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Abstract. Given a finite group G, a G-covering of closed Riemannian
manifolds, and a so-called G-relation, a construction of Sunada produces
a pair of manifolds M1 and M2 that are strongly isospectral. Such man-
ifolds have the same dimension and the same volume, and their rational
homology groups are isomorphic. Here, we investigate the relationship
between their integral homology. The Cheeger–Müller Theorem implies
that a certain product of orders of torsion homology and of regulators
for M1 agrees with that for M2. We exhibit a connection between the
torsion in the integral homology of M1 and M2 on the one hand, and the
G-module structure of integral homology of the covering manifold on the
other, by interpreting the quotients Regi(M1)/Regi(M2) representation
theoretically. Further, we prove that the p∞-torsion in the homology of
M1 is isomorphic to that of M2 for all primes p - #G. For p ≤ 71, we
give examples of pairs of strongly isospectral hyperbolic 3-manifolds for
which the p-torsion homology differs, and we conjecture such examples
to exist for all primes p.

1. Introduction

Two closed Riemannian manifolds M1 and M2 are said to be isospectral
if the Laplace–Beltrami operators acting on functions on M1 and on M2

have the same spectrum, equivalently if the spectral zeta functions ζ(M1, s)
and ζ(M2, s) are equal. The manifolds are said to be strongly isospectral if
the spectra of every natural self-adjoint elliptic differential operator on M1

and M2 agree. In particular, if M1 and M2 are strongly isospectral, then
the Laplace–de Rham operators acting on differential i-forms on the re-
spective manifold have the same spectrum, equivalently the zeta functions
ζi(M1, s) and ζi(M2, s) encoding those spectra are equal. Following Kac’s
famous question “Can one hear the shape of a drum?” [19], the following
broad questions have received a lot of attention [14, 15].

Question 1.1. Which isometry invariants of closed Riemannian manifolds
are isospectral invariants? Which ones are strongly isospectral invariants?

For example, two Riemannian manifolds that are strongly isospectral have
the same dimension, volume and Betti numbers.

By analogy with the number theoretic notion of so-called arithmetically
equivalent number fields, Sunada [35] proposed a general construction show-
ing that there exist Riemannian manifolds that are strongly isospectral,
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but are not even homeomorphic. Let us briefly recall Sunada’s construc-
tion. Let X → Y be a G-covering of closed manifolds, where G is a fi-
nite group. Let U1, U2 be two subgroups of G with the property that
there is an isomorphism C[G/U1] ∼= C[G/U2] of linear permutation rep-
resentations of G, or equivalently that for every conjugacy class c of G we
have #(c∩U1) = #(c∩U2). In this case we say that the formal linear com-
bination U1 − U2 is a G-relation. Sunada proves that then the intermediate
coverings X/U1 and X/U2 are strongly isospectral.

In this paper, we want to take the analogy with number fields further.
The Cheeger-Müller Theorem [11, 22, 23], proving a conjecture of Ray and
Singer [30], gives a special value formula for the spectral zeta functions of
a Riemannian manifold, somewhat analogous to the analytic class number
formula for the Dedekind zeta function of a number field [36]. It implies that
if M1 and M2 are strongly isospectral Riemannian manifolds, then

d∏
i=0

(
Regi(M1)

#Hi(M1,Z)tors

)(−1)i

=

d∏
i=0

(
Regi(M2)

#Hi(M2,Z)tors

)(−1)i

,(1.2)

where, for a Riemannian manifold M , Regi(M) is the covolume of the lat-
tice Hi(M,Z)/Hi(M,Z)tors in the vector space Hi(M,R) with respect to
a certain canonical inner product (see Notation 3.2 ii.). The study of tor-
sion homology and regulators of manifolds has attracted a lot of attention
recently, see for instance [4, 5, 8, 10].

In light of equation (1.2), a natural instance of Question 1.1 is whether,
for M1 and M2 as above, an integer i > 0, and a prime number p, we must
necessarily have

#Hi(M1,Z)[p∞] = #Hi(M2,Z)[p∞],(1.3)

where [p∞] denotes the p-primary torsion subgroup.
Here, we answer this and similar questions in the context of Sunada’s

construction. More broadly, we study homological properties of covering
manifolds in G-relations, analogous to an old and fruitful line of research
in number theory. For example, the following basic result is analogous to
results of [6] on class groups of number fields.

Proposition 1.4. Let X → Y be a G-covering of closed Riemannian man-
ifolds, let U1 − U2 be a G-relation, and let i > 0 be an integer. Then for all
primes p that do not divide #G, we have

Hi(X/U1,Z)[p∞] ∼= Hi(X/U2,Z)[p∞].

We actually prove a more general result, see Theorem 3.5.
In providing counter examples, we have concentrated on closed hyper-

bolic 3-manifolds, a class of manifolds that plays an important rôle in other
branches of geometry, as well as in number theory. The following is a result
in the opposite direction to that of Proposition 1.4.

Proposition 1.5. Let p ≤ 71 be a prime number. Then there exist strongly
isospectral closed hyperbolic 3-manifolds M1 and M2 such that

#H1(M1,Z)[p∞] 6= #H1(M2,Z)[p∞].
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Moreover, if 2 < p ≤ 71, then there exist 3-manifolds M1 and M2 as above
with

#H1(M1,Z)[p∞] = 1, and #H1(M2,Z)[p∞] = p.

Note that hyperbolic 3-manifolds have torsion-free homology in degrees 0,
2, and 3, so in the situation of Proposition 1.5, equation (1.3) is trivially
satisfied in those degrees.

It is already known that for every prime p, there exist strongly isospectral
closed Riemannian 4-manifolds M1 and M2 such that #H1(M1,Z)[p∞] 6=
#H1(M2,Z)[p∞]. This is shown in [35], using the following two results.
Firstly, every finite group can be realised as the fundamental group of a
closed smooth 4-manifold [33, p. 402]. Secondly, for every prime p, there ex-
ists a finite p-group G with a G-relation U1 − U2, where the abelianisations
of U1 and U2 have different orders [35, §1, Example 3].

At the other extreme, if M is a closed oriented 2-manifold, then H1(M,Z)
is torsion-free. Riemannian 3-manifolds present an in-between case. It fol-
lows from the Elliptisation Theorem, as proven by Perelman [26, 27, 28],
and from a theorem of Ikeda [18], that any two isospectral 3-manifolds with
finite fundamental groups are homeomorphic. In particular, Sunada’s con-
struction for 4-manifolds cannot possibly generalise to 3-manifolds. Instead,
we prove Proposition 1.5 by a judicious choice of G-relation U1−U2, a differ-
ent one for each prime p, and then by performing a computer search among
G-coverings of hyperbolic 3-manifolds and computing the resulting torsion
homology of the intermediate coverings corresponding to U1 and U2. Never-
theless, we believe that the evidence of Proposition 1.5 justifies the following
conjecture1.

Conjecture 1.6. For every prime number p, there exist strongly isospec-
tral closed hyperbolic 3-manifolds M1 and M2 such that #H1(M1,Z)[p∞] 6=
#H1(M2,Z)[p∞].

It follows from equation (1.2) that if M1 and M2 are strongly isospectral,

then
∏
i (Regi(M1)/Regi(M2))(−1)i can be expressed in terms of torsion ho-

mology of the two manifolds, and in particular is a rational number. More-
over, if M1 and M2 arise from Sunada’s construction, then it follows from
Proposition 1.4 that the numerator and denominator of this rational num-
ber are only divisible by prime divisors of #G. Like in the case of torsion, it
would be interesting to understand the quotient of regulators in each degree
separately. In this direction we have the following result, which we now state
for arbitrary G-relations (see Definition 2.3). Below, for a group U we write
Uab = U/[U,U ] where [U,U ] denotes the derived subgroup of U .

Theorem 1.7. Let X → Y be a G-covering of closed oriented Riemannian
d-manifolds, and let

∑
j njUj, nj ∈ Z be a G-relation. Then:

(1) for every integer i > 0, the product
∏
j Regi(X/Uj)

2nj is a rational
number that is a product of powers of prime divisors of #G;

(2) for every i ≥ 0, the class of
∏
j Regi(X/Uj)

2nj in Q×/(Q×)2 only

depends on the isomorphism class of the G-module Hi(X,Q);

1A few months after submitting this paper, we established Conjecture 1.6 in [2] using
techniques introduced in this paper, see in particular Proposition 1.8
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(3) if p is a prime number that does not divide #Uab
j for any j, then the

p-part of
∏
j Regd−1(X/Uj)

2nj =
∏
j Reg1(X/Uj)

−2nj only depends

on the isomorphism class of the G-module Hd−1(X,Z(p)).

The representation theoretic invariant that appears in parts (2) and (3)
of the theorem was first introduced by Dokchitser–Dokchitser in the context
of regulators of elliptic curves (see e.g. [13]), and is called the regulator
constant of the representation with respect to the given G-relation.

We actually relate the quotients of regulators to regulator constants in
greater generality, namely without the hypothesis on p in part (3) of Theo-
rem 1.7. But in general, there is an “error term”, which measures the failure
of G-descent for homology in the covering – see Theorem 3.11 for the precise
statement, but see also Remark 3.14.

Vignéras [37] introduced another well-known construction of isospectral
manifolds, of a more arithmetic flavour. In [10], Calegari and Venkatesh
study torsion homology in pairs of manifolds that are of a similar nature
to the examples of Vignéras, called “Jacquet–Langlands pairs”, that are
not isospectral but whose spectra are closely related. They raise, in [10,
Section 7.10], the question of giving algebraic interpretations to the quotients
of torsion homology and regulators separately, analogously to Theorem 1.7.
It would also be interesting to investigate the same type of questions in the
context of the Vignéras examples.

In Section 6, we give examples of how Theorem 1.7 allows one to deduce
concrete information about the Q[G]-module structure of H1(X,Q) from
the torsion homology of quotients of X. It also allows one to formulate a
possible representation theoretic line of attack on Conjecture 1.6, such as
the following result, which will be proved as Corollary 4.4.

Proposition 1.8. Let p be an odd prime, let G = GL2(Fp), and define the
subgroups

B =

(
F×p Fp
0 F×p

)
, U =

(
(F×p )2 Fp

0 F×p

)
of G. Suppose that there exists a G-covering X → Y of closed hyperbolic 3-
manifolds such that the difference of the Betti numbers b1(X/U)− b1(X/B)
is odd. Then Conjecture 1.6 holds for p.

To fully appreciate the representation theoretic nature of Proposition 1.8,
see the full statement of Corollary 4.4.

The structure of the paper is as follows. In Section 2 we recall the for-
malism of Burnside groups, representation groups, and G-relations, and the
definition of regulator constants. In Section 3 we investigate the behaviour
of homological invariants of Riemannian manifolds in G-relations, and prove
Proposition 1.4 and Theorem 1.7. In Section 4 we compute the regulator con-
stants of the rational representations of GL2(Fp) for odd primes p, and of
(Z/8Z)o (Z/8Z)×, with respect to certain G-relations. These computations
will allow us to deduce concrete information about the Q[G]-module struc-
ture of the rational homology of G-coverings from the torsion homology of
intermediate coverings. Together with Theorem 3.11, these calculations will
also imply Proposition 1.8. We prove Proposition 1.5 by a direct computer
search, and Section 5 is devoted to the methods and algorithms used to that
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end. In Section 6 we have collected some interesting examples, illustrating
the various phenomena that we investigate here.

All our Riemannian manifolds will be assumed to be finite-dimensional,
oriented, and closed. By an automorphism of a Riemannian manifold we
mean an orientation preserving diffeomorphism from the manifold to itself
that is a local isometry. By a hyperbolic 3-manifold, we mean a quotient
of the hyperbolic 3-space by a discrete subgroup of orientation preserving
isometries. If p is a prime number, we will write Z(p) for the localisation of Z
at p, i.e. the subring {ab : p - b} of Q. For a rational number x = pn ab , with
n ∈ Z and p - ab, the p-adic valuation of x is defined to be ordp(x) = n.
When M is a Z-module, we write Mtors for the torsion submodule of M
and M fr = M/Mtors for the torsion-free quotient of M .

Acknowledgements. We would like to thank Nicolas Bergeron, Nathan
Dunfield, Derek Holt, Emilio Lauret, and Karen Vogtmann for helpful dis-
cussions, and the anonymous referee for suggestions that improved the ex-
position.

2. G-relations and regulator constants

We recall some standard definitions, for which we refer to [12, Ch. 11].
By “module” we will always mean a finitely generated left module.

Definition 2.1. Let G be a finite group. The Burnside group of G is the
free abelian group on isomorphism classes of transitive G-sets.

The set of transitive G-sets is in bijection with the set of conjugacy classes
of subgroups of G via the map that assigns to the subgroup U the set
of cosets G/U . Using this identification, we will represent elements of the
Burnside group as formal sums

∑
j njUj , where nj ∈ Z and Uj ≤ G.

Definition 2.2. Let R be a domain. The representation group of G over R
is the free abelian group on isomorphism classes of R-free indecompos-
able R[G]-modules, where R[G] is the group ring of G over R.

Let G be a finite group and R be a domain. We write 1 for the free
R-module of rank 1 with trivial G-action. We have a natural group homo-
morphism ΨR[G] from the Burnside group of G to the representation group
of G over R, which sends a G-set X to the permutation module R[X] with
an R-basis indexed by the elements of X, and with the R-linear G-action
given by permutations of the basis.

Definition 2.3. Let R be a domain. An R[G]-relation is an element of the
kernel of ΨR[G]. A Q[G]-relation will be referred to simply as a G-relation.

Example 2.4. Let p be a prime, and let

G = 〈σ, τ : σp = τ2 = id, τστ = σ−1〉

be a dihedral group of order 2p. Then Θ = 1−2C2−Cp+2G is a G-relation.
Concretely, this means that there is an isomorphism of linear permutation
representations of G over Q,

Q[G/1]⊕Q[G/G]⊕2 ∼= Q[G/C2]⊕2 ⊕Q[G/Cp].
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Moreover, for every prime q 6= p, the relation Θ is in fact a Z(q)[G]-relation,
but it is not a Z(p)[G]-relation – see [1, Proof of Proposition 3.9].

Example 2.5. Let G be the affine linear group over Z/8Z, i.e. the group
of linear transformations Ta,b : x 7→ ax + b of Z/8Z, where a ∈ (Z/8Z)×

and b ∈ Z/8Z. Consider the subgroups U1 = 〈Ta,0 : a ∈ (Z/8Z)×〉 and
U2 = 〈T−1,0, T3,4〉. The group G is isomorphic to the semi-direct product
Z/8Z o (Z/8Z)×, and the subgroups U1 and U2 are both isomorphic to
C2×C2. Then U1−U2 is a Z(p)[G]-relation for every odd prime p, but is not
a Z(2)[G]-relation, as can be deduced from a direct character computation
and Lemma 2.7 below.

Example 2.6. Let p be an odd prime, and let G = GL2(Fp). Consider the
two subgroups

U1 =

(
F×p Fp
0 (F×p )2

)
, U2 =

(
(F×p )2 Fp

0 F×p

)
.

Then for every prime q, U1 − U2 is a Z(q)[G]-relation if and only if q 6= p.

Observe that U1 ∩ U2 contains the subgroup N = {( a 0
0 a ) : a ∈ (F×p )2},

which is central in G. Set Ḡ = G/N , and Ūj = Uj/N for j = 1 and 2. We
then get the Ḡ-relation Ū1 − Ū2. Moreover, the triple (Ḡ, Ū1, Ū1) minimises
the index (Γ: S1) among all triples (Γ, S1, S2), where Γ is a finite group, and
S1 − S2 is a Γ-relation that is not a Z(p)[Γ]-relation (see [34]).

Lemma 2.7. Let G be a finite group, let p be a prime number not divid-
ing #G, and let Θ be an element of the Burnside group of G. Then the
following are equivalent:

(1) Θ is a C[G]-relation;
(2) Θ is a Q[G]-relation;
(3) Θ is a Z(p)[G]-relation;
(4) Θ is an Fp[G]-relation.

Proof. The equivalence of (1) and (2) follows from the fact that if ρ1 and ρ2

are Q[G]-modules, then dimQ Hom(ρ1, ρ2) = dimC Hom(C ⊗Q ρ1,C ⊗Q ρ2)
(see [31, §2e]). The remaining equivalences are proven in [3, Chapter 5]. �

Notation 2.8. Let f be any function on the set of conjugacy classes of
subgroups of a finite group G with values in an abelian group A. Then f
extends to a unique group homomorphism from the Burnside group of G
to A, defined by f(

∑
j njUj) =

∏
j f(Uj)

nj , where Uj are subgroups of G
and nj ∈ Z.

Let S be a subring of R that is a PID. The main examples we are thinking
of are Z, the localisation Z(p) where p is a prime, and Q. Given an S[G]-
module A, let AS-tors denote the S[G]-submodule consisting of S-torsion
elements of A, and let AS-fr = A/AS-tors. Since S is a PID, for every S[G]-
module A, the quotient AS-fr is an S-free S[G]-module. Moreover, R⊗S A is
self-dual, i.e. it is isomorphic to the R[G]-module HomS(A,R). Thus there
exists an R-valued S-bilinear G-invariant non-degenerate pairing on AS-fr.
From now on, we will just say pairing on A when we mean an R-valued
S-bilinear G-invariant pairing on A that is non-degenerate on AS-fr.
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Definition 2.9. Let G be a finite group, let S a subring of R that is a PID,
let R be a subring of Q, and let A be an S[G]-module. Let 〈·, ·〉 be a pairing
on A, and let Θ =

∑
j njUj be an R[G]-relation. The regulator constant of A

with respect to Θ is defined as

CΘ(A) =
∏
j

det

(
1

#Uj
〈·, ·〉|(AUj )

S-fr
)nj

∈ R×/(S×)2,

where the j-th determinant is computed with respect to any S-basis on

(AUj )
S-fr

. The class in R×/(S×)2 of each determinant is independent of the
choice of basis.

Theorem 2.10. The value of CΘ(A) is independent of the pairing 〈·, ·〉 on A.

Proof. See [13, Theorem 2.17]. �

It follows from Theorem 2.10 that if S = Z, then CΘ(A) ∈ Q× is well-
defined. Indeed, (Z×)2 = {1}, and the pairing can always be chosen to take
values in Q. Similarly, if S = Z(p), then ordp(CΘ(A)) ∈ Z is well-defined,

while if S = Q, then CΘ(A) defines a class in Q×/(Q×)2.

Corollary 2.11. Let A1, A2 be S[G]-modules, and Θ a G-relation. Then
CΘ(A1 ⊕A2) = CΘ(A1)CΘ(A2).

Proof. We can choose the pairing on A2 ⊕ A2 so that the direct summands
are orthogonal to each other, making all the matrices block diagonal. �

Example 2.12. Let G be a finite group, and let Θ =
∑

j njUj be a G-

relation. Then CΘ(1) =
∏
j #U

−nj

j .

Lemma 2.13. Let G be a finite group and let Θ =
∑

j njUj be a G-relation.

Then we have
∑

j nj = 0.

Proof. By definition, the virtual representation
⊕

j C[G/Uj ]
⊕nj is zero. The

result follows by taking the inner product with the trivial character of G. �

Proposition 2.14. Let G be a finite group, and let Θ =
∑

j njUj be a G-

relation. Let A be a Q[G]-module that has no simple summand in common
with any Q[G/Uj ]. Then CΘ(A) = 1.

Proof. See [13, Lemma 2.26]. �

Let G be a finite group, and D a subgroup. The operation on G-sets of
restricting the action of G to D extends linearly to a restriction map on the
Burnside groups, and induces a restriction map on relations. With respect
to the bases of the Burnside groups given by transitive G-sets, respectively
transitive D-sets, the restriction map is given by Mackey’s formula:

ResGD U =
∑

x∈U\G/D

D ∩ x−1Ux.(2.15)

We have the following form of Frobenius reciprocity for regulator constants.

Proposition 2.16. Let G be a finite group, let D be a subgroup, let A be
an S[D]-module, and let Θ be a G-relation. Then we have

CΘ(IndGD A) = CResGD Θ(A).

Proof. See [13, Proposition 2.45]. �
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3. Torsion homology and regulators in relations

In this section, we investigate the quotients of torsion homology and of
regulators of Riemannian manifolds arising from G-relations. We begin by
recalling some basic definitions and fixing the notation. The reader is referred
to [32] for the details.

Definition 3.1. If V , W are two abelian groups equipped with R-valued
bilinear forms 〈·, ·〉V , respectively 〈·, ·〉W , a similitude from V to W with
factor2 λ ∈ R is a homomorphism f : V → W such that 〈f(v1), f(v2)〉W =
λ〈v1, v2〉V for all v1, v2 ∈ V . An isometry is a similitude with factor 1.

Notation 3.2. Let X be a d-dimensional Riemannian manifold, and let
i > 0 be an integer.

i. Harmonic forms. The Laplace–de Rham operator acts on the differen-
tial i-forms on X, and we let Hi(X) denote the space of differential
i-forms that lie in the kernel of that operator, the space of harmonic
i-forms. The Riemannian metric on X induces a canonical inner prod-
uct on Hi(X), which induces a canonical isomorphism between Hi(X)
and the R-linear dual Hi(X)∨ = Hom(Hi(X),R). Explicitly, the inner
product on Hi(X) is given by

(ω1, ω2)iX =

∫
X
ω1 ∧ ∗ω2,

where ω1, ω2 ∈ Hi(X), and where ∗ denotes the Hodge star operator
∗ : Hi(X)→ Hd−i(X) (see [32, §1.2.3]). We equip Hi(X)∨ with the in-
ner product induced by the one on Hi(X), i.e. the unique inner product
that makes the map ω 7→ (·, ω)iX an isometry.

ii. Regulators. We have a homomorphism

hiX : Hi(X,Z)→ Hi(X)∨

given by hiX(γ) = (ω 7→
∫
γ ω). It follows from the Hodge Theorem ([32,

Theorem 1.45]) and de Rham’s Theorem that kerhiX = Hi(X,Z)tors

and that the image of hiX spans Hi(X)∨ over R. The i-th regulator
Regi(X) of X is defined as the covolume of hiX(Hi(X,Z)) with respect
to the inner product on Hi(X)∨.

Let 〈·, ·〉iX : Hi(X,Z) ⊗Z Hi(X,Z) → R denote the pullback via hiX
of the pairing on Hi(X)∨, i.e. the unique pairing on Hi(X,Z) that
makes hiX an isometry.

iii. Poincaré duality. By Poincaré duality, the map

DX : Hd−i(X,Z)→ Hi(X,Z),

given by cap product with the fundamental class of X is an isomor-
phism. It follows that Regi(X) = Regd−i(X)−1.

iv. Actions of automorphism groups. Let G be a group of automorphisms
of X. Then G acts on the left by linear transformations on Hi(X,Z)
via pushforward, γ 7→ σ∗γ for σ ∈ G and γ ∈ Hi(X,Z). Also, G acts
linearly on the right on Hi(X) via pullback, ω 7→ σ∗ω for σ ∈ G and
ω ∈ Hi(X), which induces the dual action on the left on Hi(X)∨. It

2The similitude factor is sometimes defined to be the square root of our convention.
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follows from the adjointness of pullbacks and pushforwards that the
map hiX is a homomorphism of left G-modules. Moreover, recall that
our automorphisms are assumed to be orientation preserving, so the
Poincaré duality map DX is an isomorphism of G-modules.

Lemma 3.3. Let X be a Riemannian manifold. Then we have det〈·, ·〉iX =
Regi(X)2, where the left hand side is computed with respect to any Z-basis of

Hi(X,Z)fr. In particular, the pairing 〈·, ·〉iX is non-degenerate on Hi(X,Z)fr.

Proof. The claimed equality is the expression of the covolume of a lattice in
terms of the determinant of its Gram matrix. �

Remark 3.4. Explicitly, let ω1, . . . , ωr be an orthonormal basis of Hi(X),

and let (γj) be a Z-basis of Hi(X,Z)fr. Then we have

Regi(X) =

∣∣∣∣∣det

∫
γj

ωk

∣∣∣∣∣ ,
and for all γ, γ′ ∈ Hi(X,Z), we have 〈γ, γ′〉iX =

∑r
k=1(

∫
γ ωk ·

∫
γ′ ωk).

We now prove Proposition 1.4 as a consequence of the following result.

Theorem 3.5. Let X → Y be a finite G-covering of Riemannian manifolds,
and let Θ =

∑
j njUj −

∑
k n
′
kU
′
k be a Z(p)[G]-relation, where nj and n′k are

positive integers. Then for every integer i > 0, we have⊕
j

Hi(X/Uj ,Z)[p∞]nj ∼=
⊕
k

Hi(X/U
′
k,Z)[p∞]n

′
k .

In particular we have ordp(#Hi(X/Θ,Z)tors) = 0 (see Notation 2.8).

Proof. Let U be any subgroup of G. Then the p∞-torsion of Hi(X/U,Z) is
isomorphic to the torsion subgroup of Hi(X/U,Z) ⊗ Z(p)

∼= Hi(X/U,Z(p)).
By definition of homology with local coefficients (see [16, §3.H]), we have
Hi(X/U,Z(p)) ∼= Hi(X/G,Z(p)[G/U ]). Since homology with local coefficients
is additive in direct sums of modules, the result follows. �

Corollary 3.6. Let X → Y and G be as in Theorem 3.5, let p be a prime
number that does not divide #G, and let Θ be a G-relation. Then⊕

j

Hi(X/Uj ,Z)[p∞]nj ∼=
⊕
k

Hi(X/U
′
k,Z)[p∞]n

′
k .

Proof. This is a direct consequence of Theorem 3.5 and Lemma 2.7. �

The rest of the section is devoted to the behaviour of regulators in G-
relations. In particular, we will prove Theorem 1.7.

Lemma 3.7. Let X → Y be a finite G-covering of Riemannian manifolds
of dimension d, and let Θ =

∑
j njUj be a G-relation. Then

Regd(X/Θ)2 = Reg0(X/Θ)−2 = CΘ(1).

Proof. For all U ≤ G, we have Regd(X/U)2 = Reg0(X/U)−2 = 1
#U vol(X).

It follows that

Regd(X/Θ)2 = Reg0(X/Θ)−2 =

∏
j

1

#U
nj

j

 · vol(X)(
∑

j nj) = CΘ(1),
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where the last equality follows from Example 2.12 and Lemma 2.13. �

Lemma 3.8. Let f : X → Y be a finite G-covering of Riemannian mani-
folds, and let i > 0 be an integer. Then the following maps are similitudes
with factor #G:

(1) the pullback map f∗ : Hi(Y )→ Hi(X)G;
(2) its dual (f∗)∨ : (Hi(X)G)∨ → Hi(Y )∨;
(3) the pushforward map f∗ : Hi(X,Z)G → Hi(Y,Z);
(4) any map g : Hi(Y,Z)→ Hi(X,Z)G satisfying f∗g = #G · idHi(Y,Z).

Proof. (1) Let [X] and [Y ] denote the fundamental class on X, respectively
on Y . Then f∗[X] = #G · [Y ], so for all ω1, ω2 ∈ Hi(Y ), we have

(f∗ω1, f
∗ω2)iX =

∫
X
f∗ω1 ∧ f∗∗ω2 =

∫
X
f∗(ω1 ∧ ∗ω2)

= #G ·
∫
Y
ω1 ∧ ∗ω2 = #G · (ω1, ω2)iY .

(2) The assertion immediately follows from part (1), from the fact that f∗

is an isomorphism, and from the definition of the inner product on the
dual space, see Notation 3.2.

(3) By Notation 3.2 iv., the map hiX sends Hi(X,Z)G to (Hi(X)G)∨, and
it follows from the adjointness of pullbacks and pushforwards that the
diagram

Hi(X,Z)G

hiX
��

f∗
// Hi(Y,Z)

hiY
��

(Hi(X)G)∨
(f∗)∨

// Hi(Y )∨

is commutative. Note that (Hi(X)G)∨ is canonically isomorphic, as an
inner product space, to the G-coinvariants (Hi(X)∨)G, which in turn is
canonically isomorphic to (Hi(X)∨)G. This shows that hiX : Hi(X,Z)G →
(Hi(X)G)∨ is an isometry. By definition, hiY is also an isometry, and by
part (2), (f∗)∨ is a similitude with factor #G. It follows that f∗ is also
a similitude with factor #G.

(4) By part (3), the map f∗ is a similitude with factor #G, and the claim
immediately follows. �

Lemma 3.9. Let X → Y be a finite G-covering of Riemannian manifolds,
and let i > 0 be an integer. Then the composition

gi : Hi(Y,Z)
D−1

Y−→ Hd−i(Y,Z)
f∗−→ Hd−i(X,Z)G

DX−→ Hi(X,Z)G

satisfies f∗gi = #G · idHi(Y,Z).

Proof. The pushforward of the fundamental class of X is equal to #G times
the fundamental class of Y . It therefore follows from the naturality of the
cap product that #G ·DY = f∗DXf

∗, which proves the result. �

Lemma 3.10. Let X → Y be a finite G-covering of Riemannian manifolds,
and let i > 0 be an integer. Let g : Hi(Y,Z) → Hi(X,Z)G be any map
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satisfying f∗g = #G · idHi(Y,Z), and let

λi(X,G, g) =
(
Hi(X,Z)G : g(Hi(Y,Z)) +Hi(X,Z)Gtors

)
.

Then λi(X,G, g) is finite and is independent of g.

Proof. The quantity λi(X,G, g) is finite since g⊗Q : Hi(Y,Q)→ Hi(X,Q)G

is an isomorphism. If g′ is another map satisfying the conditions of the
lemma, then f∗(g−g′) = 0. It follows from this, and from the fact that f∗⊗Q
is an isomorphism, that Im(g − g′) ⊂ ker f∗ ⊂ Hi(X,Z)Gtors. Therefore

g(Hi(Y,Z)) +Hi(X,Z)Gtors = g′(Hi(Y,Z)) +Hi(X,Z)Gtors,

which proves the lemma. �

Given a finite G-covering X → Y and i as in Lemma 3.10, we define
λi(X,G) = λi(X,G, g) for any g satisfying the hypotheses of the lemma.

Theorem 3.11. Let X → Y be a G-covering of Riemannian manifolds,
let Θ =

∑
j njUj be a G-relation (see Definition 2.3), and let i > 0 be an

integer. Then we have

Regi(X/Θ)2 = CΘ(Hi(X,Z)) · λi(X,Θ)2.

Proof. By Lemma 3.3, the pairing 〈·, ·〉iX on Hi(X,Z) is non-degenerate on
the quotient modulo torsion. Moreover, by Lemma 3.8 (3) applied to f = σ
for each σ ∈ G, this pairing is G-invariant. For any Uj ≤ G, let g be any
map satisfying the conditions of Lemma 3.10 for the covering X → X/Uj .
Then we have

det

(
1

#Uj
〈·, ·〉iX | Hi(X,Z)Uj

fr
)

= det

(
1

#Uj
〈·, ·〉iX | g(Hi(X/Uj ,Z))fr

)
/λi(X,Uj)

2

= det
(
〈·, ·〉iX/Uj

| Hi(X/Uj ,Z)fr
)
/λi(X,Uj)

2

= Regi(X/Uj)
2/λi(X,Uj)

2,

where the second equality follows from Lemma 3.8(4), and the last one
from Lemma 3.3. This proves the theorem, by taking the product over j
corresponding to Θ. �

Corollary 3.12. Let X → Y be a G-covering of Riemannian manifolds,
let Θ =

∑
j njUj be a G-relation, and let i > 0 be an integer. Then we have

Regi(X/Θ)2 ≡ CΘ(Hi(X,Q)) (mod (Q×)2).

Let U be a group. The abelianisation of U is the quotient Uab = U/[U,U ],
where [U,U ] = 〈uvu−1v−1 : u, v ∈ U〉, i.e. the maximal abelian quotient of U .

Corollary 3.13. Let f : X → Y be a finite G-covering of Riemannian d-
manifolds, let Θ =

∑
j njUj be a G-relation, let p be a prime, and let i > 0

be an integer. Assume that one of the following holds:

(1) i = d − 1 and for each subgroup Uj ≤ G, the order of Uab
j is not

divisible by p;
(2) for each subgroup Uj ≤ G, the order of Uj is not divisible by p.
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Then ordp(Regi(X/Θ)2) = ordp(CΘ(Hi(X,Z))) = ordp(CΘ(Hi(X,Z(p)))).

In particular, for all i > 0 the rational number Regi(X/Θ)2 is a product
of the primes dividing the order of G.

Proof. Let U be any subgroup of G. Let gi = DXf
∗D−1

X/U be the map of

Lemma 3.9. In case (1), the 5-term exact sequence coming from the Cartan–
Leray spectral sequence in cohomology (see [9, Ch. VII, §7]) is

0→ H1(U,Z)→ H1(X/U,Z)
f∗→ H1(X,Z)U → H2(U,Z).

By the universal coefficient theorem, we have H2(U,Z) ∼= H1(U,Z) = Uab,
which has order coprime to p by assumption. In case (2), the group U has
cohomological dimension 0 over Z(p), since p does not divide its order, so by
the Cartan–Leray spectral sequence we have an isomorphism

Hd−i(X/U,Z(p))
f∗→ Hd−i(X,Z(p))

U .

In both cases, it follows that f∗ : Hd−i(X/U,Z)→ Hd−i(X,Z)U has coker-
nel of order coprime to p, and since the Poincaré duality maps DX and DX/U

are isomorphisms, the cokernel of gi : Hi(X/U,Z)→ Hi(X,Z)U is also of or-
der coprime to p. The first equality therefore follows from Theorem 3.11.
For the second equality, note that firstly, Hi(X,Z(p)) ∼= Hi(X,Z) ⊗Z Z(p),
and secondly that for an arbitrary Z[G]-module A, we have ordp(CΘ(A)) =
ordp(CΘ(A⊗Z Z(p))). �

Remark 3.14. We do not know whether the regulator quotient is a purely
representation theoretic invariant in full generality without the restrictive
assumptions of Corollary 3.13, that is whether it only depends on the Z[G]-
module structure of Hi(X,Z). This seems to us to be an interesting question.

4. Some regulator constant calculations

In this section, we compute the regulator constants of rational represen-
tations with respect to the relations of Examples 2.5 and 2.6.

First, let G = GL2(Fp). Denote by B the subgroup of upper-triangular
matrices in G, let w = ( 0 1

1 0 ), and let U1, respectively U2 be the subgroup
of matrices in B with square lower right, respectively upper left entry.
Then Θ = U1 − U2 is the G-relation of Example 2.6. In this section, we
compute the regulator constants of the rational irreducible representations
of G with respect to Θ.

We begin by recalling the classification of complex representations of G.
For any 1-dimensional representations µ1, µ2 of F×p , let rµ1,µ2 be the 1-

dimensional representation of B defined by rµ1,µ2 :
(
a b
0 d

)
7→ µ1(a)µ2(d).

Proposition 4.1. The following is a classification of the complex irreducible
representations of G:

• 1-dimensional representations: they are all of the form µ◦det, where µ
is an irreducible character of F×p .
• Irreducible principal series, of dimension p + 1: they are the induc-

tions ρ(µ1, µ2) = IndGB rµ1,µ2, where µ1 6= µ2; we have ρ(µ1, µ2) ∼=
ρ(µ′1, µ

′
2) if and only if {µ1, µ2} = {µ′1, µ′2}.



TORSION HOMOLOGY AND REGULATORS OF ISOSPECTRAL MANIFOLDS 13

• Special representations, of dimension p: they are the p-dimensional
summands σ(µ) of IndGB rµ,µ

∼= σ(µ)⊕ (µ ◦ det).
• Cuspidal representations, of dimension p−1: they are the irreducible

representations of G that are not summands of any IndGB rµ1,µ2.

Proof. See [29]. �

Let St denote the complex irreducible representation σ(1), the Steinberg
representation of G, and let I denote the complex irreducible representa-
tion ρ(χ,1), where χ is the unique character of F×p of order 2. Note that
both St and I are realisable over Q, so in fact give rise to irreducible Q[G]-
representations.

Proposition 4.2. Let ρ be an irreducible Q[G]-representation. Then
CΘ(ρ) ≡ p mod (Q×)2 if ρ ∼= I, and CΘ(ρ) ≡ 1 mod (Q×)2 otherwise.

Proof. We have C[G/U1] ∼= C[G/U2] ∼= 1 ⊕ St⊕I. So if ρ is an irreducible
Q[G]-representation that is not isomorphic to any of these three direct sum-
mands, then CΘ(ρ) = 1 by Proposition 2.14. Moreover, we have CΘ(1) =
#U2/#U1 = 1 by Example 2.12.

To compute CΘ(St), observe that by Corollary 2.11 and by Proposition
2.16, we have

CΘ(St) = CΘ(St)CΘ(1) = CΘ(IndGB 1) = CResGB Θ(1).(4.3)

Let Tj = Uj ∩ T for j = 1, 2. An elementary calculation (or the Bruhat
decomposition) shows that for j = 1 and 2, Uj\G/B has cardinality 2, with
double coset representatives 1 and w. Moreover, we have w−1U1w∩B = T2,
and w−1U2w ∩ B = T1. It follows from equation (2.15) that ResGB Θ =
U1 + T2−U2− T1. We conclude from equation (4.3) and Example 2.12 that

CΘ(St) =
#U2 ·#T1

#U1 ·#T2
= 1 mod (Q×)2.

Similarly, we have

CΘ(I) = CΘ(IndGB rχ,1) = CResGB Θ(rχ,1).

Since rχ,1 is 1-dimensional, the contribution from each subgroup U in ResGB Θ
is 1 if (rχ,1)U is zero, and is (#U)−1 otherwise. It follows that CΘ(I) ≡
#U2/#T2 ≡ p mod (Q×)2. �

Corollary 4.4. Let p be an odd prime, let G, B, U1, and U2 be as above,
and let X → Y be a G-covering of closed hyperbolic 3-manifolds. Then the
following are congruent modulo 2:

(1) the p-adic valuation ordp

(
#H1(X/U1,Z)tors
#H1(X/U2,Z)tors

)
;

(2) the multiplicity in H1(X,C) of the irreducible C[G]-representation I,
as defined after Proposition 4.1;

(3) the difference of the Betti numbers b1(X/U1)− b1(X/B).

Proof. First, we show the equality between (1) and (2). For closed hyperbolic
3-manifolds, all homology groups with integral coefficients except possibly
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the first are torsion-free. It therefore follows from equation (1.2), Remark 3.4,
Lemma 3.7, and Example 2.12, that

#H1(X/U1,Z)tors

#H1(X/U2,Z)tors
=

Reg0(X/U2)2 Reg1(X/U1)2

Reg0(X/U1)2 Reg1(X/U2)2
=

Reg1(X/U1)2

Reg1(X/U2)2
.

By Corollary 3.12, the p-adic valuation of the right hand side is congruent
to ordp CΘ(H1(X,Z)) ≡ ordp CΘ(H1(X,Q)) (mod 2), where Θ = U1 − U2.
Recall that the right hand side of that last congruence is only well-defined
modulo 2. The equality of (1) and (2) therefore follows from Corollary 2.11
and Proposition 4.2.

We now prove the equality between (2) and (3). Below, we will identify
representations of G with their characters. Let χ be an arbitrary rational
representation of G. We have I = IndGU1

1− IndGB 1, so the multiplicity of I
in χ is equal to

〈I, χ〉G = 〈IndGU1
1− IndGB 1, χ〉G = 〈1,ResU1 χ〉U1 − 〈1,ResB χ〉B

= dimQ χ
U1 − dimQ χ

B,

where 〈·, ·〉U denotes inner products of characters of U . The equality between
(2) and (3) follows from this calculation, with χ = H1(X,Q). �

As in Example 2.6, let N = {( a 0
0 a ) : a ∈ (F×p )2}, let Ḡ = G/N , Ūj = Uj/N

for j = 1, 2, and let Θ̄ = Ū1− Ū2, which is a Ḡ-relation. There is a canonical
bijection between irreducible Q[G]-representations with kernel containing N
and irreducible Q[Ḡ]-representations, given by projecting to the quotient.
For any irreducible Q[G]-representation ρ with kernel containing N , let ρ̄
denote its image under this bijection.

Corollary 4.5. Let ρ̄ be an irreducible Q[Ḡ]-representation. Then
CΘ̄(ρ̄) ≡ p mod (Q×)2 if ρ̄ ∼= Ī, and CΘ̄(ρ̄) ≡ 1 mod (Q×)2 otherwise.

Proof. By [13, Proposition 2.45], we have CΘ̄(ρ̄) = CΘ(ρ). The result there-
fore immediately follows from Proposition 4.2. �

Now let G be the group of affine linear transformations Ta,b : x 7→ ax+ b
of Z/8Z, where a ∈ (Z/8Z)× and b ∈ Z/8Z, let U1 = 〈Ta,0 : a ∈ (Z/8Z)×〉
and U2 = 〈T−1,0, T3,4〉, as in Example 2.5. Let χ be an irreducible faithful

representation of N = 〈T1,b : b ∈ Z/8Z〉. Then I = IndGN χ is a 4-dimensional
irreducible C[G]-representation, and is realisable over Q, so it gives rise to
an irreducible Q[G]-representation. Its isomorphism class does not depend
on the choice of the representation χ. All the other complex irreducible
representations of G are also realisable over Q, and are 1- and 2-dimensional.
An explicit calculation, which we omit, gives the regulator constants of all
the irreducible Q[G]-representations with respect to Θ = U1−U2 as follows.

Proposition 4.6. Let ρ be an irreducible Q[G]-representation. Then
CΘ(ρ) ≡ 2 mod (Q×)2 if ρ ∼= I, and CΘ(ρ) ≡ 1 mod (Q×)2 otherwise.

5. Computations

In this section, we present the computational methods used to prove
Proposition 1.5. The computations were run on the Warwick number theory
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cluster. We have made the resulting data available at https://arxiv.org/
abs/1601.06821.

For each prime p, we look for explicit pairs of manifolds M1 and M2 as in
Proposition 1.5. The pairs we construct all arise as intermediate coverings
of G-coverings X → Y of closed hyperbolic 3-manifolds, for suitable finite
groups G. We compute many such coverings, and explicitly compute the
homology groups of suitable intermediate covers. There are several choices
involved, which we now explain in detail.

5.1. The choice of Y . We only compute with arithmetic hyperbolic 3-
manifolds. We will recall the definitions, assuming basic facts and terminol-
ogy on quaternion algebras; a standard reference is [21].

Let H3 denote the hyperbolic 3-space. We identify the group of orientation
preserving isometries of H3 with PSL2(C) via the Poincaré extension ([21,
p. 48]). For any order O in a quaternion algebra, let O1 denote the group
of elements in O of reduced norm 1. A number field is called almost totally
real (ATR) if it has exactly one complex place. A quaternion algebra over
an ATR number field F is called Kleinian if it ramifies at every real place
of F . For any ring R, letM2(R) denote the algebra of 2×2 matrices over R.

Definition 5.1. An arithmetic hyperbolic 3-manifold is a manifold commen-
surable with a quotient H3/Γ(O), where Γ(O) arises as follows. Let B/F be a
Kleinian quaternion algebra over an ATR number field, and let ι : B⊗F C ∼=
M2(C) be an isomorphism induced by a complex embedding of F . Then
define Γ(O) = ι(O1)/{±1} ⊂ PSL2(C).

An arithmetic hyperbolic 3-manifold has finite volume and is compact if
and only if B is a division algebra – see [21, Theorem 8.2.2].

Let B/F be a quaternion algebra over a number field, let ZF denote the
ring of integers in F , and let Omax be a maximal order in B. Let N be an
ideal of ZF coprime to the discriminant of B, so that Omax ⊗ZF

ZF /N ∼=
M2(ZF /N), and let O0(N) ⊂ Omax be the preimage of the subring of upper-
triangular matrices under such an isomorphism. Then O0(N) is an order
in B.

Lemma 5.2. Let F be a number field, and let B be a quaternion algebra
over F that is a division algebra. Let S be the set of primes q such that F (ζ2q)
is isomorphic to a quadratic extension of F contained in B, where ζ2q de-
notes a primitive (2q)-th root of unity in an algebraic closure of F . For each
q ∈ S, and for each primitive (2q)-th root of unity ζ, choose a prime ideal pζ
of ZF such that the minimal polynomial of ζ is irreducible modulo pζ . Let P
be the set of such pζ . Then:

(1) the set S is finite;
(2) for every ideal N of ZF divisible by all p ∈ P, the group O0(N)1/{±1}

is torsion-free.

Proof. If q ∈ S is odd, then q− 1 = [Q(ζ2q) : Q] 6 [F (ζ2q) : Q] = 2[F : Q], so
that q 6 2[F : Q] + 1. This proves (1).

To prove (2), assume for a contradiction that there exists an element x ∈
O0(N)1 such that x has prime order q modulo {±1}. Replacing x by −x
if necessary, we may assume that x has order 2q: if q is odd then either x

https://arxiv.org/abs/1601.06821
https://arxiv.org/abs/1601.06821
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or −x has order 2q; if q = 2, then the only elements of order 2 are ±1,
since B is a division algebra, so that x has order 4. In particular, F (x)
is a subfield of B isomorphic to F (ζ2q). We claim that this is a quadratic
extension of F , i.e. that q belongs to S: if F (ζ2q) is not quadratic, then x ∈ F ,
but x2 = nrd(x) = 1, and x does not have order 2q.

Let P be the minimal polynomial of x, and let p ∈ P be the corresponding
prime ideal. By definition, the image of x in M2(ZF /N) upper-triangular.
Since p | N, this implies that P is not irreducible modulo p: a contradiction.

�

In our search, we extract ATR number fields of degree up to 6 and dis-
criminants with absolute value up to 106 from the PARI number fields data-
base [25, 20]. Then, using the algorithms from [38] implemented in the com-
puter algebra system Magma [7], we compute 30,000 Kleinian quaternion
algebras B whose maximal orders Omax ⊂ B are such that Γ(Omax) has
covolume at most 40. Using the sufficient condition of Lemma 5.2, we find
many orders O0(N) such that Γ = Γ(O0(N)) is torsion-free, and there-
fore acts freely on H3, and hence we produce many arithmetic hyperbolic
3-manifolds Y = H3/Γ.

Remark 5.3. The usual way of proving that arithmetic groups have a
torsion-free subgroup of finite index is to consider principal congruence sub-
groups, which have large index. Lemma 5.2 allows us to use groups of the
form Γ(O0(N)), which have smaller covolume, reducing the cost of the com-
putation.

5.2. The choice of the covering. Theorem 3.5 implies that in order to
produce examples as in Proposition 1.5 using Sunada’s method, we need
to look for G-coverings X → Y , where G is a finite group that admits a
G-relation Θ = U1 − U2 that is not a Z(p)[G]-relation. For p = 2, we take G
and Θ as in Example 2.5, and for p odd, we use the relation of Example 2.6.

In order to find many such G-coverings of every manifold Y = H3/Γ ob-
tained in Section 5.1, we first compute a finite presentation of Γ, using the
algorithms of [24]. Since Γ ∼= π1(Y ), G-coverings of Y correspond to sur-
jective homomorphisms Γ→ G. Using the presentation of Γ, we enumerate
surjective homomorphisms Γ → G up to conjugacy, using the methods de-
scribed in [17, §9.1]. The complexity of the enumeration depends heavily
on #G, so we use the following improvement.

Let Fn be the free group on n generators. Recall that for any group Z
there is a canonical bijection Hom(Fn, Z) ∼= Zn. Moreover, if Z is an abelian
group, then this bijection is an isomorphism of abelian groups. We will tacitly
use this identification in the next result.

Proposition 5.4. Let Γ be a group with a finite presentation

1→ R→ Fn → Γ→ 1,

where R is the normal closure of the subgroup of Fn generated by r ele-
ments w1, . . . , wr. Let G be a group, let Z be a subgroup of the center of G,
and set Ḡ = G/Z. Let h̄ : Γ→ Ḡ be a homomorphism, and let h̃ : Fn → G be

an arbitrary lift of h̄ : Fn → Ḡ. Let x = (h̃(wi)
−1)ri=1 ∈ Gr, and let φ : Zn →

Zr denote the linear map induced by evaluation on the (wi)
r
i=1. Then:
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(1) we have x ∈ Zr; and

(2) the lifts h : Γ→ G of h̄ are exactly the homomorphisms h̃ ·f , where f
ranges over φ−1(x).

Proof. (1) Since h̃ is a lift of h̄ : Γ→ Ḡ, we have h̃(R) ⊂ Z, and x ∈ Zr.
(2) Since Z is central, every lift of h̄ : Fn → Ḡ is of the form h̃ ·f , where f ∈

Hom(Fn, Z) = Zn. Such a lift descends to a homomorphism Γ → G if
and only if it vanishes on the generators of R. For every such genera-
tor w, we have (h̃ · f)(w) = 1 if and only if f(w) = h̃(w)−1, so that the
homomorphism descends if and only if φ(f) = x. �

Applying this proposition to G = GL2(Fp), Ḡ = PGL2(Fp) and Z = F×p ,
we reduce the enumeration of Hom(Γ, G) to:

• enumerating Hom(Γ, Ḡ),
• computing inverse images under linear maps (Z/NZ)n → (Z/NZ)r

with N = p− 1, which can be done efficiently by linear algebra.

Since the enumeration algorithm is expensive, another simple improvement
was useful: if there exists a surjection Γ → G, then Γab surjects onto Gab.
Checking this condition before the enumeration is fast and rules out many
groups.

5.3. Homology computation. Given a surjective homomorphism Γ→ G,
we can compute the homology of the isospectral manifolds as follows. For
every U ≤ G, we have

H1(X/U,Z) ∼= H1(Y,Z[G/U ]) ∼= H1(Γ,Z[G/U ]),

and we can compute the first homology group by linear algebra from a
presentation of the group Γ. Recall that we want to find examples of G-
coverings X → Y such that #H1(X/Θ,Z)[p∞] 6= 1.

Since linear algebra over Z is costly, we used the following strategy: we
first compute H1(X/Uj ,Z) ⊗Z Fp ∼= H1(X/Uj ,Fp) for j = 1, 2, which only
uses linear algebra over Fp, and we only compute the homology over Z
if dimFp H1(X/Θ,Fp) 6= 0. That condition by itself already implies that
H1(X/U1,Z)[p∞] 6∼= H1(X/U2,Z)[p∞]. In practice, when p ≥ 5, this condi-
tion often yields examples in which H1(X/Uj ,Z)[p∞] is actually trivial for
one j, and isomorphic to Z/pZ for the other one.

By computing explicit examples, we obtain Proposition 1.5, which we
restate here for convenience.

Proposition 5.5. Let p ≤ 71 be a prime number. Then there exist strongly
isospectral closed hyperbolic 3-manifolds M1 and M2 such that

#H1(M1,Z)[p∞] 6= #H1(M2,Z)[p∞].

Moreover, if 2 < p ≤ 71, then there exist 3-manifolds M1 and M2 as above
with

#H1(M1,Z)[p∞] = 1, and #H1(M2,Z)[p∞] = p.
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6. Examples

In this section, we give several numerical examples, illustrating some fea-
tures of the connection between the torsion on the homology of isospectral
manifolds, and the G-module structure of the integral homology of their
covering manifold.

Example 6.1. Let G = GL2(F37), let U1, U2 be as in Example 2.6. Using
the notation of Section 5.1, let F be the ATR quartic number field generated
by a root t of x4 − 2x− 1. Consider the Kleinian quaternion algebra

B = 〈1, i, j, k | i2 = j2 = k2 = ijk = −1〉F
over F . Let N be the principal ideal of ZF generated by t2 − t − 2, which
has norm 22, and let Γ1 = Γ(O0(N)), which is well-defined up to conjugacy
in PSL2(C). A fundamental domain for Γ1 acting on the ball model of H3 is
displayed in Figure 1. The group Γ1 has a presentation by generators and
relations as follows:

Γ1
∼= 〈a, b, c, d | b−1d−1cd2cd−1cb−1c−1 = 1,

abc−1b−1c−1aba−2b = 1,

d−2cb−1a−2ba−2d−2c−1 = 1,

c−1aba−2d−1cd2a3bc−2d = 1,

b−1a−1b−1d−1cd2aba−2d−3cb−1 = 1〉.
Let Y = H3/Γ1. There is a surjective group homomorphism Γ1 → GL2(F37),
given by

a 7→
(

11 1
28 26

)
, b 7→

(
5 7
30 32

)
, c 7→

(
8 20
35 29

)
, d 7→

(
20 6
26 17

)
,

which gives rise to aG-coveringX → Y of arithmetic hyperbolic 3-manifolds.
A direct computation, as described in Section 5.3, yields that

H1(X/U1,Z) ∼= Z14 × C2
2 × C12

4 × C8 × C3 × C2
9 × C11 × C1151 × C11317,

H1(X/U2,Z) ∼= H1(X/U1,Z)× C37,

where Cn denotes the cyclic group of order n. Here, we have vol(X/U1) =
vol(X/U2) ≈ 1106.067.

Figure 1. A fundamental domain of the Kleinian group Γ1
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It follows from Corollary 4.4, that the multiplicity of I = ρ(χ,1) (see Sec-
tion 4 for the definition) in the G-module H1(X,Q) is odd. In this particular
case, we computed directly that this multiplicity is 3.

Example 6.2. The following example shows that the p-torsion subgroups of
two isospectral manifolds may have the same order, but be non-isomorphic.

Let G = GL2(F19). Let F be the ATR number field generated by a root t
of x4 − x3 − 3x− 1, and let B be the Kleinian quaternion algebra

B = 〈1, i, j, k | i2 = j2 = k2 = ijk = −1〉F .

Let N be the principal ideal of ZF generated by −t3 +t2 +2t+2, of norm 44,
and let Γ2 = Γ(O0(N)), as in Section 5.1. As in the previous example, Γ2 is
well-defined up to conjugacy in PSL2(C). A fundamental domain for Γ2 is
displayed in Figure 2. The hyperbolic manifold Y = H3/Γ2 has a G-covering
X → Y (which we do not give explicitly this time), such that

H1(X/U1,Z)[19∞] ∼= C19 × C19, H1(X/U2,Z)[19∞] ∼= C192 .

Here, vol(X/U1) = vol(X/U2) ≈ 985.386.

Figure 2. A fundamental domain of the Kleinian group Γ2

Corollary 4.4 implies that the multiplicity of I in the G-module H1(X,Q)
is even, and in fact, in this example it is 0. Moreover, unlike in the previous
example, the non-isomorphic torsion cannot be detected by the regulator
constant of the G-module H1(X,Z).

Example 6.3. In the final example, we exhibit isospectral manifolds whose
size of torsion homology differs by a square. Such an example has interesting
representation theoretic features, as we will explain below.

Let G = GL2(F5), and let Θ = U1 − U2 be as in Example 2.6. Let F be
the ATR number field generated by a root t of x4 − x3 − 2x− 1, and let B
be the Kleinian quaternion algebra

B = 〈1, i, j, k | i2 = j2 = k2 = ijk = −1〉F .

Let N be the principal ideal of ZF generated by −t2 + 2, of norm 23,
and let Γ3 = Γ(O0(N)), as in Section 5.1. As in the previous examples, Γ3

is well-defined up to conjugacy in PSL2(C). A fundamental domain for Γ3
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Figure 3. A fundamental domain of the Kleinian group Γ3

is displayed in Figure 3. The hyperbolic manifold Y = H3/Γ3 has a G-
covering X → Y such that

H1(X/U1,Z)[5∞] ∼= C3
5 , H1(X/U2,Z)[5∞] ∼= C5.

Here, vol(X/U1) = vol(X/U2) ≈ 223.790.
Since the quotient #H1(X/U1,Z)tors/#H2(X/U1,Z)tors is a square, Corol-

lary 3.12 together with equation (1.2) imply that the regulator constants
CΘ(H2(X,Q)) ≡ CΘ(H1(X,Q)) are trivial modulo squares, which we confirm
by computing that the multiplicity of I in H1(X,Q) is 2. In particular, the
non-triviality of #H1(X/Θ)tors cannot be detected in the rational homology
of X. However, by Corollary 3.13, the non-triviality of #H1(X/Θ,Z)tors is
detected in the G-module structure of the integral homology via the equality
ord5(CΘ(H2(X,Z))) = 2.

We can obtain similar examples of interplay between the homological
torsion and representation theory for p = 2 using Proposition 4.6.
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