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Elliptic curves and automorphic forms

Want a database of elliptic curves over number field F?

Start with GL2 automorphic forms!

Where do you find automorphic forms?

In the cohomology of arithmetic groups!

Matsushima’s formula: Γ discrete cocompact subgroup of

connected Lie group G, E representation of G.

H i(Γ,E) ∼=
⊕

π∈Ĝ

Hom(π,L2(Γ\G)) ⊗H i(g,K ;π ⊗ E)
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Automorphic forms for GL2

Where do you find GL2 automorphic forms?

H∗(GL2(ZF ),E)

Jacquet–Langlands: H∗(O×,E), O order in a quaternion

algebra
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Automorphic forms for GL2

Where do you find GL2 automorphic forms?

H∗(GL2(ZF ),E)

Jacquet–Langlands: H∗(O×,E), O order in a quaternion

algebra

Kleinian case: O× ⊂ GL2(C), H1(O×,E)
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Automorphic forms for GL2

Where do you find GL2 automorphic forms?

H∗(GL2(ZF ),E)

Jacquet–Langlands: H∗(O×,E), O order in a quaternion

algebra

Kleinian case: O× ⊂ GL2(C), H1(O×,E)
Call H i(O×,E) a space of Kleinian modular forms.
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Motivation for the Kleinian case

Elliptic curves, Abelian varieties of GL2 type over number

fields.
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Motivation for the Kleinian case

Elliptic curves, Abelian varieties of GL2 type over number

fields.

Torsion phenomenon.
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Motivation for the Kleinian case

Elliptic curves, Abelian varieties of GL2 type over number

fields.

Torsion phenomenon.

Attached Galois representations: open case.
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Kleinian groups

H := C+ Cj where j2 = −1 and jz = z̄ j for all z ∈ C.

The upper half-space H3 := C+R>0j .

Metric ds2 = |dz|2+dt2

t2 , volume dV = dx dy dt
t3 .
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Kleinian groups

H := C+ Cj where j2 = −1 and jz = z̄ j for all z ∈ C.

The upper half-space H3 := C+R>0j .

Metric ds2 = |dz|2+dt2

t2 , volume dV = dx dy dt
t3 .

(

a b

c d

)

· w := (aw + b)(cw + d)−1 for

(

a b

c d

)

∈ SL2(C).
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Kleinian groups

H := C+ Cj where j2 = −1 and jz = z̄ j for all z ∈ C.

The upper half-space H3 := C+R>0j .

Metric ds2 = |dz|2+dt2

t2 , volume dV = dx dy dt
t3 .

(

a b

c d

)

· w := (aw + b)(cw + d)−1 for

(

a b

c d

)

∈ SL2(C).

Kleinian group: discrete subgroup of SL2(C).
Cofinite if it has finite covolume.
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Quaternion algebras

A quaternion algebra B over a field F is a central simple

algebra of dimension 4 over F .

Explicitly, B =
(

a,b
F

)

= F + Fi + Fj + Fij , i2 = a, j2 = b, ij = −ji

(char F 6= 2).
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Quaternion algebras

A quaternion algebra B over a field F is a central simple

algebra of dimension 4 over F .

Explicitly, B =
(

a,b
F

)

= F + Fi + Fj + Fij , i2 = a, j2 = b, ij = −ji

(char F 6= 2).

Reduced norm: nrd(x + yi + zj + tij) = x2 − ay2 − bz2 + abt2.
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Quaternion algebras

A quaternion algebra B over a field F is a central simple

algebra of dimension 4 over F .

Explicitly, B =
(

a,b
F

)

= F + Fi + Fj + Fij , i2 = a, j2 = b, ij = −ji

(char F 6= 2).

Reduced norm: nrd(x + yi + zj + tij) = x2 − ay2 − bz2 + abt2.

ZF integers of F number field.

Order O ⊂ B: subring, finitely generated ZF -module, OF = B.
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Quaternion algebras

A quaternion algebra B over a field F is a central simple

algebra of dimension 4 over F .

Explicitly, B =
(

a,b
F

)

= F + Fi + Fj + Fij , i2 = a, j2 = b, ij = −ji

(char F 6= 2).

Reduced norm: nrd(x + yi + zj + tij) = x2 − ay2 − bz2 + abt2.

ZF integers of F number field.

Order O ⊂ B: subring, finitely generated ZF -module, OF = B.

A place v of F is split or ramified according as whether B ⊗F Fv

isM2(Fv ) or a division algebra.
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Covolume formula

F almost totally real number field: exactly one complex place.

B/F Kleinian quaternion algebra: ramified at every real place.
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Covolume formula

F almost totally real number field: exactly one complex place.

B/F Kleinian quaternion algebra: ramified at every real place.

O order in B, Γ image of reduced norm one group O1 in SL2(C).
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Covolume formula

F almost totally real number field: exactly one complex place.

B/F Kleinian quaternion algebra: ramified at every real place.

O order in B, Γ image of reduced norm one group O1 in SL2(C).

Theorem

Γ is a cofinite Kleinian group.

It is cocompact iff B is a division algebra.

If O is maximal then

Covol(Γ) =
|∆F |3/2ζF (2)

∏

p ram. (N(p)− 1)

(4π2)[F :Q]−1
·
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Sketch of algorithm

1 Compute B and O
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Sketch of algorithm

1 Compute B and O
2 Compute O1

3 Compute H1(O1)
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Sketch of algorithm

1 Compute B and O
2 Compute O1

3 Compute H1(O1)

4 Compute generator δ of ideal of norm p
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Sketch of algorithm

1 Compute B and O
2 Compute O1

3 Compute H1(O1)

4 Compute generator δ of ideal of norm p

5 Compute Hecke operator Tδ on H1(O1)
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Fundamental domains

Γ a Kleinian group. An open subset F ⊂ H3 is a fundamental

domain if

Γ · F = H3

F ∩ γF = ∅ for all 1 6= γ ∈ Γ.
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Dirichlet domains

Let p ∈ H3 with trivial stabilizer in Γ. The Dirichlet domain

Dp(Γ) := {x ∈ X | d(x ,p) < d(γ · x ,p) ∀γ ∈ Γ \ {1}}
= {x ∈ X | d(x ,p) < d(x , γ−1 · p) ∀γ ∈ Γ \ {1}}.
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Dirichlet domains

Let p ∈ H3 with trivial stabilizer in Γ. The Dirichlet domain

Dp(Γ) := {x ∈ X | d(x ,p) < d(γ · x ,p) ∀γ ∈ Γ \ {1}}
= {x ∈ X | d(x ,p) < d(x , γ−1 · p) ∀γ ∈ Γ \ {1}}.

is a fundamental domain for Γ that is a hyperbolic polyhedron.

If Γ is cofinite, Dp(Γ) has finitely many faces.
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Structure of the Dirichlet domain

Faces of the Dirichlet domain are grouped into pairs,

corresponding to elements g,g−1 ∈ Γ;
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Structure of the Dirichlet domain

Faces of the Dirichlet domain are grouped into pairs,

corresponding to elements g,g−1 ∈ Γ;

Edges of the domain are grouped into cycles, product of

corresponding elements in Γ has finite order.
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Poincaré’s theorem

Theorem (Poincaré)

The elements corresponding to the faces are generators

of Γ. The relations corresponding to the edge cycles

generate all the relations among the generators.
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Poincaré’s theorem

Theorem (Poincaré)

The elements corresponding to the faces are generators

of Γ. The relations corresponding to the edge cycles

generate all the relations among the generators.

If a partial Dirichlet domain Dp(S) has a face-pairing and

cycles of edges, then it is a fundamental domain for the

group generated by S.
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Reduction algorithm

x ∈ H3, S ⊂ Γ corresponding to the faces of Dp(Γ).
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Reduction algorithm

x ∈ H3, S ⊂ Γ corresponding to the faces of Dp(Γ).

if possible x ← gx for some g ∈ S s.t. d(x ,p) decreases
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Reduction algorithm

x ∈ H3, S ⊂ Γ corresponding to the faces of Dp(Γ).

if possible x ← gx for some g ∈ S s.t. d(x ,p) decreases

repeat
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Reduction algorithm

x ∈ H3, S ⊂ Γ corresponding to the faces of Dp(Γ).

if possible x ← gx for some g ∈ S s.t. d(x ,p) decreases

repeat

→ point x ′ = gk · · · g1x s.t. x ′ ∈ Dp(Γ).
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Reduction algorithm

x ∈ H3, S ⊂ Γ corresponding to the faces of Dp(Γ).

if possible x ← gx for some g ∈ S s.t. d(x ,p) decreases

repeat

→ point x ′ = gk · · · g1x s.t. x ′ ∈ Dp(Γ).

In particular for γ ∈ Γ, take x = γ−1p, which will reduce

to x ′ = p, to write γ as a product of the generators.
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We have :

an explicit formula for the hyperbolic distance;
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Computation in hyperbolic space

We have :

an explicit formula for the hyperbolic distance;

an explicit formula for bisectors;
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Computation in hyperbolic space

We have :

an explicit formula for the hyperbolic distance;

an explicit formula for bisectors;

an algorithm for computing intersections of half-spaces;
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Computation in hyperbolic space

We have :

an explicit formula for the hyperbolic distance;

an explicit formula for bisectors;

an algorithm for computing intersections of half-spaces;

an algorithm for computing the volume of a polyhedron.
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Suppose O maximal.
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Algorithm

Suppose O maximal.

Enumerate elements of O1 in a finite set S
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Algorithm

Suppose O maximal.

Enumerate elements of O1 in a finite set S

Compute D = Dp(S)
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Algorithm

Suppose O maximal.

Enumerate elements of O1 in a finite set S

Compute D = Dp(S)

Repeat until D has a face-pairing and Vol(D) < 2 Covol(Γ)
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Why would you care about the complexity?
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Bound on the size of the Dirichlet domain:
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Complexity

Why would you care about the complexity?

Bound on the size of the Dirichlet domain:

SL2(C) action on L2
0(Γ\SL2(C)) mixes things fast.
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Complexity

Why would you care about the complexity?

Bound on the size of the Dirichlet domain:

SL2(C) action on L2
0(Γ\SL2(C)) mixes things fast.

⇒ diam(Dp(Γ))≪ log Covol(Γ)
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Complexity

Why would you care about the complexity?

Bound on the size of the Dirichlet domain:

SL2(C) action on L2
0(Γ\SL2(C)) mixes things fast.

⇒ diam(Dp(Γ))≪ log Covol(Γ)

Proved complexity: Covol(Γ)O(1)

Observed complexity: Covol(Γ)2

Lower bound: Covol(Γ)
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Group cohomology

Cocycles :

Z 1(Γ,E) := {φ : Γ→ E | φ(gh) = φ(g) + g · φ(h) ∀g,h ∈ Γ}
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Group cohomology

Cocycles :

Z 1(Γ,E) := {φ : Γ→ E | φ(gh) = φ(g) + g · φ(h) ∀g,h ∈ Γ}

Coboundaries :

B1(Γ,E) := {φx : g 7→ x − g · x : x ∈ E} ⊂ Z 1(Γ,E)
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Group cohomology

Cocycles :

Z 1(Γ,E) := {φ : Γ→ E | φ(gh) = φ(g) + g · φ(h) ∀g,h ∈ Γ}

Coboundaries :

B1(Γ,E) := {φx : g 7→ x − g · x : x ∈ E} ⊂ Z 1(Γ,E)

Cohomology :

H1(Γ,E) := Z 1(Γ,E)/B1(Γ,E)

Aurel Page Computing Kleinian modular forms



Motivation

Arithmetic Kleinian groups

Algorithms

Examples

Hecke operators

Let δ ∈ Comm(Γ).

H i(Γ,M)
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Hecke operators

Let δ ∈ Comm(Γ).

H i(Γ,M)

Res





y

H i(Γ ∩ δΓδ−1,M)
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Hecke operators

Let δ ∈ Comm(Γ).

H i(Γ,M)

Res





y

H i(Γ ∩ δΓδ−1,M) −−−−→
δ̃

H i(δ−1Γδ ∩ Γ,M)
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Hecke operators

Let δ ∈ Comm(Γ).

H i(Γ,M) H i(Γ,M)

Res





y

x



Cores

H i(Γ ∩ δΓδ−1,M) −−−−→
δ̃

H i(δ−1Γδ ∩ Γ,M)
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Hecke operators

Let δ ∈ Comm(Γ).

H i(Γ,M)
Tδ−−−−→ H i(Γ,M)

Res





y

x



Cores

H i(Γ ∩ δΓδ−1,M) −−−−→
δ̃

H i(δ−1Γδ ∩ Γ,M)
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Recall: have to find a generator δ of ideal of norm p = (π).
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Principal ideal problem

Recall: have to find a generator δ of ideal of norm p = (π).

Search in O1\{nrd = π}: complexity ∆
O(1)
B

.
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Principal ideal problem

Recall: have to find a generator δ of ideal of norm p = (π).

Search in O1\{nrd = π}: complexity ∆
O(1)
B

.

Buchmann’s algorithm over number fields: subexponential

under GRH.
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Principal ideal problem

Recall: have to find a generator δ of ideal of norm p = (π).

Search in O1\{nrd = π}: complexity ∆
O(1)
B

.

Buchmann’s algorithm over number fields: subexponential

under GRH.

Adapt Buchmann’s algorithm over a quaternion algebra:

heuristically subexponential.
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A quartic example

Let F the unique quartic field of signature (2,1) and

discriminant −275. Let B be the unique quaternion algebra with

discriminant 11ZF , ramified at every real place of F . Let O be a

maximal order in B (it is unique up to conjugation). Then O1 is

a Kleinian group with covolume 93.72 . . . The fundamental

domain I have computed has 310 faces and 924 edges.
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A quartic example

Let F the unique quartic field of signature (2,1) and

discriminant −275. Let B be the unique quaternion algebra with

discriminant 11ZF , ramified at every real place of F . Let O be a

maximal order in B (it is unique up to conjugation). Then O1 is

a Kleinian group with covolume 93.72 . . . The fundamental

domain I have computed has 310 faces and 924 edges.

Have a look at the fundamental domain!
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A quartic example

N(p) Tp characteristic polynomial

9





2 −4 −5

−2 3 −2

0 0 −5



 (x + 5)(x2 − 5x − 2)

9 same (x + 5)(x2 − 5x − 2)

16





1 4 −11

2 0 −6

0 0 −8



 (x + 8)(x2 − x − 8)

19





−4 0 4

0 −4 2

0 0 0



 x(x + 4)2

19 same x(x + 4)2

25 — (x + 9)(x2 − x − 74)

29 — x(x2 + 6x − 24)

29 — x(x2 + 6x − 24)
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Non base-change classes

Bianchi groups: Γ = SL2(ZF ) with F quadratic imaginary.
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Non base-change classes

Bianchi groups: Γ = SL2(ZF ) with F quadratic imaginary.

Finis, Grunewald, Tirao: formula for the base-change subspace

in H i(Γ,Ek ). Remark: very few non base-change classes.
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Non base-change classes

Bianchi groups: Γ = SL2(ZF ) with F quadratic imaginary.

Finis, Grunewald, Tirao: formula for the base-change subspace

in H i(Γ,Ek ). Remark: very few non base-change classes.

Şengün, Rahm: extended their computations.
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Non base-change classes

Bianchi groups: Γ = SL2(ZF ) with F quadratic imaginary.

Finis, Grunewald, Tirao: formula for the base-change subspace

in H i(Γ,Ek ). Remark: very few non base-change classes.

Şengün, Rahm: extended their computations.

Conjecture (Modified Maeda’s conjecture)

The set of non-lifted cuspidal newforms in H i(Γ,Ek ), modulo

twins, forms one Galois orbit.
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Non base-change classes

Bianchi groups: Γ = SL2(ZF ) with F quadratic imaginary.

Finis, Grunewald, Tirao: formula for the base-change subspace

in H i(Γ,Ek ). Remark: very few non base-change classes.

Şengün, Rahm: extended their computations.

Conjecture (Modified Maeda’s conjecture)

The set of non-lifted cuspidal newforms in H i(Γ,Ek ), modulo

twins, forms one Galois orbit.

Experiment : always dimension 2 space,

except (d , k) = (−199,2): dimension 4.
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Non base-change classes

Bianchi groups: Γ = SL2(ZF ) with F quadratic imaginary.

Finis, Grunewald, Tirao: formula for the base-change subspace

in H i(Γ,Ek ). Remark: very few non base-change classes.

Şengün, Rahm: extended their computations.

Conjecture (Modified Maeda’s conjecture)

The set of non-lifted cuspidal newforms in H i(Γ,Ek ), modulo

twins, forms one Galois orbit.

Experiment : always dimension 2 space,

except (d , k) = (−199,2): dimension 4. Two twin Galois orbits

with coefficients in Q(
√

13), swapped by Gal(F/Q).
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Everywhere good reduction abelian surfaces

Bianchi group for F = Q(
√
−223).
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Everywhere good reduction abelian surfaces

Bianchi group for F = Q(
√
−223).

Have a look at the fundamental domain!
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Everywhere good reduction abelian surfaces

Bianchi group for F = Q(
√
−223).

Have a look at the fundamental domain!

Cuspidal subspace in H1(Γ,C): dimension 2, one Galois orbit

in Q(
√

5).
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Everywhere good reduction abelian surfaces

Bianchi group for F = Q(
√
−223).

Have a look at the fundamental domain!

Cuspidal subspace in H1(Γ,C): dimension 2, one Galois orbit

in Q(
√

5).

Şengün, Dembélé : the Jacobian J of the hyperelliptic curve

y2 = 33x6 + 110
√
−223x5 + 36187x4 − 28402

√
−223x3

−2788739x2 + 652936
√
−223x + 14157596

has good reduction everywhere, End(J) ⊗Q ∼= Q(
√

5) and

matches the Hecke eigenvalues.
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Everywhere good reduction abelian surfaces

Bianchi group for F = Q(
√
−223).

Have a look at the fundamental domain!

Cuspidal subspace in H1(Γ,C): dimension 2, one Galois orbit

in Q(
√

5).

Şengün, Dembélé : the Jacobian J of the hyperelliptic curve

y2 = 33x6 + 110
√
−223x5 + 36187x4 − 28402

√
−223x3

−2788739x2 + 652936
√
−223x + 14157596

has good reduction everywhere, End(J) ⊗Q ∼= Q(
√

5) and

matches the Hecke eigenvalues.

Looking for more examples in Q(
√
−455) and Q(

√
−571).
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Torsion Jacquet-Langlands

Can also look at H1(Γ,Z)tor and H1(Γ,Fp).
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Torsion Jacquet-Langlands

Can also look at H1(Γ,Z)tor and H1(Γ,Fp).

Jacquet–Langlands: relation between (co)homology of Γ0(N) in

a Bianchi group and that of Γ coming from a division algebra of

discriminant N.
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Torsion Jacquet-Langlands

Can also look at H1(Γ,Z)tor and H1(Γ,Fp).

Jacquet–Langlands: relation between (co)homology of Γ0(N) in

a Bianchi group and that of Γ coming from a division algebra of

discriminant N.

Calegari, Venkatesh: numerical torsion Jacquet-Langlands

correspondence.
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Torsion Jacquet-Langlands

Can also look at H1(Γ,Z)tor and H1(Γ,Fp).

Jacquet–Langlands: relation between (co)homology of Γ0(N) in

a Bianchi group and that of Γ coming from a division algebra of

discriminant N.

Calegari, Venkatesh: numerical torsion Jacquet-Langlands

correspondence.

Joint with H. Şengün: experimental verification with Hecke

operators (still in progress).
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Thank you for your attention !
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