Computing class groups using norm relations

A. Page joint work with J.-F. Biasse, C. Fieker and T. Hofmann

COUNT conference, CIRM, Luminy Inria / Université de Bordeaux

03/03/2023

Computing class groups

Goal : given a number field K, compute Cl(K).

Notation : absolute value of discriminant $\Delta_{\mathcal{K}}$, degree *n*.

Assuming GRH :

• Heuristic : $\exp(\tilde{\mathcal{O}}(\log \Delta_{\mathcal{K}})^{\alpha})$ for $1/3 \leq \alpha \leq 2/3$.

(日) (日) (日) (日) (日) (日) (日)

• Practice : impossible for n > 150.

Unconditionally : $\tilde{\mathcal{O}}(\Delta_K^{1/2})$.

New examples : under GRH

•
$$K = \mathbb{Q}(\zeta_{6552})$$

• $n = 1728$
• $\Delta_K = 2^{3456} \cdot 3^{2592} \cdot 7^{1440} \cdot 13^{1584} \approx 10^{5258}$
• $(\log \Delta_K)^2 \approx 10^8$

CI(K) computed in 4.2 hours on a laptop.

•
$$rk_2 Cl(K) = 112$$

►
$$h_{6552}^+ = 70695077806080 = 2^{24} \cdot 3^3 \cdot 5 \cdot 7^4 \cdot 13 \approx 7 \cdot 10^{13}$$

New examples : unconditionally

$$\blacktriangleright K = \mathbb{Q}(\zeta_{2520})$$

▶ n = 576

•
$$\Delta_{K} = 2^{1152} \cdot 3^{864} \cdot 5^{432} \cdot 7^{480} \approx 10^{1466}$$

• Minkowski bound $\approx 10^{515}$

CI(K) computed in 44 hours with a single core.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

•
$$h_{2520}^+ = 208 = 2^4 \cdot 13$$

Buchmann's algorithm

Algorithm :

- Choose S set of primes generating CI(K) (GRH).
- Find *S*-units $R \subset \mathbb{Z}_{K,S}^{\times}$.
- Compute $C = \mathbb{Z}^S / \langle R \rangle$ and $U = \ker(\langle R \rangle \to \mathbb{Z}^S)$.
- Check if $\langle R \rangle = \mathbb{Z}_{K,S}^{\times}$ using class number formula.

(日) (日) (日) (日) (日) (日) (日)

Output C.

Using automorphisms

Question : assume K has a nontrivial group G of automorphisms. Can we use this to compute Cl(K) faster?

- Use action of G to get extra relations for free.
- Use structure of module over the group ring for faster linear algebra?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

By Galois theory, *K* has many subfields.

Norm relations

For $H \leq G$, define the *norm element*

$$N_H = \sum_{h\in H} h \in \mathbb{Z}[G].$$

Wada, Bauch–Bernstein–de Valence–Lange–van Vredendaal, Biasse–van Vredendaal : $G = C_2 \times C_2 = \langle \sigma, \tau \rangle$.

$$\mathbf{2} = \mathbf{N}_{\langle \sigma \rangle} + \mathbf{N}_{\langle \sigma \rangle} - \sigma \mathbf{N}_{\langle \sigma \tau \rangle}.$$

Parry, Lesavourey–Plantard–Susilo : $G = C_3 \times C_3 = \langle u, v \rangle$.

$$3 = N_{\langle u \rangle} + N_{\langle v \rangle} + N_{\langle uv \rangle} - (u + uv) N_{\langle u^2 v \rangle}.$$

Norm relations

Definition : norm relation with denominator d

$$d = \sum_{i=1}^k a_i N_{H_i} b_i$$

with $a_i, b_i \in \mathbb{Z}[G]$ and $d \in \mathbb{Z}_{>0}$.

Proposition : Let *M* be a $\mathbb{Z}[G]$ -module. Then the exponent of

$$M/\langle M^{H_1},\ldots,M^{H_k}\rangle_{\mathbb{Z}[G]}$$

is finite and divides d.

Proof : Let $m \in M$. Then

$$dm = \sum_i a_i N_{H_i} b_i m \in \sum_i a_i M^{H_i}.$$

S-units

Apply to *M* the *S*-units of *K* : The *S*-units of the subfields $K_i = K^{H_i}$ generate a $\mathbb{Z}[G]$ -submodule of finite index in the *S*-units of *K*.

Algorithm (S-units with a norm relation) :

► For each subfield $K_i = K^{H_i}$, compute *S*-unit group $\mathbb{Z}_{K_i,S}^{\times}$.

- Compute $\mathbb{Z}[G]$ -module generated by all $\mathbb{Z}_{K,S}^{\times}$.
- Extract all possible *d*-th powers to obtain Z[×]_{K.S}.
- Output $\mathbb{Z}_{K,S}^{\times}$.

Saturation

Problem : from $R \subset K^{\times}$, compute $R' = \{x \in K^{\times} \text{ s.t. } x^d \in R\}$.

Saturation algorithm (Pohst–Zassenhaus, rediscovered many times) :

- Use reduction modulo primes to detect powers.
- Compute *d*-th roots.
- Terminate or add more primes.

Biasse–Fieker–Hofmann–P. : under GRH, polynomial bound on the set of primes required.

Denominators of norm relations

Can we control the denominator d?

Theorem (Biasse–Fieker–Hofmann–P.)

If G admits a norm relation using certain subgroups, then it also admits one with d dividing $|G|^3$ and using the same subgroups.

Proof sketch : There is a representation-theoretic interpretation of existence of a norm relation. Rewrite it in terms of idempotents, and estimate the denominators of the idempotents.

(日) (日) (日) (日) (日) (日) (日)

Reduction to the subfields

Theorem (Biasse–Fieker–Hofmann–P.)

Assume GRH. Let G admitting a norm relation. The computation of the group of S-units reduces in deterministic polynomial time from any K with an action of G to the corresponding subfields.

Existence of norm relations

When do such relations exist?

Theorem (Biasse–Fieker–Hofmann–P., Wolf)

A finite group G admits a norm relation if and only if G contains

- a non-cyclic subgroup of order pq (p,q, primes not necessarily distinct), or
- ► a subgroup isomorphic to SL₂(𝔽_p) where p = 2^{2^k} + 1 is a Fermat prime with k > 1.

Also : criterion to test existence with specific subgroups, more precise information in the abelian case.

Back to the example

- $\blacktriangleright \ K = \mathbb{Q}(\zeta_{6552})$
- *n* = 1728
- Galois group $G \cong C_{12} \times C_6^2 \times C_2^2$
- Relation with d = 1 reducing to 62 subfields of degree ≤ 192.
- Relations with d a power of 2 or 3 reducing to 672 subfields of degree ≤ 12.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Implementations

- Implementation in Julia (Nemo/Hecke) : general case.
- Implementation in gp : requires K to be Galois over Q, only uses relations coming from abelian subgroups, only computes the class group, possible infinite loop, but faster.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Implementation in libpari : general case, TODO !

Computing class groups using norm relations

Thank you!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Remember :

- Notion of "norm relation" in G.
- Recover *M* from the M^{H_i} .
- Existence if *G* is "far from cyclic".