The principal ideal problem in quaternion algebras

Aurel Page

IMB, Université de Bordeaux

11 August 2014
ANTS XI - GyeongJu, Korea

The principal ideal problem

Let F be a number field with ring of integers \mathbb{Z}_{F}.

Problem

Given an ideal / in \mathbb{Z}_{F}, decide whether it is principal and find a generator.

Applications:

- Selmer group computations and descent (Cremona-Fisher-O’Neil-Simon-Stoll 2011)
- class field theory (Cohen-Diaz y Diaz-Olivier 2000)
- norm and Thue equations (Tzanakis-de Weger 1989, Bilu-Hanrot 1996)

Buchmann's algorithm

Hafner and McCurley 1989 (quadratic case), Buchmann 1990.
Precomputation:

- Choose a set of primes in F that generates $\mathrm{Cl}(F)$: the factor base \mathcal{B}.
- Look for random smooth elements in \mathbb{Z}_{F} : the relations \mathcal{R}.
- Stop when $\langle\mathcal{B}\rangle /\langle\mathcal{R}\rangle \cong \mathrm{Cl}(F)$.

Buchmann's algorithm

Hafner and McCurley 1989 (quadratic case), Buchmann 1990.
Precomputation:

- Choose a set of primes in F that generates $\mathrm{Cl}(F)$: the factor base \mathcal{B}.
- Look for random smooth elements in \mathbb{Z}_{F} : the relations \mathcal{R}.
- Stop when $\langle\mathcal{B}\rangle /\langle\mathcal{R}\rangle \cong \mathrm{Cl}(F)$.

Given a fractional ideal I:

- Look for a random element $x \in I^{-1}$ such that $x I$ is smooth.
- Do linear algebra.

Smooth numbers

Theorem (Canfield-Erdös-Pomerance 1983)
Let $\psi(x, y)=\mid\{n \leq x, n$ is y-smooth $\} \mid$. If we set

$$
L(x)=\exp (\sqrt{\ln x \ln \ln x})
$$

then

$$
\psi\left(x, L(x)^{a}\right)=x \cdot L(x)^{-1 /(2 a)+o(1)}
$$

The principal ideal problem in quaternion algebras

Let A be a quaternion algebra over a number field F.

Problem

Given a right ideal I in A, decide whether it is principal and find a generator.

Applications:

- CM points on Shimura curves (Voight 2006).
- Hilbert modular forms (Dembélé-Donnelly 2008, Greenberg-Voight 2011, Voight 2010).
- More generally automorphic forms for GL_{2} over number fields.

Quaternion algebras

Quaternion algebra over $F=$ central simple algebra A of dimension 4.
Equivalently, $A=\left(\frac{a, b}{F}\right)=F+F i+F j+F i j$
where $i^{2}=a, j^{2}=b$ and $i j=-j i\left(a, b \in F^{\times}\right)$.
Example: $\left(\frac{1,1}{F}\right) \cong \mathcal{M}_{2}(F)$.

Quaternion algebras

Quaternion algebra over $F=$ central simple algebra A of dimension 4.
Equivalently, $A=\left(\frac{a, b}{F}\right)=F+F i+F j+F i j$
where $i^{2}=a, j^{2}=b$ and $i j=-j i\left(a, b \in F^{\times}\right)$.
Example: $\left(\frac{1,1}{F}\right) \cong \mathcal{M}_{2}(F)$.
The reduced norm is $\operatorname{nrd}(x+y i+z j+t i j)=x^{2}-a y^{2}-b z^{2}+a b t^{2}$.
Example: nrd $=$ det.

Orders and ideals

Order $\mathcal{O} \subset A=$ finitely generated \mathbb{Z}_{F}-submodule s.t. $F \mathcal{O}=A$, that is also a subring with unit.

Examples: $\mathbb{Z}_{F}+\mathbb{Z}_{F} i+\mathbb{Z}_{F} j+\mathbb{Z}_{F} i j, \mathcal{M}_{2}\left(\mathbb{Z}_{F}\right)$.
From now on, assume that \mathcal{O} is a maximal order.

Orders and ideals

Order $\mathcal{O} \subset A=$ finitely generated \mathbb{Z}_{F}-submodule s.t. $F \mathcal{O}=A$, that is also a subring with unit.

Examples: $\mathbb{Z}_{F}+\mathbb{Z}_{F} i+\mathbb{Z}_{F} j+\mathbb{Z}_{F} i j, \mathcal{M}_{2}\left(\mathbb{Z}_{F}\right)$.
From now on, assume that \mathcal{O} is a maximal order.
Right ideals: $I=x \mathcal{O}$ (principal right ideal) and sums of such.

- Multiplication of right ideals does not form a group.
- nrd is not multiplicative on right ideals.

Orders and ideals

Order $\mathcal{O} \subset A=$ finitely generated \mathbb{Z}_{F}-submodule s.t. $F \mathcal{O}=A$, that is also a subring with unit.

Examples: $\mathbb{Z}_{F}+\mathbb{Z}_{F} i+\mathbb{Z}_{F} j+\mathbb{Z}_{F} i j, \mathcal{M}_{2}\left(\mathbb{Z}_{F}\right)$.
From now on, assume that \mathcal{O} is a maximal order.
Right ideals: $I=x \mathcal{O}$ (principal right ideal) and sums of such.

- Multiplication of right ideals does not form a group.
- nrd is not multiplicative on right ideals.

Two-sided ideals: abelian group generated by

- \mathfrak{P} where $\mathfrak{P}^{2}=\mathfrak{p O}: \mathfrak{p} \subset \mathbb{Z}_{F}$ is ramified in A.
- $\mathfrak{P}=\mathfrak{p O}$ otherwise: $\mathfrak{p} \subset \mathbb{Z}_{F}$ is split in A.

Definite case

Two natural cases:
(1) A is definite if $\operatorname{Tr}(n r d)$ is positive definite. Donnelly-Dembélé 2008: algorithm using lattice enumeration.

Theorem (Kirschmer-Voight 2010)

The Dembélé-Donnelly algorithm runs in polynomial time in the size of the input when the base field is fixed.

Indefinite case

(2) A is indefinite otherwise.
$\mathrm{Cl}_{A}(F)$: ray class group with modulus the product of the real places where nrd is positive definite.

Theorem (Eichler)

If A is indefinite and \mathcal{O} a maximal order in A, then a right ideal I is principal iff $\operatorname{nrd}(I)$ is trivial in $\mathrm{Cl}_{A}(F)$.

Decision problem \rightsquigarrow same problem over the base field.

Indefinite case

(2) A is indefinite otherwise.
$\mathrm{Cl}_{A}(F)$: ray class group with modulus the product of the real places where nrd is positive definite.

Theorem (Eichler)

If A is indefinite and \mathcal{O} a maximal order in A, then a right ideal I is principal iff nrd (I) is trivial in $\mathrm{Cl}_{A}(F)$.

Decision problem \rightsquigarrow same problem over the base field.

Problem

Given a principal right \mathcal{O}-ideal I in A, find a generator.

Indefinite case

Problem

Given a principal right \mathcal{O}-ideal I in A, find a generator.
Kirschmer-Voight 2010: algorithm based on lattice enumeration, complexity is unknown.

Indefinite case

Problem

Given a principal right \mathcal{O}-ideal $/$ in A, find a generator.
Kirschmer-Voight 2010: algorithm based on lattice enumeration, complexity is unknown.

Theorem (P. 2014)

There exists an explicit algorithm that, given a generator of $\mathrm{nrd}(\mathrm{I})$, finds a generator of I in time

$$
\exp \left(O\left(\log \Delta_{A}\right)+O_{N}\left(\log \log \Delta_{A}\right)\right),
$$

where $N=\operatorname{dim}_{\mathbb{Q}} A$ and Δ_{A} is the discriminant of A / \mathbb{Q}.

Goal

The previous algorithm has proved complexity, but it is not efficient in practice.

Goal

Describe an analogue of Buchmann's algorithm for indefinite quaternion algebras:

- precomputed structure + principalization algorithm
- factor base, heuristically subexponential complexity

Trying to adapt Buchmann's algorithm

(1) smoothness: choose \mathcal{B} a set of primes of \mathbb{Z}_{F}. Integral right ideal is smooth if its reduced norm is.
(2) linear algebra: no group structure!

Trying to adapt Buchmann's algorithm

(1) smoothness: choose \mathcal{B} a set of primes of \mathbb{Z}_{F}. Integral right ideal is smooth if its reduced norm is.
(2) linear algebra: no group structure! but works on

- the norm: given smooth I, can find x such that $\operatorname{nrd}(x I)=(1)$
- two-sided ideals

Trying to adapt Buchmann's algorithm

(1) smoothness: choose \mathcal{B} a set of primes of \mathbb{Z}_{F}. Integral right ideal is smooth if its reduced norm is.
(2) linear algebra: no group structure! but works on

- the norm: given smooth I, can find x such that $\operatorname{nrd}(x I)=(1)$
- two-sided ideals

Solution: from $\operatorname{nrd}(I)=(1)$, make I two-sided by working prime by prime: multiply on the left by \mathfrak{p}-units.

Local problem

F_{v} completion at a finite place v that is split in A : $A_{v} \cong \mathcal{M}_{2}\left(F_{v}\right)$. \mathbb{Z}_{v} integers of F_{v}, residue field \mathbb{F}_{v}.

- Maximal order $\mathcal{O}=\mathcal{M}_{2}\left(\mathbb{Z}_{v}\right)$.
- Every right ideal $/$ is principal, generator $g \in \mathrm{GL}_{2}\left(F_{V}\right)$.
- $I=g \mathcal{O}$ two-sided $\Leftrightarrow g \in F_{v}^{\times} \mathrm{GL}_{2}\left(\mathbb{Z}_{v}\right)$.
\rightsquigarrow need to understand $\mathrm{GL}_{2}\left(F_{v}\right) / F_{v}^{\times} \mathrm{GL}_{2}\left(\mathbb{Z}_{v}\right)$.

Local problem

F_{v} completion at a finite place v that is split in $A: A_{v} \cong \mathcal{M}_{2}\left(F_{v}\right)$. \mathbb{Z}_{v} integers of F_{v}, residue field \mathbb{F}_{v}.

- Maximal order $\mathcal{O}=\mathcal{M}_{2}\left(\mathbb{Z}_{V}\right)$.
- Every right ideal $/$ is principal, generator $g \in \mathrm{GL}_{2}\left(F_{V}\right)$.
- $I=g \mathcal{O}$ two-sided $\Leftrightarrow g \in F_{v}^{\times} \mathrm{GL}_{2}\left(\mathbb{Z}_{v}\right)$.
\rightsquigarrow need to understand $\mathrm{GL}_{2}\left(F_{v}\right) / F_{v} \times \mathrm{GL}_{2}\left(\mathbb{Z}_{v}\right)$.
Geometric interpretation: Bruhat-Tits tree
- transitive action of $\mathrm{GL}_{2}\left(F_{v}\right)$
- stabilizer of vertex $F_{v}^{\times} \mathrm{GL}_{2}\left(\mathbb{Z}_{v}\right)$
- vertices at distance $1 \leftrightarrow \mathbb{P}^{1}\left(\mathbb{F}_{v}\right)$

Example

$$
\begin{aligned}
& A=\left(\frac{3,-1}{\mathbb{Q}}\right), \mathcal{O}=\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} \omega \text { where } \omega=(1+i+j+i j) / 2, \\
& I=x \mathcal{O}+19 \mathcal{O} \text { where } x=-3-4 i+j \in A .
\end{aligned}
$$

$A=\left(\frac{3,-1}{\mathbb{Q}}\right), \mathcal{O}=\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} \omega$ where $\omega=(1+i+j+i j) / 2$,
$I=x \mathcal{O}+19 \mathcal{O}$ where $x=-3-4 i+j \in A$.
Factor base $\mathcal{B}=\{2,3,5,7,11,13,17\}$.
(1) $\mathrm{Cl}(\mathbb{Q})=1$, so I is principal.
(2) Find $x=(7+i-9 j-3 \omega) / 19 \in I^{-1}$ such that $\operatorname{nrd}(x I)=7 \mathbb{Z}$: $x l$ is smooth.
(3) Linear algebra: $c=-1-2 i-j+\omega, c x I / 7=J / 7$ where $J=49 \mathcal{O}+w \mathcal{O}$ with $w=-17-8 i+j$.
(4) Local reduction at $7: h=(-9-5 i-7 j-3 \omega) / 7$.

Multiply out everything: $3+4 i-3 j-11 \omega$ has norm -19 , generator of the ideal I.

Running time

Jacquet-Langlands correspondence and cohomology

Let F be imaginary quadratic, $\mathfrak{p}, \mathfrak{q}$ primes in \mathbb{Z}_{F}. Let A be ramified at $\mathfrak{p}, \mathfrak{q}$ and $\mathcal{O} \subset A$ a maximal order. Let $\Gamma_{0}(\mathfrak{p q})$ be the subgroup of $P G L_{2}\left(\mathbb{Z}_{F}\right)$ of elements that are upper triangular modulo $\mathfrak{p q}$.

Theorem (Jacquet-Langlands 1970)

There is an injection of Hecke-modules

$$
H_{1}\left(\mathcal{O}^{\times} / \mathbb{Z}_{F}^{\times}, \mathbb{C}\right) \longrightarrow H_{1}\left(\Gamma_{0}(\mathfrak{p q}), \mathbb{C}\right) .
$$

Jacquet-Langlands correspondence and cohomology

Let F be imaginary quadratic, $\mathfrak{p}, \mathfrak{q}$ primes in \mathbb{Z}_{F}. Let A be ramified at $\mathfrak{p}, \mathfrak{q}$ and $\mathcal{O} \subset A$ a maximal order. Let $\Gamma_{0}(\mathfrak{p q})$ be the subgroup of $P G L_{2}\left(\mathbb{Z}_{F}\right)$ of elements that are upper triangular modulo $\mathfrak{p q}$.

Theorem (Jacquet-Langlands 1970)

There is an injection of Hecke-modules

$$
H_{1}\left(\mathcal{O}^{\times} / \mathbb{Z}_{F}^{\times}, \mathbb{C}\right) \longrightarrow H_{1}\left(\Gamma_{0}(\mathfrak{p q}), \mathbb{C}\right) .
$$

What happens if we replace \mathbb{C} with another ring, say \mathbb{F}_{p} ?

Modulo p cohomology of arithmetic groups

Theorem (Calegari-Venkatesh 2012)
 $H_{1}\left(\mathcal{O}^{\times} / \mathbb{Z}_{\mathrm{F}}^{\times}, \mathbb{Z}\right)_{\text {tors }} \approx H_{1}\left(\Gamma_{0}(\mathfrak{p q}), \mathbb{Z}\right)_{\text {tors }}$.

Modulo p cohomology of arithmetic groups

Theorem (Calegari-Venkatesh 2012)
 $H_{1}\left(\mathcal{O}^{\times} / \mathbb{Z}_{\mathrm{F}}^{\times}, \mathbb{Z}\right)_{\text {tors }} \approx H_{1}\left(\Gamma_{0}(\mathfrak{p q}), \mathbb{Z}\right)_{\text {tors }}$.

Theorem (Scholze 2013)

For any system of eigenvalues in $H_{1}\left(\Gamma_{0}(\mathfrak{N}), \mathbb{F}_{p}\right)$, there is a continuous semisimple representation $\mathrm{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ such that Frobenius and Hecke eigenvalues match up.

A modulo p Jacquet-Langlands correspondence ?

Joint work with M. H. Şengün (in progress).
Let $F=\mathbb{Q}\left(\zeta_{3}\right), \mathfrak{p}=\left(7,2+\zeta_{3}\right), \mathfrak{q}=\left(31,25+\zeta_{3}\right)$.
Let A be the quaternion algebra ramified exactly at $\mathfrak{p}, \mathfrak{q}$.
Let \mathcal{O} be a maximal order in A, and $\Gamma=\mathcal{O}^{\times} / \mathbb{Z}_{F}^{\times}$.

A modulo p Jacquet-Langlands correspondence ?

Joint work with M. H. Şengün (in progress).
Let $F=\mathbb{Q}\left(\zeta_{3}\right), \mathfrak{p}=\left(7,2+\zeta_{3}\right), \mathfrak{q}=\left(31,25+\zeta_{3}\right)$.
Let A be the quaternion algebra ramified exactly at $\mathfrak{p}, \mathfrak{q}$.
Let \mathcal{O} be a maximal order in A, and $\Gamma=\mathcal{O}^{\times} / \mathbb{Z}_{F}^{\times}$.
We have

$$
H_{1}(\Gamma, \mathbb{C})=0, \text { and } H_{1}\left(\Gamma_{0}(\mathfrak{p q}), \mathbb{C}\right)=0
$$

A modulo p Jacquet-Langlands correspondence ?

Joint work with M. H. Şengün (in progress).
Let $F=\mathbb{Q}\left(\zeta_{3}\right), \mathfrak{p}=\left(7,2+\zeta_{3}\right), \mathfrak{q}=\left(31,25+\zeta_{3}\right)$.
Let A be the quaternion algebra ramified exactly at $\mathfrak{p}, \mathfrak{q}$.
Let \mathcal{O} be a maximal order in A, and $\Gamma=\mathcal{O}^{\times} / \mathbb{Z}_{F}^{\times}$.
We have

$$
H_{1}(\Gamma, \mathbb{C})=0, \text { and } H_{1}\left(\Gamma_{0}(\mathfrak{p q}), \mathbb{C}\right)=0 .
$$

Let $p=5$. Then

$$
H_{1}\left(\Gamma, \mathbb{F}_{p}\right)=\mathbb{F}_{p} C_{1}, \text { and } H_{1}\left(\Gamma_{0}(\mathfrak{p q}), \mathbb{F}_{p}\right)=\mathbb{F}_{p} C_{2}+\mathbb{F}_{p} c_{3} .
$$

Eigenvalues of Hecke operators

$N(\mathfrak{l})$	$\lambda_{\mathfrak{l}}\left(c_{1}\right)$	$\lambda_{\mathfrak{l}}\left(c_{2}\right)$	$\lambda_{\mathfrak{l}}\left(c_{3}\right)$
3	2	2	4
4	0	0	0
7	0	0	3
13	1	1	4
13	2	2	4
19	4	4	0
19	1	1	0
25	3	3	1
31	2	2	2
37	4	4	3
37	1	1	3
43	3	3	4
43	0	0	4

The end

Thank you!

