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Arithmetic groups

Arithmetic group ≈ G(Z) for G linear algebraic group over Q.
Examples: SLn(ZF ),O(qZ).

Motivation:
Classical reduction theories: Gauss, Minkowski, Siegel.
Interesting class of lattices in Lie groups.
Automorphisms of natural objects: quadratic forms, abelian
varieties.
Modular forms / Automorphic forms.
Parametrize structures: Shimura varieties, Bhargava’s
constructions.
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Arithmetic Kleinian groups

Arithmetic Kleinian group = arithmetic subgroup of PSL2(C).
Why this case?

small dimension: easier geometry but still rich arithmetic.
3-dimensional hyperbolic manifolds.
related to units in quaternion algebras.
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Arithmetic Kleinian groups

F number field with r2 = 1. Example: F = Q(
√
−d).

B quaternion algebra over F :
B = F + Fi + Fj + Fij with i2 = a, j2 = b, ij = −ij .
Ramified at the real places: a,b � 0
Example: B =M2(F ) (a = b = 1).

Reduced norm:
nrd : B → F multiplicative
nrd(x + yi + zj + tij) = x2 − ay2 − bz2 + abt2.
Example: nrd = det

O order in B: subring, f.g. Z-module, OF = B.
Example: O =M2(ZF ).

Γ = O1/{±1} ⊂ PSL2(C)
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Dirichlet domains

PSL2(C) acts on the hyperbolic 3-space H3.

Dp(Γ) = {x ∈ H3 | d(x ,p) ≤ d(γx ,p) for all γ ∈ Γ}

is a fundamental domain, finite volume, finite-sided, provides a
presentation of Γ.

Example:
D2i(PSL2(Z)) = usual fundamental domain.
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Algorithms

Basic algorithm:
Enumerate elements of Γ and compute partial Dirichlet
domain.
Stop when the domain cannot get smaller.

Efficient algorithm:
Efficient enumeration of Γ.
Enough to find any generators.
Stopping criterion using volume formula and combinatorial
structure of Dirichlet domain.
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Torsion Jacquet–Langlands
joint work with Haluk Şengün

Cohomology and Galois representations
The torsion Jacquet–Langlands conjecture
Examples
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Cohomology and automorphic forms

Matsushima’s formula: Γ discrete cocompact subgroup of
connected Lie group G, E representation of G.

H i(Γ,E) ∼=
⊕
π∈Ĝ

Hom(π,L2(Γ\G))⊗ H i(g,K ;π ⊗ E)

The cohomology has an action of Hecke operators,
corresponding to the one on the automorphic forms.

 Hecke eigenclasses should have attached Galois
representations.
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Torsion and Galois representations

Theorem (Scholze, conjecture of Ash)

Let Γ be a congruence subgroup of GLn(ZF ) with F a CM field.
Then for any system of Hecke eigenvalues in H i(Γ,Fp), there
exists a continuous semisimple representation
Gal(F/F )→ GLn(Fp) such that Frobenius and Hecke
eigenvalues match.
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Classical Jacquet–Langlands

F = Q(
√
−d).

B quaternion algebra over F with discriminant D (ideal: set of
bad primes). N ideal coprime to D.
Get two arithmetic Kleinian groups:

Γ0(ND) ⊂ PSL2(ZF )

ΓD
0 (N) ⊂ B1/{±1}

Theorem (Jacquet–Langlands)
There exists a Hecke-equivariant isomorphism

H1(ΓD
0 (N),C)→ H1,cusp(Γ0(ND),C)D−new
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Torsion Jacquet–Langlands

m maximal ideal of the Hecke algebra = system of Hecke
eigenvalues modulo some prime p.

Conjecture (Calegari–Venkatesh)
If m is not Eisenstein, then

|H1(ΓD
0 (N),Z)m| = |H1,cusp(Γ0(ND),Z)D−new

m |

Theorem (Calegari–Venkatesh): numerical version (without
Hecke operators) in some cases.
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Torsion Jacquet–Langlands, subtleties

Eisenstein: eigenvalue of Tp is χ1(p) + χ2(p)N(p) for
characters χ1, χ2 of ray class groups.
Congruence classes, such as Γ0(N)/Γ1(N)→ (ZF/N)×

”new” is the quotient by the oldforms level-raising.
Cannot expect an isomorphism of Hecke-modules,
multiplicity one can fail.
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Example

(on the blackboard)
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Isospectral manifolds
and torsion homology

joint work with Alex Bartel

Isospectral manifolds
Tools to study their torsion homology
Computations and examples
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Can you hear the shape of a drum?

Mathematical question (Kac 1966):
M,M ′ same spectrum for Laplace operator (isospectral)
⇒ M,M ′ isometric?
Discrete spectrum: 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . .

Answer:
Milnor 1964: No! (dimension 16)
Sunada 1985: No! (dimension d)
Gordon, Webb, Wolpert 1992: No! (domains of the plane)
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What properties of drums can you hear?

Volume: Weyl’s law
Betti numbers (if strongly isospectral)
Torsion in the homology?
Sunada: No! (dimension 4)

Tighter question: small dimension, special classes of manifolds
Dimension 2 orientable⇒ torsion-free homology
Dimension 3 orientable⇒ torsion-free H0, H2 and H3

Theorem (P., Bartel)
For all primes p ≤ 37, there exist pairs of compact
hyperbolic 3-manifolds M,M ′ that are strongly isospectral and
cover a common manifold, but such that

|H1(M,Z)[p∞]| 6= |H1(M ′,Z)[p∞]|
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Arithmetically equivalent number fields

Number fields K ,K ′ are arithmetically equivalent, or
isospectral if ζK = ζK ′ but K � K ′.

Same degree, same signature.
Same discriminant.
Same largest subfield that is Galois over Q
Same roots of unity.
Same product class number × regulator.

Same class number?
Dyer 1999: No!
Existing examples where vp(hK1) 6= vp(hK2): p = 2,3,5.
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Special value formulas

Analytic class number formula:

lim
s→1

(s − 1)ζK (s) =
2r1(2π)r2hK RK

wK |DK |1/2

Spectrum of ∆ on i-forms: ζM,i(s) =
∑
λ−s.

Cheeger–Müller theorem (conjectured by Ray–Singer):∏
i

(
Ri(M) · |Hi(M,Z)tors|

)(−1)i
=
∏

i

exp(1
2ζ
′
M,i(0))(−1)i

Ri(M) regulator of Hi(M,Z)/Hi(M,Z)tors.
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Examples of regulators

R0(M) = Vol(M)−1/2

Rd (M) = Vol(M)1/2
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Construction of isospectral objects

Gassmann triple (1925):
G finite group and H,H ′ subgroups such that

C[G/H] ∼= C[G/H ′].

Equivalently, for every conjugacy class C, |C ∩ H| = |C ∩ H ′|.

If K Galois number field with Galois group G

⇒ ζK H (s) = L(C[G/H], s).

Sunada: if X → Y is a Galois covering with Galois group G
⇒ X/H and X/H ′ are strongly isospectral.
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Example of a Gassmann triple

G = SL3(F2) acting on P2(F2).

H = stabilizer of a point

H ′ = stabilizer of a line
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Representation theory

C[G/H] ∼= C[G/H ′]

⇐⇒ Q[G/H] ∼= Q[G/H ′]

⇐⇒ Qp[G/H] ∼= Qp[G/H ′]

⇐= Zp[G/H] ∼= Zp[G/H ′]

and⇐⇒ if p - |G|.
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Cohomological Mackey functors

Map: F : {subgroups of G} −→ R-modules, and R-linear maps
cg

H : F(H)→ F(Hg) conjugation
rH
K : F(H)→ F(K ) restriction

tH
K : F(K )→ F(H) transfer

with natural axioms, among which

rH
L ◦ tH

K =
∑

g∈L\H/K

”usual formula”

Proposition (P., Bartel)

H 7→ Hi(X/H,Z) is a cohomological Mackey functor. In
particular, if Zp[G/H] ∼= Zp[G/H ′] then

Hi(X/H,Z)⊗ Zp ∼= Hi(X/H ′,Z)⊗ Zp.
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Smallest Gassmann triple

Theorem (de Smit)

Let p be an odd prime. If G,H,H ′ is a Gassmann triple such
that

Zp[G/H] � Zp[G/H ′]

and [G : H] ≤ 2p + 2, then there is an isomorphism

G ∼= GL2(Fp)/(F×p )2

sending H,H ′ to (
� ∗
0 ∗

)
and

(
∗ ∗
0 �

)
.
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Regulator constants

Regulators: transcendental, arithmetic, hard.
Regulator constants: rational, representation-theoretic, easy.

G,H,H ′ Gassmann triple, ρ representation of G over R = Z
or Q. 〈·, ·〉 G-invariant nondegenerate pairing on ρ⊗ C.

C(ρ) =
det(〈·, ·〉|ρH/(ρH)tors)

det(〈·, ·〉|ρH′/(ρH′)tors)
∈ /(R×)2.

Theorem (Dokchitser, Dokchitser)

C(ρ) is independent of the pairing.
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Example of units

K/Q Galois with group G. Let G,H1,H2 Gassmann triple.
Let ρ = Z×K as a G-module. Ki = K Hi . Then

C(ρ) =
RK1

RK2

=
hK2

hK1

·

Aurel Page Torsion homology of arithmetic Kleinian groups



Arithmetic Kleinian groups
Torsion Jacquet–Langlands

Isospectral manifolds and torsion

Example of regulator constants

G = GL2(Fp)/�, H+ =

(
� ∗
0 ∗

)
, H− =

(
∗ ∗
0 �

)
.

B =

(
∗ ∗
0 ∗

)
⊂ GL2(Fp), r :

(
a ∗
0 ∗

)
7→
(

a
p

)
.

I = IndG
B r irreducible, of dimension p + 1.

Proposition (P., Bartel)
For all irreducible representation ρ of G over Q, we
have C(ρ) = 1, except C(I) = p.
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Comparison of regulators

Theorem (P., Bartel)
X → Y Galois covering of hyperbolic 3-manifolds with Galois
group G. Gassmann triple G,H,H ′ and p prime number.
Assume |Hab| and |H ′ab| coprime to p.
M := G-module H2(X ,Z). Then

R(X/H ′)
R(X/H)

= C(M) · u.

for some u ∈ Z×(p).
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Computations

Good supply of 3-manifold: arithmetic Kleinian groups!

h : Γ→ G is surjective, Y = H3/Γ and X = H3/ ker h,
⇒ X → Y is a Galois covering with Galois group G.

H1(X/H,R) ∼= H1(h−1(H),R) ∼= H1(Γ,R[G/H]).
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Example

F = Q(t) with t4 − t3 + 2t2 − 1.

B =
(
−1,−1

F

)
.

O an Eichler order of level norm 71.
Γ has volume 27.75939054 . . . , and a presentation with 5
generators and 7 relations.
We found a surjective Γ→ GL2(F7), yielding two isospectral
manifolds with homology

Z3 + Z/4 + Z/4 + Z/12 + Z/12 + Z/(24 · 32 · 5 · 7 · 23), and

Z3 + Z/4 + Z/4 + Z/12 + Z/(12 · 7) + Z/(24 · 32 · 5 · 7 · 23).
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Questions?

Thank you!
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