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A famous question

Mark Kac 1966: ”Can you hear the shape of a drum?”

Vibrating frequencies←→ eigenvalues of Laplace operator

∆ =
∂2

∂2x
+

∂2

∂2y
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A mathematical question

In this talk: manifold M = closed connected orientable
Riemannian manifold.

⇝ Laplace operator ∆ acting on space Ωi(M) of i-forms, with
discrete spectrum.

Definition
Two manifolds M and N are isospectral if for all i , the spectra
of ∆ on Ωi(M) and Ωi(N) agree with multiplicity.

Question: isospectral =⇒ isometric?
Answer: no in all dimensions ≥ 2 (Vignéras 1978).
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A mathematical question

In this talk: manifold M = closed connected orientable
Riemannian orbifold.

⇝ Laplace operator ∆ acting on space Ωi(M) of i-forms, with
discrete spectrum.

Definition
Two manifolds M and N are isospectral if for all i , the spectra
of ∆ on Ωi(M) and Ωi(N) agree with multiplicity.

Question: isospectral =⇒ isometric?
Answer: no in all dimensions ≥ 2 (Vignéras 1978).

Aurel Page Isospectrality, regulators and torsion of Vignéras manifolds
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A refined question

Question: which invariants of Riemannian manifolds are
isospectral invariants?

dimension dimM: yes
volume Vol(M): yes
Betti numbers rkHi(M): yes
ring H•(M): no (Lauret–Miatello–Rossetti 2013)
torsion homology #Hi(M)[p∞]: no ∀p (Bartel–P. 2016).
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Special values of zeta functions

The spectral zeta function

ζM,i(s) =
∑
λ>0

(dimΩi(M)∆=λ)λ
−s for ℜ(s)≫ 0

has a special value formula (Cheeger, Müller 1978):

dimM∏
i=0

exp(ζ ′M,i(0))
i(−1)i

=
dimM∏
i=0

(
#Hi(M)tors
Regi(M)

)(−1)i

where

Regi(M) = Vol

(
Hi(M,R)

Hi(M)

)
.

Example: Reg0(M) = Vol(M)−1/2, RegdimM−i(M) = Regi(M)−1.
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Isospectral manifolds
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Special values of zeta functions

Example: if two 3-manifolds M and N are isospectral, then

#H1(M)tors
Reg1(M)2 =

#H1(N)tors
Reg1(N)2 ,

and in particular

Reg1(M)2

Reg1(N)2 =
#H1(M)tors
#H1(N)tors

∈ Q×.

Questions:
Is this rationality true more generally?
What primes can enter these rational numbers?
At which primes can Hi(M)tors and Hi(N)tors differ?
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Two constructions of isospectral manifolds

Marie-France Vignéras 1978: number theory (arithmetic
groups)

Toshikazu Sunada 1983: group theory (finite group G)
Bad primes = divisors of #G.
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Vignéras’s construction

Isospectrality, regulators and torsion
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Arithmetic manifolds

GL2(C) acts on hyperbolic 3-space H3 = GL2(C)/U2(C)C×.

Let F be a field1. A quaternion algebra over F is

A =

(
a,b
F

)
= F + Fi + Fj + Fij ,

where i2 = a ∈ F×, j2 = b ∈ F× and ij = −ji .

Pick A/F a division quaternion algebra over a number field
such that

R⊗ A ∼= M2(C)×
(
−1,−1

R

)m

.

Let O ⊂ A be an order (subring with Q⊗Z O ∼= A).
Then M(O) = O×\H3 is a hyperbolic 3-manifold.

1of characteristic not 2
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Vignéras’s theorem

Maximal order: maximal for inclusion.
Always exists.
Not unique: O ⇝ xOx−1 for x ∈ A×.
Finite number up to conjugation.

Theorem (Vignéras)
If O1 and O2 are maximal orders and extra conditions hold,
then M(O1) and M(O2) are isospectral.
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Representation equivalence

The proof uses the trace formula and in fact proves the
stronger fact that there is an isomorphism

L2(O×
1 \GL2(C)) ∼= L2(O×

2 \GL2(C))

of unitary representations of GL2(C).

When such an isomorphism holds, we say that
M(O1) and M(O2) are representation-equivalent.

Theorem (DeTurck–Gordon 1989)
Representation-equivalent =⇒ isospectral.
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Dimension 2: rigidity

Question (Pesce 1995): how much stronger is
representation-equivalence compared to isospectrality?

Theorem (Doyle–Rossetti 2011)
If two hyperbolic manifolds of dimension 2 are isospectral,
then they are representation-equivalent.

Conjecture (Doyle–Rossetti 2011)
If two hyperbolic manifolds are isospectral, then they are
representation-equivalent.
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Dimension 3: an exotic pair

Theorem (Bartel–P.–PARI/GP)
There exists a pair of isospectral hyperbolic 3-manifolds with
volume 0.251 . . . that are isospectral, but
not representation-equivalent.

Vignéras’s construction with F = Q(
√
−10− 14

√
5), the

unique A ramified exactly at the real places, and maximal
orders.

Smallest possible volume? Previous record was 2.83 . . .
(Linowitz–Voight 2014) and Sunada’s construction cannot
produce smaller ones.
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Isospectral manifolds
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Theorem template

Theorem⟨∗⟩ (Bartel–P.)

At least one of the following two statements is true:
1 there exists a number field L in an a-priori finite list and a

certain Hecke character of L;
2 M(O1) and M(O2) are ∗-isospectral.

For each instance of ∗, existence can be checked using
PARI/GP’s new Hecke characters package!
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Theorem template

Theorem⟨∗⟩ (Bartel–P.)

At least one of the following two statements is true:
1 there exists a number field L in an a-priori finite list and a
∗-shady character of L;

2 M(O1) and M(O2) are ∗-isospectral.

For each instance of ∗, existence can be checked using
PARI/GP’s new Hecke characters package!
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Isospectral manifolds
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Instantiating the template

∗ = representation-equivalence←→ ∗-shady characters
= certain (possibly transcendental) Hecke characters.

∗ = isospectrality←→ ∗-shady characters = certain
(possibly transcendental) Hecke characters of a more
restricted type.

∗ = rational regulator ratios←→ ∗-shady characters =
certain algebraic Hecke characters.

∗ = same regulators and torsion at p ←→ ∗-shady
characters = certain mod p Hecke characters (assuming
a conjecture about mod p Galois representations attached
to torsion homology).
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Sketch of proof

Use Hecke operators

F(O1)→ F(O2)

They are sums of Tp for all p inert in some quadratic L/F .
We would like an invertible one.
If none is invertible, by dévissage there is an eigenvector f
such that ap(f ) = 0 for all p inert in L/F , i.e.

ap(f ) = χ(p)ap(f ) for all p.

This implies that f is ”CM” and comes from some ψ.
ρ irreducible 2-dimensional representation of a group G:
ρ ∼= ρ⊗ χ⇐⇒ ρ ∼= indG/ kerχ ψ.
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Conclusion

Thanks!
arXiv 2407.07240
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