The principal ideal problem in quaternion algebras

Aurel Page IMB, Université de Bordeaux

11 August 2014 ANTS XI - GyeongJu, Korea

Aurel Page The principal ideal problem in quaternion algebras

Let *F* be a number field with ring of integers \mathbb{Z}_F .

Problem
Given an ideal I in \mathbb{Z}_F , decide whether it is principal and find a
generator.

Applications:

- Selmer group computations and descent (Cremona–Fisher–O'Neil–Simon–Stoll 2011)
- class field theory (Cohen–Diaz y Diaz–Olivier 2000)
- norm and Thue equations (Tzanakis–de Weger 1989, Bilu–Hanrot 1996)

伺 とく ヨ とく ヨ と

Hafner and McCurley 1989 (quadratic case), Buchmann 1990.

Precomputation:

- Choose a set of primes in *F* that generates Cl(*F*): the factor base *B*.
- Look for random smooth elements in \mathbb{Z}_F : the relations \mathcal{R} .
- Stop when $\langle \mathcal{B} \rangle / \langle \mathcal{R} \rangle \cong \mathrm{Cl}(F)$.

Hafner and McCurley 1989 (quadratic case), Buchmann 1990.

Precomputation:

- Choose a set of primes in *F* that generates Cl(*F*): the factor base *B*.
- Look for random smooth elements in \mathbb{Z}_F : the relations \mathcal{R} .
- Stop when $\langle \mathcal{B} \rangle / \langle \mathcal{R} \rangle \cong \mathrm{Cl}(F)$.

Given a fractional ideal *I*:

- Look for a random element $x \in I^{-1}$ such that *xI* is smooth.
- Do linear algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Canfield–Erdös–Pomerance 1983)

Let $\psi(x, y) = |\{n \le x, n \text{ is } y \text{-smooth}\}|$. If we set

$$L(x) = \exp(\sqrt{\ln x \ln \ln x}),$$

then

$$\psi(x, L(x)^a) = x \cdot L(x)^{-1/(2a)+o(1)}$$

The principal ideal problem in quaternion algebras

Let A be a quaternion algebra over a number field F.

Problem
Given a right ideal <i>I</i> in <i>A</i> , decide whether it is principal and find
a generator.

Applications:

- CM points on Shimura curves (Voight 2006).
- Hilbert modular forms (Dembélé–Donnelly 2008, Greenberg–Voight 2011, Voight 2010).
- More generally automorphic forms for GL₂ over number fields.

Quaternion algebra over F = central simple algebra A of dimension 4.

Equivalently, $A = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$ where $i^2 = a$, $j^2 = b$ and ij = -ji $(a, b \in F^{\times})$. Example: $\left(\frac{1,1}{F}\right) \cong \mathcal{M}_2(F)$.

伺 ト イ ヨ ト イ ヨ ト

Quaternion algebra over F = central simple algebra A of dimension 4.

Equivalently,
$$A = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$$

where $i^2 = a$, $j^2 = b$ and $ij = -ji$ $(a, b \in F^{\times})$.
Example: $\left(\frac{1,1}{F}\right) \cong \mathcal{M}_2(F)$.

The **reduced norm** is $nrd(x + yi + zj + tij) = x^2 - ay^2 - bz^2 + abt^2$.

Example: nrd = det.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Orders and ideals

Order $\mathcal{O} \subset A$ = finitely generated \mathbb{Z}_F -submodule s.t. $F\mathcal{O} = A$, that is also a subring with unit.

Examples: $\mathbb{Z}_F + \mathbb{Z}_F i + \mathbb{Z}_F j + \mathbb{Z}_F i j$, $\mathcal{M}_2(\mathbb{Z}_F)$.

From now on, assume that \mathcal{O} is a maximal order.

く 伺 と く ヨ と く ヨ と …

Orders and ideals

Order $\mathcal{O} \subset A$ = finitely generated \mathbb{Z}_{F} -submodule s.t. $F\mathcal{O} = A$, that is also a subring with unit.

Examples: $\mathbb{Z}_F + \mathbb{Z}_F i + \mathbb{Z}_F j + \mathbb{Z}_F i j$, $\mathcal{M}_2(\mathbb{Z}_F)$.

From now on, assume that \mathcal{O} is a maximal order.

Right ideals: I = xO (**principal** right ideal) and sums of such.

- Multiplication of right ideals does not form a group.
- nrd is not multiplicative on right ideals.

< 同 > < 回 > < 回 > -

Orders and ideals

Order $\mathcal{O} \subset A$ = finitely generated \mathbb{Z}_{F} -submodule s.t. $F\mathcal{O} = A$, that is also a subring with unit.

Examples: $\mathbb{Z}_F + \mathbb{Z}_F i + \mathbb{Z}_F j + \mathbb{Z}_F i j$, $\mathcal{M}_2(\mathbb{Z}_F)$.

From now on, assume that \mathcal{O} is a maximal order.

Right ideals: I = xO (**principal** right ideal) and sums of such.

- Multiplication of right ideals does not form a group.
- nrd is not multiplicative on right ideals.

Two-sided ideals: abelian group generated by

- \mathfrak{P} where $\mathfrak{P}^2 = \mathfrak{p}\mathcal{O}$: $\mathfrak{p} \subset \mathbb{Z}_F$ is **ramified** in *A*.
- $\mathfrak{P} = \mathfrak{p}\mathcal{O}$ otherwise: $\mathfrak{p} \subset \mathbb{Z}_F$ is **split** in *A*.

ヘロト 人間 ト イヨト イヨト

Two natural cases:

A is definite if Tr(nrd) is positive definite.
 Donnelly–Dembélé 2008: algorithm using lattice enumeration.

Theorem (Kirschmer–Voight 2010)

The Dembélé–Donnelly algorithm runs in **polynomial time** in the size of the input when the **base field is fixed**.

< ロ > < 同 > < 回 > < 回 > < □ > <

A is indefinite otherwise.

 $Cl_A(F)$: ray class group with modulus the product of the real places where nrd is positive definite.

Theorem (Eichler)

If A is indefinite and \mathcal{O} a maximal order in A, then a right ideal I is principal iff nrd(I) is trivial in $Cl_A(F)$.

Decision problem \rightsquigarrow same problem over the base field.

・ 同 ト ・ ヨ ト ・ ヨ ト

A is indefinite otherwise.

 $Cl_A(F)$: ray class group with modulus the product of the real places where nrd is positive definite.

Theorem (Eichler)

If A is indefinite and O a maximal order in A, then a right ideal I is principal iff nrd(I) is trivial in $Cl_A(F)$.

Decision problem ~> same problem over the base field.

Problem

Given a principal right O-ideal *I* in *A*, find a generator.

< ロ > < 同 > < 回 > < 回 > < □ > <

Problem

Given a principal right O-ideal *I* in *A*, find a generator.

Kirschmer–Voight 2010: algorithm based on lattice enumeration, complexity is unknown.

< 回 > < 回 > < 回 >

э

Problem

Given a principal right O-ideal I in A, find a generator.

Kirschmer–Voight 2010: algorithm based on lattice enumeration, complexity is unknown.

Theorem (P. 2014)

There exists an explicit algorithm that, given a generator of nrd(I), finds a generator of I in time

 $\exp(O(\log \Delta_A) + O_N(\log \log \Delta_A))),$

where $N = \dim_{\mathbb{Q}} A$ and Δ_A is the discriminant of A/\mathbb{Q} .

< ロ > < 同 > < 回 > < 回 > < □ > <

The previous algorithm has proved complexity, but it is not efficient in practice.

Goal

Describe an analogue of Buchmann's algorithm for indefinite quaternion algebras:

- precomputed structure + principalization algorithm
- factor base, heuristically subexponential complexity

< ロ > < 同 > < 回 > < 回 >

Trying to adapt Buchmann's algorithm

- smoothness: choose B a set of primes of Z_F. Integral right ideal is **smooth** if its reduced norm is.
- Inear algebra: no group structure!

伺 ト イヨ ト イヨト

Trying to adapt Buchmann's algorithm

- smoothness: choose B a set of primes of Z_F. Integral right ideal is **smooth** if its reduced norm is.
- linear algebra: no group structure! but works on
 - the norm: given smooth *I*, can find x such that nrd(xI) = (1)
 - two-sided ideals

・ 同 ト ・ ヨ ト ・ ヨ ト

Trying to adapt Buchmann's algorithm

- smoothness: choose B a set of primes of Z_F. Integral right ideal is **smooth** if its reduced norm is.
- linear algebra: no group structure! but works on
 - the norm: given smooth *I*, can find x such that nrd(xI) = (1)
 - two-sided ideals

Solution: from nrd(I) = (1), make *I* two-sided by working prime by prime: multiply on the left by p-units.

Local problem

 F_v completion at a finite place v that is split in A: $A_v \cong \mathcal{M}_2(F_v)$. \mathbb{Z}_v integers of F_v , residue field \mathbb{F}_v .

- Maximal order $\mathcal{O} = \mathcal{M}_2(\mathbb{Z}_v)$.
- Every right ideal *I* is principal, generator $g \in GL_2(F_v)$.
- $I = g\mathcal{O}$ two-sided $\Leftrightarrow g \in F_v^{\times} \operatorname{GL}_2(\mathbb{Z}_v)$.

 \rightsquigarrow need to understand $GL_2(F_v)/F_v^{\times} GL_2(\mathbb{Z}_v)$.

 F_v completion at a finite place v that is split in A: $A_v \cong \mathcal{M}_2(F_v)$. \mathbb{Z}_v integers of F_v , residue field \mathbb{F}_v .

- Maximal order $\mathcal{O} = \mathcal{M}_2(\mathbb{Z}_v)$.
- Every right ideal *I* is principal, generator $g \in GL_2(F_v)$.
- $I = g\mathcal{O}$ two-sided $\Leftrightarrow g \in F_{\nu}^{\times} \operatorname{GL}_{2}(\mathbb{Z}_{\nu}).$

 \rightsquigarrow need to understand $GL_2(F_v)/F_v^{\times} GL_2(\mathbb{Z}_v)$.

Geometric interpretation: Bruhat-Tits tree

- transitive action of $GL_2(F_v)$
- stabilizer of vertex F[×]_v GL₂(ℤ_v)
- vertices at distance $1 \leftrightarrow \mathbb{P}^1(\mathbb{F}_v)$

$$A = \left(\frac{3,-1}{\mathbb{Q}}\right), \mathcal{O} = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}\omega \text{ where } \omega = (1 + i + j + ij)/2,$$

 $I = x\mathcal{O} + 19\mathcal{O} \text{ where } x = -3 - 4i + j \in A.$

・ロト ・聞 ト ・ ヨト ・ ヨト

■ _ _ のへ (や

Example

$$egin{aligned} &\mathcal{A}=\left(rac{3,-1}{\mathbb{Q}}
ight),\,\mathcal{O}=\mathbb{Z}+\mathbb{Z}i+\mathbb{Z}j+\mathbb{Z}\omega ext{ where }\omega=(1+i+j+ij)/2,\ &I=x\mathcal{O}+19\mathcal{O} ext{ where }x=-3-4i+j\in \mathcal{A}. \end{aligned}$$

Factor base $\mathcal{B} = \{2, 3, 5, 7, 11, 13, 17\}.$

- **1** $\operatorname{Cl}(\mathbb{Q}) = 1$, so *I* is principal.
- ② Find $x = (7 + i 9j 3\omega)/19 \in I^{-1}$ such that $\operatorname{nrd}(xI) = 7\mathbb{Z}$: *xI* is smooth.
- Since a linear algebra: $c = -1 2i j + \omega$, cxI/7 = J/7where $J = 49\mathcal{O} + w\mathcal{O}$ with w = -17 - 8i + j.

Solution Local reduction at 7: $h = (-9 - 5i - 7j - 3\omega)/7$. Multiply out everything: $3 + 4i - 3j - 11\omega$ has norm -19,

generator of the ideal I.

< 日 > < 同 > < 回 > < 回 > < □ > <

э.

Running time

Aurel Page The principal ideal problem in quaternion algebras

◆□▶ ◆□▶ ◆□▶ ◆□▶

æ

Let *F* be imaginary quadratic, $\mathfrak{p}, \mathfrak{q}$ primes in \mathbb{Z}_F . Let *A* be ramified at $\mathfrak{p}, \mathfrak{q}$ and $\mathcal{O} \subset A$ a maximal order. Let $\Gamma_0(\mathfrak{p}\mathfrak{q})$ be the subgroup of $\mathrm{PGL}_2(\mathbb{Z}_F)$ of elements that are upper triangular modulo $\mathfrak{p}\mathfrak{q}$.

Theorem (Jacquet–Langlands 1970)

There is an injection of Hecke-modules

$$H_1(\mathcal{O}^{\times}/\mathbb{Z}_F^{\times},\mathbb{C})\longrightarrow H_1(\Gamma_0(\mathfrak{pq}),\mathbb{C})$$

Let *F* be imaginary quadratic, $\mathfrak{p}, \mathfrak{q}$ primes in \mathbb{Z}_F . Let *A* be ramified at $\mathfrak{p}, \mathfrak{q}$ and $\mathcal{O} \subset A$ a maximal order. Let $\Gamma_0(\mathfrak{p}\mathfrak{q})$ be the subgroup of $\mathrm{PGL}_2(\mathbb{Z}_F)$ of elements that are upper triangular modulo $\mathfrak{p}\mathfrak{q}$.

Theorem (Jacquet–Langlands 1970)

There is an injection of Hecke-modules

$$H_1(\mathcal{O}^{\times}/\mathbb{Z}_F^{\times},\mathbb{C})\longrightarrow H_1(\Gamma_0(\mathfrak{pq}),\mathbb{C})$$

What happens if we replace \mathbb{C} with another ring, say \mathbb{F}_p ?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Modulo *p* cohomology of arithmetic groups

Theorem (Calegari–Venkatesh 2012)

 $H_1(\mathcal{O}^{\times}/\mathbb{Z}_F^{\times},\mathbb{Z})_{\textit{tors}} \approx H_1(\Gamma_0(\mathfrak{pq}),\mathbb{Z})_{\textit{tors}}.$

Modulo *p* cohomology of arithmetic groups

Theorem (Calegari–Venkatesh 2012)

 $H_1(\mathcal{O}^{\times}/\mathbb{Z}_F^{\times},\mathbb{Z})_{tors} \approx H_1(\Gamma_0(\mathfrak{pq}),\mathbb{Z})_{tors}.$

Theorem (Scholze 2013)

For any system of eigenvalues in $H_1(\Gamma_0(\mathfrak{N}), \mathbb{F}_p)$, there is a continuous semisimple representation $\operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$ such that Frobenius and Hecke eigenvalues match up.

A modulo p Jacquet-Langlands correspondence ?

Joint work with M. H. Şengün (in progress).

Let $F = \mathbb{Q}(\zeta_3)$, $\mathfrak{p} = (7, 2 + \zeta_3)$, $\mathfrak{q} = (31, 25 + \zeta_3)$. Let A be the quaternion algebra ramified exactly at $\mathfrak{p}, \mathfrak{q}$. Let \mathcal{O} be a maximal order in A, and $\Gamma = \mathcal{O}^{\times}/\mathbb{Z}_{F}^{\times}$. Joint work with M. H. Şengün (in progress).

Let $F = \mathbb{Q}(\zeta_3)$, $\mathfrak{p} = (7, 2 + \zeta_3)$, $\mathfrak{q} = (31, 25 + \zeta_3)$. Let A be the quaternion algebra ramified exactly at $\mathfrak{p}, \mathfrak{q}$. Let \mathcal{O} be a maximal order in A, and $\Gamma = \mathcal{O}^{\times}/\mathbb{Z}_{F}^{\times}$.

We have

$$H_1(\Gamma, \mathbb{C}) = 0$$
, and $H_1(\Gamma_0(\mathfrak{pq}), \mathbb{C}) = 0$.

聞き くぼき くぼうし

Joint work with M. H. Şengün (in progress).

Let $F = \mathbb{Q}(\zeta_3)$, $\mathfrak{p} = (7, 2 + \zeta_3)$, $\mathfrak{q} = (31, 25 + \zeta_3)$. Let A be the quaternion algebra ramified exactly at $\mathfrak{p}, \mathfrak{q}$. Let \mathcal{O} be a maximal order in A, and $\Gamma = \mathcal{O}^{\times}/\mathbb{Z}_{F}^{\times}$.

We have

$$H_1(\Gamma, \mathbb{C}) = 0$$
, and $H_1(\Gamma_0(\mathfrak{pq}), \mathbb{C}) = 0$.

Let p = 5. Then

$$H_1(\Gamma, \mathbb{F}_p) = \mathbb{F}_p c_1$$
, and $H_1(\Gamma_0(\mathfrak{pq}), \mathbb{F}_p) = \mathbb{F}_p c_2 + \mathbb{F}_p c_3$.

伺 ト イ ヨ ト イ ヨ ト

Eigenvalues of Hecke operators

-

$N(\mathfrak{l})$	$\lambda_{\mathfrak{l}}(c_1)$	$\lambda_{\mathfrak{l}}(c_2)$	$\lambda_{\mathfrak{l}}(c_3)$
3	2	2	4
4	0	0	0
7	0	0	3
13	1	1	4
13	2	2	4
19	4	4	0
19	1	1	0
25	3	3	1
31	2	2	2
37	4	4	3
37	1	1	3
43	3	3	4
43	0	0	4

□▶★□▶★□▶

æ

Thank you!

Aurel Page The principal ideal problem in quaternion algebras

ヘロン 人間と 人間と 人間と

э