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The principal ideal problem

Let F be a number field with ring of integers ZF .

Problem

Given an ideal I in ZF , decide whether it is principal and find a

generator.

Applications:

Selmer group computations and descent

(Cremona–Fisher–O’Neil–Simon–Stoll 2011)

class field theory (Cohen–Diaz y Diaz–Olivier 2000)

norm and Thue equations (Tzanakis–de Weger 1989,

Bilu–Hanrot 1996)
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Buchmann’s algorithm

Hafner and McCurley 1989 (quadratic case), Buchmann 1990.

Precomputation:

Choose a set of primes in F that generates Cl(F ): the

factor base B.

Look for random smooth elements in ZF : the relations R.

Stop when 〈B〉/〈R〉 ∼= Cl(F ).
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Buchmann’s algorithm

Hafner and McCurley 1989 (quadratic case), Buchmann 1990.

Precomputation:

Choose a set of primes in F that generates Cl(F ): the

factor base B.

Look for random smooth elements in ZF : the relations R.

Stop when 〈B〉/〈R〉 ∼= Cl(F ).

Given a fractional ideal I:

Look for a random element x ∈ I−1 such that xI is smooth.

Do linear algebra.
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Smooth numbers

Theorem (Canfield–Erdös–Pomerance 1983)

Let ψ(x , y) = |{n ≤ x ,n is y-smooth}|. If we set

L(x) = exp(
√

ln x ln ln x),

then

ψ(x ,L(x)a) = x · L(x)−1/(2a)+o(1).
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The principal ideal problem in quaternion algebras

Let A be a quaternion algebra over a number field F .

Problem

Given a right ideal I in A, decide whether it is principal and find

a generator.

Applications:

CM points on Shimura curves (Voight 2006).

Hilbert modular forms (Dembélé–Donnelly 2008,

Greenberg–Voight 2011, Voight 2010).

More generally automorphic forms for GL2 over number

fields.
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Quaternion algebras

Quaternion algebra over F = central simple algebra A of

dimension 4.

Equivalently, A =
(

a,b
F

)

= F + Fi + Fj + Fij

where i2 = a, j2 = b and ij = −ji (a,b ∈ F×).

Example:
(

1,1
F

)

∼= M2(F ).
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Quaternion algebras

Quaternion algebra over F = central simple algebra A of

dimension 4.

Equivalently, A =
(

a,b
F

)

= F + Fi + Fj + Fij

where i2 = a, j2 = b and ij = −ji (a,b ∈ F×).

Example:
(

1,1
F

)

∼= M2(F ).

The reduced norm is

nrd(x + yi + zj + tij) = x2 − ay2 − bz2 + abt2.

Example: nrd = det.
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Orders and ideals

Order O ⊂ A = finitely generated ZF -submodule s.t. FO = A,

that is also a subring with unit.

Examples: ZF + ZF i + ZF j + ZF ij , M2(ZF ).

From now on, assume that O is a maximal order.
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Orders and ideals

Order O ⊂ A = finitely generated ZF -submodule s.t. FO = A,

that is also a subring with unit.

Examples: ZF + ZF i + ZF j + ZF ij , M2(ZF ).

From now on, assume that O is a maximal order.

Right ideals: I = xO (principal right ideal) and sums of such.

Multiplication of right ideals does not form a group.

nrd is not multiplicative on right ideals.
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Orders and ideals

Order O ⊂ A = finitely generated ZF -submodule s.t. FO = A,

that is also a subring with unit.

Examples: ZF + ZF i + ZF j + ZF ij , M2(ZF ).

From now on, assume that O is a maximal order.

Right ideals: I = xO (principal right ideal) and sums of such.

Multiplication of right ideals does not form a group.

nrd is not multiplicative on right ideals.

Two-sided ideals: abelian group generated by

P where P2 = pO: p ⊂ ZF is ramified in A.

P = pO otherwise: p ⊂ ZF is split in A.
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Definite case

Two natural cases:

1 A is definite if Tr(nrd) is positive definite.

Donnelly–Dembélé 2008: algorithm using lattice

enumeration.

Theorem (Kirschmer–Voight 2010)

The Dembélé–Donnelly algorithm runs in polynomial time in

the size of the input when the base field is fixed.
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Indefinite case

2 A is indefinite otherwise.

ClA(F ): ray class group with modulus the product of the

real places where nrd is positive definite.

Theorem (Eichler)

If A is indefinite and O a maximal order in A, then a right ideal I

is principal iff nrd(I) is trivial in ClA(F ).

Decision problem same problem over the base field.
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Indefinite case

2 A is indefinite otherwise.

ClA(F ): ray class group with modulus the product of the

real places where nrd is positive definite.

Theorem (Eichler)

If A is indefinite and O a maximal order in A, then a right ideal I

is principal iff nrd(I) is trivial in ClA(F ).

Decision problem same problem over the base field.

Problem

Given a principal right O-ideal I in A, find a generator.
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Indefinite case

Problem

Given a principal right O-ideal I in A, find a generator.

Kirschmer–Voight 2010: algorithm based on lattice

enumeration, complexity is unknown.
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Indefinite case

Problem

Given a principal right O-ideal I in A, find a generator.

Kirschmer–Voight 2010: algorithm based on lattice

enumeration, complexity is unknown.

Theorem (P. 2014)

There exists an explicit algorithm that, given a generator

of nrd(I), finds a generator of I in time

exp(O(log∆A) + ON(log log∆A)),

where N = dimQ A and ∆A is the discriminant of A/Q.
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Goal

The previous algorithm has proved complexity, but it is not

efficient in practice.

Goal

Describe an analogue of Buchmann’s algorithm for indefinite

quaternion algebras:

precomputed structure + principalization algorithm

factor base, heuristically subexponential complexity
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Trying to adapt Buchmann’s algorithm

1 smoothness: choose B a set of primes of ZF .

Integral right ideal is smooth if its reduced norm is.

2 linear algebra: no group structure!
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Trying to adapt Buchmann’s algorithm

1 smoothness: choose B a set of primes of ZF .

Integral right ideal is smooth if its reduced norm is.

2 linear algebra: no group structure!
but works on

the norm: given smooth I, can find x such that nrd(xI) = (1)
two-sided ideals
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Trying to adapt Buchmann’s algorithm

1 smoothness: choose B a set of primes of ZF .

Integral right ideal is smooth if its reduced norm is.

2 linear algebra: no group structure!
but works on

the norm: given smooth I, can find x such that nrd(xI) = (1)
two-sided ideals

Solution: from nrd(I) = (1), make I two-sided by working prime

by prime: multiply on the left by p-units.
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Local problem

Fv completion at a finite place v that is split in A: Av
∼= M2(Fv ).

Zv integers of Fv , residue field Fv .

Maximal order O = M2(Zv ).

Every right ideal I is principal, generator g ∈ GL2(Fv ).

I = gO two-sided ⇔ g ∈ F×

v GL2(Zv ).

 need to understand GL2(Fv )/F
×

v GL2(Zv ).
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Local problem

Fv completion at a finite place v that is split in A: Av
∼= M2(Fv ).

Zv integers of Fv , residue field Fv .

Maximal order O = M2(Zv ).

Every right ideal I is principal, generator g ∈ GL2(Fv ).

I = gO two-sided ⇔ g ∈ F×

v GL2(Zv ).

 need to understand GL2(Fv )/F
×

v GL2(Zv ).

Geometric interpretation: Bruhat–Tits tree

transitive action of GL2(Fv )

stabilizer of vertex F×

v GL2(Zv )

vertices at distance 1 ↔ P1(Fv )
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Example

A =
(

3,−1
Q

)

, O = Z+ Zi + Zj + Zω where ω = (1 + i + j + ij)/2,

I = xO + 19O where x = −3 − 4i + j ∈ A.
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Example

A =
(

3,−1
Q

)

, O = Z+ Zi + Zj + Zω where ω = (1 + i + j + ij)/2,

I = xO + 19O where x = −3 − 4i + j ∈ A.

Factor base B = {2,3,5,7,11,13,17}.

1 Cl(Q) = 1, so I is principal.

2 Find x = (7+ i − 9j − 3ω)/19 ∈ I−1 such that nrd(xI) = 7Z:

xI is smooth.

3 Linear algebra: c = −1 − 2i − j + ω, cxI/7 = J/7
where J = 49O + wO with w = −17 − 8i + j .

4 Local reduction at 7: h = (−9 − 5i − 7j − 3ω)/7.

Multiply out everything: 3 + 4i − 3j − 11ω has norm −19,

generator of the ideal I.
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Running time
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Jacquet-Langlands correspondence and cohomology

Let F be imaginary quadratic, p, q primes in ZF .

Let A be ramified at p, q and O ⊂ A a maximal order.

Let Γ0(pq) be the subgroup of PGL2(ZF ) of elements that are

upper triangular modulo pq.

Theorem (Jacquet–Langlands 1970)

There is an injection of Hecke-modules

H1(O×/Z×

F ,C) −→ H1(Γ0(pq),C)·
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Jacquet-Langlands correspondence and cohomology

Let F be imaginary quadratic, p, q primes in ZF .

Let A be ramified at p, q and O ⊂ A a maximal order.

Let Γ0(pq) be the subgroup of PGL2(ZF ) of elements that are

upper triangular modulo pq.

Theorem (Jacquet–Langlands 1970)

There is an injection of Hecke-modules

H1(O×/Z×

F ,C) −→ H1(Γ0(pq),C)·

What happens if we replace C with another ring, say Fp ?
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Modulo p cohomology of arithmetic groups

Theorem (Calegari–Venkatesh 2012)

H1(O×/Z×

F ,Z)tors ≈ H1(Γ0(pq),Z)tors .
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Modulo p cohomology of arithmetic groups

Theorem (Calegari–Venkatesh 2012)

H1(O×/Z×

F ,Z)tors ≈ H1(Γ0(pq),Z)tors .

Theorem (Scholze 2013)

For any system of eigenvalues in H1(Γ0(N),Fp), there is a

continuous semisimple representation Gal(F/F ) → GL2(Fp)
such that Frobenius and Hecke eigenvalues match up.
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A modulo p Jacquet-Langlands correspondence ?

Joint work with M. H. Şengün (in progress).

Let F = Q(ζ3), p = (7,2 + ζ3), q = (31,25 + ζ3).
Let A be the quaternion algebra ramified exactly at p, q.

Let O be a maximal order in A, and Γ = O×/Z×

F
.

Aurel Page The principal ideal problem in quaternion algebras



A modulo p Jacquet-Langlands correspondence ?

Joint work with M. H. Şengün (in progress).

Let F = Q(ζ3), p = (7,2 + ζ3), q = (31,25 + ζ3).
Let A be the quaternion algebra ramified exactly at p, q.

Let O be a maximal order in A, and Γ = O×/Z×

F
.

We have

H1(Γ,C) = 0, and H1(Γ0(pq),C) = 0.
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A modulo p Jacquet-Langlands correspondence ?

Joint work with M. H. Şengün (in progress).

Let F = Q(ζ3), p = (7,2 + ζ3), q = (31,25 + ζ3).
Let A be the quaternion algebra ramified exactly at p, q.

Let O be a maximal order in A, and Γ = O×/Z×

F
.

We have

H1(Γ,C) = 0, and H1(Γ0(pq),C) = 0.

Let p = 5. Then

H1(Γ,Fp) = Fpc1, and H1(Γ0(pq),Fp) = Fpc2 + Fpc3.
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Eigenvalues of Hecke operators

N(l) λl(c1) λl(c2) λl(c3)

3 2 2 4

4 0 0 0

7 0 0 3

13 1 1 4

13 2 2 4

19 4 4 0

19 1 1 0

25 3 3 1

31 2 2 2

37 4 4 3

37 1 1 3

43 3 3 4

43 0 0 4
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The end

Thank you!
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