/R

6, obtained through our finite–element numerical calculations. (c,d) The corresponding squared EBK wavefunctions

|χA1
EBK(r)|2 and |χA2

EBK(r)|2, built from the KAM torus satisfying Eq. (9) with νr = 0 and νl = 267 (see Fig. 5(a)). On all four
panels, the left inset details the region where the caustics self–intersect, and the right one shows the region near (x = 0, y = 0.4).

pected oscillation period, set by h/(ǫνl,A2 − ǫνl,A1), is
∼ 25 s for the parameters of Fig. 5(c). This very long
timescale is out of reach of current setups, but should be-
come accessible in new experiments currently under con-
struction promising atomic lifetimes ∼ 1minute [42, 43].
Furthermore, the period may be minimized by varying
the energy ǫ and the parameter η. Dynamical tun-
neling has already been observed for non–interacting,
periodically–driven atoms [44, 45]. The system we con-
sider would provide an example involving interacting
atoms described by a time–independent Hamiltonian.

VI. CONCLUSION

We have revisited the system of three interacting
bosonic particles in a circular trap that we had first con-
sidered in Ref. [19]. We have illustrated the mixed nature
of its classical phase space, and shown that the statis-
tics of the quantum levels are well described by a Berry–

Robnik distribution. We have analyzed the symmetries
of the quantum states localized along the classically sta-
ble periodic trajectories A and C, calculated their en-
ergies semiclassically using EBK theory, and constructed
the corresponding EBK wavefunctions. Our semiclassical
EBK results, regarding both the energies and the wave-
functions, are in excellent agreement with the quantum
eigenstates and energies which we have obtained through
finite–element numerical calculations. Thus, the con-
sidered system hosts both a quantum scar, analyzed in
Ref. [19], and classical localization near stable periodic
orbits, analyzed in the present work. These phenomena,
all within experimental reach, occur in the same energy
range: to observe one or the other, one simply adapts the
initial conditions so as to launch the three atoms along a
classical periodic orbit which is either unstable or stable.
Hence, the system we propose appears promising in view
of a detailed experimental comparison between quantum
scars and classically localized states.
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Appendix A: Comparison between Schrödinger and
EBK wavefunctions

The supplementary figures 8 and 9 on the next page
compare the behavior of the EBK wavefunctions to those
obtained by solving the Schrödinger equation for the
Hamiltonian H2D through finite–element numerics along
the horizontal and vertical axes. They show excellent
agreement between the two approaches, and highlight the
key limitation of the EBK wavefunctions: the quantum

penetration through the caustics is not accounted for,
and is replaced by a divergence along the caustics.
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Quantum signatures of chaos , 4th ed. (Springer, 2018).
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T. Boulier, A. Browaeys, and T. Lahaye,
Phys. Rev. Lett. 124, 023201 (2020).

[22] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino,
B. Laburthe-Tolra, B. L. Lev, and T. Pfau,
Rep. Prog. Phys. 86, 026401 (2023).

[23] J. L. Bohn, A. M. Rey, and J. Ye,
Science 357, 1002 (2017).

[24] E. J. Heller, The semiclassical way to dynamics and spectroscopy
(Princeton University Press, 2018).

[25] M. Baranger, K. T. R. Davies, and J. H. Mahoney,
Ann. Phys. 186, 95 (1988).

[26] K. T. R. Davies, T. E. Huston, and M. Baranger,
Chaos 2, 215 (1992).

[27] F. Hecht, J. Numer. Math. 20, 251 (2012).
[28] B. Lauritzen and N. D. Whelan,

Ann. Phys. 244, 112 (1995).
[29] D. Wintgen and H. Friedrich,

Phys. Rev. A 35, 1464(R) (1987).
[30] T. Prosen, J. Phys. A 31, 7023 (1998).
[31] C. C. Martens and G. S. Ezra,

J. Chem. Phys. 86, 279 (1987).
[32] L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed.

(Butterworth Heinemann, 1976).
[33] I. C. Percival, J. Phys. A 7, 794 (1974).
[34] V. P. Maslov and M. V. Fedoriuk, Semi-classical approx-

imations in quantum mechanics (Reidel, 1981).
[35] L. D. Landau and E. M. Lifshitz, Quantum mechanics,

non-relativistic theory, 3rd ed. (Butterworth Heinemann,
1977).

[36] C. C. Martens and G. S. Ezra,
J. Chem. Phys. 83, 2990 (1985).

[37] J. G. Leopold, I. C. Percival, and D. Richards,
J. Phys. A 15, 805 (1982).

[38] S. K. Knudson, J. B. Delos, and D. W. Noid,
J. Chem. Phys. 84, 6886 (1986).

[39] J. B. Delos, J. Chem. Phys. 86, 425 (1987).
[40] A. M. Ozorio de Almeida, Hamiltonian systems: chaos

and quantization (Cambridge University Press, 1988).
[41] S. Tomsovic, Phys. Scr. T90, 162 (2001).
[42] T. L. Nguyen, J. M. Raimond, C. Sayrin, R. Cortiñas,
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FIG. 8. Quantum states localized near the trajectories of family A. Comparison of the EBK (a,b) wavefunction ψA1
EBK and (c,d)

density |ψE
EBK|2 (green) with the corresponding quantities obtained through finite–element numerics (red) shown on Fig. 4,

along the horizontal (a,c) and vertical (b,d) axes. The insets illustrate their behaviour near the caustics (vertical dashed gray
lines). Each EBK wavefunction has been scaled to match the finite–element wavefunction at the point (x = 0, y = 0.5).

FIG. 9. Quantum states localized near the trajectories of family C. Comparison of the EBK wavefunctions (green) (a,b) χA1
EBK

and (c,d) χA2
EBK and the corresponding wavefunctions obtained through finite–element numerics (red) shown on Fig. 5, along

the horizontal (a, c) and vertical (b, d) axes. The insets illustrate their behaviour near the caustics (vertical dashed gray lines).
Each EBK wavefunction has been scaled to match the finite–element wavefunction at the point (x = 0.5, y = 0).





5 Prospects for future work

Atomic systems [123, 124], and in particular single Rydberg atoms [125, 126], have been
an excellent testbed for chaos. Recent experimental advances concerning Rydberg atom
manipulation and trapping [25, 26] are now enabling the realisation of systems comprised
of multiple, interacting atoms where chaos may also be characterised. In this context,
many–particle systems currently attract lots of attention [29, 71].
The theoretical investigation of simple, well–controlled few–atom systems, such as the

three–atom Rydberg system of chapter 4, is likely to provide information on quantum scars
and classical localisation phenomena which is complementary to that acquired through
the experiments on many–body scars [22, 115] and the intense theoretical effort they have
spawned [29, 71]. These few–body systems may be analysed through well–established tools.
Among these, the Kolmogorov–Arnold–Moser theory for perturbed integrable systems [63,
Appendix 8] has recently started to attract attention in the context of trapped atomic sys-
tems [112]. Applied in this novel context, and combined with the semiclassical approaches
developed in the context of chaos [64, chaps. 7–9], it may improve our understanding of
localisation phenomena by highlighting the classical roots of some of them.
In this chapter, we briefly mention a few questions which we plan on addressing in the

coming years. They are all related to my recent work presented in chapter 4. Section 5.6
also pertains to my work on the interactions in atomic systems, illustrated in Sec. 2.2.

5.1 Classical periodic trajectories beyond families A, B, C

We have focused on the simplest periodic trajectories supported by the classical Hamil-
tonian H2D, i.e. those of families A, B, and C, and on the eigenstates of the quantum
Hamiltonian which are localised near these trajectories. However, the classical H2D sup-
ports many other periodic trajectories, and the quantum H2D has many other eigenstates.
Figure 5.1 shows three of these which are not directly related to trajectories A, B, or C.
Additional periodic trajectories originate from those of families A, B, and C through

bifurcations [104]. These additional periodic trajectories lead to the holes visible within
the ergodic sea on the surface of section of Fig. 4.4. As demonstrated for the Hénon–Heiles
Hamiltonian by the authors of the algorithm [86], these bifurcations may be identified
using the numerical approach of Ref. [105] which we have already implemented and used
in Sec. 4.3. Some of these bifurcations are stable and others are unstable. They may lead
to the classical localisation or quantum scarring of other quantum eigenstates of H2D. The
identification of the bifurcations will help in narrowing down candidates for eigenstates
which are not localised, and which might be interpreted in terms of random waves [127].
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5.2 Dynamics of the quantum scar

5.2 Dynamics of the quantum scar

Up to now, our analysis of the quantum scar due to trajectory B has relied on the solution
of the stationary Schrödinger equation. We now intend to investigate its dynamics, by
characterizing the evolution in time of a quantum wavepacket initially launched along the
classically unstable periodic trajectory B. This evolution is dictated by the time–dependent
Schrödinger equation for the potential V2D(x, y) (which is constant in time). Its numerical
solution is accessible with the finite–element software we are using, i.e. FreeFEM [82].
The wavepacket is expected to follow the unstable trajectory for short times. A key

question concerns the number of visible periods of this trajectory before the wavepacket
becomes too distorted to be compared to the initial one. This timescale is expected to
involve the Lyapunov exponent λB of the trajectory [102, Fig. 22.3].
For comparison, in the experiments on many–body scars, the number of observed revivals

of the initial state ranges from 4 [22] to 8 [115]. To our knowledge, the comparison to the
Lyapunov exponent of the underlying classical trajectory is not available in the literature.
We shall perform a similar calculation for a quantum wavepacket launched along a clas-

sically stable trajectory. In this second context, related to classical localisation, we expect
the quantum dynamics to follow the classical prediction over longer times. Comparing the
quantum dynamics in the cases where the classical trajectory is unstable or stable, we hope
to identify experimentally–accessible observables which tell the two regimes apart.

5.3 From the quantum regime to the semiclassical one

From the classical point of view, the system considered in chapter 4 exhibits a scaling
property, described in Sec. 4.1.4.1, which accounts for the roles of the atomic mass m,
the interaction strength C6, and the trap radius R. From the quantum point of view, the
classical scaling breaks down, and the experimental parameters enter the dimensionless
ratio η = ℏR2/(mC6)

1/2. Smaller values of η signal deeper quasiclassical behaviour.
A similar dimensionless ratio may be introduced e.g. for the Hénon–Heiles potential [4,

appendix 1]. However, our system is particularly appealing in this respect because the
value of η may be varied experimentally, by choosing appropriate values for m, R, or1 C6.
This motivates the theoretical exploration of the impact of η on our results:

• Ref. [101, Fig. 2], concerning billiards, highlights the deviation of the spectral statis-
tics from the Berry–Robnik distribution in less semiclassical regimes. In the system
we consider, the Berry–Robnik distribution is applicable for the relatively low value
η = 0.01. We shall investigate possible deviations from it as η is increased.

• For η = 0.01, we have found a single quantum scarred state near each resonance due
to trajectory B in the trace formula (see Fig. 4.11). However, the widths of these

1The interaction strength C6 depends on the principal quantum number n of the considered Rydberg
state [27, Sec. II.B]. A range of different values of n is accessible in current experiments. For those
performed at Collège de France [28], n ranges from 48 to 52.
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5 Prospects for future work

resonances cover multiple states, and such a one–to–one correspondence between
their peaks and the energies of the scarred states was not expected [64]. We shall
investigate whether it still holds for smaller and for larger values of η.

5.4 Four particles in a circular trap

The time–independent Hamiltonian describing a system of four particles (instead of three)
may be a relevant generalisation of the system we have studied. An important issue in
this context is whether the fraction of classical phase space leading to ergodic dynamics
becomes larger or smaller as the particle number is increased. Answering this question
would be a first step in conciliating (i) the importance of non–ergodic phenomena in the
three–particle system we have studied with (ii) the classically chaotic behaviour for the
chain of 100 atoms reported in Ref. [28, appendix E].

5.5 Stabilising Trajectory B through periodic modulation

Recent experiments involving many–body scars [30, 115] have shown that the periodic
modulation of one of the system parameters2 has two effects:

• Many more revivals of the initial state are observable than for a time–independent
Hamiltonian (e.g. the lifetime of the effect is multiplied by 5 in Ref. [30, Fig. 3B]);

• These revivals occur at the frequency ωm/2, where ωm is the modulation frequency.

We shall look for a similar stabilization phenomenon in the system comprised of three
Rydberg atoms in a circular trap considered in Chap. 4. More specifically, we shall inves-
tigate the possibility of stabilising the unstable trajectory B by modulating the pairwise
interparticle interactions. The interaction between two particles reads C6/r

6, where r is
the interparticle distance and C6 is the interaction strength. This coefficient depends on
the amplitude of the external electric field used to stabilise the circular Rydberg state [28,
Sec. II and Fig. 11] (see Sec. 5.6 below for a related question). Hence, modulating this
amplitude with a frequency comparable to the inverse period of trajectory B (a few kHz,
i.e. in the radiofrequency range) will achieve the desired modulation of the coefficient C6.
An important issue is whether or not this stabilisation requires quantum mechanics. This

question may be settled by solving the classical equation of motion for the three–particle
system governed by the time–dependent Hamiltonian with an initial condition along tra-
jectory B. The subharmonic response with frequency ωm/2 observed in experiments is a
hint that classical mechanics may indeed play a role, because this is the frequency at which
parametric resonance is expected [79, §27].

2The modulated parameter is the detuning with respect to the two–photon transition transferring the
atoms from the ground to the Rydberg states in Ref. [30], and the geometry of the optical lattice
trapping the cold atoms in Ref. [115].
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5.6 Resonance in the interaction between Rydberg atoms
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Figure 5.2: Left: Anticrossing due to the dipole–dipole interaction, involving the two–atom
states |50C; 50C⟩ and |Ψ7⟩ = |49, 48, 48; 51, 49, 48⟩, occurring for experimentally accessible values
of the electric field F , magnetic field B, and interatomic distance d. Centre: Impact of the
resonance on the two–atom interaction in the case where the anticrossing is traversed by varying
F at fixed d. Right: Impact of the resonance in the case where the anticrossing is traversed by
varying d at constant F : the two–atom interaction does not depend monotonically on d.

5.6 Resonance in the interaction between Rydberg atoms

In this section, we consider two trapped atoms, prepared in the same circular Rydberg state.
We wish to characterise their interaction. Throughout chapter 4, we have represented this
interaction using the potential C6/r

6. This follows from the properties of the dipole–dipole
interaction [80, §89], which couples two atoms in the same circular Rydberg state to second
order, and it holds for the experimental conditions considered up to now [28, Sec. II].
However, for specific values of the external electric and magnetic fields, and of the inter-

atomic distance, the dipole–dipole interaction causes anticrossings between two two–atom
states. The left panel of Fig. 5.2 shows such an anticrossing, which occurs for electric fields
of the order of 16.3V/cm if the interatomic distance is d = 5µm: these are experimentally
accessible parameters comparable to those used in Ref. [28]. These anticrossings cause
resonances in the interaction between the two atoms.
A given anticrossing may be traversed either by maintaining the interatomic distance d

fixed and varying the external electric field F , as on the left and centre panels of Fig. 5.2,
or by varying d at constant F , as on the right panel of the figure. In the first scenario,
the resonance shows up as a discontinuous feature in the interaction energy, visible on
the centre panel. In the second scenario, it causes the interaction energy to vary non–
monotonically as a function of the interatomic distance, which precludes its modelling
using the usual van der Waals interaction term C6/r

6.
To our knowledge, these resonances have not yet been discussed. They may be identified

by numerically diagonalising the two–atom interaction Hamiltonian restricted to a relevant
subspace, whose dimension is typically about one thousand. Our preliminary calculations
(see Fig. 5.2) indicate that some of them are within experimental reach. We intend to map
their positions and characterise their impact on the two–atom interaction properties.
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[29] M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity,
Nat. Phys. 17, 675 (2021).

[30] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A.
Michailidis, N. Maskara, W. H. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D. Lukin,
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from quantum many-body scars, Nat. Phys. 14, 745 (2018).
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2021 – Supervision of Benôıt Zumer’s PhD thesis Defence planned for December 2024
Title: Quantum and classical mechanisms blocking the thermalisation of interacting Rydberg atoms
One joint publication in Phys. Rev. A (published in 2023), one submitted (April 2024)

Apr.–Jul. 2020 Four–month co–supervision of Emily Qiu’s M2 (graduate) internship
2012 – 2013 One–year co–supervision of a PhD student (N. Bartolo, Trento ; 1 joint publication in Phys. Rev. A (2013))

Teaching experience

2018 – Graduate teaching, ENS Ulm (Paris) , ICFP graduate quantum physics programme
Exercise sessions for 5th–year (M2) Physics students.

2015 – Graduate teaching at Université de Cergy–Pontoise
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