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Introduction

In this thesis we present an algorithm which, given an arithmetic Kleinian

group Γ, returns a fundamental domain and a finite presentation for Γ with

a computable isomorphism. This problem lies on the boundary between hy-

perbolic geometry and number theory. On one side, there are many mysteries

left with hyperbolic 3-manifolds; the algorithm described in this thesis might

be used to experimentally investigate conjectures about them. On the other

side, the units of a semisimple algebra over a number field are, in the words of

Mazur, the “gems” of algebraic number theory; an application of our algorithm

is to compute the structure of the unit group in a class of quaternion algebras

over number fields.

In the first part, we give the theoretical material needed, omitting most of

the proofs. In the second part we give a complete description of the algorithm.

In the third part we give examples of the computations performed with the

implementation in Magma [BCP97] of this algorithm. In the last part we give

some possible applications and generalizations of this algorithm as well as open

problems.

Notations and conventions

We writeM2 for the 2× 2 matrix algebra, SL2 = {g ∈ M2 | det g = 1} for the
special linear group, and P : SL2 → PSL2 = SL2 /{±1} for the projection onto

the projective special linear group.

Let G be a group. The identity element is written 1. If H ⊂ G is a subgroup

and g1, g2 ∈ G, we write g1 ≡ g2 (mod H) ⇔ g1g
−1
2 ∈ H ⇔ Hg1 = Hg2.

If S ⊂ G is a subset, we write 〈S〉 for the subgroup of G generated by S, and for

all g1, g2 ∈ G, we also write g1 ≡ g2 (mod S)⇔ g1g
−1
2 ∈ 〈S〉. For all g, h ∈ G,

we write [g, h] = ghg−1h−1 the commutator of g and h. If G acts on a set X

and x ∈ X , Gx = {g ∈ G | g · x = x} denotes the stabilizer of x in G. Note

that Int will not denote the group of interior automorphisms.

Every algebra (resp. ring) is an associative unital algebra (resp. an associa-

tive unital ring). For R a ring, R× = {x ∈ R | ∃y ∈ R, xy = 1} denotes the

unit group of R.
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Part I

Kleinian groups and arithmetic

1 Hyperbolic geometry and Kleinian groups

In this section hyperbolic 3-space and Kleinian groups are introduced.

1.1 The upper half-space

Definition 1.1.1. The upper half-space is the set H3 = C×R>0 equipped with

the metric induced by

ds2 =
dx2 + dy2 + dt2

t2

where (z, t) ∈ H3, z = x + iy and t > 0. For x, y ∈ H3, d(x, y) is the distance

between x and y induced by ds. The set Ĉ = P1(C) is called the sphere at

infinity, and we define the completed upper half-space to be Ĥ3 = H3 ∪ Ĉ.

Figure 1.1: The upper half-plane, two geodesics and two geodesic planes

The space H3 is equipped with a volume induced by the metric, given by

dV =
dxdy dt

t3

where (z, t) ∈ H3, z = x+ iy and t > 0.

We recall some basic facts about H3. For details, the reader can refer

to [Mar07, section 1]. Note that Ĥ3 can be naturally embedded into C×R∪{∞}
by mapping C to C×{0} and∞ to∞, and we get a natural embedding C ↪→ Ĥ3.

The space H3 has the following properties:
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• The metric space H3 is connected, simply connected, and has constant

curvature −1.

• The geodesics in H3 are the Euclidean hemicircles and the straight lines,

orthogonal to C.

• The geodesic planes in H3 are the Euclidean hemispheres and the Eu-

clidean planes, orthogonal to C.

• The metric space H3 is complete.

• The topology on H3 induced by its metric is the same as the topology

induced by the Euclidean metric on C× R>0.

• For any distinct x, y ∈ Ĥ3, there is a unique geodesic passing through x

and y.

Since the topology on H3 is the same as the Euclidean one, we can equip

the set Ĥ3 \ {∞} with the Euclidean topology and finally define a fundamen-

tal system of neighborhoods of the point at infinity ∞ to be the sets of the

form {(z, t) ∈ H3 | |z|2 + t2 > A} ∪ {∞} for A > 0 to get a topology on Ĥ3.

If two geodesic planes intersect in H3, then there is a well-defined angle

between them. When the planes are tangent on the sphere at infinity, they no

longer intersect but we can still define the angle between them to be zero.

Remark 1.1.2. The metric spaceH3 is a model of the hyperbolic 3-space i.e. the

unique connected, simply connected metric space with constant curvature −1.

Definition 1.1.3. A segment s in Ĥ3 is the closure in Ĥ3 of a nonempty,

connected, open subset s′ of a geodesic. By the last property above it is uniquely

determined by the points x, y ∈ Ĥ3 such that s = s′ ∪ {x, y} and we then

write s = [x, y]. A subset X ⊂ Ĥ3 is convex if it contains every segment [x, y]

for x, y ∈ X .

1.2 The Poincaré extension

The group PSL2(C) acts on H3 by the Poincaré extension, which we recall

briefly. The group PSL2(C) acts on Ĉ by linear fractional transformation. An

element γ ∈ PSL2(C) can be written as a product of an even number of inver-

sions in Euclidean circles and reflections in Euclidean lines in C. Each such circle

extends to a unique Euclidean hemisphere orthogonal to C and each such line

extends to a unique Euclidean plane orthogonal to C. The Poincaré extension

of γ is the corresponding product of inversions in hemispheres and reflections in

planes.

We recall some basic facts about this group action. For details, the reader

can refer to [Mar07, section 1].
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• The action of PSL2(C) is faithful on H3, and transitive on the set of

geodesic planes;

• Any γ ∈ PSL2(C) acts on H3 as an isometry;

• This action induces an isomorphism between the group PSL2(C) and the

group of orientation-preserving isometries of H3.

1.3 Classification of elements

In this section we recall geometric properties of the action of PSL2(C); proofs

can be found in [Mar07, section 1].

Let g ∈ PSL2(C). The trace of g is defined up to sign, and if g 6= ±1 then

the characteristic polynomials X2± tr(g)X+1 of the two liftings of g in SL2(C)

are also their minimal polynomials. Consequently, we have the following classi-

fication of conjugacy classes in PSL2(C).

• If tr(g) ∈ C \ [−2, 2], then g has two distinct fixed points in Ĉ, no fixed

point in H3 and stabilizes the geodesic between its fixed points, called

its axis. The element g is conjugate to ±
(
λ 0

0 λ−1

)
with |λ| > 1; it is

loxodromic.

• If tr(g) ∈ (−2, 2), then g has two distinct fixed points in Ĉ, and fixes every

point in the geodesic between these two fixed points. The elements g is

conjugate to ±
(
exp(iθ) 0

0 exp(−iθ)

)
with θ ∈ R\ (π+2πZ); it is elliptic.

• If tr(g) = ±2, then g has one fixed point in Ĉ and no fixed point in H3.

It is conjugate to ±
(
1 β

0 1

)
with β ∈ C; it is parabolic.

We will not define precisely what the following remark means, but it helps

understanding the action of PSL2(C).

Remark 1.3.1. A loxodromic element has two fixed points in Ĉ, one is at-

tracting and the other repelling. An elliptic element g also has two fixed points

in Ĉ, and the derivative of g has absolute value 1 at each of them. A parabolic

element g has one fixed point in Ĉ, and the derivative of g has absolute value 1

at this fixed point.

We recall the description of some standard stabilizers.

• The stabilizer of the point (0, 1) ∈ C × R>0 in PSL2(C) is the sub-

group PSU2(C);
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• The stabilizer of the point at infinity ∞ ∈ Ĉ in PSL2(C) is the sub-

group

{(
α β

0 α−1

)
: α ∈ C×, β ∈ C

}
;

• Consider the vertical geodesic L = {0} × R>0 ⊂ H3. Then the sub-

group G = {g ∈ Γ | g(L) ⊂ L} of the elements stabilizing L decomposes

as G = T t ST where T =

{(
α 0

0 α−1

)
: α ∈ C×

}
and S =

(
0 −1
1 0

)
.

• Consider the vertical geodesic plane H2 = R × R>0 ⊂ H3. Then the

subgroup G = {g ∈ Γ | g(H2) ⊂ H2} of the elements stabilizing H2

decomposes as G = PSL2(R) t S PSL2(R) where S =

(
0 −1
1 0

)
, and

the restricted action induces an isomorphism between G and the group of

isometries of H2.

1.4 Kleinian groups

The interesting subgroups of a real vector space for the purpose of arithmetic are

lattices. In the same way, the subgroups of PSL2(C) of interest for arithmetic

are discrete.

Definition 1.4.1. Let X be a locally compact metric space.

• A family (Mi)i∈I of subsets of X is locally finite if for every compact

subset K of X , the set of indices {i ∈ I | Mi ∩K 6= ∅} is finite.

• Let Γ be a group acting by isometries on X . We say Γ acts discontinuously

on X if for all x ∈ X , the Γ-orbit ({γ · x})γ∈Γ of x is locally finite.

Remark 1.4.2. There can be repetitions in the family (Mi), but if a family is

locally finite, then a nonempty subset can be repeated only finitely many times.

In the same way, a group acts discontinuously if and only if every stabilizer is

finite and every orbit (as a set) meets finitely many times any compact.

Definition 1.4.3. A subgroup Γ ⊂ PSL2(C) is a Kleinian group if it acts

discontinuously on H3.

Proposition 1.4.4. Let Γ be a subgroup of PSL2(C). The following are equiv-

alent:

(i) The group Γ is a Kleinian group;

(ii) The group Γ is discrete as a subset of PSL2(C) equipped with the topology

induced by SL2(C) ⊂M2(C).

Proof. A proof can be found in [Mar07, section 2.2].
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Remarks 1.4.5. If Γ is a Kleinian group, then the stabilizer Γx of any

point x ∈ H3 is conjugate in PSL2(C) to a subgroup of the stabilizer of the

point (0, 1) ∈ C×R>0 in PSL2(C), which is equal to the compact group PSU2(C).

Therefore the subgroup Γx is finite as it is also discrete. Note that we know a

simple classification of finite subgroups of PSU2(C) ∼= SO3(R): such a subgroup

can be isomorphic to any cyclic group, any dihedral group, the alternate group

on 4 elements, the symmetric group on 4 elements, or the alternate group on 5

elements. Moreover, the set of points in H3 that have a non-trivial stabilizer

in Γ has measure 0, is closed and has empty interior: it is a countable, locally

finite union of geodesics, one for each elliptic element in Γ.

1.5 Fundamental domains

A Kleinian groups admits a set of representatives that has nice topological

properties.

Definition 1.5.1. Let X be a locally compact metric space X equipped with a

Radon measure Vol. Let Γ be a subgroup of the isometries of X . A fundamental

domain for Γ is an open connected subset F of X such that

(i)
⋃

γ∈Γ γ · F = X ;

(ii) For all γ ∈ Γ \ {1}, F ∩ γ · F = ∅;

(iii) Vol(∂F) = 0.

If the quotient space Γ\X is Hausdorff and compact, then we say Γ is cocompact.

Remark 1.5.2. The condition (iii) may seem strange, but it is needed to ensure

that two fundamental domain have the same volume (Lemma 1.5.15).

Proposition 1.5.3. Let Γ be a Kleinian group. The following are equivalent

1. The group Γ acting on PSL2(C) by left multiplication is cocompact;

2. The group Γ acting on H3 is cocompact;

3. The group Γ admits a fundamental domain with compact closure in H3.

Proof. It is a direct consequence of [Mar07, Proposition 3.5.1 (vii)].

We consider fundamental domains that have a particularly nice boundary:

they are polyhedra.
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Definitions 1.5.4.

• A polygon P ⊂ H3 is a nonempty closed connected subset of a geodesic

plane of H3 whose boundary (for the induced topology on the plane) is a

countable union of sets of the form s ∩ H3 where s is a segment in Ĥ3,

called its edges, such that the family of the edges is locally finite. The

finite endpoints of the edges of P are called vertices.

• A polyhedron is a nonempty open connected subset of H3 whose boundary

is a countable union of polygons, called its faces, such that the intersection

of two faces is contained in a geodesic and such that the family of the faces

is locally finite.

• A fundamental domain for a subgroup of PSL2(C) that is also a polyhedron

is a fundamental polyhedron.

• A polyhedron is finite if it has only finitely many faces.

Remark 1.5.5. A polyhedron need not be convex.

A polyhedron which is a fundamental polyhedron for a subgroup of PSL2(C)

carries structure.

Definitions 1.5.6. Let F be a polyhedron, and F the set of faces of F . A face

pairing (of F) is a map ·∗× g : F → F ×PSL2(C) which assigns to every face f

a face f∗ and a transformation g(f) ∈ PSL2(C), such that

(a) g(f) · f = f∗;

(b) ·∗ : F → F is an involution;

(c) Every face f admits a neighborhood V such that (g(f) · (V ∩ F)) ∩ F = ∅.

The elements g(f) where f is a face of F are called pairing transformations. If

there is a face f such that f∗ = f , then the pairing transformation satisfies the

reflection relation g(f)2 = 1.

Now assume that F has a face pairing. There is a natural equivalence re-

lation ∼ on F generated by the relations x ∼ y if g · x = y for some pairing

transformation g. The identified polyhedron F∗ = F/∼ comes with the canon-

ical projection π : F → F∗. For x, y ∈ F∗, let d*(x, y) = inf
∑n

i=1 d(zi, wi)

where the infimum is taken over every 2n-uples of points (zi, wi)i of F such

that π(z1) = x, zi+1 ∼ wi and π(wn) = y (see Figure 1.2). We say the polyhe-

dron is complete if

(d) for every x ∈ F , π−1(x) is finite, in which case d* is a metric on F∗, and

(e) F∗ is complete for this metric.
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Figure 1.2: The distance d* in a planar cut

Now assume in addition that F is complete. Let e1 be an edge of F . The

edge e1 is the intersection of two faces: choose one and call it f1. There is then a

corresponding face f∗
1 and a pairing transformation g1 = g(f1). Now construct

three sequences (ei), (fi), (gi) by induction as follows: letting ei+1 = gi ·ei, there
is a unique fi+1 6= f∗

i such that ei+1 = fi+1 ∩ f∗
i , and let gi+1 = g(fi+1) (see

Figure 1.3). Now because of condition (d), the sequence (ei) is periodic; let m

be its period. The sequence of edges C = (e1, . . . , em) is called a cycle of edges.

The cycle transformation at e1 is h = gmgm−1 . . . g1. At every edge e = fi ∩ fj,
the faces fi and fj make an interior angle α(e) inside F . The cycle angle

of C = (e1, . . . , em) is α(C) =
∑m

i=1 α(ei). We say that F satisfies the cycle

condition if:

(f) for every cycle C, there is ν ∈ Z>0 such that α(C) =
2π

ν
, and

(g) if the edge e1 is a geodesic (not only a segment) then the cycle transforma-

tion at e1 is the identity on e1.

If F satisfies the cycle condition, then for every cycle we have the cycle rela-

tion hν = 1. An cycle is elliptic if the cycle transformation is nontrivial.

Remark 1.5.7. Some parts of these definitions require a proof; the reader

should refer to [Mas71] or [Mas88, Section IV.H] for details.

One natural way to construct a set of representatives for a Kleinian group

is to choose one distinguished point in the space, and then in each orbit choose

“the closest point to the distinguished one”: in this way, we pick generically one

element in each orbit. The following proposition describes precisely how good

this construction is.

Proposition 1.5.8. Let Γ be a Kleinian group. Let p ∈ H3 be a point with

trivial stabilizer in Γ. Then the set

Dp(Γ) = {x ∈ H3 | for all γ ∈ Γ \ {1}, d(x, p) < d(γ · x, p)}
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Figure 1.3: A cycle in a planar cut

is a convex fundamental polyhedron for Γ. Furthermore Dp(Γ) admits a face

pairing, is complete and satisfies the cycle condition.

Proof. This proposition can be found in [Mar07, Proposition 3.5.1]

Definition 1.5.9. Let Γ be a Kleinian group, and p ∈ H3 be a point with

trivial stabilizer in Γ. Then the domain Dp(Γ) is a Dirichlet domain for Γ.

Theorem 1.5.10 (Poincaré). Let F be a polyhedron with a face pairing. Sup-

pose F is complete and satisfies the cycle condition. Let Γ be the subgroup

of PSL2(C) generated by the face pairing transformations. Then Γ is a Kleinian

group, F is a fundamental polyhedron for Γ, and the reflection relations together

with the cycle relations form a complete set of relations for Γ.

Proof. This version of Poincaré’s theorem is due to Maskit. A proof can be

found in the original article [Mas71] or in his book [Mas88, Theorem H.11]

Definition 1.5.11. A Kleinian group is geometrically finite if it admits a finite

Dirichlet domain.

Proposition 1.5.12. Let Γ be a Kleinian group. If Γ is geometrically finite,

then every Dirichlet domain for Γ is finite.

Proof. This result can be found in [Mas88, Corollary of Proposition C.2 and

Theorem C.4], [Mar07, Theorem 3.6.1] or [Rat06, Theorem 12.4.6]

Corollary 1.5.13. Let Γ be a Kleinian group. If Γ is geometrically finite,

then Γ is finitely presented.

Proof. If Γ is a geometrically finite Kleinian group, then it admits a finite

Dirichlet domain, so by Proposition 1.5.8 and Theorem 1.5.10 it is finitely pre-

sented.
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Remark 1.5.14. There are finitely generated Kleinian groups that are not

geometrically finite. See [Rat06, section 12.4, Example 3] or [Mas88, section

IX.G] for examples.

Lemma 1.5.15. Let F1 and F2 be two fundamental domains for a group Γ.

Assume that Vol(F1) is finite. Then Vol(F2) is also finite and

Vol(F1) = Vol(F2).

Proof. The same proof as in [Kat92, Theorem 3.1.1] applies.

Definitions 1.5.16. If Γ has a fundamental domain F with finite volume, we

say that Γ has finite covolume and define

Covol(Γ) = Vol(F)

which is well-defined by the lemma above.

Proposition 1.5.17. Let Γ be a Kleinian group. If Γ has finite covolume,

then Γ is geometrically finite.

Proof. This result can be found in [Mar07, Lemma 3.6.4].

Remark 1.5.18. This is easy to prove when Γ is cocompact, since a Dirichlet

domain is locally finite.

Corollary 1.5.19. Let Γ be a Kleinian group. If Γ has finite covolume, then Γ

is finitely presented.

Proof. Apply Proposition 1.5.17 and Corollary 1.5.13.

2 Quaternion algebras and Kleinian groups

In this section we describe how to construct Kleinian groups from quaternion

algebras.

2.1 Quaternion algebras

In this section we recall the construction and basic properties of quaternion

algebras. Every proof can be found in [MR03, Chap. 2] or in [Vig80, Chap. I].

Throughout the section, F is a field with charF 6= 2.

Definition 2.1.1. Let a, b ∈ F×. An F -algebra admitting a presentation of

the form

〈 i, j | i2 = a, j2 = b, ij = −ji 〉

is called a quaternion algebra over F , we write
(

a,b
F

)
for such an algebra.
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Examples 2.1.2.

• The matrix algebra isM2(F ) ∼=
(
1,1
F

)
via the algebra homomorphism

(
1 0

0 −1

)
7→ i

(
0 1

1 0

)
7→ j.

• The ring H =
(−1,−1

R

)
of Hamiltonians is a quaternion algebra over the

reals. We have an embedding C ↪→ H given by i 7→ i.

Proposition 2.1.3. Let B =
(

a,b
F

)
be a quaternion algebra over F . Then

(i) The algebra B has dimension 4 over F and {1, i, j, ij} is a basis;

(ii) If F ⊂ K is a field extension, then

(
a, b

F

)
⊗F K ∼=

(
a, b

K

)
;

(iii) For all u ∈ F×, we have

(
a, b

F

)
∼=
(
b, a

F

)
∼=
(
a,−ab
F

)
∼=
(
u2a, u2b

F

)
.

Example 2.1.4. There are only two nonisomorphic quaternion algebras over R:

the matrix ringM2(R) and the Hamiltonians H.

Definitions 2.1.5.

• Let B be an F -algebra and x ∈ B. The trace (resp. the norm) trB/F (x)

(resp. NB/F (x)) of x is the trace (resp. the determinant) of the linear

endomorphism of B : y 7→ xy.

• Let B be a quaternion algebra over F . Then the F -linear map ·̄ : B → B

sending 1, i, j, ij respectively to 1,−i,−j,−ij is called conjugation. The

reduced trace and reduced norm are defined to be respectively trd(x) =

x+ x and nrd(x) = xx. The reduced norm is a quadratic form on B.

Proposition 2.1.6. Let B be a quaternion algebra over F . Then for all x ∈ B,

we have :

(i) x = x;

(ii) xy = y x;

(iii) 1 = 1;

(iv) nrd(x) = xx ∈ F and NB/F (x) = nrd(x)2;
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(v) trd(x) ∈ F and trB/F (x) = 2 trd(x);

(vi) x2 − trd(x)x + nrd(x) = 0;

(vii) x ∈ B× if and only if nrd(x) 6= 0;

(viii) If x ∈ B×, then x−1 = x/nrdx.

Examples 2.1.7.

• In M2(F ) =
(
1,1
F

)
, the conjugation is given by

(
a b

c d

)
7→
(

d −b
−c a

)

and the reduced norm is the determinant.

• In H ∼= R4, the reduced norm is the square of the usual L2 norm, which

we also note | · |2 = nrd as it extend the absolute value on C.

Remark 2.1.8. If B is an F -algebra and σ : F ↪→ K is a field embedding, we

write Bσ = B ⊗σ K = B ⊗F K, where K is the F -vector space induced by σ.

If F is a number field, we write BR = B ⊗Q R.

2.2 Splitting

Proposition 2.2.1. Let F be a field with charF 6= 2 and B =
(

a,b
F

)
be a

quaternion algebra over F . The following are equivalent:

(i) The quaternion algebra is isomorphic to the matrix ring: B ∼=M2(F );

(ii) The quaternion algebra B is not a division ring;

(iii) The quadratic form nrd is isotropic;

(iv) The binary form ax2 + by2 represents 1.

Proof. This classical proposition can be found in [MR03, Theorem 2.3.1] or

in [Vig80, Corollaire 3.2].

Definitions 2.2.2. If the equivalent conditions of proposition 2.2.1 above hold,

we say that B splits. A field K containing F is a splitting field for B if B⊗F K

splits.

Examples 2.2.3.

(i) Any quaternion algebra over an algebraically closed field is split;

(ii) For any quaternion algebra, there is a quadratic extension of its base field

that is a splitting field.
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Definition 2.2.4. Let F be a number field and B a quaternion algebra over F .

If σ : F ↪→ R a real embedding of F , we say that σ is split (resp. ramified)

if Bσ
∼= M2(R) (resp. Bσ

∼= H). If p is a prime of F and Fp the p-adic

completion of F , we say p is split if Bp = B⊗F Fp
∼=M2(Fp), and p is ramified

otherwise. The discriminant of B is the product of the ramified primes.

Example 2.2.5. Let F = Q(
√
2) and B =

(
−1,

√
2

F

)
. Let σ1 (resp. σ2) be the

real embedding of F sending
√
2 to
√
2 (resp. to −

√
2). Then Bσ1

∼=
(

−1,
√
2

R

)
∼=

(−1,1
R

) ∼=M2(R) so σ1 is split, and Bσ2

∼=
(

−1,−
√
2

R

)
∼=
(−1,−1

R

) ∼= H so σ2 is

ramified. Let p2 be the unique prime ideal of F above 2. One can show that p2 is

ramified, and that every other prime is split, so the discriminant ofB is ∆B = p2.

The following classification theorem is interesting, although it is not needed

for computing with Kleinian groups.

Theorem 2.2.6. Let F be a number field. For any quaternion algebra B over F ,

the number of ramified places is finite and even. Moreover, for any finite subset

of the non-complex places of F of even cardinality, there is a unique quaternion

algebra over F ramified exactly at these places.

Proof. This fundamental theorem involves a lot of machinery. The finiteness of

the number of ramified places comes from the theory of discriminants; the fact

that it is even is a consequence of class field theory (when F = Q it follows

from quadratic reciprocity); the uniqueness comes from the relationship be-

tween quadratic forms and quaternion algebras and the Hasse-Minkowski prin-

ciple for quadratic forms; the existence comes from the study of splitting fields

and the approximation theorem for F . The proof can be found in [MR03, The-

orem 7.3.6] or in [Vig80, Théorème 3.1].

Example 2.2.7. The map given by the discriminant

{
Isomorphism classes

of quaternion algebras over Q

}
−→

{
Squarefree

positive integers

}

is well-defined and bijective. Indeed the ramification at the infinite place is given

by the number of prime factors of the discriminant, so Theorem 2.2.6 gives the

result.

2.3 Orders

An integral structure in quaternion algebras is needed to study the arithmetic.

These structures are called orders.

Definition 2.3.1. Let F be a number field and ZF its ring of integers. Let B

be an F -algebra of finite dimension. An order in B (or ZF -order when there is
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ambiguity) is a finitely generated ZF -submodule O ⊂ B with FO = B which is

also a subring.

Example 2.3.2. Let F and ZF be as above, a, b ∈ ZF \ {0} and B =
(

a,b
F

)
.

Then the ZF -module O = ZF + ZF i+ ZF j + ZF ij is an order in B.

Definition 2.3.3. Let F be a number field, B a quaternion algebra over F

and O ⊂ B an order. We write O×
1 = {x ∈ O× | nrd(x) = 1}. The reduced

norm on B extends to a unique multiplicative map nrd : BR −→ FR such

that nrd(1⊗λ) = 1⊗λ2 for all λ ∈ R, and we write B×
R,1 = {x ∈ B×

R | nrd(x) =
1}.

Proposition 2.3.4. Let F be a number field of degree n, B a quaternion algebra

over F and O an order in B. Then there is an isomorphism of R-algebras

BR
∼=M2(R)

s1 × Hr1−s1 ×M2(C)
r2

where s1 is the number of split real places, and an isomorphism of topological

groups

B×
R,1
∼= SL2(R)

s1 × (H×
1 )

r1−s1 × SL2(C)
r2 .

The embeddings O ↪→ BR and O×
1 ↪→ B×

R,1 are discrete.

Proof. We have FR
∼= Rr1 × Cr2 as R-algebras, so BR = B ⊗F R = B ⊗F FR =∏r2

i=1 Bσi
and B×

R,1 =
∏r2

i=1(Bσi
)×1 . Then three cases have to be studied. First,

if σ is a complex embedding of F then Bσ
∼= M2(C) and we get (Bσ)

×
1
∼=

SL2(C). Secondly, if σ is a split real embedding of F , then Bσ
∼=M2(R) and we

have (Bσ)
×
1
∼= SL2(R). Finally, if σ is a ramified real embedding of F , then we

have Bσ
∼= H and we get the isomorphism (Bσ)

×
1
∼= H×

1 . Putting these together

give

BR
∼=M2(R)

s1 × Hr1−s1 ×M2(C)
r2

and

B×
R,1
∼= SL2(R)

s1 × (H×
1 )

r1−s1 × SL2(C)
r2 .

By definition of an order we have O ⊗Z F = B, so the image L of the em-

bedding O ↪→ BR is a finitely generated subgroup such that L ⊗Z R = BR, so

L is a full lattice : L is discrete. By restriction, the map O×
1 ↪→ B×

R,1 is also

discrete.

Theorem 2.3.5. Let F be a number field of degree n, B a quaternion algebra

over F and O an order in B. Then the embedding

O×
1 ↪→ B×

R,1

is cocompact if and only if B is a division algebra.
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Proof. Consider first the direction : if B is a division algebra, then the embed-

ding O×
1 ↪→ B×

R,1 is cocompact. It is a consequence of Minkowski’s convex body

theorem; for a proof, the reader should refer to [Vig80, Théorème 1.1]; this proof

uses idèles, but there exists also an elementary proof using only Minkowski’s

theorem.

The other direction is actually more difficult in the general case. We will give

a direct proof in the case of quaternion algebras. Suppose B is not a division

algebra. Then we have B ∼=M2(F ), so we may assume B =M2(F ), and up

to conjugacy, O ⊂ M2(ZF ) where ZF is the ring of integers of F so we may

assume O = M2(ZF ). Suppose O×
1 = SL2(ZF ) is cocompact, and consider

the matrix xn =

(
n 0

0 n−1

)
∈ B×

R,1, then there exists a bound A ∈ R and an

element γn =

(
an bn

cn dn

)
∈ SL2(ZF ) for all n, such that for every infinite place σ,

the inequality ‖γnxn‖σ ≤ A holds. But we have γnxn =

(
ann bnn

−1

cnn dnn
−1

)
, so we

have both |ann|σ ≤ A and |cnn|σ ≤ A for every infinite place σ. Hence for n

large enough, an = cn = 0 so det γn = 0, which is a contradiction.

Definition 2.3.6. Let F be a number field. We say F is quasi totally real or

QTR if F has exactly one complex place. A Kleinian quaternion algebra is a

quaternion algebra over a QTR number field, ramified at every real place.

Example 2.3.7. A quadratic imaginary field is a QTR number field. For any

positive cubefree integer d 6= 1, Q( 3
√
d) is a QTR number field.

Remark 2.3.8. By Theorem 2.2.6, a Kleinian quaternion algebra is uniquely

determined by its discriminant.

Corollary 2.3.9. Let B be a Kleinian quaternion algebra and O an order in B.

Then there is a discrete embedding

O×
1 ↪→ SL2(C)

which is cocompact if and only if B is a division algebra. Furthermore, if B is

not a division algebra then the base field F of B is a quadratic imaginary field

and B ∼=M2(F ).

Proof. We always have an embedding ρ : B×
1 ↪→ SL2(C) : take for example the

restriction of the algebra homomorphism

i 7→
(√

σ(a) 0

0 −
√
σ(a)

)
j 7→

(
0 1

σ(b) 0

)
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where B =
(

a,b
F

)
, σ is the unique (up to complex conjugation) complex em-

bedding of F and
√
σ(a) is a chosen complex square root of σ(a). Applying

the previous theorem, the embedding O×
1 ↪→ SL2(C)× (H×

1 )
n−1 is discrete and

is cocompact if and only if B is a division algebra. But (H×
1 )

n−1 is compact,

and ρ is the composition of O×
1 ↪→ SL2(C) × (H×

1 )
n−1 −→ SL2(C), so it is also

discrete, and cocompact if and only if B is a division algebra.

If B is not a division algebra, then it cannot be ramified at any place; but it

is ramified at every real place, so F has no real places and one complex place,

and then F is a quadratic imaginary field. Since B is not a division algebra, we

get B ∼=M2(F ).

2.4 Arithmetic Kleinian groups and covolumes

Definitions 2.4.1.

• Let Γ1 and Γ2 be subgroups of PSL2(C). We say that Γ1 and Γ2 are

directly commensurable if Γ1 ∩ Γ2 has finite index in both Γ1 and Γ2.

We say that Γ1 and Γ2 are commensurable if Γ1 and a conjugate of Γ2

in PSL2(C) are directly commensurable;

• Let Γ be a Kleinian group. We say that Γ is arithmetic if it is commen-

surable with some Pρ(O×
1 ) where O is an order in a quaternion algebra

over F , ramified at every real places of a QTR number field F , and ρ is a

discrete embedding ρ : O×
1 ↪→ SL2(C).

Theorem 2.4.2. Let F be a QTR number field of degree n, B a Kleinian

quaternion algebra over F , and O an order in B. Let Γ = Pρ(O×
1 ) where ρ is

a discrete embedding ρ : O×
1 ↪→ SL2(C). Then Γ has finite covolume. Further-

more, if O is maximal, then we have

Covol(Γ) =
|∆F |3/2ζF (2)

∏
p|∆B

(N(p)− 1)

(4π2)n−1

where ∆F is the discriminant of F , ζF is the Dedekind zeta function of F

and ∆B is the discriminant of B.

Proof. This result can be found in [MR03, Theorem 11.1.3], but the proof omits

an important computation (the “Tamagawa number”). A complete proof is

given in [Vig80, Corollaire 1.8 and Corollaire 3.8].

Remark 2.4.3. In the nonsplit case, we already knew that Γ had finite covol-

ume since it was cocompact. However, the exact formula for the covolume will

be crucial for computations.
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Part II

Algorithms for Kleinian groups

3 Algorithms for hyperbolic geometry

In this section we provide formulas for computing in the hyperbolic 3-space, and

describe how to perform geometric computations, including how to compute

with finite polyhedra.

3.1 The unit ball model and explicit formulas

In order to be able to do some computations, formulas for the action of SL2(C)

on the hyperbolic 3-space are needed.

Proposition 3.1.1. Identify H3 with the subset C + R>0j ⊂ H =
(−1,−1

R

)
.

Then for g =

(
a b

c d

)
∈ SL2(C) and z ∈ H3, we have

g · z = (az + b)(cz + d)−1 = (zc+ d)−1(za+ b). (1)

Proof. We will proceed as follows. First we will derive the generic formula for

a reflection in a plane and an inversion in a sphere. The formulas will be given

in H3 but by continuity they will still be valid on Ĥ3 with the obvious image

and preimage for the point at infinity. Then we will prove the Formula (1) for

some standard matrices: we will decompose Formula (1) for these matrices as

a product of reflections and inversions; since Formula (1) is the action by linear

fractional transformations on C this will prove that it is the Poincaré extension

of these matrices. Finally we will prove that the action on C and by Formula (1)

of any element in SL2(C) can be written as the same product of the action of

the standard matrices.

Let a, u ∈ C be such that |u| = 1, and let P be the plane containing a,

orthogonal to u. Let r be the map given by

for all z ∈ H3, r(z) = trd(aū)u− uz̄u = a+ uāu− uz̄u.

We claim that r(H3) ⊂ H3 and that r is the reflection in the plane P . Note first

that r is R-affine and fixes a. Let z ∈ P , so that we have 0 = trd((z − a)ū) =

zū+ uz̄− trd(aū) i.e. trd(aū) = zū+ uz̄. This gives r(z) = (zū+ uz̄)u− uz̄u =

z|u|2 = z. Now we compute r(a + u) = a + uāu − u(a+ u)u = a − u|u|2 =

a− u. This proves the claim, and the general form of a reflection in a plane is

thus z 7→ λu− uz̄u with λ ∈ R, u ∈ C and |u| = 1.
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Let a ∈ C, R ∈ R>0. Let S be the sphere of center a and radius R. Let ι be

the map given by

for all z ∈ H3, ι(z) = a+
R2

z̄ − ā
.

We claim that ι(H3) ⊂ H3 and that ι is the inversion in S. Indeed we have for

all z ∈ H3, ι(z)− a = R2

|z−a|2 (z − a).

We now prove Formula (1) for the following standard matrices:

S =

(
0 −1
1 0

)
, Da =

(
a 0

0 a−1

)
for a ∈ C×, and Tb =

(
1 b

0 1

)
for b ∈ C.

Let z ∈ H3. For the matrix S, Formula (1) becomes−z−1 = −(z̄−1) which is the

composition of an inversion and a reflection. Let R ∈ R>0. Then Formula (1)

for the matrix DR becomes RzR = R2z = R2

(1/z̄)
which is the composition of

two inversions. Let u ∈ C with |u| = 1. Then Formula (1) for the matrix Du

becomes uzu = −u(−z̄)u which is the composition of two reflections. Noting

that DRDu = DRu gives the formula for Da for all a ∈ C×. Let b ∈ R. Then

Formula (1) for the matrix Tb becomes z+b = b−(−z̄) which is the composition

of two reflections. Noting that DaTbDa−1 = Ta2b gives the formula for all b ∈ C.

We now express every element of SL2(C) as a product of the standard ma-

trices. Let g =

(
a b

c d

)
∈ SL2(C) and z ∈ H3. If c = 0, then d = a−1 and

Formula (1) becomes (az+ b)d−1 = d−1(za+ b) = aza+ab = TabDa · z. If c 6= 0

then Formula (1) becomes (az+b)(cz+d)−1 and (zc+d)−1(za+b). We give only

the computation for the first expression, the same method gives the result for the

second one. We can rewrite az+b = (a/c)(cz+d)+b−(ad/c) = (a/c)(cz+d)−1/c
and cz+d = c(z+d/c). This gives (az+b)(cz+d)−1 = a/c−c−1(c(z+d/c))−1 =

a/c− (c(z + d/c)c)−1 = Ta/cSDcTd/c · z.

Actually another model of the hyperbolic 3-space will be used. The reason

will appear when isometric spheres will be introduced: they will provide a nice

way to express a Dirichlet domain.

Definition 3.1.2. The unit ball B is the open ball of center 0 and radius 1

in R3 ∼= C+ Rj ⊂ H, equipped with the metric

ds2 =
4(dx2 + dy2 + dt2)

(1− |w|2)2

where w = (z, t) ∈ B, z = x + iy and |w|2 = x2 + y2 + t2 ≤ 1. The sphere at

infinity ∂B is the sphere of center 0 and radius 1. Let B̂ = B ∪ ∂B be the closed

ball of radius 1. We equip B̂ with the Euclidean topology.
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Proposition 3.1.3 (formulas for the unit ball model).

• The map

η :





Ĥ3 −→ B̂
z 7−→ (z − j)(1 − jz)−1 = (1− zj)−1(z − j)

∞ 7−→ j

is a continuous bijection, with continuous inverse

η−1 :





B̂ −→ Ĥ3

w 7−→ (w + j)(1 + jw)−1 = (1 + wj)−1(w + j)

j 7−→ ∞

and the restrictions η : H3 −→ B and η−1 : B −→ H3 are well-defined,

bijective isometries;

• For all w, z ∈ B, d(w, z) = cosh−1

(
1 + 2

|w − z|2
(1 − |w|2)(1− |z|2)

)
;

• For all w ∈ B, g =

(
a b

c d

)
∈ SL2(C), transport the action on the upper

half-space to the unit ball by setting

g · w = η(g · η−1(w));

we then have

g · w = (Aw +B)(Cw +D)−1

where

A = a+ d̄+ (b− c̄)j, B = b+ c̄+ (a− d̄)j,

C = c+ b̄+ (d− ā)j, D = d+ ā+ (c− b̄)j.

We also have |A|2 = |D|2 = ‖g‖2 + 2 and |B|2 = |C|2 = ‖g‖2 − 2,

where ‖ · ‖ is the usual L2 norm on M2(C).

Proof. For the first two points the reader should refer to [Rat06, Theorem 4.5.1].

We only prove the third one. Let w ∈ B and g =

(
a b

c d

)
∈ SL2(C). We
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let x = w + j and y = 1 + jw so that η−1(w) = xy−1

g · η−1(w) = (axy−1 + b)(cxy−1 + d)−1

= (ax+ by)y−1((cx+ dy)y−1)−1

= (ax+ by)(cx+ dy)−1

= ((a+ bj)w + (aj + b))((c+ dj)w + (cj + d))−1

= XY −1

where

X = (a+ bj)w + (aj + b), Y = (c+ dj)w + (cj + d).

This gives

η(g · η−1(w)) = (XY −1 − j)(1 − jXY −1)−1

= (X − jY )(Y − jX)−1

so we can compute

X − jY = (a+ bj)w + (aj + b)− j((c+ dj)w + (cj + d))

= (a+ bj − jc− jdj)w + (aj + b− jcj − jd)

= (a+ bj − c̄j + d̄)w + (aj + b+ c̄− d̄j)

= Aw +B

and

Y − jX = (c+ dj)w + (cj + d)− j((a+ bj)w + (aj + b))

= (c+ dj − ja− jbj)w + (cj + d− jaj − jb)

= (c+ dj − āj + b̄)w + (cj + d+ ā− b̄j)

= Cw +D.

Finally we can compute |A|2, |B|2, |C|2 and |D|2. We give the calculation

for |A|2, the others being similar.

|A|2 = |a+ d̄+ (b − c̄)j|2

= |a+ d̄|2 + |b− c̄|2

= |a|2 + |d|2 + 2< (a ¯̄d) + |b|2 + |c|2 − 2< (b¯̄c)

= ‖g‖2 + 2< (det g)

= ‖g‖2 + 2.
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Remark 3.1.4. It is tempting to believe that A = D and B = C. Actually

we have A = ā + d+ j̄(b̄ − c) = ā + d+ (c̄ − b)j 6= D; in the same way we can

compute B = b̄+ c+ (d̄− a)j 6= C.

Because of the isometry η, we can transport every structure from H3 to B.
The geodesics (resp. the geodesic planes) in B are the intersections between B
and the Euclidean circles and straight lines (resp. the Euclidean spheres and

planes), orthogonal to ∂B. We apply to B the same definitions of a segment,

convexity, a polyhedron and the related properties, and a Dirichlet domain.

Definitions 3.1.5. Suppose g ∈ SL2(C) does not fix 0 in B. Then let

• I(g) = {w ∈ B | d(w, 0) = d(g · w, 0)};

• Ext(g) = {w ∈ B | d(w, 0) < d(g · w, 0)};

• Int(g) = {w ∈ B | d(w, 0) > d(g · w, 0)};

We call I(g) the isometric sphere of g. For a subset S ⊂ SL2(C) such that

no element of S fixes 0, the exterior domain of S is Ext(S) =
⋂

g∈S Ext(g).

The set S is a boundary for Ext(S). A normalized boundary for Ext(S) is a

subset S′ ⊂ S such that Ext(S′) = Ext(S) and for all g ∈ S′, the geodesic

plane I(g) contains a face of Ext(S) (i.e. it is a minimal boundary). For S a

Euclidean sphere, also define Ext(S) (resp. Int(S)) to be the intersection of B
and the exterior (resp. the interior) of the sphere.

Proposition 3.1.6. Let g =

(
a b

c d

)
∈ SL2(C) and A,B,C,D as in Proposi-

tion 3.1.3. Then g ·0 = 0 if and only if C = 0. If g does not fix 0, then I(g) is the

intersection of B and the Euclidean sphere of center −C−1D and radius 2/|C|,
and we have Int(g) = Int(I(g)).

Proof. Let g =

(
a b

c d

)
∈ SL2(C) and A,B,C,D as in Proposition 3.1.3. We

first claim that for all w ∈ B, we have trd(BAw) = trd(DCw). Indeed since the

action of SL2(C) preserves Ĉ, it also preserves ∂B. Let w ∈ ∂B, so that |w| = 1.

We then have |g · w| = 1, i.e. |Aw +B|2 = |Cw +D|2. We can rewrite

|Aw +B|2 = |A|2|w|2 + |B|2 + trd(BAw)

and

|Cw +D|2 = |C|2|w|2 + |D|2 + trd(DCw).

Since |A| = |D|, |B| = |C| and |w| = 1 this gives trd(BAw) = trd(DCw).

Now ∂B generates C+Rj as a real vector space, so the last equality is still true

for all w ∈ C+ Rj and in particular for all w ∈ B.
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Now we turn to the proof of the proposition. By Proposition 3.1.3, we

have g · 0 = BD−1, and g · 0 = 0 if and only if B = 0 if and only if C = 0.

Let w ∈ B and let

α(w) = d(w, 0)− d(g · w, 0).

Since the map x 7→ cosh−1(1 + 2x) is strictly increasing on R≥0, α(w) has the

same sign as

β(w) =
|w − 0|2

(1 − |w|2)(1− |0|2) −
|g · w − 0|2

(1− |g · w|2)(1− |0|2) =
|w|2

1− |w|2 −
|g · w|2

1− |g · w|2 .

Now since x 7→ x
1−x = 1

1−u −1 is strictly increasing on [ 0, 1), β(w) has the same

sign as δ(w) = |w|2 − |g · w|2. We compute

δ(w) = |w|2 − |g · w|2

= |w|2 − |(Aw +B)(Cw +D)−1|2

= |Cw +D|−2
(
|w|2|Cw +D|2 − |Aw +B|2

)
.

Letting ε(w) = |Cw +D|2δ(w) we obtain

ε(w) = |w|2|Cw +D|2 − |Aw +B|2

= |C|2|w|4 + |D|2|w|2 + trd(DCw)|w|2 −
(
|A|2|w|2 + |B|2 + trd(BAw)

)

= |C|2|w|4 + |D|2|w|2 + trd(DCw)|w|2 − |D|2|w|2 − |C|2 − trd(DCw)

= |C|2(|w|4 − 1) + trd(DCw)(|w|2 − 1)

=
(
|C|2(|w|2 + 1) + trd(DCw)

)
(|w|2 − 1)

=
(
|C|2|w|2 + |D|2 − 4 + trd(DCw)

)
(|w|2 − 1)

=
(
|Cw +D|2 − 4

)
(|w|2 − 1).

Finally α(w) has the same sign as 2− |Cw +D| so we have

• x ∈ I(g)⇔ α(w) = 0⇔ |Cw +D| = 2⇔ |w − (−C−1D)| = 2/|C|, and

• x ∈ Int(g)⇔ α(w) > 0⇔ |Cw +D| < 2⇔ |w − (−C−1D)| < 2/|C|

as claimed.

Lemma 3.1.7. Let Γ be a Kleinian group such that 0 has a trivial stabilizer

in Γ and let g, h ∈ Γ. Then we have I(g) = I(h) if and only if g = h.

Proof. For all g ∈ Γ, we have I(g) = {w ∈ B | d(w, 0) = d(g · w, 0)} = {w ∈
B | d(w, 0) = d(w, g−1 · 0)} so I(g) is the perpendicular bisector of [0, g−1 · 0].
Now suppose I(g) = I(h), then the segments [0, g−1 · 0] and [0, h−1 · 0] have a

common endpoint and the same perpendicular bisector, so they are equal and

we have g−1 ·0 = h−1 ·0. Since 0 has trivial stabilizer in Γ this proves g = h.
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Remark 3.1.8. For every Kleinian group Γ such that 0 ∈ B has trivial stabi-

lizer, we have D0(Γ) = Ext(Γ \ {1}), so now the goal will be to compute the

normalized boundary of such an exterior domain.

3.2 Geometric computations

In this section, every computation will be done in the unit ball model. The

following geometrical objects have to be represented in bits:

• Reals, complex numbers, and Hamiltonians are represented using exact

real arithmetic (see [PER89] and [Wei00] for theoretical foundations and

for example [Boe05] or [GL01] for a discussion on practical implementa-

tions). Alternatively, we can use fixed and sufficiently large precision; we

cannot predict in advance the required precision, but in practice it is not

likely that an error due to round-off will occur (see also section 11.4);

• A point in B is represented as a vector of norm less than 1 in C+Rj ⊂ H;

• A geodesic plane not containing 0 is the intersection of a Euclidean sphere

and B, so it is represented by a couple (c, r) where c is its Euclidean center

and r is its Euclidean radius;

• A geodesic not containing 0 is the intersection of a Euclidean circle with B,
and a Euclidean circle is the intersection of a Euclidean sphere and a

unique Euclidean plane containing the center of the sphere, so it is repre-

sented by a 5-uple (c, r, e1, e2, e3) where c, r are the center and the radius

of the sphere, and (e1, e2, e3) is an orthonormal basis of the ambiant Eu-

clidian 3-space such that (e1, e2) is a basis of the plane;

• A segment not collinear with 0 is an arc of a geodesic; it is represented

by a couple (`, I) where ` is the geodesic, and I is a segment of R/2πZ,

which is represented by a union of at most two segments of [0, 2π];

• A finite convex polyhedron P containing 0 is represented in bits by a

triple (F, FE, IE), where F is the set of the geodesic planes containing

the faces of P (this already uniquely determines it), FE is the set of the

edges of P , an edge e is represented by a couple (s, {f1, f2}) where s is a

segment and f1, f2 are faces such that e = f1 ∩ f2, and IE is the set of its

infinite edges (the intersection of the sphere at infinity with the Euclidean

closure of the faces) represented by arcs of Euclidian circles.

The following basic geometric computations are required and can be com-

puted by explicit formulas:

• The intersection of two Euclidean spheres can be in general a Euclidean

circle or the empty set, otherwise it is a single point; this gives the inter-

section of two geodesic planes;
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• The intersection of two Euclidean planes is in general a Euclidean line,

otherwise it can be the empty set or a Euclidean plane;

• The intersection of a Euclidean sphere and a Euclidean circle can be in

general two points or the empty set, otherwise it can be a Euclidean circle

or a single point; this gives the intersection of a geodesic plane and a

geodesic.

3.3 Computing an exterior domain

A natural way to compute an exterior domain Ext(S) is to iteratively com-

pute Ext({s1, . . . , st}) for t = 1, . . . ,#S. Here are the elementary operations

needed to do this computation:

(i) given a Euclidean circle or a union of segments of that circle, and an exte-

rior domain, compute the part of that circle sitting inside (resp. outside)

of that exterior domain: for every face of the exterior domain, compute

the intersection points with the circle, compute the corresponding angles

and the corresponding interval, then compute the whole intersection;

(ii) given a finite convex polyhedron and a Euclidean sphere, remove from its

edges and infinite edges the part sitting inside this sphere: for every edge

and infinite edge, use (i) with the exterior domain consisting of the interior

of the single sphere and replace the edge by the result; this operation is

called reducing the edges of the polyedron by the sphere;

(iii) given a finite convex polyhedron P and a Euclidean sphere S, compute

the edges of P ∩Ext(S) having a nonempty intersection with S: for every

face of the polyhedron, compute its intersection with S, if it is not empty,

use (i) with the resulting circle and P ; this operation is called computing

the new edges of P associated to S;

(iv) given a finite convex polyhedron P and a Euclidean sphere S, compute the

infinite edges of P ∩Ext(S) having a nonempty intersection with S: com-

pute the intersection of S and the sphere at infinity, then use (i) with the

resulting circle and P ; this operation is called computing the new infinite

edges of P associated to S;

(v) given a finite convex polyhedron P , a Euclidean sphere S and a point x on

that sphere, compute what angle fraction of S, locally around x, is in the

boundary of P : take a Euclidean sphere s centered at x of small enough

radius (smaller than half the minimum Euclidean distance between x and

any vertex of P ), compute the intersection c = s∩S, and use (i) with this

circle and P , then add up the length of the angle intervals; this operation

is called computing the angle of S around x.
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Definition 3.3.1. A subset X ⊂ B intersects trivially a polyhedron P if the

intersection X ∩ P is contained in a union of edges of P .

This leads to Algorithm 1 below: given a finite convex polyhedron P and a

geodesic plane S not containing 0, it computes P ′ = P ∩ Ext(S).

Algorithm 1 Exterior domain algorithm

Input: A finite convex polyhedron P , a geodesic plane S not containing 0
1: P ′ ← P
2: Reduce the edges of P ′ by S
3: Remove the edges and infinite edges of P ′ reduced to a finite set of points
4: Compute the new edges and the new infinite edges of P ′ associated to S,

add them to the edges of P ′

5: Add S to the faces of P ′

6: For every face f of P ′ and every edge and infinite edge e of f , compute the
angle of f around a point in e to remove edges intersecting P ′ trivially

7: Remove faces having no egde and no infinite edge
Output: P ′ = P ∩ Ext(S)

Proof of Algorithm 1. In order to simplify the notations, in this proof “edge”

means finite or infinite edges, and otherwise “finite” or “infinite” is specified.

Any face of P ′ is either contained in S or a face of P ; hence after step 5, the

stored faces contain every possible face for P ′. Now a face f is the convex hull

of its edges: let x ∈ f ; take any geodesic λ passing through x and contained in

a geodesic plane containing f , and consider the geodesic segment [y, z] = λ∩ f .
Then y, z are in the edges of f , and x is in the convex hull [y, z] of {y, z}.
Hence a face is empty if and only if it has no edge, and a face f intersects P

trivially if and only if every edge of f intersects P trivially. After step 6, the

only remaining faces are the ones intersecting nontrivially P , so after step 7,

the remaining faces are exactly the faces of P ′. Hence we need to compute the

edges of P ′: they are either edges of P , or new edges of P associated to S.
Hence after steps 2 and 3, the remaining edges are the edges of P ′ contained

in some edge of P , and after step 4, the remaining edges are exactly the edges

of P ′.

Remark 3.3.2. Actually there is a much simpler way to compute an exterior

domain: first compute every intersection of three planes, which gives a set of

points, then keep only the points inside the polyhedron (these are the vertices),

and finally keep only the planes containing a point (these are the faces). However

this method is much slower since it takesO(n4) elementary geometric operations

where n is the number of planes, and in practice it seems to be numerically less

stable.
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3.4 Computing the volume of a convex finite polyhedron

In this section a description of how to compute the volume of a convex finite

polyhedron will be given. First, in order to get formulas for hyperbolic volumes,

the Lobachevsky function has to be introduced.

Proposition 3.4.1. The integral

−
∫ θ

0

ln |2 sinu| du

converges for θ ∈ R \ πZ and admits a continuous extension to R, which is odd

and periodic with period π.

Proof. [Rat06, Theorem 10.4.3].

Definition 3.4.2. This extension is called the Lobachevsky function L(θ).

Proposition 3.4.3. The Lobachevsky function admits a power series expansion:

L(θ) = θ

(
1− ln(2θ) +

∞∑

n=1

22n|B2n|
2n(2n+ 1)!

θ2n

)

where the Bn are the Bernoulli numbers defined by

x

ex − 1
=

∞∑

n=0

Bn
xn

n!
·

Proof. In [Rat06, paragraph 10.4], the identity

L′′(θ) = − cot(θ)

is proved. Integrating twice the classical power series of the cotangent ([Ser73,

Chap. VII, 4.1, Proposition 7]) gives the result.

This power series expansion can be used to compute approximate values

of the Lobachevsky function as follows. Using oddness and π-periodicity we

can reduce to θ ∈ [0, π
2 ]. Then we use the classical expression of the Bernoulli

numbers (see [Ser73, Chap. VII, 4.1, Proposition 7])

B2n = (−1)n+1 2(2n)!

(2π)2n
ζ(2n) for all n ∈ Z>0

where ζ(s) =
∑

n≥1 n
−s is the Riemann zeta function. Finally for all n ∈ Z>0



3 ALGORITHMS FOR HYPERBOLIC GEOMETRY 26

and θ ∈ [0, π
2 ] we compute

22n|B2n|
2n(2n+ 1)!

θ2n =
22n2(2n)!

2n(2n+ 1)!(2π)2n
ζ(2n)θ2n

=
1

(2n+ 1)π2n
ζ(2n)θ2n

<

(
θ

π

)2n

< 4−n.

This gives a bound for the tail of the series

∑

n>m

22n|B2n|
2n(2n+ 1)!

θ2n <
∑

n>m

4−n =
4−m

3
.

From this bound we know in advance the number of terms to add to reach some

given precision.

With this a formula for the volume of a certain standard tetrahedron can be

derived. It will be used to compute the volume of any finite convex polyhedron.

Proposition 3.4.4. Let Tα,γ be the tetrahedron in H3 with one vertex at ∞
and the other vertices A,B,C on the unit hemisphere such that they project

vertically onto A,B′, C′ in C with A′ = 0 to form a Euclidean triangle, with

angles π
2 at B′ with and α at A′, and such that the angle along BC is γ (see

Figure 3.1). Then Tα,γ is unique up to isometry and

Vol(Tα,γ) =
1

4

[
L(α + γ) + L(α − γ) + 2L

(π
2
− α

)]
.

+

+
+

+

+

+

A

B C

γ

A′

B′ C′α

Figure 3.1: The standard tetrahedron Tα,γ
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Proof. This formula can be found in [MR03, paragraph 1.7].

Using this, Algorithm 2 computes the volume of a finite convex polyhedron.

Algorithm 2 Volume of a finite convex polyhedron

Input: A convex finite polyhedron P
1: Split every face of P into triangles
2: Split P into tetrahedra
3: Express every tetrahedron as a difference of two tetrahedra, each having a

vertex in the sphere at infinity
4: For every tetrahedron having a vertex in the sphere at infinity, apply an

isometry to map it to a tetrahedron with one vertex at ∞ and the other
vertices on the unit hemisphere

5: Express every such tetrahedron as an algebraic sum of tetrahedra of the
same type having one vertex at j

6: Express every such tetrahedron as an algebraic sum of tetrahedra of the
same type such that the projected Euclidean triangle has a right angle not
at 0

7: For every such tetrahedron, compute the angles α and γ and use Proposi-
tion 3.4.4 to compute the volume

8: Vol(P )← sum of every contribution
Output: Vol(P )

Remarks 3.4.5.

• For step 1, choose a vertex of the face and link it to every other vertex;

• For step 2, choose a vertex of P and link it to every computed triangle;

• For step 3, choose an edge and extend it into a geodesic, choose an end-

point of that geodesic and then the tetrahedron appears as the difference

between two tetrahedra, each having the geodesic as an edge and a face

of the initial tetrahedron as a base (see Figure 3.2);

• In step 5, the signs that appear in the sum are the signs of certain deter-

minants.

4 The reduction algorithm

In this section we describe the reduction algorithm, and an algorithm that uses

reduction to compute a fundamental domain for a Kleinian group.

4.1 Reduction

When we have a fundamental domain, it is natural to try to compute for any

point in the hyperbolic 3-space an equivalent point in the fundamental domain
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Figure 3.2: Reducing to tetrahedra with a vertex at infinity

and elements of the considered Kleinian group sending them to each other. This

is called reduction.

Definition 4.1.1. Let Γ be a Kleinian group and S ⊂ Γ. A point z ∈ B
is S-reduced if for all g ∈ S, we have d(z, 0) ≤ d(g · z, 0), i.e. if z ∈ Ext(S).

Given S a finite subset of PSL2(C) and a point w ∈ B, Algorithm 3 below

returns a point z and δ ∈ 〈S〉 such that z is S-reduced and z = δ · w.

Algorithm 3 Reduction algorithm

Input: A point w ∈ B, a finite ordered subset S ⊂ PSL2(C)
1: z ← w, δ ← 1
2: g ← 1
3: repeat

4: z ← g · z, δ ← gδ
5: g ← the first g ∈ S such that d(g · z, 0) is minimal
6: until d(g · z, 0) ≥ d(z, 0)

Output: z, δ ∈ 〈S〉 s.t. z is S-reduced and z = δ · w

Proof of Algorithm 3. After step 4, we have z = δ · w and δ ∈ 〈S〉: after the

initialization, we have z = w and δ = 1, and writing z′, δ′ the values after the

step, we also get z′ = g · z = g · (δ · w) by induction, so z′ = (gδ) · w = δ′ · w
and δ′ = gδ ∈ 〈S〉 since g ∈ S and δ ∈ 〈S〉 by induction. At the end of the

loop, the algorithm terminates if d(g ·z, 0) ≥ d(z, 0). Hence while the algorithm

runs, the distance d(z, 0) is decreasing. But z stays in the Γ-orbit of w and this

orbit is discrete, so the algorithm terminates, and when this happens g is an

element in S such that d(g · z, 0) is minimal and d(g · z, 0) ≥ d(z, 0), so z is

S-reduced.
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Remarks 4.1.2.

• The element δ can alternatively be computed as a word in the elements

of S instead of being evaluated;

• At step 5, the g achieving the minimal d(g · z, 0) may not be unique. We

can then pick any of these elements. Ordering S gives us a canonical

choice.

Reducing points can give interesting information about the elements of the

group, because if w has a trivial stabilizer, then the orbit map γ 7→ γ · w is a

bijection. This is the reason for introducing the following definition:

Definition 4.1.3. Let Γ be a Kleinian group, S ⊂ Γ and w ∈ B. An element γ ∈
Γ is (S,w)-reduced if γ · w is S-reduced, i.e. if γ · w ∈ Ext(S).

Given S, w and Γ, an (S,w)-reduced element γ̄ such that γ̄ ≡ γ (mod S)

can now be computed as follows: reduce γ · w with respect to S; if δ ∈ 〈S〉 is
such that δ · (γ · w) is S-reduced, then γ̄ = δγ is (S,w)-reduced. We also write

the reduced element γ̄ = RedS(γ;w) and simply RedS(γ) = RedS(γ; 0).

Proposition 4.1.4. Suppose that Ext(S) is a fundamental domain for 〈S〉.
Then for almost every w ∈ B the following holds: for every γ ∈ Γ, there exists

a unique (S,w)-reduced γ̄ ≡ γ (mod S). If w ∈ Ext(S) then γ̄ = 1 if and only

if γ ∈ 〈S〉.

Remark 4.1.5. Almost every means outside of a zero measure, closed subset

of H3 with empty interior.

Proof. Let w be in the orbit of Ext(S). The existence follows from Algorithm 3.

For uniqueness, suppose γ̄ and γ̄′ are (S,w)-reduced and γ̄ ≡ γ̄′ ≡ γ (mod S).

Then γ̄ · w, γ̄′ · w ∈ Ext(S), and since w is in the orbit of Ext(S), we have in

fact γ̄ ·w, γ̄′ ·w ∈ Ext(S). But γ̄ ·w and γ̄′ ·w are in the same 〈S〉-orbit, so γ̄ = γ̄′.

Now assume w ∈ Ext(S). If γ̄ = 1 then γ ≡ γ̄ ≡ 1 (mod S), i.e. γ ∈ 〈S〉.
If γ ∈ 〈S〉 then γ ≡ 1 (mod S) and 1 is (S,w)-reduced since 1 ·w = w ∈ Ext(S)

so by uniqueness γ̄ = 1.

Since this means that elements in 〈S〉 can be explicitly written down as words

in the elements of S and that computation in 〈S〉\Γ can be performed (with

explicit unique representatives), this particular kind of generating set deserves

a name.

Definition 4.1.6. A subset S of a Kleinian group Γ is a basis if Ext(S) is a

fundamental domain for 〈S〉 = Γ. If S is also a normalized boundary for Ext(S),

it is called a normalized basis for Γ.
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4.2 Computing a normalized basis

In this section we describe an algorithm that computes a normalized basis for a

geometrically finite Kleinian group, using the reduction algorithm. We begin by

two lemmas. The first one describes the face pairing in terms of the boundary

of an exterior domain; the second one will allow us to make some assumptions

on the Kleinian group given as an input.

Lemma 4.2.1. Let g ∈ Γ and F = Ext(Γ\{1}). Then g ·I(g) = I(g−1), and I(g)

contributes to the boundary of F if and only if I(g−1) does.

Proof. Let y ∈ B. Then

y ∈ g · I(g)⇔ x ∈ I(g) where x = g−1 · y
⇔ d(g · x, 0) = d(x, 0)

⇔ d(g · (g−1 · y), 0) = d(g−1 · y, 0)
⇔ d(y, 0) = d(g−1 · y, 0)
⇔ y ∈ I(g−1).

Note first that a point z ∈ B contributes to the boundary of F if and only

if z ∈ F = Ext(Γ \ {1}), and let z ∈ I(g). Then

g · z ∈ Ext(Γ \ {1})⇔ ∀γ ∈ Γ, d(γ · (g · z), 0) ≥ d(g · z, 0)
⇔ ∀γ ∈ Γ, d(γg · z, 0) ≥ d(z, 0) since γ ∈ I(g)

⇔ ∀γ ∈ Γ, d(γ · z, 0) ≥ d(z, 0)

⇔ z ∈ Ext(Γ \ {1}).

Remark 4.2.2. This proves that the pairing transformations of such a Dirichlet

domain are exactly the elements of a normalized boundary.

Lemma 4.2.3. Let Γ be a Kleinian group. Let p ∈ B, and let h ∈ B be such

that h · 0 = p and Γ′ = h−1Γh. Then for almost all choices of p, the stabilizer

of 0 in Γ′ is trivial and every elliptic cycle in D0(Γ) has length 1.

Remark 4.2.4. By almost all we mean outside of a zero measure, closed subset

of H3 with empty interior.

Proof. Let z ∈ B and g ∈ Γ. Then h−1gh · z = z ⇔ gh · z = h · z ⇔ g · p = p: for

the first property we can take p outside of the set of elliptic fixed points of Γ.

We now turn to the second property. If there is an elliptic cycle inD0(Γ) with

length greater than 1, then there is a geodesic L′, an elliptic element h−1g′h ∈
Γ′ fixing every point in L′ and a pairing transformation h−1gh ∈ Γ′ such



4 THE REDUCTION ALGORITHM 31

that h−1gh · L′ is also the axis of an elliptic element of Γ′. By Lemma 4.2.1,

we have L ⊂ I(h−1gh). Now we conjugate back to Γ: we have L = h · L′ is

the axis of g′, g · L is the axis of an elliptic element of Γ and for all x ∈ L,

we have h−1 · x ∈ I(h−1gh), i.e. d(h−1 · x, 0) = d(h−1g · x, 0) which is equiv-

alent to d(x, h · 0) = d(g · x, h · 0): the center p is in the intersection of the

perpendicular bisectors of [x, g · x] for all x ∈ L. Thus we can take p outside

of every such intersection of perpendicular bisectors corresponding to a couple

of elliptic elements of Γ, and this is a zero measure, closed subset of H3 with

empty interior since it is a countable, locally finite union of such sets.

Thanks to Lemma 4.2.3 we can always assume that 0 is not a fixed point in Γ

and that every elliptic cycle has length 1. We can now describe an algorithm

to compute a normalized basis. It uses two subalgorithms, Enumerate and

IsSubgroup. The first subalgorithm Enumerate takes as an input a positive

integer n and returns elements in Γ. The second subalgorithm IsSubgroup takes

as an input a normalized boundary S for a subgroup 〈S〉 ⊂ Γ and returns true

or false according to whether 〈S〉 6= Γ. We describe first a completely naive

algorithm for computing a normalized basis for Γ.

Algorithm 4 Naive normalized basis algorithm

Input: A Kleinian group Γ
1: S ← ∅, n← 0
2: repeat

3: repeat

4: n← n+ 1
5: S ← S ∪ Enumerate(Γ, n)
6: S ← normalized boundary of Ext(S)
7: until every edge in Ext(S) is paired and Ext(S) is complete and the

cycle condition holds
8: until not IsSubgroup(Γ, S)

Output: A normalized basis S for Γ

Remark 4.2.5. Methods for checking whether every egde is paired and whether

the polyhedron Ext(S) is complete are described respectively in Lemma 4.2.1

and Lemma 4.2.13.

Definition 4.2.6. Let X be a set, and A is an algorithm that takes as an input

a positive integer and returns elements in X . The algorithm A is a complete

enumeration of X if X =
⋃

n>0 A(n).

Proposition 4.2.7. If Γ is geometrically finite and Enumerate is a complete

enumeration of Γ, then Algorithm 4 terminates after a finite number of steps

and the output S is a normalized basis for Γ.

Proof. Since Enumerate is a complete enumeration, a boundary for the Dirich-

let domain centered at 0 will be enumerated after a finite number of steps.
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By Proposition 1.5.8, the algorithm will then terminate. The output will then

be a normalized basis for Γ by Step 6.

We will now use the reduction algorithm to improve tremendously Algo-

rithm 4. For clarity Algorithm 9 will be divided into four routines.

Algorithm 5 returns a subset S′ ⊂ 〈S〉 such that the following properties

hold: 1 /∈ S′, Ext(S′) ⊂ Ext(S), 〈S′〉 = 〈S〉 and S′ = U ∪ T where U is the

normalized boundary of Ext(S′) and every g ∈ T is U -reduced.

Algorithm 5 KeepSameGroup

Input: A finite subset S ⊂ PSL2(C)
1: U ′ ← normalized boundary of Ext(S)
2: repeat

3: U ← U ′

4: S′ ← U
5: for all g ∈ S do

6: ḡ ← RedU\{g−1}(g)
7: if ḡ 6= 1 then

8: S′ ← S′ ∪ {ḡ}
9: end if

10: end for

11: U ′ ← normalized boundary of Ext(S′)
12: S ← S′

13: until U = U ′

Output: S′

Proof of Algorithm 5. Let S0 be the value of S in the input. We claim that

after Step 10, we have

(i) S′ ⊂ 〈S0〉 with 1 /∈ S′;

(ii) S′ = U ∪ T where every g ∈ T is U -reduced;

(iii) Ext(S′) ⊂ Ext(S0); and

(iv) 〈S′〉 = 〈S〉 = 〈S0〉.

First we prove (i). We have U ⊂ S because of Steps 1 and 3 at the first

iteration and because of Steps 11 and 12 at the other iterations. But after

Step 10, S′ contains only elements of U and nontrivial reductions by a subset

of U of elements of S. So by induction we have S′ ⊂ 〈S〉 ⊂ 〈S0〉 and 1 /∈ S′.

Next we turn to (ii). Let T = S′ \ U , so that S′ = U ∪ T . Then every

element g ∈ T is added to S′ at Step 8, and U \ {g−1} = U , so g is U -reduced.

Now we prove (iii). After the first execution of Step 4 we have Ext(S′) =

Ext(S) = Ext(S0). Next, every time S′ decreases it is because we compute
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its normalized boundary, so Ext(S′) remains the same, and when S′ increases

then Ext(S′) decreases.

Finally we prove (iv). After Step 10, S′ = U ∪ T . We must prove that S ⊂
〈S′〉. Let g ∈ S. If ḡ = 1, then g ∈ 〈U \ {g−1}〉 ⊂ 〈S′〉. If ḡ 6= 1, then g = δḡ

with δ ∈ 〈U〉 ⊂ 〈S′〉 and ḡ ∈ S′ so g ∈ 〈S′〉. By induction 〈S′〉 = 〈S0〉.

Let’s prove that Algorithm 5 terminates after a finite number of steps, with

the previous claim it will prove correctness. Let A = max{d(g · 0, 0) : g ∈ S0}.
Let X0 = {g ∈ 〈S0〉 : d(g · 0, 0) ≤ A}. The set X0 is finite since 〈S〉 is a

Kleinian group, and we have S0 ⊂ X0. Define after the n-th execution of

Step 11 Xn = Xn−1 \ (U \ U ′).

We claim that after Step 11, we have U ′ ⊂ Xn. Indeed the only elements

that can be added come from Step 8, and they are reductions of elements

of S, but d(g · 0, 0) decreases as we reduce an element g, so by induction

we have S, S′ ⊂ X0. Now U ′ ⊂ S′, so U ′ ⊂ X0. But every g ∈ X0 \ Xn

has I(g) contained in the complement of Ext(S′), so g /∈ U ′ and U ′ ⊂ Xn.

Finally after every iteration, if U ′ = U then the algorithm terminates, and

otherwise Xn \ U ′ decreases. Since X0 is finite, the algorithm terminates after

finitely many steps.

Algorithm 6 adds to S elements of 〈S〉 such that if not every edge of Ext(S)

is paired, then Ext(S) is strictly smaller after adding these elements.

Algorithm 6 CheckPairing

Input: A finite subset S ⊂ PSL2(C)
1: for all g ∈ S with e edge in I(g) not paired do

2: x← x ∈ e such that g · x /∈ Ext(S)
3: ḡ ← RedS(g;x)
4: S ← S ∪ {ḡ, ḡ−1}
5: end for

Output: S

Remark 4.2.8. In Step 1, we test whether I(g) is paired by using Lemma 4.2.1.

Proof of Algorithm 6. By Lemma 4.2.1, an edge e ⊂ I(g) is not paired if and only

if g·e is not an edge of Ext(S), if and only if there is x ∈ e such that g·x /∈ Ext(S).

Now if there is a nonpaired edge, at Step 4, since x ∈ I(g) we have d(g · x, 0) =
d(x, 0) and since g · x /∈ Ext(S) we have d(g · x, 0) > d(ḡ · x, 0). Putting

these two together gives d(ḡ · x, 0) < d(x, 0), i.e. x ∈ Int(ḡ) so finally we

have Ext(S ∪ {ḡ})  Ext(S).

Lemma 4.2.9. Let g ∈ SL2(C) be loxodromic. Then Int(g) contains a fixed

point of g in ∂B.
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Proof. Let g =

(
a b

c d

)
∈ SL2(C) be loxodromic. The fixed points of g in ∂B

are the images under η of the fixed points of g in P1(C). Replacing g by a

close element in SL2(C) we may assume that the fixed points of g are in C.

Let z1, z2 ∈ C denote the fixed points of g and z ∈ C denotes any fixed point

of g. Then η(z) = xy−1 where x = z − j, y = 1 − jz. With notations of

Proposition 3.1.3, by Proposition 3.1.6 we have

η(z) ∈ Int(g)⇔ |Cη(z) +D| < 2

⇔ |Cxy−1 +D| < 2

⇔ |Cx+Dy| < 2|y|.

We compute

Cx = (c+ b̄+ (d− ā)j)(z − j) = (c+ b̄)z + d− ā+ ((d − ā)z̄ − c− b̄)j,

Dy = (d+ ā+ (c− b̄)j)(1− jz) = (c− b̄)z + d+ ā+ (c− b̄− (d+ ā)z̄)j, and

Cx +Dy = 2(d+ cz) + 2(b+ az)j.

We then get

η(z) ∈ Int(g)⇔ |Cx+Dy|2 < 4|y|2

⇔ |az + b|2 + |cz + d|2 < 1 + |z|2

⇔ |z|2|cz + d|2 + |cz + d|2 < 1 + |z|2 since g · z = z

⇔ |cz + d|2 < 1.

We need to prove that one of z1, z2 satisfies |cz + d| < 1. To prove this we need

some information on z1, z2. We have

cz2 + (d− a)z − b = 0

so letting ∆ = (d− a)2 − 4bc = tr(g)2 − 4 = δ2 we have

z1z2 = −
b

c
,

z1 + z2 =
a− d

c
, and

z =
a− d± δ

2c
.

We compute

(cz1 + d)(cz2 + d) = c2z1z2 + cd(z1 + z2) + d2

= −bc+ d(a− d) + d2 = 1.
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This gives |cz1 + d||cz2 + d| = 1 so we have to prove that |cz1 + d|, |cz2 + d|
cannot be both equal to 1, which is now equivalent to |cz1+ d|2 + |cz2+ d|2 6= 2

since the product is 1. So we compute

|cz1 + d|2 + |cz2 + d|2 = |c|2(|z1|2 + |z2|2) + 2|d|2 + 2< (d̄c(z1 + z2))

= |c|2(|z1 + z2|2 − 2< (z1z2)) + 2|d|2 + 2< (d̄(a− d))

= |a− d|2 − 2|c|2< (z1z2) + 2< (d̄a).

Making a choice for z1, z2 gives

z1z2 =
a− d+ δ

2c

(a− d)− δ̄

2c̄

=
|a− d|2 − |δ|2 + 2i= ((a− d)δ)

4|c|2 , so

< (z1z2) =
|a− d|2 − |δ|2

4|c|2 ,

and we can go on with

|cz1 + d|2 + |cz2 + d|2 =
1

2
|a− d|2 + 1

2
|δ|2 + 2< (d̄a)

=
1

2

(∣∣tr(g)2
∣∣+
∣∣tr(g)2 − 4

∣∣)

but this last quantity is equal to 2 if and only if tr(g)2 ∈ [0, 4], if and only

if tr(g) ∈ [−2, 2] which is not since g is loxodromic.

Lemma 4.2.10. Suppose S ⊂ Γ be a subset of a Kleinian group Γ such that 0

has a trivial stabilizer in Γ, and suppose there are elements g ∈ S, h ∈ Γ

and x ∈ I(g) ∩ Ext(S) such that g 6= h, h · x ∈ Ext(S) and x does not lie in an

edge of Ext(S). Then Ext(S ∪ {h, h−1})  Ext(S).

Proof. We consider three cases. First suppose d(x, 0) > d(h · x, 0). Then

we have x ∈ Int(h) ∩ Ext(S), so we get Ext(S ∪ {h})  Ext(S). Now sup-

pose d(x, 0) < d(h · x, 0). Then letting y = h · 0 this gives d(h−1y, 0) < d(y, 0)

so y ∈ Int(h) ∩ Ext(S), and we have Ext(S ∪ {h−1})  Ext(S). Finally sup-

pose d(x, 0) = d(h · x, 0). Then x ∈ I(g) ∩ I(h) but x does not lie in an edge

of Ext(S) and since h 6= g we have I(h) 6= I(g) by Lemma 3.1.7, so I(g)∩I(h) is a
geodesic not containing any edge of Ext(S): we get Ext(S ∪{h})  Ext(S).

Algorithm 7 adds to S elements of 〈S〉 such that if condition (g) of the cycle

condition does not hold for the already existing edge cycles in Ext(S) or if some

cycle angle for a non-elliptic cycle is larger than 2π, then Ext(S) is strictly

smaller after adding these elements.



4 THE REDUCTION ALGORITHM 36

Algorithm 7 CheckCycleCondition

Input: A finite subset S ⊂ PSL2(C)
1: Compute every edge cycle
2: for all g cycle transformation for the edge e do

3: if g 6= 1 fixes at most one point in e then

4: S ← S ∪ {g, g−1}
5: else if g 6= 1 fixes every point in e then

6: S ← S ∪ 〈g〉
7: else

8: m← period of the cycle
9: for all 0 < i < m do

10: x← point in fi+1 close to ei
11: h← gi . . . g1
12: if h−1 · x ∈ Ext(S) then
13: S ← S ∪ {h, h−1}
14: end if

15: end for

16: end if

17: end for

Output: S

Remark 4.2.11. At Step 6, g is elliptic so 〈g〉 is finite and we can compute it

by computing the successive powers of g.

Proof of Algorithm 7. Suppose there is an edge cycle for an edge e equal to a

geodesic and such that condition (g) is not satisfied, and let g be the correspond-

ing cycle transformation. From the description of the stabilizer of a geodesic,

the transformation g is either loxodromic, or elliptic of order 2 with exactly

one fixed point in e. In both cases, Step 4 is executed. In the first case, by

Lemma 4.2.9 above Ext({g, g−1})∩ e  e so Ext(S ∪{g, g−1})  Ext(S). In the

second case, the edge e contains exactly one fixed point of g in H3, so we again

have Ext({g}) ∩ e  e and we get Ext(S ∪ {g, g−1})  Ext(S).

Now suppose some cycle angle for a non-elliptic cycle is larger than 2π. Then

considering the images P, g−1
1 · P, . . . , (gi . . . g1)−1 · P of P = Ext(S) that glue

one after another around e, there is an overlap which will be detected at Step 12.

But then after Step 13 we have Ext(S ∪ {h, h−1})  Ext(S) by Lemma 4.2.10.

In order to have the conditions of Theorem 1.5.10, we need to check com-

pleteness. We give here a simple criterion.

Definition 4.2.12. Let P be a finite polyhedron. A point z ∈ ∂B is a tangency

vertex if it is a point of tangency z = f ∩ f ′ of two faces f, f ′ of P . Suppose P

has a face pairing. If z1 = f0 ∩ f1 is a tangency vertex, then we define a

sequence by letting zi+1 = g(fi) · zi = f∗
i ∩ fi+1 while zi+1 is a tangency vertex
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(otherwise the sequence ends at zi). If such a sequence (zi) is infinite, let m be

its period, then (z1, . . . , zm) is a tangency vertex cycle and the tangency vertex

transformation is h = gmgm−1 . . . g1.

Lemma 4.2.13. Let P be a finite polyhedron with a face pairing. Then every

tangency vertex transformation in P is either loxodromic or parabolic, and P is

complete if and only if every tangency vertex transformation is parabolic.

Proof. A proof can be found in [Mas71] or [Mas88, Proposition I.6]

Algorithm 8 adds to S elements of 〈S〉 such that if the polyhedron Ext(S)

is not complete, then Ext(S) is strictly smaller after adding these elements.

Algorithm 8 CheckComplete

Input: A finite subset S ⊂ PSL2(C)
1: Compute every tangency vertex cycle
2: for all g tangency vertex transformation do

3: if g 6= 1 is loxodromic then
4: S ← S ∪ {g, g−1}
5: end if

6: end for

Output: S

Proof of Algorithm 8. Suppose the polyhedron Ext(S) has a face pairing and

is not complete. By Lemma 4.2.13 above, there is a non-parabolic tangency

vertex transformation g for a tangency vertex z. Since the transformation g is

loxodromic, Step 4 is executed. But then by Lemma 4.2.9 and since g · z = z,

we get Ext(S ∪ {g, g−1})  Ext(S).

Algorithm 9 takes as an input a geometrically finite Kleinian group Γ, and

returns a normalized basis for Γ. The behavior of Algorithm 9 depends on these

subalgorithms and is described in Proposition 4.2.14.

Proposition 4.2.14. Let Γ be a Kleinian group. The following holds for Algo-

rithm 9 applied to Γ:

(i) Suppose the inner loop terminates. Then after Step 10 the set S is a

normalized basis for a geometrically finite subgroup 〈S〉 ⊂ Γ, and 〈S〉 = 〈T 〉
where T is the union of the outputs of Enumerate up to that point.

(ii) Suppose that the algorithm terminates. Then Γ is geometrically finite

and S is a normalized basis for Γ.

(iii) Suppose that at some point in the execution Ext(S) is compact. Then the

inner loop terminates.
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(iv) Suppose that Enumerate is a complete enumeration of Γ. Then the algo-

rithm terminates.

Algorithm 9 Normalized basis algorithm

Input: A Kleinian group Γ
1: S ← ∅, n← 0
2: repeat

3: repeat

4: n← n+ 1
5: S ← S ∪ Enumerate(Γ, n), S ← S ∪ S−1

6: S ← KeepSameGroup(S)
7: S ← CheckPairing(S)
8: S ← CheckCycleCondition(S)
9: S ← CheckComplete(S)

10: until every edge in Ext(S) is paired and Ext(S) is complete and the
cycle condition holds

11: until not IsSubgroup(Γ, S)
Output: A normalized basis S for Γ

Remark 4.2.15. It would be interesting to prove that the algorithm terminates

without any condition. It seems true in practise, but we have no proof for

this result; one difficulty is that there are finitely generated Kleinian groups

that are not geometrically finite. The improvement of Algorithm 9 over the

naive Algorithm 4 would then appear clearly: instead of having to completely

enumerate Γ we would only need generators as an input to Algorithm 9 that

uses reduction to compute exactly the elements needed.

Proof of Proposition 4.2.14. We first prove (i). Suppose the inner loop termi-

nates. Then after Step 10, P = Ext(S) is a finite, convex polyhedron. Then P

has a face pairing because every edge is paired. Indeed a face f is the convex

hull of the edges of f , so the face f is paired if and only if the edges of f

are paired. The polyhedron P is complete since it is finite and every tangency

vertex is parabolic (Lemma 4.2.13). We need to check the cycle condition. Be-

cause of Lemma 4.2.3, we may assume that every elliptic cycle has length 1;

let g be the cycle transformation. Such a cycle automatically satisfies the cycle

condition since it is a cycle in the Dirichlet domain of 〈g〉 because of Step 6

of Algorithm 7. If a cycle C = (e1, . . . , em) is not elliptic, then condition (g)

holds for C because of Algorithm 7, so the cycle transformation is the identity.

Consider the images P, g−1
1 · P, . . . , (gm . . . g1)

−1 · P around the edge e: they

glue one after another around e. Since the cycle transformation is the identity,

their union covers a neighborhood of e and the cycle angle is an integer multiple

of 2π. But because of Algorithm 7, this angle is at most 2π, so the cycle con-

dition holds. By Theorem 1.5.10, the polyhedron P is a fundamental domain

for the group 〈S〉. But at every step, 〈S〉 remains the same, so 〈S〉 = 〈T 〉 and
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because of Algorithm 5, S is a normalized basis.

Now we turn to (ii). If the algorithm terminates, then by (i) the output S

is a normalized basis for the subgroup 〈S〉 ⊂ Γ, and because of Step 11 we

have 〈S〉 = Γ.

Next we prove (iii). Suppose that at some point in the execution Ext(S)

is compact, then only finitely many I(g) for a g ∈ Γ intersect Ext(S). While

the inner loop runs, one of the conditions of Step 10 does not hold, so by the

properties of Algorithms 6, 7 and 8, Ext(S) is strictly decreasing. So the inner

loop terminates after a finite number of steps.

Finally for (iv), the same proof as for Proposition 4.2.7 applies.

Example 4.2.16. If Γ is a geometrically finite (hence finitely generated by

Corollary 1.5.13) Kleinian group given by a finite set of generators in SL2(C),

then we can take for Enumerate the algorithm that writes every word of length n

in the generators, and by Proposition 4.1.4 we can take for SubGroup the algo-

rithm that reduces every generator with respect to the given normalized basis

and returns whether there is a nontrivial reduction.

5 Element enumeration in arithmetic Kleinian

groups

This section focuses on ways of enumerating elements in a Kleinian group asso-

ciated to an order O in a Kleinian quaternion algebra B with base field F .

5.1 Lattice enumeration

Recall from section 2.3 that the natural map ρ : O ↪→ B ↪→ BR is a discrete

embedding. Now suppose BR is equipped with a positive definite quadratic

form Q : BR → R. Then the order O becomes a full lattice in a real vector space

of dimension 4n. Hence we can use the Fincke-Pohst algorithm (see [FP85] for

details) based on LLL reduction to enumerate short vectors in such a lattice, and

then pick up elements having reduced norm 1, that contribute to the Kleinian

group associated to O.

Remark 5.1.1. One can prove (by the Skolem Noether Theorem, see [MR03,

Theorem 9.2.8]) that an injective algebra homomorphism ρ : B ↪→ M2(C) is

unique up to conjugation by an element in GL2(C). Thus we only need to

describe one such embedding, for example if B =
(

a,b
F

)
, then we can take

x+ yi+ zj + tij 7→
(

x+ y
√
σ(a) z − t

√
σ(a)

zσ(b)− tσ(b)
√

σ(a) x− y
√
σ(a)

)
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where σ is a complex embedding of F .

5.2 The absolute reduced norm

Definition 5.2.1. Suppose ρ : B ↪→M2(C) is an injective algebra homomor-

phism such that O×
1 embeds discretely into SL2(C). Let m =

(
a b

c d

)
∈ M2(C)

and define invrad(m) =
∣∣(c+ b̄) + (d− ā)j

∣∣2. For g ∈ SL2(C) not fixing 0 in B,
let rad(g) be the Euclidean radius of I(g).

Proposition 5.2.2. The quadratic form Q : B → R defined by

Q(x) = invrad(ρ(x)) + trF/Q(nrd(x)) for all x ∈ B

gives O the structure of a lattice, and we have

for all x ∈ O×
1 , Q(x) =

4

rad(ρ(x))2
+ n.

Remark 5.2.3. If ρ(x) fixes 0 then rad(ρ(x)) is not defined, but Q(x) = n

(infinite radius).

Proof. Let m =

(
a b

c d

)
∈ M2(C). Then we have

invrad(m) = |c+ b̄|2 + |d− ā|2

= |c|2 + |b|2 + 2<(c¯̄b) + |d|2 + |a|2 − 2<(d¯̄a)
= |a|2 + |b|2 + |c|2 + |d|2 − 2<(detm)

= ‖m‖2 − 2<(detm)

where ‖ · ‖ is the usual L2 norm on M2(C), so that ‖ · ‖2 is a positive defi-

nite quadratic form on M2(C). Since nrd is a positive definite quadratic form

on H and we have the decomposition BR
∼=M2(C) ⊕ Hn−2, a positive definite

quadratic form on BR can be constructed by letting for all x ∈ BR

Q(x) = ‖m‖2 + nrd(h1) + · · ·+ nrd(hn−2) = invrad(m) + trFR/R(nrd(x))

where

x = m+ h1 + · · ·+ hn−2 ∈M2(C)⊕Hn−2,

since 2<(detm) + nrd(h1) + · · · + nrd(hn−2) = trFR/R(nrd(x)). This gives the

first statement of the proposition.
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For the second statement, note that according to Proposition 3.1.6,

invrad(g) =
∣∣(c+ b̄) + (d− ā)j

∣∣2 =
4

rad(g)2

for g ∈ SL2(C) not fixing 0 in B, and if g fixes 0 then invrad(g) = 0.

Definition 5.2.4. The quadratic form Q is the absolute reduced norm.

Remark 5.2.5. The last statement of Proposition 5.2.2 says that elements

of ρ(O×
1 ) with a small absolute reduced norm have a large radius. Since a

Dirichlet domain for ρ(O×
1 ) has finitely many faces, the radii of the isometric

spheres containing these faces are bounded by below, so we can expect the

boundary elements of a Dirichlet domain to have a large radius, and it is relevant

to enumerate O×
1 by increasing absolute reduced norm. But it is not the only

interest of this particular quadratic form: it also enables to geometrically detect

some boundary element by moving the center: the propositions below make this

precise.

Lemma 5.2.6. Fix a matrix m ∈ M2(C). Let h ∈ SL2(C) and z = h · 0. Then

the quantity ‖h−1mh‖ only depends on z.

Proof. Every h′ ∈ SL2(C) such that h′ · 0 = z is equal to h up to right multipli-

cation by an element of the stabilizer of 0, which is SU2(C).

Definition 5.2.7. Let m ∈ M2(C), z ∈ B and let h ∈ SL2(C) be an isometry

such that h · 0 = z. We define the norm centered at z of m to be

‖m‖z = ‖h−1mh‖

which depends only on z by the lemma above.

Proposition 5.2.8. Let g ∈ SL2(C) and z ∈ B. Then we have

‖g‖2z = 2 cosh(d(g · z, z)).

Proof. Let g =

(
a b

c d

)
∈ SL2(C) and L = 1

2 (cosh(d(g · 0, 0))− 1). Because of

Proposition 3.1.3 we have

L =
|g · 0|2

1− |g · 0|2

=
|BD−1|2

1− |BD−1|2

where

B = b+ c̄+ (a− d̄)j and D = d+ ā+ (c− b̄)j,
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so we get

L =
|B|2

|D|2 − |B|2

=
‖g‖2 − 2

(‖g‖2 + 2)− (‖g‖2 − 2)

=
‖g‖2 − 2

4

so that

‖g‖2 = 4L+ 2 = 2 cosh(d(g · 0, 0)).

Now let h ∈ SL2(C) such that h · 0 = z. Then

‖h−1gh‖2 = 2 cosh(d(h−1gh · 0, 0))
= 2 cosh(d(g · z, h · 0))
= 2 cosh(d(g · z, z))

is the result as claimed.

Remark 5.2.9. We already knew that ‖g‖2 ≥ 2 since the Cauchy-Schwarz

inequality already gives 2 = |2 det g| = |〈X,Y 〉| ≤ ‖g‖2, where 〈 ·, ·〉 is the usual

scalar product, X = (a, d, b, c), Y = (d, a,−c,−b) and ‖X‖ = ‖Y ‖ = ‖g‖.

The previous proposition suggests that the norm of an element decreases as

we move the center toward a fixed point. Let’s examine precisely this statement.

Definition 5.2.10. Let z ∈ ∂B. A horosphere H at z is a Euclidean sphere

such that H \ {z} is contained in B and such that H is tangent to ∂B at z.

Remark 5.2.11. A horosphere H at z, containing a point w ∈ B, is the limit

of hyperbolic spheres containing w and whose center tends to z along the seg-

ment [w, z]. Hence a hyperbolic isometry sends horospheres to horospheres.

Proposition 5.2.12. Let g ∈ SL2(C).

(i) Suppose g is loxodromic or elliptic. Then the map z 7→ ‖g‖z has a mini-

mum on the axis of g and we have

‖g‖2z − 2 = (|λ| − |λ−1|)2 for all z on the axis

where λ, λ−1 are the eigenvalues of g;

(ii) Suppose g is parabolic, let w be the fixed point of g and let Hr be the

horosphere at w of Euclidean radius r. Then we have

‖g‖2z − 2 = |β|2
(

r

1− r

)2

for all z ∈ Hr
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where g is conjugate in SL2(C) to

(
1 β

0 1

)
.

Proof. Let z ∈ B and let

h =
1√

1− |z|2

(
−x t+ 1

t− 1 x̄

)

where z = x+ tj and x ∈ C, t ∈ R. Note that h ∈ SL2(C) since the determinant

of h is deth = 1
1−|z|2 (−|x|2 − (t2 − 1)) = 1. We claim that h · 0 = z. Using the

notations of Proposition 3.1.3, we have

(√
1− |z|2

)
B = t+ 1 + t− 1 + (−x− x)j = 2(t− xj)

and (√
1− |z|2

)
D = x̄− x̄+ (t− 1− t− 1)j = −2j

so

h · 0 = BD−1 = 2(t− xj)(2j−1)−1 = (t− xj)j = x+ tj = z.

First we prove (i). Let g ∈ SL2(C) be loxodromic or elliptic. Without loss of

generality, we may conjugate g so that g =

(
λ 0

0 λ−1

)
. Then the axis of g is

the vertical j-line geodesic. We compute

h−1gh =
1

1− |z|2

(
λ|x|2 + (t2 − 1)λ−1 x̄(t+ 1)(λ−1 − λ)

−x(t− 1)(λ−1 − λ) λ−1|x|2 + (t2 − 1)λ

)
.

The point z is in the axis of g if and only if x = 0. When t is fixed and as |x|
decreases, 1 − |z|2 increases so all four coefficients of h−1gh decrease in norm.

And finally for z in the axis, the expression becomes simply

h−1gh =
1

1− t2

(
(t2 − 1)λ−1 0

0 (t2 − 1)λ

)
= −

(
λ−1 0

0 λ

)

so ‖g‖2z − 2 = ‖h−1gh‖2 − 2 = |λ|2 + |λ−1|2 − 2 = (|λ| − |λ−1|)2 as claimed.

Next we turn to (ii). Let g ∈ SL2(C) be parabolic. We again conjugate so

that g =

(
1 β

0 1

)
with fixed point j. We then compute

h−1gh =
1

1− |z|2

(
|z|2 − 1− βx̄(t− 1) −βx̄2

β(t− 1)2 |z|2 − 1 + βx̄(t− 1)

)

= −
(
1 + β x̄(t−1)

1−|z|2 β x̄2

1−|z|2

−β (t−1)2

1−|z|2 1− β x̄(t−1)
1−|z|2

)
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so

‖g‖2z = ‖h−1gh‖2

= 2 + |β|2 2|x|
2(t− 1)2

(1 − |z|2)2 + |β|2 |x|
4 + (t− 1)4

(1− |z|2)2

= 2 + |β|2 (|x|
2 + (t− 1)2)2

(1 − |z|2)2

= 2 + |β|2
(
1 + |z|2 − 2t

1− |z|2
)2

= 2 + |β|2
(
1− 2

1− t

1− |z|2
)2

.

Now let u = 2(1− t)(1 − |z|2)−1 − 1. Then

u = 2
1− t

1− |z|2 − 1⇔ (1− |z|2)(u+ 1) = 2(1− t)

⇔ 1− |z|2 = 2
1− t

u+ 1

⇔ |z|2 − 1 =
2t

u+ 1
− 2

u+ 1

⇔ |x|2 +
(
t− 1

u+ 1

)2

=

(
1− 1

u+ 1

)2

⇔
∣∣∣∣z −

j

u+ 1

∣∣∣∣
2

=

∣∣∣∣j −
j

u+ 1

∣∣∣∣
2

.

This is the equation of the horosphere at j of radius r = u
u+1 , so u = r

1−r , which

gives the result.

Remark 5.2.13. If g is elliptic or parabolic, then ‖g‖2z − 2 tends to 0 as z

moves toward a fixed point of g, so there is a good chance that we find them

by moving the center and searching in the lattice. But if g is loxodromic, then

‖g‖2z − 2 ≥ (|λ| − |λ−1|)2 > 0 so if the eigenvalues are too large, we will have to

enumerate much more lattice vectors to find this element by such a method.

6 Computing a presentation

Once we have computed a normalized basis for a geometrically finite Kleinian

group Γ, we need to compute the reflection relations and the cycle relations to

form a presentation for Γ. The reflection relations easy: just check whether

we have g2 = 1 for every pairing transformation g. For the cycle relations,

there is a simple description since we know that we compute with an exterior

domain instead of a general polyhedron. Let e1 be an edge of P . Choose g1, g

such that e1 ⊂ I(g1) ∩ I(g); we then compute ei+1 = gi · ei, and we let gi+1
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be the unique transformation such that ei+1 ⊂ I(g−1
i ) ∩ I(gi+1). The se-

quence (ei) is periodic of period m, and the corresponding cycle transformation

is h = gmgm−1 . . . g1. The cycle transformation h is either the identity and the

cycle relation is h = 1, or h is elliptic and we can compute its order ν, and the

relation hν = 1 is the cycle relation.

7 Summary

As a conclusion to this part, let us sum up the global algorithm for computing

a fundamental domain and a presentation for a Kleinian group associated to a

maximal order. Given a Kleinian quaternion algebra B, Algorithm 10 returns

a normalized basis and a presentation for the Kleinian group associated to a

maximal order in B.

Algorithm 10 Presentation algorithm

Input: A Kleinian quaternion algebra B
1: Compute a maximal order O ⊂ B
2: Choose ρ : B ↪→M2(C) s.t. Γ = Pρ(O×

1 ) has Γ0 = {1}
3: Q← the quadratic form given in Proposition 5.2.2
4: Compute Covol(Γ) by using the formula of Theorem 2.4.2
5: Enumerate(Γ) ← (Fincke-Pohst algorithm applied to Q in O) ∩O×

1

6: IsSubgroup(Γ) ← Test whether Vol(Ext(S)) > Covol(Γ) using Algorithm 2
7: S ← NormalizedBasis(Γ)
8: R← cycle relations using the method of Section 6

Output: A maximal order O, a discrete embedding in the complex matrix
ring ρ, a normalized basis S and a complete set of relations R

Remarks 7.0.14.

• For step 1, algorithms for computing a maximal order can be found

in [Voi10];

• For step 2, we can choose any embedding ρ, then choose a point w ∈ B
such that Γw = {1} and a matrix h ∈ PSL2(C) such that h · 0 = w,

then Γ′ = h−1Γh has Γ′
w = {1};

• We can refine step 5 by using the methods described in Section 5.2.
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Part III

Examples

The author has implemented the algorithms of Part II in Magma [BCP97]. In

this section we present some examples of computations performed with this

implementation and some numerical data obtained.

8 Bianchi groups

A Bianchi group is a Kleinian group PSL2(ZF ) where F is a quadratic imaginary

field. Methods for computing with Bianchi groups have already been studied

by Swan [Swa71] and more recently Yasaki [Yas09]. The methods of Part II are

not the best ones for Bianchi groups, but we still present computational results.

8.1 Examples of computations

The complexity of the computation increases a lot with the class number of F , so

we have first computed Bianchi groups for quadratic imaginary fields with trivial

class group. We have computed a fundamental domain and a presentation for

every such field, and we present the result for the largest discriminant quadratic

imaginary field with class number 1. The presentation obtained from the face

pairing has been simplified with Magma functions.

Figure 8.1: A fundamental domain for PSL2

(
Z
[
1+

√
−163
2

])
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Proposition 8.1.1. Let Γ = PSL2(Z[
1+

√
−163
2 ]). Then the group Γ has covol-

ume Covol(Γ) ≈ 57.435648, and Γ is generated by the matrices

γ1 =

(
− 15+

√
−163
2 14−

√
−163

5−
√
−163
2

23+
√
−163
2

)
, γ2 =

(
1 − 1+

√
−163
2

0 1

)

γ3 =

(
0 −1
1 0

)
, γ4 =

(
3+

√
−163
2 −7
−6 3−

√
−163
2

)

γ5 =

(
−3+

√
−163

2 −11
4 3+

√
−163
2

)
, γ6 =

(
4 +
√
−163 −18

10 −4 +
√
−163

)

γ7 =

(
1 1

0 1

)
, γ8 =

(
−1+

√
−163

2 7

−6 1+
√
−163
2

)

γ9 =

(
−5+

√
−163

2 −8
6 5+

√
−163
2

)
, γ10 =

(
−1+

√
−163

2 14

−3 1+
√
−163
2

)

and the relations

[γ2, γ7] = 1, γ2
3 = 1, (γ3γ

−1
7 )3 = 1, (γ−1

4 γ3)
3 = 1, (γ3γ

−1
8 γ−1

4 γ8)
3 = 1,

(γ−1
7 γ10γ

−1
7 γ−1

10 γ−1
1 γ−1

6 γ−1
8 γ3γ8γ6γ1)

2 = 1,

(γ−1
10 γ−1

1 γ−1
4 γ−1

9 γ−1
7 γ3γ9γ

−1
7 γ1γ10γ

−1
7 )3 = 1,

(γ5γ
−1
7 γ−1

1 γ−1
6 γ7γ9γ4γ3γ

−1
7 γ−1

4 γ−1
9 γ−1

7 γ6γ1γ
−1
5 γ−1

7 γ−1
8 γ3γ4γ8)

2 = 1,

γ7γ9γ4γ7γ
−1
9 γ−1

8 γ−1
4 γ8 = 1,

γ−1
1 γ−1

6 γ7γ9γ4γ7γ3γ
−1
4 γ−1

9 γ−1
7 γ6γ1γ8γ3γ

−1
8 γ−1

4 γ−1
1 γ−1

6 γ−1
8 γ4γ8γ9γ3γ

−1
4 γ−1

9

γ−1
7 γ6γ1γ8γ3γ

−1
8 γ−1

4 = 1,

γ−1
6 γ7γ9γ4γ3γ

−1
9 γ−1

8 γ−1
4 γ3γ8γ6γ1γ10γ7γ

−1
10 γ−1

1 γ7γ
−1
5 γ−1

7 γ−1
10 γ−1

1 γ−1
6 γ−1

8 γ3

γ8γ6γ1γ10γ7γ5γ
−1
1 γ−1

6 γ7γ9γ4γ7γ3γ
−1
4 γ−1

9 γ−1
7 γ6γ1 = 1,

γ3γ8γ6γ1γ10γ7γ
−1
10 γ−1

1 γ7γ
−1
9 γ3γ7γ9γ4γ

−1
6 γ7γ5γ

−1
1 γ−1

6 γ7γ9γ4γ7γ3γ
−1
4 γ−1

9

γ−1
7 γ6γ1γ10γ

−1
7 γ−1

10 γ−1
1 γ−1

6 γ−1
8 γ3γ6γ1γ

−1
5 γ−1

8 γ−1
4 = 1,

γ7γ5γ
−1
1 γ−1

6 γ7γ9γ4γ7γ3γ
−1
4 γ−1

9 γ−1
7 γ6γ1γ7γ

−1
5 γ7γ5γ

−1
1 γ−1

6 γ−1
8 γ4γ8γ9γ3γ

−1
4

γ−1
9 γ−1

7 γ6γ1γ7γ
−1
5 γ7γ5γ

−1
1 γ−1

6 γ−1
8 γ4γ8γ9γ3γ

−1
4 γ−1

9 γ−1
7 γ6γ1γ7γ

−1
5 = 1,

γ−1
6 γ7γ5γ

−1
1 γ−1

6 γ7γ9γ4γ7γ3γ
−1
4 γ−1

9 γ−1
7 γ6γ7γ

−1
5 γ7γ5γ

−1
1 γ−1

6 γ−1
8 γ4γ8γ9γ3γ

−1
4

γ−1
9 γ−1

7 γ6γ1γ
−1
6 γ7γ9γ4γ3γ

−1
7 γ−1

4 γ−1
9 γ−1

7 γ6γ1γ
−1
5 γ−1

7 γ6γ
−1
4 γ−1

9 γ3γ7γ9γ4 = 1,

γ10γ7γ5γ
−1
7 γ−1

6 γ7γ9γ4γ3γ
−1
7 γ−1

4 γ−1
9 γ−1

7 γ6γ1γ
−1
5 γ−1

7 γ6γ
−1
4 γ−1

9 γ−1
7 γ3γ9γ4γ8

γ3γ
−1
8 γ−1

4 γ−1
9 γ3γ7γ9γ4γ

−1
6 γ7γ5γ

−1
1 γ−1

6 γ7γ9γ4γ7γ3γ
−1
4 γ−1

9 γ−1
7 γ6γ7γ

−1
5 γ−1

10

γ7γ
−1
1 γ−1

6 γ−1
8 γ3γ8γ6γ1 = 1,



8 BIANCHI GROUPS 48

γ3γ
−1
9 γ−1

7 γ6γ
−1
4 γ−1

9 γ3γ7γ9γ4γ
−1
6 γ7γ5γ

−1
1 γ−1

6 γ7γ9γ4γ7γ3γ
−1
4 γ−1

9 γ−1
7 γ6γ7

γ−1
5 γ−1

10 γ2γ
−1
10 γ−1

1 γ−1
4 γ−1

9 γ−1
7 γ3γ9γ

−1
7 γ1γ10γ

−1
7 γ−1

2 γ10γ5γ
−1
7 γ−1

6 γ7γ9γ4γ3

γ−1
7 γ−1

4 γ−1
9 γ−1

7 γ6γ1γ
−1
5 γ−1

7 γ6γ
−1
4 γ−1

9 γ−1
7 γ3γ9γ4γ

−1
6 γ7γ9γ4 = 1,

γ8γ3γ
−1
8 γ−1

4 γ−1
5 γ−1

7 γ−1
10 γ−1

1 γ−1
6 γ−1

8 γ3γ8γ6γ1γ10γ7γ5γ4γ8γ3γ
−1
8 γ−1

1 γ−1
6 γ7γ9

γ4γ3γ
−1
7 γ−1

4 γ−1
9 γ−1

7 γ6γ1γ
−1
7 γ1γ10γ

−1
7 γ−1

10 γ−1
1 γ−1

6 γ−1
8 γ3γ4γ8γ9γ3γ

−1
4 γ−1

9 γ−1
7

γ6γ8γ3γ
−1
8 γ−1

4 γ−1
7 γ1γ10γ

−1
7 γ−1

10 γ−1
1 γ−1

6 γ−1
8 γ3γ4γ8γ9γ3γ

−1
4 γ−1

9 γ−1
7 γ6 = 1

form a complete set of relations for Γ.

The fundamental polyhedron that was computed has 111 faces and 306 edges

(Figure 8.1). In the lattice, 70 millions of vectors were enumerated, and 8500 of

them had norm 1.

We now present an example with nontrivial class group: the field Q(
√
−14)

has class number 4; the presentation obtained from the face pairing has also

been simplified.

Proposition 8.1.2. Let Γ = PSL2(Z[
√
−14]). Then the group Γ has covol-

ume Covol(Γ) ≈ 20.351341, and Γ is generated by the matrices

γ1 =

(
1 +
√
−14 7

2 1−
√
−14

)
, γ2 =

(
3 +
√
−14 6−

√
−14

2−
√
−14 −5−

√
−14

)

γ3 =

(
7 +
√
−14 −2 + 3

√
−14

4−
√
−14 7 +

√
−14

)
, γ4 =

(√
−14 5

−3
√
−14

)

γ5 =

(
1 −

√
−14

0 1

)
, γ6 =

(
0 −1
1 0

)
, γ7 =

(
3
√
−14 19

11 −5
√
−14

)

and the relations

γ2
6 = 1, (γ6γ7γ

−1
1 γ−1

7 )3 = 1, (γ−1
4 γ6γ4γ1)

3 = 1,

(γ1γ2γ
−1
1 γ−1

4 γ6γ4γ
−1
2 γ6)

2 = 1, γ6γ7γ
−1
4 γ6γ4γ

−1
7 = 1,

γ−1
5 γ4γ7γ1γ

−1
7 γ−1

4 γ5γ
−1
1 = 1,

γ−1
4 γ6γ4γ

−1
2 γ6γ3γ4γ6γ2γ

−1
4 γ6γ

−1
3 = 1,

γ2γ
−1
1 γ−1

4 γ6γ4γ
−1
2 γ6γ

−1
5 γ6γ2γ

−1
4 γ6γ4γ1γ

−1
2 γ5 = 1,

γ2γ
−1
1 γ−1

4 γ6γ4γ
−1
2 γ6γ4γ

−1
2 γ7γ1γ

−1
7 γ6γ2γ

−1
4 γ6 = 1,

γ6γ1γ
−1
5 γ−1

3 γ1γ2γ
−1
1 γ3γ6γ4γ

−1
2 γ6γ

−1
4 γ5γ2γ

−1
1 γ−1

4 γ6γ4γ
−1
2 = 1

form a complete set of relations for Γ.

The fundamental polyhedron that was computed has 48 faces and 132 edges

(Figure 8.2). In the lattice, 30000 vectors were enumerated, and 300 of them

had norm 1.
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Figure 8.2: A fundamental domain for PSL2

(
Z
[√
−14

])

8.2 Numerical data

We present here some numerical data obtained from the computation of Bianchi

groups. In Table 8.1 below, F is a quadratic imaginary field with discrimi-

nant ∆F and class number hF , then we indicate the number of faces and edges

of the fundamental polyhedron, the number of generators g, elliptic relations e,

commutator relations c, and other relations o in the simplified presentation ob-

tained, and finally the maximum absolute reduced norm maxQ of the elements

in the boundary of the fundamental polyhedron.

∆F hF faces edges g e c o maxQ
−3 1 5 8 5 6 0 0 10
−4 1 5 8 4 6 0 0 21
−7 1 9 17 3 3 1 0 20
−8 1 6 11 4 4 1 0 20
−11 1 9 17 3 3 0 1 35
−19 1 11 22 4 6 1 0 160
−43 1 19 44 4 3 0 4 236
−67 1 35 88 6 6 1 2 749
−163 1 111 306 10 7 1 9 4536
−15 2 13 26 4 2 1 3 222
−20 2 15 36 5 3 1 1 420
−24 2 13 31 5 5 1 1 494
−35 2 21 50 4 2 0 3 1100
−40 2 23 61 6 4 1 3 1743
−23 3 27 62 5 2 2 1 333
−56 4 48 132 7 4 0 6 3504

Table 8.1: Computational data for Bianchi groups
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9 Cocompact groups

By Corollary 2.3.9, an arithmetic Kleinian group is cocompact if and only if

it is not commensurable with a Bianchi group. An example of computation

of a fundamental domain for a cocompact arithmetic Kleinian group has been

performed by Corrales, Jespers, Leal and del Rı́o [CJLdR04]. In this section

we present our computational results for such groups. Troughout the section,

when F is a number field, a prime ideal of ZF is denoted by pp whenever pp|p
(although it does not determine it uniquely).

9.1 Examples of computations

The complexity of the computations increases a lot with the degree of the base

field, simply because of it takes much time to enumerate elements in the associ-

ated Kleinian group. So we have first computed examples over quadratic fields.

In opposition to Bianchi groups, the complexity does not seem to depend much

on the class number. We present here the result of a computation over a field

with class number 8.

Proposition 9.1.1. Let F = Q(
√
−95), α =

√
−95, B =

(
1

2
(13−α),653

F

)
, O the

maximal order in B with Z-basis {1, 12 (α−1), i, 1
2 (α−1)i, 14 (α+1)+ 1

4 (α−1)i+
1
2j,−12+ 1

4 (−α− 47)i+ 1
4 (α− 1)j, 1

4 (α− 13)+ 1
4 (α− 3)i+ 1

653 (34α− 1300)j+
1

1306 ij,−3+ 1
44 (5α−67)i+ 1

653 (−39α−915)j+ 1
28732 (α+13)ij}, and Γ = O×

1 /±1.
The quaternion algebra B has discriminant p2p3 where p2|2, N(p2) = 2, p3|3
and N(p3) = 3. Then the group Γ has covolume Covol(Γ) ≈ 114.113817, and Γ

is generated by the elements

γ1 = −1

4
(α+ 5) +

1

22
(2α− 7)i+

1

1306
(622− 201α)j +

1

28732
(9367− 1317α)ij

γ2 =
1

4
(7− α) +

1

22
(α− 20)i+

1

1306
(1625− 172α)j +

1

28732
(15997− 851α)ij

γ3 = −3/2 + 1

2612
(3α− 221)j − 1

2612
(α+ 67)ij

γ4 = −5/2 + 1

44
(31− α)i +

1

2612
(215α− 2609)j +

1

14366
(232α− 6059)ij

γ5 = −3/2 + 1

22
(α− 9)i+

1

2612
(331α+ 559)j +

1

28732
(1283α− 1911)ij

γ6 =
1

44
(9− α)i +

1

2612
(79α+ 181)j +

1

14366
(155α− 141)ij

γ7 =
1

4
(α+ 1) +

1

44
(1− 5α)i− 1

1306
(22α+ 419)j − 1

7183
(69α+ 633)ij

γ8 = −2 + 1

2
i− 1

2612
(499α+ 5705)j − 1

2612
(231α+ 1359)ij

γ9 =
1

4
(α+ 5) + i− 1

2612
(539α+ 99)j +

1

653
(138− 45α)ij
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γ10 =
1

4
(15− α) +

1

44
(75− α)i +

1

2612
(19α− 3781)j − 1

28732
(405α+ 14109)ij

and Γ admits a complete set of relations with 4 elliptic relations and 9 other

relations. The elliptic relations are

γ2
6 = 1, (γ−1

1 γ2)
3 = 1,

(γ−1
9 γ−1

7 γ−1
3 γ7γ

−1
3 γ−1

10 γ−1
1 γ2γ10γ

2
3γ7γ5γ9γ

−1
4 γ2γ5γ

−1
4 γ6γ3γ6γ

−1
1 )2 = 1,

(γ10γ3γ7γ5γ
−1
3 γ−1

10 γ−1
1 γ2γ10γ3γ

−1
5 γ6γ5γ

−1
9 γ−1

7 γ−1
3 γ6γ4)

3 = 1

and the other relations have length {83, 98, 111, 114, 180, 194, 200, 218, 227}.

The fundamental polyhedron that was computed has 376 faces and 1106

edges (Figure 9.1). In the lattice, 850 000 vectors were enumerated, and 500 of

them had norm 1.

Figure 9.1: A fundamental domain for a cocompact arithmetic Kleinian group
over the quadratic field Q(

√
−95)
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We now present an example over a cubic field.

Proposition 9.1.2. Let F = Q( 3
√
11) with discriminant −3267 and class num-

ber 2, α = 3
√
11, B =

(
−2,−4α2−α−2

F

)
, O the maximal order in B with Z-

basis {1, α, α2, i, αi, α2i, 1
2α

2+ 1
2 i+

1
2j, 1

1
2 +

1
2αi+

1
2αj, 1

1
2α+ 1

2α
2i+ 1

2α
2j, (α+

4310)+ 1
2 (α

2 + 2α+ 44)i+ 1521j+ 1
2 ij,

1
2 (α

2 + 4311α+ 4310)+ 1
4 (3α

2 + 46α+

55)i + 1
2 (1521α+ 1521)j + 1

4 (α + 1)ij, 1
2 (α

2 + 1834α+ 4929) + 1
4 (2α

2 + 21α +

55)i + 1
14998 (1521α

2 + 4850469α+ 13044096)j + 1
29996 (α

2 + 3189α + 8576)ij},
and Γ = O×

1 / ± 1. The quaternion algebra B has discriminant p2 where p2|2
and N(p2) = 2. Then the group Γ has covolume Covol(Γ) ≈ 206.391784, and Γ

is generated by the elements

γ1 =
1

2
(α2 − α− 2) +

1

2
i+

1

14998
(−4391α2 + 12732α− 4737)j

+
1

14998
(−2898α2 − 2954α+ 20935)ij

γ2 =− 1

2
+

1

4
(−α2 + 3)i+

1

14998
(349α2 − 4390α+ 8422)j

+
1

29996
(3200α2 − 1339α− 10639)ij

γ3 =− 1

2
+

1

14998
(54α2 − 271α− 1834)j +

1

14998
(355α2 − 254α− 114)ij

γ4 =− 1

2
+

1

4
(α− 1)i+

1

14998
(161α2 + 3497α− 6579)j

+
1

29996
(−2327α2 + 3207α+ 5986)ij

γ5 =
1

2
(−α2 + 6) +

1

4
(α2 − 2α+ 1)i+

1

14998
(−507α2 + 2961α− 6111)j

+
1

29996
(−2500α2 − 1063α+ 14639)ij

γ6 =
1

2
(α− 2) +

1

4
(−α2 + 2α− 1)i+

1

14998
(1064α2 − 3951α+ 6080)j

+
1

29996
(2880α2 − 1955α− 10325)ij

γ7 =
1

2
(α2 + α− 7) +

1

4
(−α2 − 2α+ 11)i+

1

14998
(3218α2 − 11428α+ 8747)j

+
1

29996
(4538α2 + 6111α− 39417)ij

γ8 =
1

2
(−3α+ 6) +

1

4
(2α2 − 3α− 3)i+

1

14998
(−3586α2 + 7720α− 137)j

+
1

29996
(−2433α2 − 4871α+ 26806)ij

γ9 =(α− 3) +
1

2
(α2 − 2α)i +

1

7499
(3037α2 − 3715α− 6214)j

+
1

14998
(214α2 + 7536α− 16989)ij
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γ10 =
1

2
(−2α2 + α+ 7) +

1

4
(α2 + 5α− 14)i

+
1

14998
(−1979α2 + 25624α− 46661)j

+
1

29996
(−16577α2 + 11396α+ 54183)ij

γ11 =
1

2
(−α+ 3) +

1

4
(−α2 + 2α+ 1)i+

1

7499
(−2128α2 + 403α+ 10337)j

+
1

29996
(3478α2 − 14677α+ 18803)ij

γ12 =
1

2
(α− 3) +

1

4
(α− 3)i+

1

14998
(−594α2 + 2981α− 2323)j

+
1

29996
(−311α2 − 1911α+ 2508)ij

γ13 =
1

2
(−α+ 4) +

1

4
(−α2 + 2α+ 1)i+

1

14998
(−1164α2 + 9α+ 6204)j

+
1

29996
(1360α2 − 4881α+ 2415)ij

γ14 =
1

2
(α2 − α− 2)− 1

2
i+

1

14998
(−4391α2 + 12732α− 4737)j

+
1

14998
(−2898α2 − 2954α+ 20935)ij

γ15 =
1

2
(α2 + α− 7) +

1

14998
(6991α2 − 7727α− 14687)j

+
1

14998
(271α2 + 9333α− 23091)ij

γ16 =
1

2
(α2 − 2α+ 1) +

1

4
(α2 + 2α− 11)i

+
1

14998
(−1655α2 + 9000α− 12671)j

+
1

29996
(−4818α2 + 849α+ 22819)ij

γ17 =
1

2
(7− α2 − α) +

1

4
(−α2 + 2α− 1)i+

1

14998
(606α2 − 2208α+ 249)j

+
1

29996
(1302α2 + 5131α− 15057)ij

and Γ admits a complete set of relations with 11 elliptic relations and 21 other

relations. The elliptic relations are

γ3
2 = 1, γ3

4 = 1, γ3
3 = 1, (γ−1

14 γ1)
2 = 1,

(γ3γ
−1
12 )3 = 1, (γ−1

14 γ−1
15 )3 = 1, (γ15γ1)

3 = 1,

(γ9γ
−1
11 γ15γ6γ

−1
8 γ14γ2γ

−1
7 γ−1

17 γ−1
5 γ10γ

−1
11 γ−1

14 γ6γ12γ
−1
3 γ−1

6 γ14γ11γ
−1
10 γ5γ17)

3 = 1,

(γ6γ
−1
8 γ14γ2γ

−1
7 γ−1

17 γ−1
5 γ10γ

−1
11 γ−1

14 γ6γ12γ
−1
3 γ−1

6 γ14γ11γ
−1
10 γ5γ17γ

−1
16 γ−1

9 γ−1
4

γ15γ1γ4γ
−1
12 γ−1

2 γ11γ
−1
13 γ−1

3 γ12γ9γ
−1
11 γ15)

2 = 1,
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(γ12γ
−1
4 γ−1

1 γ−1
15 γ4γ9γ

−1
11 γ15γ1γ4γ

−1
3 γ−1

5 γ−1
17 γ−1

15 γ11γ
−1
9 γ−1

12 γ3γ13γ
−1
11 γ2γ12

γ−1
4 γ−1

1 γ−1
15 γ4γ9γ16γ

−1
17 γ−1

5 γ10γ
−1
11 γ−1

14 γ6γ3γ
−1
12 γ−1

6 γ14γ11γ
−1
10 γ5γ17γ7γ

−1
2

γ−1
14 γ8γ

−1
6 γ−1

3 γ−1
5 γ10γ

−1
11 γ15γ6γ3γ

−1
12 γ−1

6 γ14γ11γ
−1
10 γ5γ17γ7γ

−1
2 γ−1

14 γ8γ
−1
6

γ−1
15 γ11γ

−1
10 γ5γ3γ

−1
4 γ16)

2 = 1,

(γ−1
8 γ4γ1γ16γ13γ

−1
2 γ−1

13 γ−1
17 γ−1

5 γ10γ
−1
11 γ−1

14 γ6γ3γ
−1
12 γ−1

6 γ14γ11γ
−1
10 γ5γ17γ7

γ−1
2 γ−1

14 γ8γ
−1
6 γ−1

15 γ11γ
−1
9 γ−1

12 γ3γ13γ
−1
11 γ2γ12γ

−1
4 γ−1

1 γ−1
15 γ4γ9γ16γ

−1
12 γ3γ13

γ−1
11 γ2γ12γ

−1
4 γ−1

1 γ−1
15 γ4γ10γ

−1
13 γ−1

17 γ−1
5 γ10γ

−1
11 γ−1

14 γ6γ3γ
−1
12 γ−1

6 γ14γ11γ
−1
10 γ5

γ17γ7γ
−1
2 γ−1

14 γ8γ
−1
6 γ−1

15 γ11γ
−1
9 γ−1

12 γ3γ13γ
−1
11 γ2γ12γ

−1
4 γ−1

1 γ−1
15 γ4γ9γ16γ13

γ2γ
−1
13 γ−1

16 γ−1
1 γ−1

4 γ−1
11 γ7γ

−1
13 γ3γ13γ

−1
11 γ2γ

−1
16 γ4γ

−1
3 γ−1

5 γ10γ
−1
11 γ15γ6γ

−1
8 γ14

γ2γ
−1
7 γ−1

17 γ−1
5 γ10γ

−1
11 γ−1

14 γ6γ12γ
−1
3 γ−1

6 γ−1
15 γ11γ

−1
10 γ5γ3γ

−1
15 γ11γ

−1
9 γ−1

12 γ3γ13

γ−1
11 γ2γ12γ

−1
4 γ−1

1 γ−1
15 γ4γ9γ16γ

−1
17 γ−1

5 γ10γ
−1
11 γ−1

14 γ6γ3γ
−1
12 γ−1

6 γ14γ11γ
−1
10 γ5

γ17γ7γ
−1
2 γ−1

14 γ8γ
−1
6 γ17γ5γ3γ

−1
4 γ−1

1 γ−1
15 γ11γ

−1
9 γ−1

4 γ15γ1γ4γ
−1
12 γ−1

2 γ11γ
−1
13

γ−1
3 γ13γ

−1
7 γ11γ

−1
13 γ−1

3 γ13γ6γ12γ
−1
3 )3 = 1

and the other relations have length {76, 379, 414, 463, 499, 520, 567, 666, 688, 707,
810, 894, 942, 960, 960, 1039, 1181, 1196, 1497, 1602, 2057}.

The fundamental polyhedron that was computed has 647 faces and 1877

edges (Figure 9.2), and the maximum absolute reduced norm of the elements in

the boundary of this polyhedron is 5802. In the lattice, 80 millions of vectors

were enumerated, and 300 of them had norm 1.

Figure 9.2: A fundamental domain for a cocompact arithmetic Kleinian group
over the cubic QTR field Q( 3

√
11)
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9.2 Numerical data

We now present some numerical data obtained from the computation of cocom-

pact arithmetic groups over quadratic imaginary fields. In Table 9.1 below, F

is a quadratic imaginary field with discriminant ∆F and class number hF , then

we indicate the discriminant ∆B of the quaternion algebra B, the number of

faces and edges of the fundamental polyhedron, the number of generators g,

elliptic relations e and other relations o in the simplified presentation obtained,

and finally the maximum absolute reduced norm maxQ of the elements in the

boundary of the fundamental polyhedron.

∆F hF ∆B faces edges g e o maxQ
−3 1 p2p3 29 81 3 2 2 24
−4 1 p2p3 32 86 3 2 2 47
−7 1 p2p3 46 128 3 1 3 128
−8 1 p2p3 31 79 3 3 3 41
−11 1 p2p3 53 153 3 1 3 100
−15 2 p2p3 44 120 4 3 3 69
−20 2 p2p3 50 134 3 3 2 189
−23 3 p2p3 69 193 5 3 2 222
−24 2 p2p3 56 156 4 2 3 110
−39 4 p2p3 121 357 5 2 4 374
−40 2 p2p3 262 762 9 4 9 948
−47 5 p2p3 148 426 6 3 7 572
−95 8 p2p3 376 1106 10 4 9 2365

Table 9.1: Computational data for cocompact arithmetic Kleinian groups over
quadratic imaginary fields
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Part IV

Prospect

10 Applications

In this section we present three possible applications of the algorithms of Part II.

10.1 Computing the unit group of quaternion algebras

We claimed in the introduction that one could compute the unit group of a

quaternion algebra by using arithmetic Kleinian groups. We will now describe

precisely how this can be performed. In this section O is a maximal order in a

Kleinian quaternion algebra B over a QTR number field F .

Definition 10.1.1. The group of positive integers of F relative to B is

Z×
F,(+) = {x ∈ ZF | σ(x) > 0 for all real embeddings σ ramified in B}.

Theorem 10.1.2. We have

nrd(O×) = Z×
F,(+).

Proof. A proof can be found in [Vig80, Théorème 4.1 and Corollaire 4.2].

This theorem gives the short exact sequence

1 −→ O×
1 −→ O× nrd−→ Z×

F,(+) −→ 1

which we can mod out by the center to give the exact sequence

1 −→ O×
1 /{±1} −→ O×/Z×

F
nrd−→ Z×

F,(+)/Z
×2
F −→ 1.

We also have the exact sequence

1 −→ Z×
F −→ O× −→ O×/Z×

F −→ 1.

We can compute the structure of O× with these two sequences and the following

proposition.

Definition 10.1.3. Let S be a set, we write F (S) the free group generated

by S. For all subsets R ⊂ F (S) we write N(R) the normal subgroup generated

by R. Suppose we have an exact sequence of groups

1 −→ H −→ G −→ G/H −→ 1
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and suppose that for every K ∈ {H,G/H}, there exists a finite presenta-

tion K ∼= F (S(K))/N(R(K)) where S(K) ⊂ K and R(K) ⊂ F (S(K)). We

write the projection π : G � G/H . Let λ : S(G/H) ↪→ G be a lifting, so

that for all x ∈ S(G/H), π(λ(x)) = x, which extends to a unique group homo-

morphism λ : F (S(G/H)) → G. We write the projection e : F (S(H)) � H .

Let µ : H ↪→ F (S(H)) be a lifting, so that for all h ∈ H, e(µ(h)) = h. The

set of lifted generators is the set S(G) = λ(S(G/H)); the set of lifted relations

is the set R(G) = {µ(λ(r))λ(r)−1 : r ∈ R(G/H)} ⊂ F (S(H) ∪ S(G)); and the

set of conjugation relations is the set RC = {xhx−1µ(xhx−1)−1 : x ∈ S(G), h ∈
S(H)}.

Proposition 10.1.4. Suppose we have an exact sequence of groups

1 −→ H −→ G −→ G/H −→ 1

and suppose that for every K ∈ {H,G/H}, there exists a finite presenta-

tion K ∼= F (S(K))/N(R(K)) where S(K) ⊂ K and R(K) ⊂ F (S(K)). Then

the set S(H)∪ S(G) is a set of generators for G and we have a finite presenta-

tion G ∼= F (S(H) ∪ S(G))/N(R(H) ∪R(G) ∪RC).

Proof. The set S(H) ∪ S(G) generates G since every element g ∈ G is in some

coset in G/H , so this coset is a product of elements in S(G/H), and g is a

product of elements in S(G) times an element in H , which is a product of

elements in S(H).

Now we prove that the lifted relations are satisfied. Let r ∈ R(G/H), then

π(λ(r)) = e′(r) = 1 where e′ : F (S(G/H)) � G/H is the projection. So λ(r) ∈
H so µ(λ(r)) is well-defined, and e′′(µ(λ(r))λ(r)−1) = e(µ(λ(r)))λ(r)−1 =

λ(r)λ(r)−1 = 1 where e′′ : F (S(H) ∪ S(G)) � G is the projection.

Next we prove that the conjugation relations are statisfied. Let x ∈ S(G)

and h ∈ S(H). Since H is normal, we have xhx−1 ∈ H so the conjuga-

tion relation xhx−1µ(xhx−1)−1 is well-defined and e′′(xhx−1µ(xhx−1)−1) =

xhx−1e(µ(xhx−1)−1) = 1.

Finally we prove that the set R(H) ∪ R(G) is a complete set of relations

for G. Let w ∈ F (S(H)∪S(G)) be such that e′′(w) = 1. Using the conjugation

relations we may assume that w = xh with x ∈ F (S(G)) and h ∈ F (S(H)).

Then the word x = wh−1 projects to 1 in G/H , so it is a product of the

relations R(G/H) and using the conjugation relations again, the word w is a

product of the lifted relations times a word in F (S(H)), which is a product of

the relations R(H).

To treat the exact sequence

1 −→ O×
1 /{±1} −→ O×/Z×

F
nrd−→ Z×

F,(+)/Z
×2
F −→ 1
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a presentation for Z×
F,(+)/Z

×2
F can be obtained easily since it is finite abelian,

and µ is given by the reduction algorithm.

10.2 Computing the cohomology of arithmetic Kleinian

groups and Hecke operators

In this section we describe the first cohomology of an arithmetic Kleinian group

and the Hecke operators acting on this module. There are general constructions

from homology theory, but we give here a very explicit description to emphasize

the fact that they are computable.

Let Γ be a group and M a ZΓ-module. A cocycle is a map f : Γ→M such

that for all g, h ∈ Γ we have

f(gh) = g · f(h) + f(g).

The module of all cocycles is written Z1(Γ,M). For all m ∈ M , the map fm :

Γ→M defined by

fm(g) = g ·m−m for all g ∈ Γ

is a cocycle. The submodule of coboundaries is the module B1(Γ,M) = {fm :

m ∈M} ⊂ Z1(Γ,M). The cohomology module is

H1(Γ,M) = Z1(Γ,M)/B1(Γ,M).

From a finite presentation for Γ we can compute the cohomology module.

But the most interesting structure comes with Hecke operators.

Now suppose that we also have a subgroup H ⊂ Γ with finite index m =

[Γ : H ]. The inclusion H ↪→ Γ induces the restriction map res : H1(Γ,M) →
H1(H,M). Let γ1, . . . , γm be representatives for Γ/H . Then for all γ ∈ Γ, there

is a unique permutation γ∗ ∈ Sm and for all i ∈ {1, . . . ,m}, there is a unique

element hi(γ) ∈ H such that

γγi = γγ∗(i)hi(γ).

The transfer map is the map tr : H1(H,M)→ H1(Γ,M) defined by

tr(f)(γ) =

m∑

i=1

γγ∗(i)f(hi(γ)).

One can prove that the transfer map is well-defined, and does not depend on

the choice of representatives γ1, . . . , γm, and that the composition tr ◦ res is the
multiplication by [Γ : H ] on H1(Γ,M). We prove only the last result, the others

are similar computations.
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Proof. For all f ∈ Z1(Γ,M) and for all γ ∈ Γ we have

tr(res(f))(γ) =

m∑

i=1

γγ∗(i)f(hi(γ)).

For all i ∈ {1, . . . ,m} we have γγi = γγ∗(i)hi(γ) and since f is a cocycle we have

γ · f(γi) + f(γ) = f(γγi)

= f(γγ∗(i)hi(γ)

= γγ∗(i) · f(hi(γ)) + f(γγ∗(i)).

This gives

tr(res(f))(γ) =

m∑

i=1

(γ · f(γi) + f(γ)− f(γγ∗(i)))

=

m∑

i=1

f(γ) + γ ·
m∑

i=1

f(γi)−
m∑

i=1

f(γγ∗(i))

= mf(γ) + γ ·
m∑

i=1

f(γi)−
m∑

i=1

f(γi)

∈ mf(γ) +B1(Γ,M).

Now suppose O is an order in a Kleinian quaternion algebra B and consider

a discrete embedding ρ : B ↪→ M2(C). Let Γ = Pρ(O×
1 ) and let δ ∈ B×.

Then O ∩ δOδ−1 and δOδ−1 ∩ O are orders in B. Thus by Theorem 2.4.2,

the subgroups Γ ∩ δΓδ−1 and δΓδ−1 ∩ Γ have finite index in Γ. Furthermore,

conjugation by δ induces an isomorphism

δ̃ : H1(Γ ∩ δΓδ−1,M)→ H1(δ−1Γδ ∩ Γ,M).

The Hecke operator Tδ associated to δ is then defined by the commutative

diagram:

H1(Γ,M)
Tδ−−−−→ H1(Γ,M)

res

y
xtr

H1(Γ ∩ δΓδ−1,M) −−−−→
δ̃

H1(δ−1Γδ ∩ Γ,M)

The cohomology modules of arithmetic groups for suitably chosen mod-

ules M and the action of Hecke operators are the objects of many studies,

and an implementation of their computation using the algorithms of Part II

would be very interesting.
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10.3 Studying a large class of hyperbolic 3-manifolds

Compact hyperbolic 3-manifolds, i.e. quotients of H3 by a cocompact torsion-

free Kleinian group, form a large class of compact 3-manifolds. However they

are still not as well-understood as other compact 3-manifolds, and remain full of

open problems. The algorithms described in Part II provide a way of computing

with arithmetic hyperbolic 3-manifolds by producing a fundamental polyhedron

with the gluing of the faces (the face pairing) that gives the quotient manifold.

It would be interesting to see whether such algorithms enable to experimentally

investigate these manifolds.

We give an example: the virtual positive Betti number conjecture. Let Γ

be a torsion-free Kleinian group. The first Betti number of Γ is the inte-

ger β1(Γ) = dimR H1(Γ,R) where Γ acts trivially on R. Note that β1(Γ) is

the rank of the abelianization of Γ. We say that M = H3/Γ is irreducible if

for all embeddings f : S2 → M where S2 denotes the 2-sphere, f(S2) bounds

a 3-ball in M . The virtual positive Betti number conjecture is:

Conjecture 10.3.1. Let Γ be an infinite torsion-free Kleinian group, and sup-

pose that the hyperbolic 3-manifold M = H3/Γ is irreducible. Then there exists

a finite index subgroup Γ′ ⊂ Γ such that β1(Γ
′) > 0.

It would be interesting to see whether it is valuable to experimentally test

this conjecture for arithmetic Kleinian groups with the algorithms of Part II.

11 Generalizations and open problems

In this section we describe how the algorithms of Part II could be generalized,

and list some open problems about these algorithms.

11.1 Computing with smaller orders

In Section 7 and in the implementation so far, we have assumed that the quater-

nionic order O was maximal. Actually this is an unnecessary restriction; all

we need is a volume formula like Theorem 2.4.2. But if O is a maximal or-

der and O′ ⊂ O is another order, then Covol(O′) = Covol(O)[O×
1 : O′×

1 ]

where [O×
1 : O′×

1 ] denotes the index of O′×
1 in O×

1 . For some orders we may have

an explicit formula for this index : for example Eichler orders (see [MR03, Def-

inition 6.1.1 and Section 11.2.2]). For a non-Eichler order O′, we may compute

first a fundamental domain and a presentation for the group associated to a

maximal order O ⊃ O′, and then while enumerating O′×
1 , locating the elements

in the Cayley graph of O×
1 by using reduction: this way we would know when

we have enumerated a set of generators for O′×
1 , and then we would have also
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computed the index [O×
1 : O′×

1 ]. An implementation of these methods would be

interesting.

11.2 Improving the lattice enumeration

The lattice enumeration techniques (Section 5.2) seem to be a critical part of

the algorithm. There are at least two possible ideas to improve this part. First,

we could find new geometrically parametrized quadratic forms to detect the

boundary elements of the exterior domain. For example, we have seen in Propo-

sition 5.2.12 that loxodromic elements are difficult to detect with the absolute

reduced norm; maybe a quadratic form detecting fixed points on the sphere at

infinity could help detect these elements. The other idea would be to improve the

lattice enumeration algorithms: Schnorr, Euchner and Hörner ([SE94], [SH95])

introduced techniques called “pruning” which enumerate almost all short vec-

tors in much shorter time than classical algorithms; Fieker and Stehlé [FS06]

described an algorithm to perform LLL-reduction in ZF -modules (where F is a

number field), such as an order in a quaternion algebra. It would be interesting

to test whether these algorithms can provide significant improvements.

11.3 Allowing more split places

As we have seen in Proposition 2.3.4 and Theorem 2.3.5, if we consider an

order O in quaternion algebra B with no restriction on the ramification at

infinity, then the space on which O×
1 naturally acts is X = (H2)s1 × (H3)r2

where s1 is the number of split real places and r2 is the number of complex

places. Suppose we can do geometric computations in this space X , then we can

apply the methods of Part II to get a fundamental domain and a presentation

for O×
1 . The simplest case not yet studied is probably when s1 = 2 and r2 = 0

so that X = H2 ×H2, and having this case solved might naturally lead to the

general case.

11.4 Getting rid of approximation

As we have seen in Section 3.2, the geometric computations can be performed by

using exact real arithmetic, but in practise it is simpler to use sufficiently large,

fixed precision. Thus it would be interesting to have a way, either to predict

the required precision, or to prove after the computation that the computed

polyhedron is indeed the correct one. The first problem is closely related to

the one of having a bound on the size of the coefficients of the elements used

in the computation, and thus to Section 11.6. The second problem can be seen

as partially solved as there are already many constraints on the polyhedron

computed: it has a side pairing, it has the correct volume up to some large
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precision, it satisfies the cycle condition; furthermore Riley [Ril83] has studied

this problem.

11.5 The choice of the center

Once we have a discrete embedding ρ : O×
1 ↪→ SL2(C), we can still conjugate the

group obtained before computing with it. Actually, it is natural to consider the

element conjugating up to right multiplication by an element of PSU2(C), since

these act as Euclidean rotations and preserve the absolute definite norm: they

will not change the computations. Thus noting that PSU2(C) is the stabilizer

of 0, what we have to choose is an element in B: the center. This choice may

affect the computation, and it would be interesting to describe how the combi-

natorial and geometric structure of the fundamental domain changes with the

center, and to predict which center would give the most efficient computations.

We have made some small observations in this direction: Propositions 5.2.8

and 5.2.12 try to describe the behaviour of the radii of the individual elements

as the center moves, but what would be interesting is the behaviour of the radii

of the elements of the group as a whole, as the center moves (again, this is closely

related to Section 11.6); Lemma 4.2.3 gives a result about the combinatorial be-

haviour of the exterior domain as the center varies, but a global description is

also missing.

11.6 Estimating the complexity

So far we have only proved that the algorithm involved terminate. It would be

interesting, although it seems quite difficult, to give an estimate of the number of

operations required to perform the computation. An idea would be to estimate

the minimum radius of the boundary elements of an exterior domain. This

would give an upper bound, which would probably be pessimistic as it would

not take into account the work performed by the reduction algorithm. Another

idea would be to estimate a bound A such that the set {x ∈ O×
1 | Q(x) < A}

generates the group O×
1 , and then to prove that Algorithm 9 terminates after a

finite number of steps when it is given a set of generators, and to estimate the

number of steps needed. This would also give an upper bound, although the

finest approach would probably be a mix of the two ideas.
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the unit group of an order in a non-split quaternion algebra* 1.

Advances in Mathematics, 186(2):498–524, 2004.

[FP85] U. Fincke and M. Pohst. Improved methods for calculating vec-

tors of short length in a lattice, including a complexity analysis.

Mathematics of computation, 44(170):463–471, 1985.
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