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Abstract

We present an algorithm solving the following problem: given two

genus 2 curves over a field k with isogenous Jacobians, compute such an

isogeny explicitly. This isogeny can be either an ℓ-isogeny or, in the real

multiplication case, an isogeny with cyclic kernel; we require that k have

large enough characteristic and that the curves be sufficiently generic.

Our algorithm uses modular equations for these isogeny types, and makes

essential use of an explicit Kodaira–Spencer isomorphism in genus 2.

1 Introduction

We are interested in the following version of the isogeny problem: given two
isogenous abelian varieties, compute an isogeny between them explicitly.

Let us start with some motivation. The isogeny problem in the case of ellip-
tic curves was solved by Elkies [Elk98]. Given two ℓ-isogenous elliptic curves,
where ℓ is a prime, his algorithm uses modular polynomials of level ℓ to compute
rational fractions defining this isogeny. Elkies’s algorithm is used to speed up
Schoof’s point counting algorithm for elliptic curves over finite fields [Sch85]:
replacing kernels of endomorphisms by kernels of isogenies yields smaller sub-
groups of the elliptic curve, and therefore smaller polynomial computations,
while giving the same amount of information on the Frobenius. This improve-
ment is at the heart of the well-known SEA point counting algorithm [Sch95].

The situation for point counting in genus 2 is different, as the existing com-
plexity estimates and records only use kernels of endomorphisms [GKS11; GS12].
One can therefore ask whether the idea of using isogenies generalizes. Modu-
lar polynomials have now been computed in genus 2: the smallest ones are
known both for ℓ-isogenies [Mil15] and, in the real multiplication case, cyclic β-
isogenies [MR17; Mar18]. This opened the way for Atkin-style methods in point
counting [BGL+16], but isogeny computations remain the missing ingredient to
generalize Elkies’s method in genus 2. The object of this paper is precisely to
fill this gap.
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We now present our main result in the case of ℓ-isogenies. For any field k, we
denote by A2(k) the coarse moduli space of principally polarized abelian surfaces
over k, and we denote by j = (j1, j2, j3) the Igusa invariants as introduced by
Streng (see §2.2). We also denote by Ψℓ,i for 1 ≤ i ≤ 3 the modular equations of
level ℓ in Igusa invariants (see §2.6). Recall that if C is a hyperelliptic curve of
genus 2 over a field k, then its Jacobian Jac(C) is a principally polarized abelian
surface which is birational to the symmetric square C2,sym; the points of C2,sym

over k are the Galois-invariant unordered pairs {P,Q} where P,Q ∈ C(k).

Theorem 1.1. Let ℓ be a prime, and let k be a field such that char k = 0 or
chark > 8ℓ+7. Let U ⊂ A2(k) be the open set consisting of abelian surfaces A
such that Autk̄(A) ≃ {±1} and j3(A) 6= 0. Assume that there is an algorithm
to evaluate derivatives of modular equations of level ℓ at a given point of U ×U
over k using Ceval(ℓ) operations in k.

Let A,A′ ∈ U , and let j(A), j(A′) be their Igusa invariants. Assume that A
and A′ are ℓ-isogenous, and that the subvariety of A3×A3 cut out by the modular
equations Ψℓ,i for 1 ≤ i ≤ 3 is normal at (j(A), j(A′)). Then, given j(A)
and j(A′), we can compute

1. a field extension k′/k of degree dividing 8,

2. hyperelliptic curve equations C, C′ over k′ whose Jacobians are isomorphic
to A,A′ respectively,

3. a point P ∈ C(k′),

4. rational fractions s, p, q, r ∈ k′(u, v),

such that (s, p, q, r) equals the compositum

C Jac(C) Jac(C′) C′2,sym A4Q7→[Q−P ] ϕ ∼ m

where ϕ is an ℓ-isogeny and m is the rational map given by

{(x1, y1), (x2, y2)} 7→
(
x1 + x2, x1x2, y1y2,

y2 − y1
x2 − x1

)
.

The cost of the algorithm is O
(
Ceval(ℓ)

)
+ Õ(ℓ) elementary operations and O(1)

square roots in k′.

In other words, given sufficiently generic genus 2 curves C, C′ whose Jaco-
bians are ℓ-isogenous, obtained for instance by computing roots of modular
equations of level ℓ, we compute rational fractions that determine an ℓ-isogeny
completely. We also obtain a similar result in the case of β-isogenies in the
real multiplication case: see Theorem 6.3. In a follow-up paper, the first au-
thor will design evaluation algorithms for genus 2 modular equations and their
derivatives, thereby obtaining estimates on Ceval(ℓ). Possible applications of our
results to the point counting problem are a major goal for future work.
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Let us describe the outline of our algorithm in the case of ℓ-isogenies from a
geometric point of view, in any dimension g. The central object is the map

Φℓ = (Φℓ,1,Φℓ,2) : Ag(ℓ) → Ag ×Ag

where Ag(ℓ) denotes the stack of principally polarized abelian schemes of dimen-
sion g with an ℓ-kernel, and Ag denotes the stack of principally polarized abelian
schemes of dimension g; this map is given by (A,K) 7→ (A,A/K). Both Φℓ,1

and Φℓ,2 are étale maps. Let ϕ : A→ A′ be an ℓ-isogeny, so that (A,A′) lies in
the image of Φℓ. Denote by TA(Ag) the tangent space of Ag at A, and denote
by T0(A) the tangent space of A at its neutral point. Then there is a close
relation between two maps:

• the deformation map D(ϕ) : TA(Ag) → TA′(Ag) defined as

D(ϕ) := dΦℓ,2 ◦ dΦℓ,1
−1;

• the tangent map dϕ : T0(A) → T0(A
′).

This relation stems from a canonical isomorphism, called the Kodaira–Spencer
isomorphism, between TA(Ag) and Sym2 T0(A). Therefore, in any dimension g,
an isogeny algorithm could run as follows.

1. Compute the deformation map by differentiating certain modular equa-
tions giving a local model of Ag(ℓ) and Ag.

2. Compute dϕ from the deformation map using an explicit version of the
Kodaira–Spencer isomorphism, that is, an explicit way to map a pair (A,w)
where w is an element of Sym2 T0(A) to the corresponding point of TA(Ag)
in the local model of Ag.

3. Finally, attempt to reconstruct ϕ itself by solving a differential system in
the formal group of A and performing a multivariate rational reconstruc-
tion. In this last step, the characteristic of k should be large with respect
to ℓ, hence the condition on the characteristic in Theorem 1.1. Otherwise,
a standard solution is to use étaleness of the modular correspondence to
lift the isogeny in characteristic 0, as in [JL06], and to control the precision
losses when reconstructing the isogeny.

In practice, working with stacks would involve adding an additional level
structure and keeping track of automorphisms, which is not computationally
convenient. Therefore, in order to make everything explicit in the case g = 2,
we choose to replace the stack A2 by its coarse moduli scheme A2. We even work
up to birationality, by considering the birational map from A2 to A3 defined by
the three Igusa invariants (j1, j2, j3). These reductions have the drawback of
introducing singularities; this is the reason for restricting to the open set U in
Theorem 1.1. When the genericity conditions of Theorem 1.1 are not satisfied,
one can still compute the isogeny by working at the level of stacks, or choosing
other models, for instance when A or A′ is a product of elliptic curves.
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In the genus 2 setting, the local model of Ag(ℓ) that we use in Step 1 is
given by modular equations in Igusa invariants; in order to compute the defor-
mation map, it is enough to evaluate modular equations and their derivatives
at (A,A′). In Step 2, we choose to encode a basis of T0(A) in the choice of a
hyperelliptic curve equation. Then, the explicit Kodaira–Spencer isomorphism
is simply an expression for certain Siegel modular forms, namely derivatives of
Igusa invariants, in terms of the coefficients of the curve (see Theorem 3.14). In
Step 3, we take advantage of the fact that the curve C embeds in its Jacobian
to compute with power series in one variable only.

This paper is organized as follows. In Sections 2 and 3, we work over C: Sec-
tion 2 is devoted to the necessary background on modular forms and isogenies,
while Section 3 is devoted to the explicit Kodaira–Spencer isomorphism and
the computation of the tangent map. In Section 4, we call upon the language
of algebraic stacks to show that the calculations over C remain in fact valid
over any base. We present the computation of the isogeny from its tangent
map in Section 5, focusing on the large characteristic case which is sufficient
for applications to point counting, and we sum up the algorithm in Section 6.
Finally, in Appendix A, we present variants in the algorithm in the case of real
multiplication by Q(

√
5) and compute an example of cyclic isogeny of degree 11.

Acknowledgement. The authors were supported by the ANR grant CIAO
(French Agence Nationale de la Recherche).

2 Background on modular forms and isogenies

We present the basic facts about Siegel and Hilbert modular only in the genus 2
case. References for this section are [van08] for Siegel modular forms, and [Bru08]
for Hilbert modular forms, where the general case is treated.

We write 4 × 4 matrices in block notation using 2 × 2 blocks. We write mt

for the transpose of a matrix m, and use the notations

m−t = (m−1)t, Diag(x, y) =

(
x 0
0 y

)
.

2.1 Siegel modular forms

The Siegel threefold. Denote by H2 the set of complex symmetric 2 × 2
matrices with positive definite imaginary part. For every τ ∈ H2, the quotient

A(τ) = C2/Λ(τ) where Λ(τ) = Z2 ⊕ τZ2

is naturally endowed with the structure of a principally polarized abelian surface
over C. A basis of differential forms on A(τ) is given by

ω(τ) = (2πi dz1, 2πi dz2)
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where z1, z2 are the coordinates on C2. Recall that the symplectic group Sp4(Z)
acts on H2 in the following way:

∀γ =

(
a b
c d

)
∈ Sp4(Z), ∀τ ∈ H2, γτ = (aτ + b)(cτ + d)−1.

Proposition 2.1 ([BL04, Rem. 8.1.4]). Let τ ∈ H2, and let γ ∈ Sp4(Z) with
blocks a, b, c, d. Then there is an isomorphism

ηγ,τ : A(τ) → A(γτ), z 7→ (cτ + d)−tz.

Theorem 2.2 ([BL04, Prop. 8.1.3]). Let A be a principally polarized abelian
surface over C. Then there exists τ ∈ H2 such that A is isomorphic to A(τ),
and τ is uniquely determined up to action of Sp4(Z).

The quotient space A2(C) = Sp4(Z)\H2 is the set of complex points of the
coarse moduli space A2 alluded to in the introduction.

Siegel modular forms. Let ρ : GL2(C) → GL(V ) be a finite-dimensional
holomorphic representation of GL2(C). We can assume that ρ is irreducible. A
Siegel modular form of weight ρ is a holomorphic map f : H2 → V satisfying
the transformation rule

∀γ =

(
a b
c d

)
∈ Sp4(Z), ∀τ ∈ H2, f(γτ) = ρ(cτ + d)f(τ).

We say that f is scalar-valued if dimV = 1, and vector-valued otherwise. A
modular function is only required to be meromorphic instead of holomorphic.

If A is a principally polarized abelian surface over C endowed with a basis ω
of Ω1(A) (the space of global differential forms on A), and if if f is a Siegel
modular form of weight ρ, then it makes sense to evaluate f on the pair (A,ω).
We refer to §4 for a geometric interpretation of this fact. To compute this
quantity, choose τ ∈ H2 and an isomorphism η : A → A(τ) as in Theorem 2.2.
Let r ∈ GL2(C) be the matrix of the pullback map η∗ : Ω1(A(τ)) → Ω1(A) in
the bases ω(τ), ω. Then

f(A,ω) = ρ(r)f(τ).

We can check using Proposition 2.1 that f(A,ω) does not depend on the choice
of τ and η.

2.2 An explicit view on Siegel modular forms in genus 2

Classification of weights. Finite-dimensional holomorphic representations
of GL2(C) are well known. Let n ≥ 0 be an integer. We denote by Symn

the n-th symmetric power of the standard representation of GL2(C) on C2.
Explicitly, Symn is a representation on the vector space Cn[x] of polynomials of
degree at most n, with

Symn

((
a b
c d

))
W (x) = (bx+ d)nW

(
ax+ c

bx+ d

)
.
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We take (xn, . . . , x, 1) as the standard basis of Cn[x], so that we can write an
endomorphism of Cn[x] as a matrix; in particular we have

Sym2

(
a b
c d

)
=



a2 ab b2

2ac ad+ bc 2bd
c2 cd d2


 .

Proposition 2.3. The irreducible finite-dimensional holomorphic representa-
tions of GL2(C) are exactly the representations detk Symn, for k ∈ Z and n ∈ N.

Proof. Since SL2(C) is a simply connected Lie group, there is an equivalence
between holomorphic finite-dimensional representations of SL2(C) and repre-
sentations of its Lie algebra sl2(C) [Bou72, Ch. III, §6.1, Th. 1]. By [Bou75,
Ch. VIII, §1.3, Th. 1], irreducible representations of sl2(C) are classified by
their higher weight; on the Lie group side, this shows that the holomorphic
finite-dimensional irreducible representations of SL2(C) are exactly the repre-
sentations Symn for n ∈ N. The case of GL2(C) follows easily.

The weight of a scalar-valued Siegel modular form f is of the form detk for
some k ∈ Z, and in fact k ≥ 0. We also say that f is a scalar-valued Siegel
modular form of weight k. Writing Symn as a representation on Cn[x] allows
us to multiply Siegel modular forms; hence, they naturally generate a graded
C-algebra.

Fourier expansions. Let f be a Siegel modular form on H2 of any weight,
with underlying vector space V . If s ∈ M2(Z) is symmetric, then f(τ+s) = f(τ)
for every τ ∈ H2. Hence, if we write

τ =

(
τ1 τ2
τ2 τ3

)
and qj = exp(2πiτj) for 1 ≤ j ≤ 3,

then f has a Fourier expansion of the form

f(τ) =
∑

n1,n2,n3∈Z

cf (n1, n2, n3) q
n1

1 qn2

2 qn3

3 .

The Fourier coefficients cf (n1, n2, n3) belong to V , and can be nonzero only
when n1 ≥ 0, n3 ≥ 0, and n2

2 ≤ 4n1n3. Note that n2 can still be negative.
When computing with q-expansions, we consider them as elements of the

power series ring C(q2)[[q1, q3]]. Writing the beginning of a q-expansion means
computing modulo an ideal of the form

(
qν1 , q

ν
3

)
for some precision ν ≥ 0.

Structure of scalar-valued forms. The full graded C-algebra of Siegel mod-
ular forms in genus 2 is not finitely generated [van08, §25], but the subalgebra
of scalar-valued modular forms is.
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Theorem 2.4 ([Igu62; Igu67]). The graded C-algebra of scalar-valued even-
weight Siegel modular forms in genus 2 is generated by four algebraically inde-
pendent elements ψ4, ψ6, χ10, and χ12 of respective weights 4, 6, 10, 12, and q-
expansions

ψ4(τ) = 1 + 240(q1 + q3)

+
(
240q22 + 13440q2 + 30240 + 13340q−1

2 + 240q−2
2

)
q1q3 +O

(
q21 , q

2
3

)
,

ψ6(τ) = 1− 504(q1 + q3)

+
(
−504q22 + 44352q2 + 166320+ 44352q−1

2 − 504q−2
2

)
q1q3 +O

(
q21 , q

2
3

)
,

χ10(τ) =
(
q2 − 2 + q−1

2

)
q1q3 +O(q21 , q

2
3),

χ12(τ) =
(
q2 + 10 + q−1

2

)
q1q3 +O

(
q21 , q

2
3

)
.

The graded C-algebra of scalar-valued Siegel modular forms in genus 2 is

C[ψ4, ψ6, χ10, χ12]⊕ χ35C[ψ4, ψ6, χ10, χ12]

where χ35 is a modular form of weight 35 and q-expansion

χ35(τ) = q21q
2
3(q1 − q3)(q2 − q−1

2 ) +O(q41 , q
4
3).

The q-expansions in Theorem 2.4 are easily computed from expressions in
terms of theta functions, and their coefficients are integers. We warn the reader
that different normalizations appear in the literature: our χ10 is −4 times the
modular form χ10 appearing in Igusa’s papers, our χ12 is 12 times Igusa’s χ12,
and our χ35 is 4i times Igusa’s χ35.

The equality χ10(τ) = 0 occurs exactly when A(τ) is isomorphic to a product
of elliptic curves with the product polarization; otherwise, A(τ) is isomorphic
to the Jacobian of a hyperelliptic curve.

Following Streng [Str10, §2.1] and our choice of normalizations, we define
the Igusa invariants to be

j1 = 2−8ψ4ψ6

χ10
, j2 = 2−5ψ

2
4χ12

χ2
10

, j3 = 2−14 ψ
5
4

χ2
10

.

They are Siegel modular functions of trivial weight, i.e. weight det0.

Proposition 2.5. Igusa invariants define a birational map A2(C) → C3.

Proof. By the theorem of Baily and Borel [BB66, Thm. 10.11], scalar-valued
Siegel modular forms of sufficiently high even weight realize a projective em-
bedding of A2(C). Therefore, by Theorem 2.4, Igusa invariants generate the
function field of A2(C).

Remark 2.6. Proposition 2.5 shows that generically, giving (j1, j2, j3) in C
uniquely specifies an isomorphism class of principally polarized abelian surfaces
over C. This correspondence only holds on an open set: Igusa invariants are not
defined on products of elliptic curves, and do not represent a unique isomorphism
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class when ψ4 = 0. If one wants to consider these points nonetheless, it is best
to make another choice of invariants: for instance one could use

h1 =
ψ2
6

ψ3
4

, h2 =
χ12

ψ3
4

, h3 =
χ10ψ6

ψ4
4

which are generically well-defined on products of elliptic curves. See [Liu93,
Thm. 1.V] for an interpretation of these invariants in terms of j(E1) + j(E2)
and j(E1)j(E2) when evaluated on a product E1 × E2.

Examples of vector-valued forms. Derivatives of Igusa invariants are mod-
ular function themselves; as explained in the introduction, this property stems
from the existence of the Kodaira–Spencer isomorphism.

Proposition 2.7. Let f be a Siegel modular function of trivial weight. Then

df

dτ
:=

∂f

∂τ1
x2 +

∂f

∂τ2
x+

∂f

∂τ3

is a Siegel modular function of weight Sym2.

Proof. Differentiate the relation f(γτ) = f(τ) with respect to τ .

We will use another vector-valued modular form in the sequel.

Example 2.8. Following Ibukiyama [Ibu12], let E8 ⊂ R8 denote the lattice of
half-integer vectors v = (v1, . . . , v8) subject to the conditions

8∑

k=1

vk ∈ 2Z and ∀ 1 ≤ k, l ≤ 8, vk − vl ∈ Z.

Set a = (2, 1, i, i, i, i, i, 0) and b = (1,−1, i, i, 1,−1,−i, i), where i2 = −1. Define

f8,6(τ) =
1

111456000

6∑

j=0

(
6

j

)
Θj(τ)x

j

where, using the notation 〈v, w〉 =
8∑

k=1

vkwk,

Θj(τ) =
∑

v,v′∈E8

〈v, a〉j · 〈v′, a〉6−j ·
∣∣∣∣
〈v, a〉 〈v′, a〉
〈v, b〉 〈v′, b〉

∣∣∣∣
4

· exp
(
iπ
(
〈v, v〉τ1 + 2〈v, v′〉τ2 + 〈v′, v′〉τ3

))
.

Then f8,6 is a nonzero Siegel modular form of weight det8 Sym6. This definition
provides an explicit, but slow, method to compute the first coefficients of the q-
expansion; using the expression of f8,6 in terms of theta series [CFv17] would
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be faster. We have

f8,6(τ) =
(
(4q22 − 16q2 + 24− 16q−1

2 + 4q−2
2 )q21q3 + · · ·

)
x6

+
(
(12q22 − 24q2 + 24q−1

2 − 12q−2
2 )q21q3 + · · ·

)
x5

+
(
(−q2 + 2− q−1

2 )q1q3 + · · ·
)
x4

+
(
(−2q2 + 2q−1

2 )q1q3 + · · ·
)
x3

+
(
(−q2 + 2− q−1

2 )q1q3 + · · ·
)
x2

+
(
(12q22 − 24q2 + 24q−1

2 − 12q−2
2 )q1q

2
3 + · · ·

)
x

+
(
(4q22 − 16q2 + 24− 16q−1

2 + 4q−2
2 )q1q

2
3 + · · ·

)
.

2.3 Hilbert modular forms

In the context of Hilbert surfaces and abelian surfaces with real multiplication,
we consistently use the following notation:

K a real quadratic number field (embedded in R)
∆ the discriminant of K, so that K = Q

(√
∆
)

ZK the ring of integers in K
Z∨
K the trace dual of ZK , in other words Z∨

K = 1/
√
∆ ZK

x 7→ x real conjugation in K
Σ the embedding x 7→ (x, x) from K to R2.

Finally, we denote

ΓK = SL2

(
ZK⊕Z∨

K

)
=

{(
a b
c d

)
∈ SL2(K) | a, d ∈ ZK , b ∈

(
Z∨
K

)−1
, c ∈ Z∨

K

}
.

A principally polarized abelian surfaceA over C has real multiplication by ZK

if it is endowed with an embedding

ι : ZK →֒ Endsym(A),

where Endsym(A) denotes the set of endomorphisms of A that are invariant
under the Rosati involution.

Hilbert surfaces. Denote by H1 the complex upper half plane. For every
t = (t1, t2) ∈ H2

1, the quotient

AK(t) = C2/ΛK(t) where ΛK(t) = Σ
(
Z∨
K

)
⊕Diag(t1, t2)Σ

(
ZK

)

is naturally endowed with the structure of a principally polarized abelian surface
over C, and has a real multiplication embedding ιK(t) given by multiplication
via Σ. It is also endowed with the basis of differential forms

ωK(t) = (2πi dz1, 2πi dz2).
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The involution σ of H2
1 given by σ

(
(t1, t2)

)
= (t2, t1) exchanges the two

differential forms in the basis, and exchanges the real multiplication embedding
with its conjugate.

The embedding Σ induces a map ΓK →֒ SL2(R)
2. Through this embedding,

the group ΓK acts on H2
1 by the usual action of SL2(R) on H1 on each coordinate.

Theorem 2.9 ([BL04, §9.2]). Let (A, ι) be a principally polarized abelian surface
over C with real multiplication by ZK . Then there exists t ∈ H2

1 such that (A, ι)
is isomorphic to

(
AK(t), ιK(t)

)
, and t is uniquely determined up to action of ΓK .

The quotient H2(C) = ΓK\H2
1 is the set of complex points of an algebraic

variety H2 called a Hilbert surface.

Hilbert modular forms. Let k1, k2 ∈ Z. A Hilbert modular form of weight
(k1, k2) is a holomorphic function f : H2

1 → C satisfying the transformation rule

∀γ =

(
a b
c d

)
∈ ΓK , ∀t ∈ H2

1, f(γt) =
(
c t1 + d

)k1
(
c t2 + d

)k2

f(t).

We say that f is symmetric if f ◦σ = f . If f is nonzero and symmetric, then its
weight (k1, k2) is automatically parallel, meaning k1 = k2. A Hilbert modular
function is only required to be meromorphic instead of holomorphic.

All irreducible representations of GL1(C)
2 are 1-dimensional, so there is

no need to consider vector-valued forms. The analogue of Proposition 2.7 for
Hilbert modular forms is the following.

Proposition 2.10. Let f be a Hilbert modular function of weight (0, 0). Then
the partial derivatives ∂f/∂t1 and ∂f/∂t2 are Hilbert modular functions of
weight (2, 0) and (0, 2) respectively.

Proof. Differentiate the relation f(γt) = f(t).

Let (A, ι) be a principally polarized abelian surface over C with real multipli-
cation by ZK . As in the Siegel case, we would like to evaluate Hilbert modular
forms when a basis of differential forms on A is given; this is possible if we re-
strict to bases of Ω1(A) which behave well with respect to the real multiplication
embedding.

Definition 2.11. Let ω be a basis of Ω1(A). We say that (A, ι, ω) is Hilbert-
normalized if for every α ∈ ZK , the matrix of ι(α)∗ : Ω1(A) → Ω1(A) in the
basis ω is Diag(α, α).

If (A, ι, ω) is Hilbert-normalized and f is a Hilbert modular form of weight
(k1, k2), then the quantity f(A, ι, ω) is computed as follows. Choose t ∈ H2

1

and an isomorphism η : (A, ι) →
(
AK(t), ιK(t)

)
as in Theorem 2.9, and let r ∈

GL2(C) be matrix of η∗ in the bases ω(t), ω. Then r is diagonal, r = Diag(r1, r2),
and

f(A, ι, ω) = rk1

1 rk2

2 f(t).
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2.4 The Hilbert embedding

Forgetting the real multiplication structure yields a map H2(C) → A2(C) from
the Hilbert surface to the Siegel threefold. In fact, this forgetful map comes
from a linear map

H : H2
1 → H2

called the Hilbert embedding, which we now describe explicitly. Let (e1, e2) be
the Z-basis of ZK given by e1 = 1 and

e2 =
1−

√
∆

2
if ∆ = 1 mod 4, e2 =

√
∆ otherwise.

Set R =

(
e1 e2
e1 e2

)
, and define

H : H2
1 → H2, t = (t1, t2) 7→ Rt Diag(t1, t2)R.

Proposition 2.12. For every t ∈ H2
1, left multiplication by Rt on C2 induces

an isomorphism AK(t) → A
(
H(t)

)
.

Proof. By definition, Σ
(
ZK

)
= RZ2, and since Z∨

K is the trace dual of ZK , we
have Σ

(
Z∨
K

)
= R−t Z2. Then a direct computation shows that

∀t ∈ H2
1, Λ

(
H(t)

)
= Rt ΛK(t).

The Hilbert embedding is compatible with the actions of the modular groups.

Proposition 2.13 ([LY11, Prop. 3.1]).

1. Under H, the action of ΓK on H2
1 is transformed into the action of Sp4(Z)

on H2 by means of the morphism
(
a b
c d

)
7→

(
Rt 0
0 R−1

)(
a∗ b∗

c∗ d∗

)(
R−t 0
0 R

)

where we write x∗ = Diag(x, x) for x ∈ K.

2. Define

Mσ =




1 0
δ −1

(0)

(0)
1 δ
0 −1




where δ = 1 if ∆ = 1 mod 4, and δ = 0 otherwise. Then we have

∀t ∈ H2
1, H

(
σ(t)

)
=MσH(t).

Moreover, pulling back a Siegel modular form via the Hilbert embedding
gives a Hilbert modular form.

11



Proposition 2.14. Let k ∈ Z, n ∈ N, and let f : H2 → Cn[x] be a Siegel
modular form of weight ρ = detk Symn. Define the functions gi : H2

1 → C for
0 ≤ i ≤ n by

∀t ∈ H2
1,

n∑

i=0

gi(t)x
i = ρ(R)f

(
H(t)

)
.

Then each gi is a Hilbert modular form of weight (k + i, k + n− i).

Proof. It is straightforward to check the transformation rule using Proposi-
tion 2.13. The heart of the computation is that on diagonal matrices Diag(r1, r2),
the representation detk Symn splits: the coefficient before xi is multiplied by (r1r2)

k ri1 r
n−i
2 .

Corollary 2.15. If f is a scalar-valued Siegel modular form of weight detk,
then H∗f : t 7→ f

(
H(t)

)
is a symmetric Hilbert modular form of weight (k, k).

Proof. Since det(R)k is a nonzero constant, by Proposition 2.14, the func-
tion H∗f is a Hilbert modular form of weight (k, k). Moreover det(Mσ) = 1,
so H∗f is symmetric by Proposition 2.13.

The image of the Hilbert embedding in A2(C) is called a Humbert surface. It
can be described by an equation in terms of Igusa invariants, which grows quickly
in size with the discriminant ∆, but can be computed in small cases [Gru10].

Proposition 2.16. Igusa invariants generate the field of symmetric Hilbert
modular functions of weight (0, 0). They define a birational map from A2,K(C)
to the closed subset of C3 cut out by the Humbert equation.

Proof. The image of H in A2(C) is not contained in the codimension 1 subset
where Igusa invariants are not a local isomorphism to A3.

To ease notation, we also write jk for the pullback H∗jk, for each 1 ≤ k ≤ 3.

2.5 Isogenies between abelian surfaces

Let k be a field, and let A be a principally polarized abelian surface over k.
Denote its dual by A∨ and its principal polarization by π : A → A∨. Recall
that for every line bundle L on A, there is a morphism φL : A→ A∨ defined by
φL(x) = T ∗

xL⊗L−1, where Tx denotes translation by x on A. Finally, let NS(A)
denote the Néron–Severi group of A, consisting of line bundles up to algebraic
equivalence.

Theorem 2.17 ([Mil86a, Prop. 14.2]). For every ξ ∈ Endsym(A), there is a
unique symmetric line bundle Lξ

A such that φ
L

ξ

A

= π ◦ ξ. This association
induces an isomorphism of groups

(
Endsym(A),+

)
≃

(
NS(A),⊗

)
.

Under this isomorphism, line bundles giving rise to polarizations correspond to
totally positive elements in Endsym(A).

12



In this notation, L1
A is the line bundle associated with the principal polar-

ization π. We will consider two different isogeny types that we now define.

Definition 2.18. Let k be a field.

1. Let ℓ ∈ N be a prime, and let A,A′ be principally polarized abelian surfaces
over k. An isogeny ϕ : A→ A′ is called an ℓ-isogeny if

ϕ∗L1
A′ = Lℓ

A.

2. Let K be a real quadratic field, and let β ∈ ZK be a totally positive prime.
Let (A, ι) and (A′, ι′) be principally polarized abelian surfaces over k with
real multiplication by ZK . An isogeny ϕ : A→ A′ is called a β-isogeny if

ϕ∗L1
A′ = L ι(β)

A

and
∀α ∈ ZK , ϕ ◦ ι(α) = ι′(α) ◦ ϕ.

For a generic principally polarized abelian surface, ℓ-isogenies are the sim-
plest kind of isogenies that occur. They have degree ℓ2. If we restrict to abelian
surfaces with real multiplication by ZK , then β-isogenies are smaller: their de-
gree is only NK/Q(β) [DJR+17, Prop. 2.1].

Both ℓ- and β-isogenies are easily described over C. For t = (t1, t2) ∈ H2
1,

write
t/β :=

(
t1/β, t2/β

)
.

The following well-known statement is a consequence of Theorems 2.2 and 2.9,
using the facts that the kernel of an ℓ-isogeny is a maximal isotropic subgroup of
the ℓ-torsion, and the kernel of a β-isogeny is a cyclic subgroup of the β-torsion.

Proposition 2.19.

1. For every τ ∈ H2, the identity map on C2 induces an ℓ-isogeny

A(τ) → A(τ/ℓ).

Let A,A′ be principally polarized abelian surfaces over C, and let ϕ : A→
A′ be an ℓ-isogeny. Then there exists τ ∈ H2 such that there is a commu-
tative diagram

A A′

A(τ) A(τ/ℓ).

ϕ

∼ ∼

z 7→z

2. For every t ∈ H2
1, the identity map on C2 induces a β-isogeny
(
AK(t), ιK(t)

)
→

(
AK(t/β), ιK(t/β)

)
.

13



Let (A, ι), (A′, ι′) be principally polarized abelian surfaces over C with real
multiplication by ZK , and let ϕ : (A, ι) → (A′, ι′) be a β-isogeny. Then
there exists t ∈ H2

1 such that there is a commutative diagram

(A, ι) (A′, ι′)

(
AK(t), ιK(t)

) (
AK(t/β), ιK(t/β)

)
.

ϕ

∼ ∼

z 7→z

2.6 Modular equations

Modular equations encode the presence of an isogeny between principally po-
larized abelian surfaces, as the classical modular polynomial does for ellip-
tic curves. To define them, we use the fact that the extension of the field
C
(
j1(τ), j2(τ), j3(τ)

)
constructed by adjoining j1(τ/ℓ), j1(τ/ℓ), and j3(τ/ℓ) is

finite and generated by j1(τ/ℓ). A similar statement holds for Igusa invariants
at t/β in the Hilbert case [MR17, Prop. 4.11].

Definition 2.20.

1. Let ℓ ∈ N be a prime. We call the Siegel modular equations of level ℓ the
data of the three polynomials Ψℓ,1,Ψℓ,2,Ψℓ,3 ∈ C(J1, J2, J3)[J

′
1] defined as

follows:

• Ψℓ,1 is the monic minimal polynomial of the function j1(τ/ℓ) over
the field C

(
j1(τ), j2(τ), j3(τ)

)
.

• For i ∈ {2, 3}, we have the following equality of meromorphic func-
tions:

ji(τ/ℓ) = Ψℓ,i

(
j1(τ), j2(τ), j3(τ), j1(τ/ℓ)

)
.

2. Let K be a real quadratic field, and let β ∈ ZK be a totally positive
prime. We call the Hilbert modular equations of level β the data of the
three polynomials Ψβ,1,Ψβ,2,Ψβ,3 defined as follows:

• Ψβ,1 is the monic minimal polynomial of the function j1(t/β) over
the field C

(
j1(t), j2(t), j3(t)

)
.

• For i ∈ {2, 3}, we have the following equality of meromorphic func-
tions:

ji(t/β) = Ψβ,i

(
j1(t), j2(t), j3(t), j1(t/β)

)
.

In the Hilbert case, since Igusa invariants are symmetric by Corollary 2.15,
the modular equations encode β- and β-isogenies simulaneously [MR17, Ex. 4.17].
It would be better to consider modular equations with non-symmetric invariants;
however, we know of no good choice of such invariants in general.

As explained in the introduction, modular equations really are equations
for the image of a map defined at the level of algebraic stacks. As a conse-
quence, they have coefficients in Q. Since Igusa invariants have poles on A2
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and H2, modular equations in genus 2 have denominators [MR17, Rem. 4.20].
If we multiply by these denominators, then we may consider modular polyno-
mials as elements of C[J1, J2, J3, J ′

1, J
′
2, J

′
3] that vanish on the Igusa invariants

of isogenous Jacobians: this is what we do in the sequel.
From a practical point of view, modular equations in genus 2 are very large.

This is especially true for Siegel modular equations of level ℓ. The degree of Ψℓ,1

in J ′
1 is ℓ3 + ℓ2 + ℓ + 1, and its degree in J1, J2, J3 has the same order of

magnitude, not mentioning the height of the coefficients. The situation is less
desperate for Hilbert modular equations of level β: the degree of Ψβ,1 in J ′

1 is
2NK/Q(β) + 2 [MR17, Ex. 4.17]. Modular equations have been computed for
ℓ = 2 and 3 in the Siegel case, up to N(β) = 41 in the Hilbert case with K =
Q(

√
5) using Gundlach invariants, and even up to N(β) = 97 for K = Q(

√
2)

using theta constants as invariants [Mil].

3 Explicit Kodaira–Spencer over C

A nonsingular hyperelliptic equation C : v2 = EC(u) over C naturally en-
codes a basis of differential forms ω(C) on the principally polarized abelian
surface Jac(C) (§3.1). If f is a Siegel modular function, this gives rise to a map

Cov(f) : C 7→ f
(
Jac(C), ω(C)

)
.

Then, Cov(f) is a covariant of the curve, and has an expression in terms of
the coefficients. We give an algorithm to obtain this expression from the q-
expansion of f (§3.2), and apply it to the derivatives of Igusa invariants (§3.3).
The result is the explicit Kodaira–Spencer isomorphism. This allows us to
compute the deformation map and the tangent map of a given ℓ-isogeny over C
(§3.4). Finally, we adapt these methods to the Hilbert case (§3.5).

3.1 Hyperelliptic equations

Let C be a nonsingular hyperelliptic equation of genus 2 over C:

C : v2 = EC(u),

with degEC ∈ {5, 6}. Then C is naturally endowed with the basis of differential
forms

ω(C) =
(u du

v
,
du

v

)
.

Recall that the Jacobian Jac(C) is a principally polarized abelian surface
over C [Mil86b, Thm. 1.1 and Summary 6.11]. Choose a base point P on C.
This gives an embedding

ηP : C →֒ Jac(C), Q 7→ [Q − P ].

Proposition 3.1 ([Mil86b, Prop. 2.2]). The map

η∗P : Ω1
(
Jac(C)

)
→ Ω1(C)
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is an isomorphism and is independent of P .

By Proposition 3.1, we can see ω(C) as a basis of differential forms on Jac(C).
This basis depends on the particular hyperelliptic equation chosen.

Lemma 3.2. Let C be a genus 2 hyperelliptic equation over C, and let

r =

(
a b
c d

)
∈ GL2(C).

Let EC′ be the image of EC by det−2 Sym6(r), and let C′ be the curve with
equation y′ 2 = EC′(x′). Let η : C′ → C be the isomorphism defined by

η(x′, y′) =

(
ax′ + c

bx′ + d
,

(det r) y′

(bx′ + d)3

)
.

Then the matrix of η∗ : Ω1(C) → Ω1(C′) in the bases ω(C), ω(C′) is r.

Proof. Write (x, y) = η(x′, y′). A simple calculation shows that

dx

y
= (bx′ + d)

dx′

y′
and

x dx

y
= (ax′ + c)

dx′

y′
,

so the result follows.

Corollary 3.3. Let A be a principally polarized abelian surface over C that is
not a product of two elliptic curves, and let ω be a basis of Ω1(A). Then there
exists a unique hyperelliptic curve equation C of genus 2 over C such that

(
Jac(C), ω(C)

)
≃ (A,ω).

Proof. By Torelli’s theorem, there is a curve equation C0 over C such that A
is isomorphic to Jac(C0). Then ω differs from ω(C0) by a linear transformation
in GL2(C). By Lemma 3.2, we can make a suitable change of variables to find
the correct C. It is unique because every isomorphism between hyperelliptic
curves comes from such a matrix r.

Definition 3.4. The bases of differential forms chosen in §2 allows us to define
particular curve equations attached to a point of H2 or H2

1.

1. Let τ ∈ H2, and assume that χ10(τ) 6= 0. Then, by Corollary 3.3, there
exists a unique hyperelliptic equation C(τ) over C such that

(
Jac

(
C(τ)

)
, ω

(
C(τ)

))
≃

(
A(τ), ω(τ)

)
.

We call C(τ) the standard curve attached to τ . We define the meromorphic
functions ai(τ) for 0 ≤ i ≤ 6 to be the coefficients of C(τ):

C(τ) : y2 =
6∑

i=0

ai(τ)x
i.
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2. Let t ∈ H2
1, and assume that χ10(H(t)) 6= 0, where H is the Hilbert

embedding. Then, by Corollary 3.3, there exists a unique hyperelliptic
equation CK(t) over C such that

(
Jac

(
CK(t)

)
, ω

(
CK(t)

))
≃

(
AK(t), ωK(t)

)
.

We call CK(t) the standard curve attached to t.

Proposition 3.5. The function τ 7→ C(τ) is a Siegel modular function of
weight det−2 Sym6 which has no poles on the open set {χ10 6= 0}.
Proof. Over C, the Torelli map is biholomorphic, so this function is meromor-
phic. By Corollary 3.3, it is defined everywhere on {χ10 6= 0}. Combining
Proposition 2.1 with Lemma 3.2 shows the transformation rule.

Finally, for t ∈ H2
1, we can relate the standard curves CK(t) and C

(
H(t)

)
.

Proposition 3.6. For every t ∈ H2
1, we have

CK(t) = det−2 Sym6(R) C
(
H(t)

)
.

Proof. Use Proposition 2.12 and Lemma 3.2.

3.2 Covariants

If f is a Siegel modular form, then we have a map

Cov(f) : C 7→ f
(
Jac(C), ω(C)

)
.

We show that Cov(f) is a covariant of the curve equation. A recent reference
for covariants is Mestre’s article [Mes91].

Definition 3.7. Denote by C6[x] the space of polynomials of degree at most 6.
Let ρ : GL2(C) → GL(V ) be a finite-dimensional holomorphic representation
of GL2(C). A covariant, or polynomial covariant, of weight ρ is a map

C : C6[x] → V

which is polynomial in the coefficients, and such that the following transforma-
tion rule holds: for every r ∈ GL2(C) and W ∈ C6[x],

C
(
det−2 Sym6(r)W

)
= ρ(r)C(W ).

If dim V ≥ 2, then C is said to be vector-valued, and otherwise scalar-valued. A
fractional covariant is a map satisfying the same transformation rule which is
only required to have a fractional expression in terms of the coefficients.

It is enough to consider covariants of weight detk Symn for k ∈ Z, n ∈ N.
What we call a vector-valued covariant of weight detk Symn is in Mestre’s paper
a covariant of order n and degree k+n/2; what we call a scalar-valued covariant
of weight detk is in Mestre’s paper an invariant of degree k. The reason for this
change of terminology is the following.
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Proposition 3.8. If f be a Siegel modular function of weight ρ, then Cov(f)
is a fractional covariant of weight ρ. Conversely, if F is a fractional covariant
of weight ρ, then the meromorphic function τ 7→ F

(
C(τ)

)
is a Siegel modular

function of weight ρ. These operations are inverse of each other.

Proof. If f is a Siegel modular function, then Cov(f) is well defined on a Zariski
open set of C6[x] and is algebraic, so must have a fractional expression in terms of
the coefficients. We let the reader check the transformation rules (use Lemma 3.2
and Proposition 3.5).

Proposition 3.8 gives a bijection between Siegel modular functions and frac-
tional covariants, but we need more. The following theorem establishes a re-
lation between Siegel modular forms and polynomial covariants, and was first
proved in [CFv17, §4].

Theorem 3.9. Let f be a holomorphic Siegel modular form. Then Cov(f) is a
polynomial covariant. Moreover, if f is a cusp form, then Cov(f/χ10) is also a
polynomial covariant.

Proof. The main difficulty is that nonsingular hyperelliptic equations only form
a codimension 1 subset of all degree 6 polynomials: if f is a Siegel modular form,
then the proof of Proposition 3.8 only shows that Cov(f) is a polynomial divided
by some power of the discriminant. However, one can show that f extends to
the so-called toroidal compactification of A2(C), and this shows that Cov(f) is
well defined on all curve equations with at most one node. Since this set has
codimension 2, the result follows.

Unlike for Siegel modular forms, the graded C-algebra generated by polyno-
mial covariants is finitely generated.

Theorem 3.10 ([Cle72, p. 296]). The graded C-algebra of covariants is gen-
erated by 26 elements defined over Q. The number of generators of weight
detk Symn is indicated in the following table:

n \ k -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 15
0 1 1 1 1 1
2 1 1 1 1 1 1
4 1 1 1 1 1
6 1 1 1 2
8 1 1 1
10 1
12 1

We only need to manipulate a small subset of these generators. Take our
scalar generators of even weight to be the Igusa–Clebsch invariants I2, I4, I6, I10,
in Mestre’s notation A′, B′, C′, D′ [Mes91], and set

I ′6 := (I2I4 − 3I6)/2.
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Denote the generator of weight det15 by R, and denote by y1, y2, y3 the gen-
erators of weights det2 Sym2, det4 Sym2, and det6 Sym2 respectively. Finally,
the generator of weight det−2 Sym6, denoted by X , is the degree 6 polynomial
itself. Note that when computing these covariants as described in [Mes91, §1],
the integers m and n on page 315 should be the orders of f and g, and not
their degrees. To help the reader check their computations, we mention that
the coefficient of a51a

10
4 in R is 2−23−65−10.

3.3 From q-expansions to covariants

We now explain how to compute the polynomial covariant associated with a
Siegel modular form whose q-expansion is known up to a certain precision. The
works of Igusa already provide the answer in the case of scalar covariants.

Theorem 3.11. We have

4 Cov(ψ4) = I4,

4 Cov(ψ6) = I ′6,

212 Cov(χ10) = I10,

215 Cov(χ12) = I2I10,

2373−95−10Cov(χ35) = I210R.

Proof. By [Igu62, p. 848], there exists a constant λ ∈ C× such that these re-
lations hold up to a factor λk, for k ∈ {4, 6, 10, 12, 35} respectively. Note
that Igusa’s covariant E is −2539510R. Then, Thomae’s formulæ ([Mum84,
Thm. IIIa.8.1] and [Tho70, pp. 216–217]), which relate theta constants with the
values of path integrals on the associated hyperelliptic curve, imply that λ =
1.

Therefore, the Igusa invariants satisfy

Cov(j1) =
I4I

′
6

I10
, Cov(j2) =

I2I
2
4

I10
, Cov(j3) =

I54
I210

.

Let us compute the q-expansion of the standard curve C(τ). Recall the Siegel
modular form f8,6 of weight det8 Sym6 introduced in Example 2.8.

Proposition 3.12. We have Cov(f8,6/χ10) = X. In other words, for every
τ ∈ H2 such that χ10(τ) 6= 0, we have

C(τ) = f8,6(τ)

χ10(τ)
.

Proof. Since f8,6 is a cusp form, by Theorem 3.9, Cov(f8,6/χ10) is a nonzero
polynomial covariant of weight det−2 Sym6. By Theorem 3.10, this space of
covariants is of dimension 1 and generated by X , so the relation holds up to a
factor λ ∈ C×. This yields q-expansions for the coefficients ai(τ) of C(τ) up to
a factor λ. Then, the relations from Theorem 3.11 imply λ4 = λ6 = λ35 = 1,
hence λ = 1.
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Given a Siegel modular form f of weight ρ whose q-expansion can be com-
puted, the following algorithm recovers the expression of Cov(f) as a polyno-
mial.

Algorithm 3.13. 1. Compute a basis B of the vector space of polynomial
covariants of weight ρ using Theorem 3.10.

2. Choose a precision ν and compute the q-expansion of f modulo (qν1 , q
ν
3 ).

3. For every B ∈ B, compute the q-expansion of the Siegel modular function
τ 7→ B

(
C(τ)

)
using Proposition 3.12.

4. Do linear algebra; if the matrix does not have full rank, go back to step 2
with a larger ν.

Sturm-type bounds [BP17] provide a theoretical limit for the precision ν
that we need to consider; for the examples given in this article, ν = 3 is enough.

We now apply Algorithm 3.13 to derivatives of Igusa invariants. Recall from
Proposition 2.7 that for 1 ≤ k ≤ 3, the partial derivative

djk
dτ

:=
∂jk
∂τ1

x2 +
∂jk
∂τ2

x+
∂jk
∂τ3

is a Siegel modular function of weight Sym2.

Theorem 3.14. We have

1

2πi
Cov

(dj1
dτ

)
=

1

I10

(153
8
I22I4y1 −

135

2
I2I6y1 +

135

2
I24y1 +

46575

4
I2I4y2

− 30375 I6y2 + 1366875 I4y3

)
,

1

2πi
Cov

(dj2
dτ

)
=

1

I10

(
90 I22I4y1 + 900 I22y1 + 40500 I2I4y2

)
,

1

2πi
Cov

(dj3
dτ

)
=

1

I210

(
225 I2I

4
4y1 + 101250 I44y2

)
.

Proof. Let 1 ≤ k ≤ 3. The function χ2
10jk has no poles on A2(C). Therefore,

the Siegel modular function

fk = χ3
10

djk
dτ

is holomorphic on A2(C). Its q-expansion can be computed from the q-expansion
of jk by formal differentiation. Since

1

2πi

∂

∂τi
= qi

∂

∂qi

for 1 ≤ i ≤ 3, we check that fk is a cusp form. Therefore, by Theorem 3.9,
Cov(fk/χ10) is a polynomial covariant of weight det20 Sym2. Looking at the
table in Theorem 3.10, we find that a basis of this space of covariants is given
by covariants of the form Iy where y ∈ {y1, y2, y3} and I is a scalar-valued
covariant of the appropriate even weight. Algorithm 3.13 succeeds with ν = 3;
the computations were done using Pari/GP [The19].
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Remark 3.15. Theorems 3.11 and 3.14 can be checked numerically. Comput-
ing big period matrices of hyperelliptic curves [MN19] provides pairs

(
τ, C(τ)

)

with τ ∈ H2. We can evaluate Igusa invariants at a given τ to high precision
using their expression in terms of theta functions [Dup11]. Therefore we can
also evaluate their derivatives numerically with high precision and compute the
associated covariant using floating-point linear algebra. The computations were
done using the libraries hcperiods [Mol18] and cmh [ET14]; they provide a nice
consistency check to Theorem 3.14. Another consistency check is that we can
recover the relations from Theorem 3.11.

Remark 3.16. From Theorem 3.14, we can easily obtain similar formulæ for
derivatives of other invariants, or even invariants for abelian surfaces with extra
structure such as theta constants. For instance, taking the invariants h1, h2, h3
defined in Remark 2.6, we obtain

1

2πi
Cov

(dh1

dτ

)

=
1

I4
4

(

−

297

8
y1I

2

4I
3

2 +−

54675

4
y2I

2

4I
2

2 +
1701

8
y1I6I4I

2

2 +
135

2
y1I

3

4I2

+ 1366875y3I
2

4I2 +
346275

4
y2I6I4I2 −

1215

4
y1I

2

6I2 +−

405

2
y1I6I

2

4

− 4100625y3I6I4 −
273375

2
y2I

2

6

)

,

1

2πi
Cov

(

dh2

dτ

)

=
1

I4
4

(

−135y1I10I
2

2 − 60750y2I10I2 + 900y1I10I4

)

,

1

2πi
Cov

(

dh3

dτ

)

=
1

I5
4

(

−

747

8
y1I10I4I

2

2 −

155925

4
y2I10I4I2 + 270y1I10I6I2 +

135

2
y1I10I

2

4

+ 1366875y3I10I4 + 121500y2I10I6

)

.

3.4 Deformation matrix and action on tangent spaces

Let C, C′ be equations of genus 2 hyperelliptic curves over C, let A,A′ be their
Jacobians, and let ϕ : A → A′ be an ℓ-isogeny. The choice of curve equations
encodes a choice of bases of Ω1(A) and Ω1(A′), or equivalently, by taking dual
bases, a choice of bases of the tangent spaces T0(A) and T0(A

′). By an abuse
of notation, we identify the tangent map dϕ : T0(A) → T0(A

′) with its matrix
written in these bases. Let us show how to compute dϕ from the data of the
curve equations and modular equations of level ℓ.

Definition 3.17. It is convenient to introduce matrix notations.

• For τ ∈ H2, we define

DτJ(τ) =

(
1

2πi

∂jk
∂τl

(τ)

)

1≤k,l≤3

·



2 0 0
0 1 0
0 0 2


 .

In other words, if we set

v1 =

(
2 0
0 0

)
, v2 =

(
0 1
1 0

)
, v3 =

(
0 0
0 2

)
,
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then the l-th column of DτJ(τ) contains (up to 2πi) the derivatives of
Igusa invariants at τ in the direction vl. We can check that for r ∈
GL2(C), the l-th column of DτJ(τ) Sym

2(r) contains the derivatives of
Igusa invariants at τ in the direction r vl rt.

Let (A,ω) be a principally polarized abelian surface over C with a basis of
differential forms, let η : A → A(τ) be an isomorphism for some τ ∈ H2,
and let r be the matrix of η∗ in the bases ω(τ), ω. Then the fact that
derivatives of Igusa invariants have weight Sym2 translates as

DτJ(A,ω) = DτJ(τ) Sym
2(rt).

We denote by
C 7→ DτJ(C)

the associated fractional covariant; Theorem 3.14 expresses the entries of
this matrix up to a constant in terms of the coefficients of C.

• Consider the Siegel modular equations Ψℓ,1,Ψℓ,2,Ψℓ,3 of level ℓ as elements
of the ring Q[J1, J2, J3, J

′
1, J

′
2, J

′
3]. We define

DΨℓ,L =

(
∂Ψℓ,n

∂Jk

)

1≤n,k≤3

and DΨℓ,R =

(
∂Ψℓ,n

∂J ′
k

)

1≤n,k≤3

.

Definition 3.18. Let ϕ be an ℓ-isogeny as above, write j as a shorthand for the
Igusa invariants (j1, j2, j3) of A, and j′ for the invariants (j′1, j

′
2, j

′
3) of A′. We

say that the isogeny ϕ is generic if the 3× 3 matrices DΨℓ,L(j, j
′), DΨℓ,R(j, j

′),
DτJ(C) and DτJ(C′) are invertible. In this case, we define the deformation
matrix D(ϕ) of ϕ as

D(ϕ) = −DτJ(C′)−1 ·DΨℓ,R(j, j
′)−1 ·DΨℓ,L(j, j

′) ·DτJ(C).

In Section 4, we will interpret D(ϕ) as the matrix of the deformation map in
the bases of TA(A2) and TA′(A2) associated with ω(C), ω(C′) via the Kodaira–
Spencer isomorphism. Let us relate the deformation matrix D(ϕ) with the
tangent matrix dϕ.

Proposition 3.19. Assume that ϕ is generic. Then we have

Sym2(dϕ) = ℓD(ϕ).

Proof. By Proposition 2.19, we can find τ ∈ H2 and isomorphisms η, η′ such
that there is a commutative diagram

A A′

A(τ) A(τ/ℓ).

ϕ

η η′

z 7→z
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Let r be the matrix of η∗ in the bases ω(τ), ω(C), and define r′ similarly. Then
we have dϕ = r′tr−t. By the definition of modular equations, we have

Ψℓ,n

(
j1(τ), j2(τ), j3(τ), j1(τ/ℓ), j2(τ/ℓ), j3(τ/ℓ)

)
= 0 for 1 ≤ n ≤ 3.

We differentiate with respect to τ1, τ2, τ3 and obtain

DΨℓ,L(j, j
′) ·DτJ(τ) +

1

ℓ
DΨℓ,R(j, j

′) ·DτJ(τ/ℓ) = 0.

We rewrite this relation as

−ℓDΨℓ,L(j, j
′) ·DτJ(C) · Sym2(rt) = DΨℓ,R(j, j

′) ·DτJ(C′) · Sym2(r′t),

and the result follows.

Once we compute D(ϕ), the matrix dϕ itself is easily computed up to sign.

3.5 Explicit Kodaira–Spencer in the Hilbert case

We now explain how to recover the tangent matrix in the Hilbert case, in the
same spirit as the Siegel case. An important difference is that we have to restrict
to Hilbert-normalized bases of differential forms (recall Definition 2.11), so not
all curve equations will do. For the moment, assume that we have a β-isogeny
ϕ : (A, ι) → (A′, ι′) between abelian surfaces with real multiplication by ZK , and
we are given curve equations C, C′ such that the associated bases ω(C) and ω(C′)
are Hilbert-normalized. We address the question of constructing C, C′ in §3.6.

Definition 3.20.

• For t ∈ H2
1, we define

DtJ(t) =

(
1

πi

∂jk
∂tl

(t)

)

1≤k≤3,1≤l≤2

.

If C is a curve equation such that ω(C) is Hilbert-normalized, we denote
by DtJ(C) the value of this modular form on C.

• We define the 3 × 3 matrices DΨβ,L and DΨβ,R in the case of Hilbert
modular equations of level β as in Definition 3.17.

• Write j as a shorthand for the Igusa invariants (j1, j2, j3) of A, and j′ for
the invariants (j′1, j

′
2, j

′
3) of A′. We say that the isogeny ϕ is generic if

the denominators of modular equations do not vanish at j and the 3 × 2
matrices

DΨβ,L(j, j
′) ·DtJ(C) and DΨβ,R(j, j

′) ·DtJ(C′)

have rank 2.
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Lemma 3.21. Let (A, ι, ω) be Hilbert-normalized, and let t ∈ H2
1 such that there

is an isomorphism η : (A, ι) → (AK(t), ιK(t)). Let r be the matrix of η∗ in the
bases ωK(t), ω. Then we have

DtJ(A,ω) = DtJ(t) · r2.

Proof. By Proposition 2.10, derivatives of Igusa with respect to t1 and t2 are
Hilbert modular functions of weight (2, 0) and (0, 2) respectively.

Proposition 3.22. Let (A, ι, ω) be Hilbert-normalized. Then we have

DtJ(A,ω) = DτJ(A,ω) · T where T =



1 0
0 0
0 1


 .

Proof. Let t, η, r as in Lemma 3.21, and write τ = H(t). By the expression of
the Hilbert embedding, DtJ(t) contains the derivatives of Igusa invariants at τ
in the directions

1

πi
Rt

(
1 0
0 0

)
R and

1

πi
Rt

(
0 0
0 1

)
R.

Hence we have
DtJ(t) = DτJ(τ) · Sym2(Rt) · T.

By Proposition 2.12, we have an isomorphism ζ : AK(t) → A(τ) such that the
matrix of ζ∗ in the bases ω(τ), ωK(t) is R. Therefore

DtJ(A,ω) = DtJ(t)r
2, DτJ(A,ω) = DτJ(τ) Sym

2((rR)t).

The result follows.

It is natural that the matrix R defining the Hilbert embedding does not
appear in Proposition 3.22: evaluating derivatives of Igusa invariants on (A,ω)
has an intrinsic meaning in terms of the Kodaira–Spencer isomorphism, and the
choice of Hilbert embedding does not matter.

Proposition 3.23. Let ϕ : A → A′ be a β-isogeny and let C, C′ be Hilbert-
normalized curve equations as above. Then the tangent matrix dϕ is diagonal,
and we have

DΨβ,L(j, j
′) ·DtJ(C) = −DΨβ,R(j, j

′) ·DtJ(C′) ·Diag(1/β, 1/β) · (dϕ)2.

Proof. By Proposition 2.19, we can find t ∈ H2
1 and isomorphisms η, η′ such

that there is a commutative diagram

(
A, ι

) (
A′, ι′

)

(
AK(t), ιK(t)

) (
AK(t/β), ιK(t/β)

)
.

ϕ

η η′

z 7→z
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Let r be the matrix of η∗ in the bases ωK(t), ω, and define r′ similarly; they are
diagonal. We have dϕ = r′tr−t = r′r−1. Differentiating the modular equations,
we obtain

DΨβ,L(j, j
′) ·DtJ(t) +DΨβ,R(j, j

′) ·DtJ(t/β) ·Diag(1/β, 1/β) = 0.

By Lemma 3.21, we have

DtJ(t) = DtJ(C) · r2, DtJ(t/β) = DtJ(C′) · r′2

and the result follows.

This relation allows us to compute (dϕ)2 from derivatives of modular equa-
tions when ϕ is generic. In contrast with the Siegel case, the knowledge of (dϕ)2

does not allow us to recover the diagonal matrix dϕ up to sign, as we have to
perform two uncorrelated root extractions: we obtain two possible candidates.

3.6 Constructing Hilbert-normalized curves

Let (A, ι) is an abelian surface over C with real multiplication by ZK . Given the
Igusa invariants (j1, j2, j3) of A, we would like to construct a curve equation C
such that (A, ι, ω(C)) is Hilbert-normalized. Our method is to compute a first
curve equation using Mestre’s algorithm [Mes91], and then look for a suitable
homographic change of variables. However, we are missing some information, as
the two pairs (A, ι) and (A, ι), where ι denotes the real conjugate of ι, have the
same Igusa invariants. The best we can hope for is to compute an equation C
such that either (A, ι, ω(C)) or (A, ι, ω(C)) is Hilbert-normalized. In this case, we
say that C is potentially Hilbert-normalized. This uncertainty is a consequence
of our using symmetric invariants on the Hilbert surface.

Proposition 3.24. Let C be a hyperelliptic curve equation of genus 2 over C
such that Jac(C) has real multiplication by ZK . Denote its Igusa invariants by
(j1, j2, j3). Then the curve C is potentially Hilbert-normalized if and only if the
two columns of the 3× 2 matrix

DτJ(C) · T where T =



1 0
0 0
0 1




define tangent vectors to the Humbert surface at (j1, j2, j3).

Proof. Let t ∈ H2
1 such that there is an isomorphism η : Jac(C) → AK(t), and

write τ = H(t). Let r ∈ GL2(C) be the matrix of η∗ in the bases ωK(t), ω. Then
the columns of DτJ(C) · T contain, up to πi, the derivatives of Igusa invariants
at τ in the directions

Rtr

(
1 0
0 0

)
rtR and Rtr

(
0 0
0 1

)
rtR.

These directions are tangent to the Humbert surface if and only if r is is either
diagonal or anti-diagonal.
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Assume that the equation of the Humbert surface for K in terms of Igusa
invariants is given: this precomputation depends only on K. Given Igusa in-
variants (j1, j2, j3) on the Humbert surface, the algorithm to reconstruct a po-
tentially Hilbert-normalized curve equation runs as follows.

Algorithm 3.25. 1. Construct any curve equation C0 with Igusa invariants
(j1, j2, j3) using Mestre’s algorithm.

2. Find r ∈ GL2(C) such that the two columns of the matrix

DτJ(C0) · Sym2(rt) · T

are tangent to the Humbert surface at (j1, j2, j3).

3. Output det−2 Sym6(r)C0.
In step 2, if a, b, c, d denote the entries of r, we only have to solve a quadratic

equation in a, c, and a quadratic equation in b, d. Therefore Algorithm 3.25 costs
OK(1) square roots and field operations.

In practice, when computing a β-isogeny ϕ : A → A′ in the Hilbert case,
we are only given the Igusa invariants of A and A′. Constructing potentially
Hilbert-normalized curves is then equivalent to making a choice of real multipli-
cation embedding for each abelian surface. If these embeddings are incompatible
via ϕ, we obtain antidiagonal matrices when computing the tangent matrix; in
this case, we apply the change of variables x 7→ 1/x on one of the curve equa-
tions to make them compatible. Even if they are compatible, ϕ will be either a
β- or a β-isogeny depending on the choices of real multiplication embeddings.
Therefore we really obtain four candidates for the tangent matrix, among which
only one is correct.

4 Moduli spaces and the deformation map

In this section, we use the language of algebraic stacks to show how to compute
the deformation map of a given isogeny ϕ, and to show its relation with the
tangent map dϕ, for abelian schemes of any dimension over any base.

We start by recalling well-known and general facts about separated Deligne–
Mumford stacks and their coarse moduli spaces (§4.1). Then we recall the
properties of several moduli stacks for principally polarized abelian schemes
of dimension g, namely Ag (abelian schemes with no extra structure), Ag,n

(abelian schemes with a level n structure), Ag(ℓ) (abelian schemes endowed
with the kernel of an ℓ-isogeny), and their coarse moduli schemes Ag, Ag,n,
Ag(ℓ) (§4.2). In particular, we have a map at the level of algebraic stacks,

Φℓ = (Φℓ,1,Φℓ,2) : Ag(ℓ) → Ag ×Ag

sending (A,K) to (A,A/K) such that both Φℓ,1 and Φℓ,2 are étale. Therefore,
for an ℓ-isogeny ϕ seen as a point of Ag(ℓ), the deformation map

D(ϕ) = dΦℓ,2(ϕ) ◦ dΦℓ,1(ϕ)
−1
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is well-defined at the level of stacks. However, the induced maps at the level of
coarse spaces,

(Φℓ,1,Φℓ,2) : Ag(ℓ) → Ag ×Ag

are not étale everywhere, so that we can only recover the deformation map on
an open set of the coarse spaces (see Corollary 4.10). In the genus 2 case, when
we work with the modular polynomials Ψℓ,i from Section 2.6, this phenomenon
worsens; still, we can give precise conditions on the isogeny that ensure genericity
in the sense of Definition 3.18 (see Proposition 4.13). We also extend these
results to the Hilbert case.

After that, we give the general relation between the tangent map and the
deformation map of a given ℓ- or β-isogeny (§4.3). Finally we show that in di-
mension 2, the relations between modular forms and covariants given in Propo-
sition 3.12 hold over Z and not only over C (§4.4). This allows us to give an
explicit version of the Kodaira–Spencer isomorphism over any base (§4.5), that
we could use for instance to construct explicit families of abelian varieties with
real multiplication.

In summary, this section explains the relationship between the fine moduli
space Ag(ℓ) and its coarse moduli space Ag(ℓ), and the geometric meaning of
the genericity conditions of Theorem 1.1; moreover it gives a purely algebraic,
rather than analytic, interpretation of the results of Section 3. Another way
to extend the results of Section 3 over any base would be to lift the isogeny to
characteristic zero (in the case of fields), then interpolate between fibers using
rigidity; however, we find that the moduli-theoretic approach is superior as it
provides more geometric insight.

4.1 Coarse moduli spaces

In this paper, we always assume stacks to be of finite type over a Noetherian
base scheme. Let X be a separated Deligne–Mumford stack over S; we recall
that an Artin stack is Deligne–Mumford if and only if its diagonal is unramified
[The18, Tag 06N3]. Here we summarize well-known results on the geometry
of X and its coarse moduli space.

By a point x of X , we mean a point of the underlying topological space |X |,
and we implicitly take a representative Spec k → X of x. For any scheme T ,
a T -point of X is a morphism T → X . We denote by IX the inertia stack
of X , and if x is a point of X , we denote by Ix the pullback of IX to x;
this pullback is simply the space Aut(x) of automorphisms, or stabilizers, of x.
Since we assume X separated, Ix is in fact finite. The stabilizer Ix does not
depend on the representative chosen since Ix is the pullback of the residual gerbe
Gx → k(ξ) at x through Spec k → Spec k(ξ): see [LM00, Ch. 11], [The18, Tag
06ML]. We identify open substacks of X with the underlying open topological
spaces of |X | [The18, Tag 06FJ].

We recall that a map f : X → Y is representable if and only if the induced
map IX → X ×Y IY is a monomorphism [The18, Tag 04YY]. Also, if f
is unramified, then its diagonal is étale by [The18, Tag 0CIS] and [Ryd11];
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hence the map IX → X ×Y IY is étale. Therefore, if f is representable and
unramified, then the map IX → X ×Y IY is an open immersion.

A coarse moduli space X of X is an algebraic space X endowed with a map
π : X → X such that π is categorical and induces a bijection π : X (k) → X(k)
for every algebraically closed field k. We also use the following terminology from
[MFK94] (see also [KM97, Def. 1.8] and [Ryd13, Defs. 2.2 and 6.1]): a map
q : X → Z is topological if q is a universal homeomorphism, and geometric if it
is topological and furthermore OZ → q∗OX is an isomorphism. A GC quotient
is a geometric quotient that is also (uniformly) categorical; in particular, its
image is a coarse moduli space ([KM97, Def. 1.8] and [Ryd13, Def. 3.17 and
Rem. 3.18]).

Theorem 4.1. Let X → S be a separated Deligne–Mumford stack.

(i) (Keel–Mori). There exists a coarse moduli space π : X → X, where X is
of finite type over S. The map π is a GC quotient, is proper, quasi-finite
and separated; moreover the construction is stable under flat base change.

(ii) Let x ∈ X(k) be a point, and let Ix be the stabilizer of any point in X

above x. Then étale-locally around x, X is a quotient stack by Ix and X
is a geometric quotient by Ix. More precisely, there is an affine scheme U ,
an étale morphism U → X whose image contains x, and a finite morphism
V → U with an action of Ix on V such that XU := X ×X U = [V/Ix] is
an Ix-quotient stack, and U = V/Ix.

Proof. Theorem 4.1.(i) is valid for Artin stacks with finite inertia; the original
proof is in [KM97], and reformulations of the proof using the language of stacks
rather than groupoids are given in [Con05], [Ryd13] and [The18, Tag 0DUK].
Since X is a separated Deligne–Mumford stack, its inertia IX is finite, so the
Keel–Mori theorem applies.

For Theorem 4.1.(ii), see [AV02, Lem. 2.2.3] which shows that X is locally
a quotient, and [Ols06, Thm. 2.12] which shows that we can take the quotient
to be a quotient by Ix. If V = SpecR, then V/Ix is the affine scheme SpecRIx .
The fact that U = (SpecR)/Ix then follows easily from the theory of quotients
of affine schemes: see for instance [Ryd13, §4] or [DR73, §I.8.2.2]. See also
[The18, Tag 0DU0] for extensions of this result in the case of quasi-DM stacks,
and [AHR19; AHR20] for a far reaching generalization.

By Zarsiki’s main theorem, the coarse moduli space X is characterized by
the fact that π : X → X is proper and quasi-finite, and OX ≃ π⋆OX on the
étale site [Con05, §1].

The formation of coarse moduli spaces is not stable under base change in
general. This causes problems when reducing coarse moduli spaces, defined for
instance over Z, modulo a prime p, as the morphism SpecFp → SpecZ is not
flat. Coarse moduli spaces have better properties in the case of tame stacks.

The stack X is said to be tame [AOV08] if the map π : X → X is cohomo-
logically affine; in particular it is a good moduli space in the sense of [Alp13]. A
finite fppf group scheme G/S is linearly reductive if BG→ S is tame ([MFK94],
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[AOV08, Def. 2.4], [Alp13, Def. 12.1]). In [AOV08], it is shown that G/S is
linearly reductive if and only if its geometric fibers are geometrically reductive,
if and only if its geometric fibers are locally (in the fppf topology) a split exten-
sion of a constant tame group by a group of multiplicative type. If x ∈ X (k) is
a geometric point of X , we say that x is a tame point of X if x has a linearly
reductive stabilizer.

Theorem 4.2. Let X → S be a separated Deligne–Mumford stack, and let
π : X → X be its coarse moduli space.

(i) If every geometric point of X is tame, then X is tame. If X is tame, then
the formation of its coarse space commutes with arbitrary base change.

(ii) More generally, if x ∈ X (k) is tame, then there is an open tame sub-
stack U of X containing x. Furthermore, the image of U in X is Cohen–
Macaulay.

(iii) The map π : X → X is always an adequate moduli space in the sense
of [Alp14]. In particular, if T → S is a morphism of algebraic spaces,
XT denotes the base change of X to T and XT denotes the coarse mod-
uli space of XT , then the natural map XT → X ×S T is an universal
homeomorphism.

Proof. Theorems 4.2.(i) and 4.2.(ii) are proved in the case of Artin stacks with
finite inertia in [AOV08]. The openness of tame points is the main result of this
paper [AOV08, Thm. 3.2, Prop. 3.6]. Since we restrict to separated Deligne–
Mumford stacks, it also follows from Theorem 4.1.(ii). Formation of the coarse
moduli space commutes with pullbacks in the tame case by [AOV08, Cor. 3.3].

If x is a tame point of X , then by the local structure theorem, étale-locally
around x, there is an open substack of the form U = [V/Ix], and Ix is linearly
reductive. By the Hochster–Roberts theorem [MFK94, Appendix 1.E], the affine
scheme V/Ix is Cohen–Macaulay. Being Cohen–Macaulay is a local notion for
the étale topology, so the image of U in X is also Cohen–Macaulay.

Finally, Theorem 4.2.(iii) is proved in [Alp14], which shows that the coarse
moduli space of an Artin stack with finite inertia is always an adequate moduli
space. The natural map XT → X ×S T is then an adequate homeomorphism
in the sense of [Alp14], and in particular is a universal homeomorphism [Alp14,
Main Theorem].

Corollary 4.3. Let X be a separated Deligne–Mumford stack.

(i) The set U of points x such that Ix is trivial is an open substack of X

(which may be empty), and π : U → π(U ) is an isomorphism.
(ii) Let x ∈ X (k) be a point, and let ÔX ,x be the strict Hensel ring of X

at x. Then
ÔX,x = ÔIx

X ,x. (1)

In particular, if X is a normal, then its coarse moduli space is normal.

Proof. These two statements are immediate consequences of Theorem 4.1.(ii).
For Corollary 4.3.(ii), see also [DR73, §I.8.2.1] which states that the kernel of
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the action of Ix acting on ÔX ,x is exactly the set of automorphisms of x that
can be extended to Spec ÔX ,x → X .

Finally, we know when an étale map between algebraic stacks induces an
étale map on their coarse moduli spaces.

Theorem 4.4 (Luna’s fundamental lemma). Let f : X → Y be a representable
and unramified morphism of separated Deligne–Mumford stacks. Then the set
of points where f is stabilizer preserving, meaning that the monomorphism on
inertia Ix → If(x) induced by f is an isomorphism, is an open substack U of X .
The morphism IU → IY ×Y U induced by f is an isomorphism.

If f is étale and U = X , that is if f is stabilizer preserving at every point,
then the induced map on coarse spaces f0 : X → Y is étale, and even strongly
étale; in other words X = X ×Y Y .

Proof. The fact that U is open is [The18, Tag 0DUA], [Ryd13, Prop. 3.5].
Since X and Y are separated Deligne–Mumford stacks, the induced map is
étale by Corollary 4.3.(ii).

The general case of Artin stacks with finite inertia is treated in [Ryd13,
Prop. 6.5 and Thm. 6.10]. In this reference, stabilizer preserving is called fixed
point reflecting, but we prefer to use the terminology of the Stacks project
[The18, Tag 0DU6]. The fact that f0 is strongly étale comes from the cartesian
diagram in [Ryd13, Thm. 6.10]. See also [AHR19, Thm. 3.14] where this is
proved in a more general setting.

Remark 4.5. If f : X → Y is proper (resp. finite), then the induced map
f0 : X → Y is proper (resp. finite), because the maps from X and Y to their
coarse moduli spaces are proper quasi-finite [The18, Tag 02LS], [Gro64, EGA
IV.8.11.1]).

Remark 4.6. If x is a tame smooth k-point of X , then by Luna’s étale slice
theorem ([Lun73], [AHR20, Thm 1.1 and Thm 2.1], [AHR19, Thm 19.4]), the
étale local structure of Theorem 4.1.(ii) takes a particularly nice form. Indeed,
taking an étale local presentation XU = [V/Ix] as in Theorem 4.1.(ii), then
(possibly after an étale extension of k and after shrinking V ) there is a strongly
étale morphism [V/Ix] → [TxX /Ix] which sends x to 0, where Ix acts via its
natural linear action on TxX . In particular, étale locally around x the map
π : X → X is given by [TxX /Ix] → TxX /Ix.

4.2 Moduli stacks of abelian varieties

In this section, we apply the general results gathered in §4.1 to the case of
moduli spaces of abelian schemes. This allows us to investigate the properties
of the map Φℓ on coarse moduli spaces in the Siegel case, and its analogue Φβ

in the Hilbert case.
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4.2.1 Siegel stacks

Recall that we denote by Ag the moduli stack of principally polarized abelian
varieties, and by Ag,n the moduli stack of principally polarized abelian varieties
with a level n symplectic structure; here we mean a level (Z/nZ)2g structure
as in [FC90] rather than a (Z/nZ)g × µg

n structure as in [Mum71; de 93], so
that Ag,n is defined over Z[1/n] rather than over Z. Both Ag and Ag,n are
separated Deligne–Mumford stacks, and moreover Ag,n is smooth over Z[1/n]
with φ(n) geometrically irreducible fibers [FC90].

We denote by Ag, Ag,n their corresponding coarse moduli spaces. By Mum-
ford’s Geometric Invariant Theory [MFK94], they are quasi-projective schemes.
We can extend Ag,n over Z by taking the normalization of Ag in Ag,n/Z[1/n],
as in [Mum71; DR73; de 93]. Over C, the analytification of Ag is the Siegel
space Hg/ Sp2g(Z) seen as an orbifold.

If n ≥ 3, then the inertia of the stack Ag,n is trivial. Therefore Ag,n is
isomorphic to Ag,n by Corollary 4.3.(i), and Ag,n is smooth over Z[1/n]. This
shows in particular that there is a p0 such that Ag is tame at every abelian
variety defined over a field of characteristic p ≥ p0.

If n ≤ 2, then the generic automorphism group on Ag,n is µ2. We can
rigidify Ag,n by µ2 in such a way that Ag,n → [Ag,n/µ2] is a µ2-gerbe [AOV08,
Appendix A]. The map Ag,n → Ag,n factors through [Ag,n/µ2], so the coarse
moduli space of [Ag,n/µ2] is still Ag,n. By Theorem 4.1.(ii) or Theorem 4.2.(ii),
there exists an affine étale open scheme U above Ag,n whose image is dense and
contains all points with only generic automorphisms. Then [Ag,n/µ2] → Ag,n

becomes an isomorphism over U by Corollary 4.3.(i). Since [Ag,n/µ2] is smooth,
the image of U in Ag,n is also smooth by étale descent.

We now proceed to construct the moduli stack Ag(ℓ) parametrizing ℓ-isogenies.
If Γ is a level subgroup of Sp2g(Ẑ), and n is an integer such that the level sub-
group Γ(n) is contained in Γ, we define Ag,Γ/Z[1/n] as the quotient stack [Ag,n/Γ̃]

where Γ̃ is the image of Γ in Sp2g(Z/nZ). A T -point of [Ag,n/Γ̃] corresponds to
an abelian scheme A/T which is étale-locally endowed with a level n structure
modulo the action of Γ̃ [DR73, §IV.3.1]. The maps Ag,n → Ag,Γ and Ag,Γ → Ag

are finite, étale, and representable [DR73, §IV.2, §IV.3]. We can extend Ag,Γ

to Z by normalization, as we did for Ag,n. We can check as in [DR73, §IV.3.6]
that the definition does not depend on the integer n such that Γ(n) ⊂ Γ.

We apply this construction to Γ = Γ0(ℓ), the standard level subgroup en-
coding ℓ-isogenies, and we denote by Ag(ℓ) := Ag,Γ0(ℓ) the resulting stack. The
stack Ag(ℓ) is smooth over Z[1/ℓ]. We denote by

Φℓ = (Φℓ,1,Φℓ,2) : Ag(ℓ) → Ag ×Ag

the map (A,K) 7→ (A,A/K).

Proposition 4.7. 1. The maps Φℓ,1 and Φℓ,2 are finite, étale and repre-
sentable.

2. Let x ∈ Ag(ℓ)(k) be a point represented by (A,K), and let K ′ ⊂ A/K be
the kernel of the contragredient isogeny. Then Φℓ,1 is stabilizer preserving
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at x if and only if all automorphisms of A stabilize K, and Φℓ,2 is stabilizer
preserving at x if and only if all automorphisms of A/K stabilize K ′.

Proof. The automorphisms of x in Ag(ℓ) are exactly the automorphisms of A
stabilizing K. In particular Φℓ,1 induces a monomorphism of the automorphism
groups, so is representable; it is stabilizer preserving if and only if all automor-
phisms of A stabilize K.

If α is an automorphism of (A,K), then α descends to A′ = A/K, so Φℓ,2

is representable as well. An automorphism of A′ comes from an automorphism
of A if and only if it stabilizes K ′, hence the condition for Φℓ,2 to be stabilizer
preserving.

Finally, the map Φℓ,1 is finite étale because it is of the form Ag,Γ → Ag

for Γ = Γ0(ℓ). Denote by π1 : Xg → Ag the universal abelian scheme, and by
πℓ : Xg(ℓ) → Ag(ℓ) the universal abelian scheme with a Γ0(ℓ)-level structure.
Then the universal isogeny f : Xg(ℓ) → Xg ×Ag

Ag(ℓ) is separable over Z[1/ℓ].
If we let s1 : Ag → Xg and sℓ : Ag(ℓ) → Xg(ℓ) be the zero sections, then we
have

Φℓ,2 = Φℓ,1 ◦ π1 ×Ag
Ag(ℓ) ◦ f ◦ sℓ.

Therefore Φℓ,2 : Ag(ℓ) → Ag is finite étale as well.

The map Φℓ induces a map Φℓ : Ag(ℓ) → A
2
g on the coarse moduli spaces.

This map is not injective, but the same reasoning as in [DR73, §VI.6] shows
that it is generically radicial, and even a birational isomorphism. The open
subscheme U of Ag(ℓ) where Φℓ is an embedding is dense in every fiber of
characteristic p ∤ ℓ.

Proposition 4.8. Let Ψ0 denote the schematic image of Φℓ. Then Ag(ℓ) is
the normalization of Ψ0. If x0 lies in the image, then Φℓ : Ag(ℓ) → Ψ0 induces
a local isomorphism around x0 if and only if x0 is normal in Ψ0.

Proof. The map Ag(ℓ) → Ψ0 is separated quasi-finite, and birational by the dis-
cussion above. Since Ag(ℓ) is normal by Corollary 4.3.(ii), we deduce that Ag(ℓ)
is the normalization of Ψ0 by Zariski’s main theorem [Gro64, Cor. IV.8.12.11].

If Φℓ induces a local isomorphism at x0, then x0 is normal since Ag(ℓ) is
normal. In fact it suffices to ask that Φℓ : Ag(ℓ) → Ψ0 is étale at x, because
normality is a local notion in the smooth topology [The18, Tag 034F]. The
converse also follows from Zariski’s main theorem [Gro64, Cor. IV.8.12.10 and
Cor. IV.8.12.12]: there exists an open neighborhood U of x0 in Ψ0 such that
the map Φ

−1
ℓ (U) → U is an isomorphism.

If x is a point of Ag(ℓ) or Ag, we abuse notation by also calling x its reduction
to the associated coarse moduli space.

Proposition 4.9. Let x be a k-point of Ag(ℓ).

1. Assume that Φℓ,1 is stabilizer preserving at x. Then:

• The map Φℓ,1 is strongly étale at x, and the point x is smooth
in Ag(ℓ) if and only if Φℓ,1(x) is smooth in Ag.
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• The point x0 = Φℓ(x) is normal in Ψ0 if and only if the projection
p1 : Ψ0 → Ag is étale at x0.

• If Φℓ,1(x) is represented by an abelian variety A defined over k, then
the isogeny ϕ : A→ A′ representing x is also defined over k.

2. Assume that Φℓ,1(x) only has generic automorphisms. Then Φℓ,1 is sta-
bilizer preserving at x, the point x is smooth in Ag(ℓ), and the map
Ag(ℓ) → Ag(ℓ) (resp. Ag → Ag) is étale at x (resp. at Φℓ,1(x)).

Proof. The first part of Item 1 comes from Theorem 4.4: in this case, the
map Φℓ,1 is étale at x, and Φℓ,1 is étale-locally around x the pullback of Φℓ,1

by the map Ag(ℓ) → Ag(ℓ).
For the second part, we know that Φℓ,1 = p1 ◦Φℓ is étale at x, and we have

seen in Proposition 4.8 that Φℓ is étale at x if and only if x0 is normal in Ψ0.
Therefore x0 is normal in Ψ0 if and only if p1 is étale at x0.

The final part of Item 1 comes from [DR73, §VI.3.1]. Indeed, if (A,K)
represents x over k, the obstruction for (A,K) to descend over k is given by
an element in H2(Spec k,Aut(x)) in the sense of Giraud. But this obstruction
vanishes since Φℓ,1(x) is represented by A/k, and the automorphism groups of x
and Φℓ,1(x) are equal. The set of isomorphism classes over k is then canonically
given by H1(Spec k,Aut(x)).

If y = Φℓ,1(x) only has generic automorphisms, then x too, so Φℓ,1 is stabi-
lizer preserving at x. The rigidification Ag → [Ag/µ2] is étale (it is a µ2-gerbe)
and [Ag/µ2] → Ag is an isomorphism above y by Corollary 4.3.(i). Therefore
Ag → Ag is étale at y, and y is smooth in Ag. By the same reasoning, the map
Ag(ℓ) → Ag(ℓ) is étale at x.

Proposition 4.9 also holds for Φℓ,2 in place of Φℓ,1.

Corollary 4.10. Let x be a k-point of Ag(ℓ) such that both Φℓ,1(x) and Φℓ,2(x)
only have generic automorphisms. Then x is a smooth k-point of Ag(ℓ), the
points Φℓ,1(x) and Φℓ,2(x) are both smooth k-points of Ag, and we have a
commutative diagram

TΦℓ,1(x)(Ag) Tx(Ag(ℓ)) TΦℓ,2(x)(Ag)

TΦℓ,1(x)(Ag) Tx(Ag(ℓ)) TΦℓ,2(x)(Ag)

dΦℓ,2dΦℓ,1

dΦℓ,2dΦℓ,1

where the vertical arrows are isomorphisms induced by the maps Ag(ℓ) → Ag(ℓ)
and Ag → Ag. In particular, the deformation map of the isogeny ϕ represent-
ing x is given by D(ϕ) = dΦℓ,2(x) ◦ dΦℓ,1

−1(x).
Furthermore, let Ψ0 ⊂ Ag ×Ag be the image of Φℓ, denote by p1, p2 : Ψ0 →

Ag the two projections, and let x0 = Φℓ(x). If Ψ0 is normal at x0, then the
deformation map D(ϕ) is given by dp2(x0) ◦ dp1(x0)−1.
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Proof. For the first part, apply Proposition 4.9 for both Φℓ,1 and Φℓ,2. For the
second part, if Ψ0 is normal at y, then Φℓ : Ag(ℓ) → Ψ0 is an isomorphism
around x0 by Proposition 4.8.

Remark 4.11. Let x be a k-point of Ag(ℓ) such that both Φℓ,1 and Φℓ,2 are
stabilizer preserving at x. Let y1 = Φℓ,1(x), y2 = Φℓ,2(x), and let y′1, y

′
2 be

lifts of y1, y2 to Ag. Let G = Ix be the common automorphism group of these
objects. Even if G contains non-generic automorphisms, strong étaleness still
allows us to compute the deformation map by looking at the coarse spaces, as
follows.

Indeed, suppose that x is smooth in Ag(ℓ) (equivalently, by Proposition 4.9,
y1, or y2, is smooth in Ag). Then, the same reasoning as in Corollary 4.10
holds for x, except that in the commutative diagram the vertical maps are not
isomorphisms, since the maps to the coarse moduli spaces are not étale at x and
its images. From strong étaleness, the maps on the bottom are isomorphisms,
and it remains to explain how to recover the maps on the top from them.

Let B1 be the completed local ring of Ag at y′1. Then by Corollary 4.3.(ii),
the completed local ring of Ag at y1 is BG

1 . Therefore, given m = g(g + 1)/2
uniformizers u′1, . . . , u

′
m of Ag at y′1, we obtain g(g+1)/2 uniformizers of Ag at

y1 as G-invariant polynomials in u′1, . . . , u
′
m. Knowing these polynomials and

proceeding in the same way at y2 allows us to recover the deformation map at
the level of stacks up to an action of non-generic elements of G, which amounts
to changing the lifts y′1 and y′2.

In practice, it may be more convenient to work at the level of stacks to re-
cover the deformation map directly, rather than using G-invariants uniformizers
on Ag. Algorithmically, the choice depends on the degree of the field extension
one has to take to add enough level structure to rigidify the stack. For instance,
if g = 2 and k is a finite field, we only need an extension of degree at most 6 to
get the 2-torsion, whereas over a number field this could take an extension of
degree up to 720.

Remark 4.12. Let k be a field. Then Proposition 4.9 and Corollary 4.10 also
apply to the map Ag(ℓ)

(k) → A
(k)
g × A

(k)
g , where Ag(ℓ)

(k) and A
(k)
g are the

coarse moduli space of Ag(ℓ)⊗ k and Ag ⊗ k respectively. In practice this does
not change the results much, since at points x with generic automorphisms, we
know that A

(k)
g is isomorphic to Ag ⊗ k locally around x by Theorem 4.2.(ii).

Moreover, if the characteristic of k is large enough, then all points above k are
tame, so A

(k)
g = Ag ⊗ k by Theorem 4.2.(i).

Now assume that we are in the situation of Remark 4.11, with x a k-point
of Ag(ℓ) such that both Φℓ,1 and Φℓ,2 are stabilizer preserving at x. Assume
furthermore that x is a tame point, and that the characteristic of k is p. Let
x0 = Φℓ(x). If Φℓ is étale at x, or equivalently x0 is normal in Ψ0, then Φℓ is
étale above lifts in characteristic 0 of x. The converse is also true: if x0 is not
normal, then it must come from a singular point in characteristic zero. Indeed,
normality is equivalent to the conditions S2 and R1; since Ψ0 ⊗ k is reduced, so
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is S1 and R0, it suffices to check normality at lifts of characteristic zero. This
generalizes the remark of [Sch95, p. 248].

4.2.2 Birational invariants for abelian surfaces

In the case g = 2, the structure of the coarse moduli space A2 and the possible
automorphism groups have been worked out explicitly.

Recall that the Jacobian locus, denoted by M2, is the open locus in A2

consisting of Jacobians of hyperelliptic curves. Igusa showed in [Igu60] that

M2 = Proj[J2, J4, J6, J8, J10]/(J2J6 − J2
4 − 4J8)(J10),

and that there is only one singular point of M2 over Z, given by the hyperelliptic
curve C0 : y2 = x5 − 1, which corresponds to the point J2 = J4 = J6 = J8 = 0.
Over C, in [Igu62], Igusa shows that A2 has also in its singular locus two
projective lines which represent products of elliptic curves, one of which being
isomorphic to y2 = x3 − 1 or to y2 = x4 − 1. Finally, the structure of A2 over Z
is described in [Igu79], but the singular locus is not determined.

The possible (reduced) groups of automorphisms of genus 2 curves over an
algebraic closure are determined in [Igu60, §VIII]; see also [Liu93, §4.1]. We
restrict to a characteristic different from 2. Define C0 : y2 = x5 − 1 and
C1 : y2 = x5 − x. Then every curve C not isomorphic to C0 or C1 satisfies
#Aut(C) ∈ {2, 4, 6}. In characteristic different from 5, we have Aut C0 = Z/10Z
and #Aut C1 ∈ {6, 8}. In characteristic 5, Aut C1 is an extension of PGL2(F5),
which has cardinality 120, by Z/2Z. In particular we see that in characteristic 0
and p > 5 all curves have a tame automorphism group.

From [Igu60; Str10; GL12], the covariants I2, I4, I ′6, I10 are defined over Z.
They are zero modulo 2, and I2, I4, I ′6 are all polynomials in J2 modulo 3.
Therefore the Igusa invariants j1, j2, j3 have bad reduction modulo 2 and do
not generate the function field of M2 modulo 3. Over Z[1/6] however, they are
birational invariants, and determine an isomorphism from U = {I4 6= 0} ⊂ M2

to {j3 6= 0} ⊂ A3. Every point with I4 = 0 maps to (j1, j2, j3) = (0, 0, 0).
The modular polynomials Ψℓ,i from §2.6 are equations for the image Ψ0 ⊂

Ag ×Ag of Φℓ intersected with U × U in A3 × A3 via j1, j2, j3.

Proposition 4.13. Let Ψ1 denote the normalization of the variety cut out by
the modular polynomials Ψℓ,i. Let ϕ : A → A′ be an ℓ-isogeny over a field k of
caracteristic p > 5 or zero, and let x be the k-point of Ψ1 corresponding to ϕ.
Assume that A and A′ are Jacobians with no extra automorphisms and that
A,A′ ∈ U . Then the deformation map D(ϕ) of ϕ is given by dp2(x) ◦ dp1(x)−1,
where p1, p2 denotes the projections Ψ1 ⊗ k → A3

k.

Proof. By assumption, the Igusa invariants induce an isomorphism between the
tangent spaces TA(Ag) and Tj(A)(A

3
k), and similarly for A′. Since A and A′ have

no extra automorphisms, Φℓ,1 and Φℓ,2 are automatically stabilizer preserving.
The normalization Ψ1 is isomorphic to the preimage of U × U in the coarse
moduli space Ag(ℓ) by the discussion before Proposition 4.9. Since ϕ is a tame
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point, by Theorem 4.2.(ii), Ψ1⊗k is still the coarse moduli space of Ag,Γ0(ℓ)⊗k
locally around ϕ, so we conclude by Proposition 4.9.

Remark 4.14. We summarize different incarnations of the deformation map.

• At the level of stacks, the two projections Φℓ,1,Φℓ,2 : Ag(ℓ) → Ag are
always étale and we can always compute the deformation map at an
isogeny ϕ as dΦℓ,2(ϕ) ◦ dΦℓ,1(ϕ)

−1.

• At the level of the coarse moduli space Ag(ℓ), we can still compute the
deformation map at the points where Φℓ,1 and Φℓ,2 are stabilizer preserv-
ing. If this is not the case, we must add a level structure that kills the
automorphisms that do not stabilize the kernel of the isogeny.

• We may then replace Ag(ℓ) by its birational image in A
2
g. We recover

the deformation map at points x ∈ A
2
g where there is a local isomorphism

Φ
−1
ℓ (U) → U for some open set U containing x. If this is not the case,

we may instead recover Ag(ℓ) from its birational image by computing the
normalization. It is usually enough to compute the normalization once
and for all over Z, since by Theorem 4.2 the formation of Ag(ℓ) commutes
with arbitrary base change at tame points.

• Finally, when g = 2, we can use the birational morphism from A2 to A3

given by the three Igusa invariants. Modular polynomials are usually given
in this form. With Streng’s version of Igusa invariants, they can be used
as long as I4 6= 0, i.e. j3 6= 0. Otherwise, one has to compute the modular
polynomials for another set of invariants which are defined at A and A′.

As we go down the list, modular equations become algorithmically more
tractable, at the expense of introducing more exceptions; but if we find such an
exception, we can always spend more computation time if needed in order to
recover the deformation map.

4.2.3 Hilbert–Blumenthal stacks

We now briefly describe Hilbert–Blumenthal stacks, and refer to [Rap78; Cha90]
for more details. Let K be a real number field of dimension g, and let ZK be its
maximal order. We say that an abelian scheme A → S has real multiplication
by ZK (or, for short, is RM) if it is endowed with a morphism ι : ZK → End(A)
such that Lie(A) is a locally free ZK ⊗OS-module of rank 1. This last condition
can be checked on geometric fibers [Rap78, Rem. 1.2] and is automatic on fibers
of characteristic zero [Rap78, Prop. 1.4].

We let Hg be the stack of principally polarized abelian schemes with real
multiplication by ZK . It is algebraic and smooth of relative dimension g over
SpecZ [Rap78, Thm. 1.14]. Moreover, Hg is connected and its generic fiber is
geometrically connected [Rap78, Thm. 1.28]. Forgetting the real multiplication
embedding ι yields a map Hg → Ag, called the Hilbert embedding, which is an
Isom(ZK ,ZK) ≃ Gal(K)-gerbe over its image, the Humbert stack. We described
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the analytification of Hg and the Hilbert embedding in Section 2. The map from
Hg → Ag is finite by [Gro64, EGA IV.15.5.9], [DR73, Lem 1.19] (or by looking
at the compactifications of [Rap78], [FC90]).

One can define the stack Hg,n → Z[1/n] of RM abelian schemes with a
level n structure in the usual way. The map Hg,n → Hg is étale over Z[1/n]
[Rap78, Thm. 1.22], its generic fiber is connected, and geometrically has φ(n)
components defined over Q(ζn) [Rap78, Thm. 1.28]. If β is a totally positive
prime of ZK , this allows us to construct, in a similar fashion to Ag(ℓ), the
stack Hg(β) = Hg,Γ0(β) of RM abelian schemes endowed with a subgroup K
which is maximal isotropic for the β-pairing. We have a map

Φβ = (Φβ,1,Φβ,2) : Hg(β) → Hg × Hg

given by forgetting the extra structure and taking the isogeny respectively. The
condition on β ensures that Φβ,2 sends Hg(β) to Hg.

The methods of Section 4.2.1 also apply to compute the Hilbert deformation
map. We have the following analogue of Corollary 4.10, with a similar proof.

Proposition 4.15. Let x be a k-point of Hg(β) such that Φβ,1(x) and Φβ,2(x)
only have generic automorphisms. Then x maps to a smooth point of the coarse
moduli space Hg(β), both Φβ,1(x) and Φβ,2(x) map to smooth points of the
coarse moduli space Hg, and we have a commutative diagram

TΦβ,1(x)(Hg) Tx(Hg(β)) TΦβ,2(x)(Hg)

TΦβ,1(x)(Hg) Tx(Hg(β)) TΦβ,2(x)(Hg)

dΦβ,2dΦβ,1

dΦβ,2dΦβ,1

where the vertical arrows are isomorphisms induced by the maps Ag(ℓ) → Ag(ℓ)
and Ag → Ag, and Φβ,i is the map induced by Φβ,i at the level of coarse spaces.
In particular, the deformation map of the isogeny ϕ representing x is given by
D(ϕ) = dΦβ,2(x) ◦ dΦβ,1

−1(x).

Corollary 4.16. Let x be a k-point of Hg(β) such that both x1 = Φβ,1(x)
and x2 = Φβ,2(x) only have generic automorphisms. Assume furthermore that
(x1, x2) does not lie in Φβ(Hg(β)): this means that the corresponding abelian

varieties are β-isogenous but not β-isogenous.
Let Ψβ ⊂ Hg ×Hg be the image of Φβ. Let Ψβ,β ⊂ Ag ×Ag be the image

of Ψβ, and let y = (y1, y2) the image of (x1, x2) by the forgetful morphism
Hg×Hg → Ag×Ag. Denote by p1, p2 : Ψβ,β → Ag the two projections. If Ψβ,β

is normal at y, then the deformation map D(ϕ) is given by dp2(y) ◦ dp1(y)−1.

Proof. The map Hg → Ag is finite étale, and under our assumptions the maps
Hg → Hg and Ag → Ag are étale at x1 and x2 (resp. at their images y1, y2
in Ag). Therefore the map Hg × Hg → Ag × Ag is étale at x′ = (x1, x2).
Furthermore the pullback of Ψβ,β by Hg × Hg → Ag × Ag is Ψβ ∪ Ψβ ⊂
Hg×Hg, so the map Ψβ∪Ψβ → Ψβ,β is étale at x′. Since Φβ is finite, its image
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Ψβ ⊂ Hg ×Hg is closed. By our assumption on x, there is an open subscheme
containing x which does not intersect Ψβ , so the map Ψβ → Ψβ,β is étale at x′.
In particular, Ψβ is normal at x′ if and only if Ψβ,β is normal at x. The same
proof as in Corollary 4.10 shows that the projections maps Ψβ → Hg are étale
at x′, and can be used to compute the deformation matrix. Since Hg → Ag

is étale at x1 and x2, the projections p1 and p2 are also étale at y, and can be
used to compute the deformation matrix as well.

4.3 The deformation and tangent maps

In this section, we present the Kodaira–Spencer isomorphism, which for a prin-
cipally polarized abelian variety A identifies TA(Ag) with Sym2(T0(A)). This
yields a relation between the deformation and tangent maps of a given ℓ-isogeny
(Proposition 4.19). We also present an analogous result in the Hilbert case.

4.3.1 The Siegel case

The Kodaira-Spencer morphism was first introduced in [KS58]; we refer to
[FC90, §III.9] and [And17, §1.3] for more details.

Let p : A→ S be a proper abelian scheme, and assume for simplicity that S
is smooth. Then, using the Gauss-Manin connection

∇ : R1p∗ΩA/S → R1p∗ΩA/S ⊗ Ω1
S ,

one can define the Kodaira–Spencer morphism

κ : TS → R1p∗TA/S ,

where TA/S is the dual of Ω1
A/S .

Recall that LieS A = p∗TA/S is the dual of p∗Ω1
A/S , and is canonically iden-

tified with s∗TAS
where s : S → A is the zero section [MvE12, Prop. 3.15]. By

the projection formula [FGI+05, Thm. 8.3.2], [The18, Tag 0943], we have

R1p∗TA/S = LieS(A) ⊗OS
R1p∗OA.

Moreover, R1p∗OA is naturally isomorphic to LieS(A
∨), where A∨ → S is the

dual of A. Therefore, we can also write the Kodaira–Spencer map as

κ : TS → R1p∗TA/S ≃ LieS(A)⊗OS
LieS(A

∨).

The Kodaira-Spencer map κ is invariant by duality. A polarization A → A∨

induces another version of the Kodaira–Spencer map:

κ : TS → Sym2 LieS(A) = HomSym(Ω
1
A/S ,Ω

1∨
A∨/S) = HomSym

(
LieS(A)

∨,LieS(A
∨)
)
.

If we apply this construction to the universal abelian scheme Xg → Ag (or
rather, the pullback of Xg to an étale presentation S of Ag), the Kodaira–
Spencer map is an isomorphism [And17, §2.1.1]. Its analytification can be de-
scribed explicitly.

38

https://stacks.math.columbia.edu/tag/0943


Proposition 4.17. Let V be the trivial vector bundle Cg on Hg, identified with
the tangent space at 0 of the universal abelian variety A(τ) over Hg. Then the
pullback of the Kodaira–Spencer map κ : TAg

→ Sym2 LieS Xg by Hg → Ag
an

is an isomorphism THg
≃ Sym2V given by

κ
(1 + δjk

2πi

∂

∂τjk

)
=

1

(2πi)2
∂

∂zj
⊗ ∂

∂zk
.

for each 1 ≤ j, k ≤ g, where δjk is the Kronecker symbol.

Proof. This is [And17, §2.2]. The identification can be derived by looking at
the deformation of a section s of the line bundle on Xg giving the principal
polarization. On Hg × Cg → Hg, we can take the theta function θ as a section,
and its deformation along τ is given by the heat equation [Cv00, p. 9]:

2πi(1 + δjk)
∂θ

∂τjk
=

∂2θ

∂zj∂zk
.

When identifying the tangent space at τ with the symmetric matrices, the
action of Sym2 at a matrix U on the tangent space is given by M 7→ MUM t.
It is then easy to check that this action is indeed compatible with the action
of Sp2g(Z) on τ and U . From Proposition 4.17, we recover that derivatives of
Siegel modular invariants have weight Sym2 in the sense of §2; moreover the
basis of differential forms ω(τ) from §2.1 and the matrix DτJ defined in §3.4
are correctly normalized.

To sum up, if x : Spec k → Ag is a point represented by a principally polar-
ized abelian varietyA/k, we have a canonical isomorphism TxAg ≃ Sym2(T0(A)).

Definition 4.18. Let k be a field of characteristic distinct from ℓ, let ϕ : A→
A′ be an ℓ-isogeny representing a point of Ag(ℓ)(k), and fix bases of T0(A)
and T0(B) as k-vector spaces. We call the matrix of the tangent map dϕ in
these bases the tangent matrix of ϕ.

By functoriality, this choice of bases induces bases of TA(Ag) and TA′(Ag)
over k. We call the matrix of the deformation map D(ϕ) in these bases the
deformation matrix of ϕ.

We still denote these matrices by dϕ and D(ϕ), but this abuse of notation
should cause no confusion.

We can now extend the relation that we gave in Proposition 3.19 between
the tangent and deformation matrices, as follows.

Proposition 4.19. Let ϕ be as in Definition 4.18, and let dϕ (resp. D(ϕ)) be
its tangent (resp. deformation) matrix. Then we have Sym2(dϕ) = ℓD(ϕ).

Proof. It suffices to prove it for the universal ℓ-isogeny

ϕ : Xg(ℓ) → Xg ×Ag
Ag(ℓ)

over Z[1/ℓ]. All line bundles involved in the relation we have to prove are locally
free on smooth stacks, so are flat over Z; therefore, since Z → C is injective,
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it suffices to prove the relation over C. By rigidity [MFK94, Prop. 6.1 and
Thm. 6.14], it suffices to prove the relation on each fiber.

Hence we may assume that ϕ : A → A′ is an ℓ-isogeny over C. We can find
τ ∈ Hg such that A is isomorphic to Cg/(Zg + τZg) and A′ is isomorphic to
Cg/(Zg + τ/ℓZg), with ϕ induced by the identity on Cg. Then, the deformation
map at ϕ is given by τ → τ/ℓ, so the result follows.

4.3.2 The Hilbert case

In the Hilbert case, the Kodaira–Spencer isomorphism is as follows.

Proposition 4.20. Let A → S be an abelian scheme in Hg. Then we have
canonical isomorphisms

TA(Hg) ≃ HomZK⊗OS
(Lie(A)∨,Lie(A∨)) = Lie(A∨)⊗ZK⊗OS

Lie(A) ⊗ZK
Z∨
K .

Proof. Combine [Rap78, Prop. 1.6] with [Rap78, Prop. 1.9].

Proposition 4.20 shows that for Hilbert–Blumenthal stacks, the deformation
map is actually represented by an element of ZK ⊗ OS rather than a matrix
in OS . The action of the Hilbert embedding on tangent spaces is also easy to
describe.

Proposition 4.21. Let A be a k-point of Hg. Then the map TA(Hg) → TA(Ag)
induced by the forgetful functor fits in the commutative diagram

TA(Hg) TA(Ag)

HomZK⊗Ok
(Lie(A)∨,Lie(A∨)) HomSym(Lie(A)

∨,Lie(A∨)).

where the vertical arrows are the Kodaira–Spencer isomorphisms.

Proof. The bottom arrow is well-defined: Lie(A) is a projective ZK⊗Ok-sheaf of
rank 1, so its image in HomOk

(Lie(A)∨,Lie(A∨)) obtained by forgetting the ZK-
structure is automatically symmetric. We omit the proof of commutativity.

Combining Proposition 4.21 with the analytic description of the Kodaira–
Spencer in the Siegel case (Proposition 4.17) and the analytic description of
the forgetful map (§2.4), we obtain the following analytic description of the
Kodaira–Spencer isomorphism in the Hilbert case.

Corollary 4.22. The pullback of κ : THg
→ Sym2 LieSXg by Hg

1 → Hg
an is

given by

κ
( 1

πi

∂

∂tj

)
=

1

(2πi)2
∂

∂zj
⊗ ∂

∂zj

for every 1 ≤ j ≤ g.
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This result provides an algebraic interpretation of Proposition 3.22: in genus 2,
the part of TA(A2) that comes from the Hilbert space corresponds to the span
of dz1 ⊗ dz1 and dz2 ⊗ dz2.

We obtain the analogue of Proposition 4.19 in the Hilbert case by a similar
proof; in this statement, we see D(ϕ) as an element of a ZK ⊗OS-module.

Proposition 4.23. Let ϕ : A→ A′ be a β-isogeny. Then Sym2(dϕ) = βD(ϕ).

Remark 4.24. We give an algebraic interpretation of the notion of Hilbert-
normalized bases from §2.3, and the reduction to diagonal matrices that we
used in §3.5 to compute the tangent matrix in the Hilbert case.

Let k be a field, and let A be an abelian variety representing a k-point of Hg.
Then Lie(A) is a free ZK⊗k-module of rank 1, and any choice of basis v induces
an isomorphism with ZK ⊗ k itself. Provided that chark ∤ Discr(K), and up to
taking an étale extension of k, we may assume that k splits ZK :

ZK ⊗ k = ⊕g
i=1k

σi

where kσi ≃ k has a ZK-module structure induced by the i-th embedding
σi : ZK → k. We fixed such a trivialization in §2.3 in the case k = C. Then, v in-
duces a basis of Lie(A) as a k-vector space on which ZK acts diagonally, in other
words a Hilbert-normalized basis of Lie(A). With such choices of trivializations,
the deformation map as given by a g×g matrix in the basis (v1⊗v1, . . . , vg⊗vg)
of the tangent spaces to Hg.

Let us discuss, as a generalization of §3.6, the construction of Hilbert-
normalized basis when only the Humbert equation is given. Assume that k
splits ZK and fix a trivialization; let (v1, . . . , vg) be a Hilbert-normalized basis
of Lie(A), let (w1, . . . , wg) be another k-basis and let M be the base-change
matrix. Then w1 ⊗ w1, . . . , wg ⊗ wg are tangent to the Humbert variety if and
only if they are in the image of the map

HomZK⊗Ok
(Lie(A)∨,Lie(A∨)) → HomSym(Lie(A)

∨,Lie(A∨)).

Via the trivialization, the left hand side is isomorphic to ⊕g
i=1 Homk(k

σi , kσi).
So w1 ⊗ w1, . . . , wg ⊗ wg are tangent to the Humbert variety if and only if M
is diagonal up to a permutation. When Gal(K/Q) is not the full symmetric
group Sg, this is not enough in general to ensure that the basis (w1, . . . , wg) is
potentially Hilbert-normalized. This issue does not appear in genus 2.

As a final remark, assume that ϕ : A→ A′ is an isogeny compatible with the
real multiplication, and assume that we are given bases of Lie(A) and Lie(A′)
as ZK ⊗ k-modules (which we assume is étale for simplicity). Then, knowing
Sym2(dϕ), the number of possibilities for dϕ is 2s where s is the number of
connected components of the étale algebra ZK ⊗ k. For instance, if g = 2 and
k = Fp there are 2 or 4 possibilities according to whether p is inert or split
in ZK .
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4.4 Modular forms and covariants

In this section, we give an algebraic interpretation of modular forms and covari-
ants over Z, as well as a completely algebraic proof of Theorem 3.9. This yields
an explicit version of the Kodaira–Spencer isomorphism in the model of Ag

given by Igusa invariants over Z[1/2] and not only over C.
Let π : Xg → Ag be the universal abelian variety. The vector bundle

h = π∗Ω
1
Xg/Ag

over Ag, which is dual to LieXg/Ag
, is called the Hodge bundle. If ρ is a rep-

resentation of GLg, a Siegel modular form of weight ρ is a section of ρ(h); in
particular, a scalar-valued modular form of weight k is a section of Λgh⊗k. In
other words, a Siegel modular form f can be seen as a map

(A,ω) 7→ f(A,ω)

where A is a point of Ag and ω is a basis of differential forms on A, with the
following property: if η : A→ A′ is an isomorphism, and r ∈ GLg is the matrix
of η∗ in the bases ω′, ω, then f(A′, ω) = ρ(r)f(A,ω′). The link with classical
modular forms over C is the following: if τ ∈ Hg, then we define

f(τ) = f
(
Cg/(Zg + τZg), (2πi dz1, . . . , 2πi dzg)

)
.

This choice of basis is made so that the q-expansion principle holds [FC90,
p. 141]. We already used it to define f(A,ω) over C in §2.1. The canonical line
bundle h = Λgh is ample, so modular forms give local coordinates on Ag.

The link between modular forms and covariants comes from the Torelli mor-
phism

τg : Mg → Ag

where Mg denotes the moduli stack of smooth curves of genus g. Let Cg → Mg

denote the universal curve; then the pullback τ∗g h of the Hodge bundle by the
Torelli morphism is π∗Ω1Cg/Mg, with both having canonical action by GLg. In
other words a Siegel modular form of weight ρ induces a Teichmuller modular
form of weight ρ.

Now assume that g = 2. Over Z[1/2], the moduli stack M2 is identified with
the moduli stack of nondegenerate binary forms of degree 6. Let V = Zx⊕ Zy,
let X = det−2 V ⊗ Sym6 V , and let U be the open locus determined by the dis-
criminant. Then U → M2 is naturally identified with the Hodge frame bundle
on M2: in other words, U is the moduli space of genus 2 hyperelliptic curves
π : C → S endowed with a rigidification O⊕2

S ≃ π∗Ω
1
C/S . In this identifica-

tion, we send the binary form f(x, y) to the curve v2 = f(u, 1) with a basis
of differential forms given by (u du/v, du/v) [CFv17, §4]. The natural action
of GL2 on the Hodge bundle corresponds to the action of GL2 on U that we
describe in Section 3.2. This shows why a Siegel modular form of weight ρ pulls
back to a fractional covariant of weight ρ, at least over Z[1/2]. In fact, one
can show as in Theorem 3.9, by considering suitable compactifications, that a
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Siegel modular form pulls back to a polynomial covariant over any ring R in
which 2 is invertible. Using Igusa’s universal form [Igu60, §2], one can also use
binary forms of degree 6 to describe the moduli stack of genus 2 curves even in
characteristic two.

Proposition 4.25. The equality Cov(f8,6) = Cov(χ10)X from Proposition 3.12
holds over Z.

Proof. By the q-expansion principle, f8,6 is defined over Z[1/2, 1/3, 1/5, 1/43];
the covariants I10 and X are defined over Z[1/2] since they have integral co-
efficients. Checking the value of Cov(χ10)X on Igusa’s universal hyperelliptic
curve as in [Igu60, §3] shows that this covariant is even defined over Z. Since the
Hodge bundle is without torsion, it is enough to check equality over C, which is
the content of Proposition 3.12.

This suggests another, entirely algebraic proof of Proposition 3.12. By di-
mension considerations, we have Cov(f8,6) = λCov(χ10)X for some λ ∈ Q×.
We have seen above that Cov(χ10)X is defined over Z and primitive; therefore,
if we can show that the Fourier coefficients of f8,6 are integers with gcd 1, we
will have λ = ±1. In order to obtain λ = 1, we can use Thomae’s formula on
one curve, perform a certified numerical evaluation over C, or study degenera-
tions from hyperelliptic curves to elliptic curves using the formula from [Liu93,
Thm. 1.II].

As a consequence of Proposition 4.25, the identification of derivatives of
Igusa invariants as explicit covariants (Theorem 3.14) still holds over Z[1/2].

For the algebraic interpretation of Hilbert modular forms as sections of the
Hodge bungle on Hg, the Koecher principle and the q-expansion principle for
Hilbert modular forms, we refer to [Cha90, §4] and [Rap78, Thm. 6.7]. We can
check that the relation between derivatives of Igusa invariants on the Hilbert and
Siegel sides (Proposition 3.22) and the characterization of potentially Hilbert-
normalized curves (Proposition 3.24) are still valid over Z[1/2].

4.5 Computing the tangent map in dimension 2

In this section, we work over a field k of characteristic different from 2 and 3;
this restriction is not essential and comes from our choice of invariants. We
have seen that derivatives of Igusa invariants are defined over Z[1/2], and hence
make sense over k. We keep the matrix notations from §3.4.

Proposition 4.26. Let U be the open set of A2 over k consisting of abelian
surfaces A such that Aut(A) = {±1} and j3(A) 6= 0. Let ϕ : A → A′ be an
ℓ-isogeny over k. Assume that A,A′ lie in U , and denote their Igusa invariants
by j, j′. Assume further that the subvariety of A3 × A3 cut out by modular
equations is normal at (j(A), j(A′)). Let C, C′ be hyperelliptic equations over k
whose Jacobians are isomorphic to A,A′ respectively. Then
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1. The isogeny ϕ is generic in the sense of Definition 3.18, in other words
the 3× 3 matrices

DΨℓ,L(j, j
′), DΨℓ,R(j, j

′), DτJ(C) and DτJ(C′)

are invertible.

2. Let dϕ be the tangent matrix of ϕ with respect to C, C′. Then

Sym2(dϕ) = −ℓDτJ(C′)−1 ·DΨℓ,R(j, j
′)−1 ·DΨℓ,L(j, j

′) ·DτJ(C).

Proof. By Corollary 4.10, both A and A′ are smooth points of Ag, and the
deformation map D(ϕ) is dΦℓ,2(ϕ) ◦ dΦℓ,1(ϕ)

−1. Since A has generic auto-
morphisms, A is not a product of elliptic curves; moreover j3(A) 6= 0, so
the birational map (j1, j2, j3) : Ag → A3 is well-defined and étale at A. The
map Ag → Ag is also étale at A, so the Igusa invariants are local uniformizers
around A in Ag. This shows that ϕ is generic in the sense of Definition 3.18.
We obtain the expression of Sym2(dϕ) by Proposition 4.19.

If A lies in the open set U defined in Proposition 4.26 and C is a hyperelliptic
equation for A, then giving an element of TA(Ag) is equivalent to giving one of
the following:

1. A deformation Cǫ of C over k[ǫ]/(ǫ2),

2. The Igusa invariants j1(Cǫ), j2(Cǫ), j3(Cǫ) in k[ǫ]/(ǫ2),

3. If (w1, w2) = (x dx/y, dx/y) is the canonical basis of differential forms
on C, a vector v = αw2

1 + βw1w2 + γw2
2 in Sym2 Ω1(C).

Switching from one representation to another can be done at the cost of O(1)
operations in k using the formulæ for Igusa invariants, the expression of their
derivatives as a covariant, and linear algebra.

In the Hilbert case, it is more difficult to ensure genericity in the sense of
Definition 3.20 because the Hilbert embedding Hg → Ag comes into play. We
assume that k splits ZK , and fix a trivialization of ZK ⊗ k.

Proposition 4.27. Let A,A′ be abelian varieties representing k-points of Hg,
and let C, C′ be hyperelliptic equations over k whose Jacobians are isomorphic to
A,A′ respectively; assume that C, C′ are Hilbert-normalized and that there exists
a β-isogeny ϕ : A→ A′. Then we have

DΨβ,L(j, j
′) ·DtJ(C) = −DΨβ,R(j, j

′) ·DtJ(C′) ·Diag(1/β, 1/β) · (dϕ)2.

Proof. This comes from the relation between the deformation and tangent ma-
trices (Proposition 4.23).

The equality in Proposition 4.27 only allows to compute (dϕ)2 when ϕ is
generic. Even in this case, we get several possible candidates for dϕ up to sign.
The discussion of Remark 4.24 shows that Proposition 3.24, which gives an al-
gorithm to construct potentially Hilbert-normalized curve equations in genus 2,
is still valid over k.
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Remark 4.28. The 3×2 matrices DtJ(C) and DtJ(C′) have rank two when the
Igusa invariants contain uniformizers of Hg atA andA′ by [Gro64, p. IV.17.11.3].
Given the relation between derivatives of Igusa invariants on the Hilbert and
Siegel sides (Proposition 3.24, which is valid over k by Proposition 4.21), this
will be the case at soon as the images of A and A′ in Ag lie in the open set U
from Proposition 4.26.

Assume that generators of the ring of Hilbert modular forms are known, and
the expression of Igusa invariants in terms of these generators is given. Since
modular forms realize a projective embedding of Hg, one can compute from this
data an open set V in Hg where the Igusa invariants contain local uniformizers.
Then, if A lies in V and Aut(A) ≃ {±1}, the Igusa invariants will contain local
uniformizers of Hg, hence DtJ(C) will have rank 2.

In the Hilbert case, if Igusa invariants contain local uniformizers of Hg at A
and if C is a Hilbert-normalized curve equation for A, then giving an element
of TA(Hg) is equivalent to giving

1. A deformation Cǫ of C over k[ǫ]/(ǫ2) with real multiplication by ZK ,

2. Igusa invariants j1(Cǫ), j2(Cǫ), j3(Cǫ) in k[ǫ]/(ǫ2) lying on the Humbert
surface (if j1(C) 6= 0),

3. If (w1, w2) = (x dx/y, dx/y) is the canonical basis of differential forms
on C, a vector v = αw2

1 + γw2
2 in Sym2 Ω1(C).

Switching from one representation to another can be done at the cost of O(1)
operations in k.

5 Computing the isogeny from its tangent map

5.1 General strategy

Assume that we are given the tangent map dϕ of a separable isogeny ϕ : A→ A′

of principally polarized abelian varieties of dimension g defined over a field k.
In general, the task of computing ϕ explicitly may be specified as follows: given
models of A and A′, that is given very ample line bundles LA and LA′ on A
and A′ and a choice of global sections (ai) (resp. (a′j)) which give a projective
embedding of A (resp. A′), express the functions ϕ∗a′j on A as rational fractions
in terms the coordinates (ai).

One method to determine ϕ given dϕ is to work over the formal groups of A
and A′. Let x1, . . . , xg be uniformizers at 0A, and let y1, . . . , yg be uniformizers
at 0A′ . Knowing the map dϕ allows us to express the differential form ϕ∗dyj
in term of the differential forms dxi on A, so the functions ϕ∗a′j satisfy a dif-
ferential system. A possible strategy to solve this differential system is to use a
multivariate Newton algorithm, possibly over an extension of the formal group.
If this algorithm is successful, we recover the functions ϕ∗a′j as power series in
k[[x1, . . . , xg]] up to some precision. The next step is to use multivariate rational
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reconstruction to obtain ϕ as a rational map. In order for the rational recon-
struction algorithm to succeed, the power series precision must be large enough
with respect to the degrees of the result in the variables (ai). These degrees
can be estimated from the intersection degree of ϕ∗LA′ and LA, or alternatively
from the intersection degree of ϕ∗LA and LA′ .

This strategy to compute ϕ is not new: the idea of using a differential
equation to compute isogenies in genus 1 appears in [Elk98], and [BMS+08]
uses a Newton algorithm to solve this differential equation. To the best of our
knowledge, the first article to extend these ideas to genus 2 is [CE15]. The
method is further extended to compute endomorphisms of Jacobians over a
number field in [CMS+19]. In [CMS+19, §6], the endomorphism is represented
as a divisorial correspondence; the interpolation of this divisor is done a bit
differently, via linear algebra on Riemann–Roch spaces.

A necessary condition for the whole method to work is that ϕ be completely
determined by its tangent map. In general, this will be the case when chark
is large with respect to the degree of ϕ. For instance, we have the following
statement in the case of ℓ-isogenies.

Lemma 5.1. Let A and A′ be two principally polarized abelian varieties over a
field k, and M : T0(A) → T0(A

′) a linear map. Assume that that char k = 0 or
chark > 4N . Then there is at most one ℓ-isogeny ϕ : A → A′ with ℓ ≤ N such
that dϕ =M .

Proof. Let ϕ1 and ϕ2 be two such isogenies. Then ϕ1 = ϕ2 + ψ where ψ is
inseparable. If char k = 0, this implies ψ = 0 and hence ϕ1 = ϕ2. Otherwise,
write p = chark and denote by ϕ1 the contragredient isogeny. Then if ψ 6= 0,
we have

ψψ = ϕ2ϕ2 + ϕ1ϕ1 − ϕ1ϕ2 − ϕ2ϕ1.

But ψψ is equal to pm for some m ≥ 1, and ϕ1ϕ1 = ℓ1, ϕ2ϕ2 = ℓ2 with
ℓ1, ℓ2 ≤ N by hypothesis. Therefore we obtain pm ≤ 2N + 2

√
N
√
N = 4N .

In practice, Newton iterations will fail to reach sufficiently high power series
precision if char k is too small, hence the bound given in Theorem 1.1.

In the rest of this section, we carry out this strategy in detail when A,A′ are
the Jacobians of genus 2 hyperelliptic curves C, C′. Concretely, we are given the
matrix of dϕ in the bases of T0(A) and T0(A′) that are dual to ω(C) and ω(C′)
respectively (see §3.1). In this case, a nice simplification occurs: the isogeny ϕ
is completely determined by the compositum

C Jac(C) Jac(C′) C′2,sym A4Q7→[Q−P ] ϕ ∼ m

where P is any point on C, and m is the rational map given by

{(x1, y1), (x2, y2)} 7→
(
x1 + x2, x1x2, y1y2,

y2 − y1
x2 − x1

)
.
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This compositum is a tuple of four rational fractions s, p, q, r ∈ k(u, v) that
we call the rational representation of ϕ at the base point P . We choose a uni-
formizer z of C around P and perform the Newton iterations and rational re-
construction over the univariate power series ring k[[z]].

We explain how we choose the base point P and solve the differential system
in Section 5.2. One difficulty is that the differential system we obtain is singular
(Lemma 5.6), so we need to use the geometry of the curves (Proposition 5.4)
to find the first few terms in the series before switching to Newton iterations
(Proposition 5.8). In Section 5.3, we estimate the degrees of the rational frac-
tions that we want to compute and present the rational reconstruction step.

5.2 Solving the differential system

We keep the notation used in §5.1. Write the curve equations C, C′ and the
tangent matrix as

C : v2 = EC(u), C′ : y2 = EC′(x), dϕ =

(
m1,1 m1,2

m2,1 m2,2

)
.

We assume that ϕ is separable, so that dϕ is invertible. If P is a base point on
C, we denote by ϕP the associated map C → C′2,sym.

Step 1: choice of base point and power series. Let P be a point on C
which is not at a point at infinity; up to enlarging k, we assume that P ∈ C(k).
Since ϕP (P ) is zero in Jac(C′), we have

ϕP (P ) =
{
Q, i(Q)

}

for some Q ∈ C′, where i denotes the hyperelliptic involution. We say that ϕP

is of Weierstrass type if Q is a Weierstrass point of C′, and of generic type
otherwise. If z is a local uniformizer of C at P , and R is an étale extension
of k[[z]], we define a local lift of ϕP at P with coefficients in R to be a tuple
ϕ̃P = (x1, x2, y1, y2) ∈ R4 such that we have a commutative diagram

SpecR C′ 2

Spec k[[z]] C C′ 2,sym.

(x1,y1),(x2,y2)

ϕP

If the power series x1, x2, y1, y2 define a local lift of ϕP , then they satisfy the
differential system (S) given by





x1 dx1
y1

+
x2 dx2
y2

= (m1,1u+m1,2)
du

v
dx1
y1

+
dx2
y2

= (m2,1u+m2,2)
du

v
y21 = EC′(x1)

y22 = EC′(x2),

(S)
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where we consider the coordinates u, v on C as elements of k[[z]], and the letter d
denotes derivation with respect to z.

When solving (S), we want ϕP to be of generic type. Proposition 5.4 shows
how to choose P to enforce this condition; in order to prove it, we first study
the existence of local lifts for arbitrary base points.

Lemma 5.2. Let z be a uniformizer of C at P . Then there is a quadratic
extension k′/k such that a local lift of ϕP at P with coefficients in R = k′[[

√
z]]

exists. Moreover, if ϕP is of generic type, or if P is a Weierstrass point of C,
then the same statement holds with R = k′[[z]].

Proof. First assume that ϕP is of generic type. Since the unordered pair{
Q, i(Q)

}
is Galois-invariant, there is a quadratic extension k′/k such that Q

is defined over k′. The map C′ 2 → C′ 2,sym is étale at
(
Q, i(Q)

)
, so induces an

isomorphism of completed local rings. Therefore a local lift exists over k′[[z]].
Second, assume that ϕP is of Weierstrass type. The map Spec k[[z]] →

C′2,sym defines a k((z))-point of C′2,sym, and there exists a preimage of this point
defined over an extension K/k((z)) of degree 2. Let R be the integral closure of
k[[z]] in K. Then R is contained in k′[[

√
z]] for some quadratic extension k′/k

[The18, Tag 09E8]. By the valuative criterion of properness, our K-point of C′2

extends to an R-point uniquely, so a local lift exists over R.
Finally, assume that ϕP is of Weierstrass type and that P is a Weierstrass

point of C. Let (x1, x2, y1, y2) be a local lift of ϕP over k′[[
√
z]]. The completed

local ring of the Kummer line of C at P is k[[z2]], and the unordered pair {x1, x2}
is defined on the Kummer line; by the same argument as above, x1 and x2 are
defined over k′[[z]]. The system (S) can be written as

(
1/y1
1/y2

)
=

(
x1x

′
1 x2x

′
2

x′1 x′2

)−1 (
R1(z)
R2(z)

)

for some seriesR1, R2 ∈ k[[z]], hence y1 and y2 are defined over k′[[z]] as well.

Consider the tangent space T(Q,i(Q)) C′2 of C′2 at
(
Q, i(Q)

)
. It decomposes

as
T(Q,i(Q)) C′ 2 = TQ C′ ⊕ Ti(Q) C′ ≃ (TQ C′)2

where the last map is given by the hyperelliptic involution on the second term.

Lemma 5.3. Assume that a local lift ϕ̃P of ϕP to k′[[z]] exists. Then the
tangent vector dϕ̃P /dz at z = 0 cannot be of the form (v, v) where v ∈ TQ C′.

Proof. Assume the contrary. The direction (v, v) is contracted to zero in the
Jacobian, so every differential form on the Jacobian is pulled back to zero via ϕP .
This is a contradiction because ϕ∗ is nonzero.

Proposition 5.4. The point Q is uniquely determined by the property that, up
to a scalar factor,

ϕ∗ω′
Q = ωP

where ωP (resp. ω′
Q) is a nonzero differential form on C (resp. C′) vanishing

at P (resp. Q).
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Proof. First, assume that a local lift ϕ̃P exists over k′[[z]]. By Lemma 5.3, the
tangent vector dϕ̃P /dz at z = 0 is of the form (v + w,w) for some v, w ∈ TQC′

such that v 6= 0. Let ω′ be the unique nonzero differential form pulled back
to ωP by ϕ. Then ω′ must vanish on (v, 0), in other words ω′ must vanish at Q.

Second, assume that no such lift exists. By Lemma 5.2, Q is a Weierstrass
point on C′, and P is not a Weierstrass point on C. After a change of variables,
we may assume that Q is not at infinity. Write P = (u0, v0) with v0 6= 0, and
Q = (x0, 0). We have to show that

x0 =
m1,1u0 +m1,2

m2,1u0 +m2,2
.

Let (x1, y1, x2, y2) be a lift over k′[[
√
z]] as in Lemma 5.2, and look at the

differential system (S). Write the lift as

y1 = v1
√
z + t1z +O(z3/2), y2 = v2

√
z + t2z +O(z3/2).

Then the relation y2 = EC′(x) forces x1, x2 to have no term in
√
z, so that

x1 = x0 + w1z +O(z3/2), x2 = x0 + w2z +O(z3/2).

Using the relation dx/y = 2dy/E′
C′(x), we have





2x1
dy1

E′
C′(x1)

+ 2x2
dy2

E′
C′(x2)

= (m1,1u+m1,2)
du

v
,

2
dy1

E′
C′(x1)

+ 2
dy2

E′
C′(x2)

= (m2,1u+m2,2)
du

v
.

Inspection of the (
√
z)−1 term gives the relation v1 = −v2. Write e = E′

C′(x0).
Then the constant term of the series on the left hand side are respectively

2x0

( t1
e
+
t2
e

)
and 2

( t1
e
+
t2
e

)
.

The differential forms on the right hand side do not vanish simultaneously at P ,
therefore m2,1u0 +m2,2 must be nonzero. Taking the quotient of the two lines
gives the result.

Using Proposition 5.4, we choose a base point P on C such that ϕP is of
generic type. By Lemma 5.2, a local lift ϕ̃P = (x1, x2, y1, y2) of ϕP exists
over k′[[z]], where k′ is a quadratic extension of k.

Step 2: initialization. Now we explain how to compute the power series
x1, x2, y1, y2 up to O(z2). We can compute the point Q = (x0, y0) using Propo-
sition 5.4. Write

x1 = x0 + v1z +O(z2), x2 = x0 + v2z +O(z2).
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Then, using the curve equations, we can compute y1, y2 up to O(z2) in terms of
v1, v2 respectively. Let u0 (resp. d0) be the constant term of the power series u
(resp. du/v). Then (S) gives

v1 + v2 =
y0
x0

(m1,1u0 +m2,1)d0 = y0(m2,1u0 +m2,2)d0. (2)

Combining the two lines, we also obtain

(x1 − x0)
dx1
y1

+ (x2 − x0)
dx2
y2

= R,

where R = r1z +O(z2) has no constant term. At order 1, this yields

v21 + v22 = y0r1. (3)

Equalities (2) and (3) yield a quadratic equation satisfied by v1, v2. This gives
the values of v1 and v2 in a quadratic extension k′/k.

Step 3: Newton iterations. Assume that the series x1, x2, y1, y2 are known
up to O(zn) for some n ≥ 2. The system (S) is satisfied up to O(zn−1) for
the first two lines, and O(zn) for the last two lines. We attempt to double the
precision, and write

x1 = x01(z) + δx1(z) +O(z2n), etc.

where x01 is the polynomial of degree at most n − 1 that has been computed.
The series δxi and δyi start at the term zn. From now on, we also denote by x′

the derivative of a power series x with respect to z.

Proposition 5.5. The power series δx1, δx2 satisfy a linear differential equa-
tion of the first order

M(z)

(
δx′1
δx′2

)
+N(z)

(
δx1
δx2

)
= R(z) +O(z2n−1) (En)

where M,N,R ∈ M2

(
k′[[z]]

)
have explicit expressions in terms of x01, x

0
2, y

0
1,

y02, u, v, EC and EC′ . In particular,

M(z) =

(
x01/y

0
1 x02/y

0
2

1/y01 1/y02

)

and, writing e = E′
C′(x0), the constant term of N is




v1
y0

− x0v1
2y30

e
v2
y0

− x0v2
2y30

e

− v1
2y30

e − v2
2y30

e


 .

Proof. Linearize the system (S). We omit the calculations.
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In order to solve (S) in quasi-linear time in the precision, it is enough to
solve equation (En) in quasi-linear time in n. One difficulty here, that does
not appear in similar works [CE15; CMS+19], is that the matrix M is not
invertible in k′[[z]]. Still, we can adapt the generic divide-and-conquer algorithm
from [BCG+17, §13.2].

Lemma 5.6. The determinant

detM(z) =
x01 − x02
y01y

0
2

has valuation one.

Proof. We know that y01 and y02 have constant term ±y0 6= 0. The polynomi-
als x01 and x02 have the same constant term x0, but they do not coincide at
order 2: if they did, then so would y1 and y2 because of the curve equation,
contradicting Lemma 5.3.

By Lemma 5.6, we can find I ∈ M2

(
k[[z]]

)
such that IM =

(
z 0
0 z

)
.

Lemma 5.7. Let κ ≥ 1, and assume that chark > κ + 1. Let A = IN . Then
the matrix A+ κ has an invertible constant term.

Proof. By Lemma 5.6, the leading term of det(M) is λz for some nonzero λ ∈ k′.
Using Proposition 5.5, we compute that the constant term of det(A + κ) is
λ2κ(κ+ 1). We omit the calculations.

Proposition 5.8. Let 1 ≤ ν ≤ 2n − 1, and assume that char k > ν. Then
we can solve (En) to compute δx1 and δx2 up to precision O(zν) using Õ(ν)
operations in k′.

Proof. Write θ =

(
δx1
δx2

)
. Multiplying (En) by I, we obtain the equation

zθ′ + (A+ κ)θ = B +O(zd), where d = 2n− 1, κ = 0.

We show that θ can be computed from this kind of equation up to O(zd) using
a divide-and-conquer strategy. If d > 1, write θ = θ1 + zd1θ2 where d1 = ⌊d/2⌋.
Then we have

zθ′1 + (A+ κ)θ1 = B +O(zd1)

for some other series B. By induction, we can recover θ1 up to O(zd). Then

zθ′2 + (A+ κ+ d1)θ2 = E +O(zd−d1)

where E has an expression in terms of θ1. This is enough to recover θ2 up
to O(zn−1−d), so we can recover θ up to O(zn−1). We initialize the induction
with the case d = 1, where we have to solve for the constant term in

(A+ κ)θ = B.
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Since θ starts at z2, the values of κ that occur are 2, . . . , ν − 1 when computing
the solution of (S) up to precision O(zν). By Lemma 5.7, the constant term of
A + κ is invertible. This concludes the induction, and the result follows from
standard lemmas in computer algebra [BCG+17, Lem. 1.12].

Proposition 5.9. Let ν ≥ 1, and assume that char k > ν. Then we can compute
the lift ϕ̃P up to precision O(zν) within Õ(ν) operations in k′.

Proof. This is a consequence of Proposition 5.8 and [BCG+17, Lem. 1.12].

5.3 Rational reconstruction

Finally, we want to recover the rational representation (s, p, q, r) of ϕ at P from
its power series expansion ϕ̃P at some finite precision. First, we estimate the
degrees of the rational fractions we want to compute; second, we present the
reconstruction algorithm.

Degree estimates. The degrees of s, p, q, r as morphisms from C to P1 can
be computed as intersection numbers of divisors on Jac(C′), namely ϕP (C) and
the polar divisors of s, p, q and r as functions on Jac(C′). They are already
known in the case of an ℓ-isogeny.

Proposition 5.10 ([CE15, §6.1]). Let ϕ : Jac(C) → Jac(C′) be an ℓ-isogeny,
and let P ∈ C(k). Let (s, p, q, r) be the rational representation of ϕ at the base
point P . Then the degrees of s, p, q and r as morphisms from C to P1 are 4ℓ,
4ℓ, 12ℓ, and 8ℓ respectively.

Now assume that Jac(C) and Jac(C′) have real multiplication by ZK given
by embeddings ι, ι′, and that

ϕ :
(
Jac(C), ι

)
→

(
Jac(C′), ι′

)

is a β-isogeny. Denote the theta divisors on Jac(C) and Jac(C′) by Θ and Θ′

respectively, and denote by ηP : C → Jac(C) the map Q 7→ [Q−P ]. Then ηP (C)
is algebraically equivalent to Θ.

Lemma 5.11. The polar divisors of s, p, q, r as rational functions on Jac(C′)
are algebraically equivalent to 2Θ′, 2Θ′, 6Θ′ and 4Θ′ respectively.

Proof. See [CE15, §6.1]. For instance, s = x1 + x2 has a pole of order 1 along
each of the two divisors

{
(∞±, Q) |Q ∈ C

}
, where ∞± are the two points at

infinity on C, assuming that we choose a degree 6 hyperelliptic model for C′.
Each of these divisors is algebraically equivalent to Θ′. The proof for p, q, and
r is similar.

Recall that divisor classes on Jac(C′) are in bijective correspondence with
isomorphism classes of line bundles. By Theorem 2.17, if (A, ι) is a principally
polarized abelian surface with real multiplication by ZK , then there is a bijection
α 7→ Lι(α)

A between ZK and the Néron–Severi group of A.
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Lemma 5.12. Let ϕ be a β-isogeny as above. Then the divisor ϕP (C) is alge-

braically equivalent to the divisor corresponding to the line bundle Lι′(β)
Jac(C′).

Proof. By Theorem 2.17, there exists an α ∈ ZK such that the divisor ϕP (C)
corresponds to the line bundle Lι′(α)

Jac(C′) up to algebraic equivalence. Look at the

pullback ϕ∗
(
ϕP (C)

)
as a divisor on Jac(C): by definition, we have

ϕ∗
(
ϕP (C)

)
=

∑

x∈kerϕ

(
x+ ηP (C)

)

and therefore, up to algebraic equivalence,

ϕ∗
(
ϕP (C)

)
= (#kerϕ)Θ = NK/Q(β)Θ.

Since ϕ is a β-isogeny, by Definition 2.18, the pullback ϕ∗Θ′ corresponds to Lι(β)
Jac(C)

up to algebraic equivalence. Therefore, for every γ ∈ ZK ,

ϕ∗Lι′(γ)
Jac(C′) = Lι(γβ)

Jac(C).

By Theorem 2.17 applied on Jac(C), we have αβ = NK/Q(β), so α = β.

The next step is to compute the intersection degree of Θ′ and the divisor
corresponding to Lι(α)

Jac(C′) on Jac(C′), for every α ∈ ZK .

Proposition 5.13 ([Kan19, Rem. 16]). Let (A, ι) be a principally polarized
abelian surface with real multiplication by ZK , and let Θ be its theta divisor.
Then the quadratic form

D 7→ (D ·Θ)2 − 2(D ·D)

on NS(A) corresponds via the isomorphism of Theorem 2.17 to the quadratic
form on ZK given by

α 7→ 2TrK/Q(α
2)− 1

2
TrK/Q(α)

2.

Corollary 5.14. Let (A, ι) be a principally polarized abelian surface with real
multiplication by ZK , and let Θ be its theta divisor. Then for every α ∈ ZK , we
have (

Lι(α)
A ·Θ

)2
= TrK/Q(α)

2.

Proof. Write α = a+ b
√
∆. By Proposition 5.13, we can compute

(
Lι(α)
A ·Θ

)2 − 2
(
Lι(α)
A · Lι(α)

A

)
= 2Tr(α2)− 1

2
Tr(α)2 = 4b2∆.

On the other hand, the Riemann–Roch theorem [Mil86a, Thm. 11.1] gives
(
Lι(α)
A · Lι(α)

A

)
= 2χ

(
Lι(α)
A

)
= 2

√
deg ι(α) = 2(a2 − b2∆).

The result follows.
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Proposition 5.15. Let ϕ be a β-isogeny as above, and let (s, p, q, r) be the
rational representation of ϕ at P . Then, considered as morphisms from C to P1,
the respective degrees of s, p, q, and r are 2Tr(β), 2Tr(β), 6Tr(β) and 4Tr(β).

Proof. The degrees of s, p, q, r can be computed as the intersection of the po-
lar divisors from Lemma 5.11 and the divisor ϕP (C). By Lemma 5.12, the

line bundle associated with ϕP (C), up to algebraic equivalence, is Lβ
Jac(C′). Its

intersection number with Θ′ is nonnegative, hence by Corollary 5.14, we have
(
ϕP (C) ·Θ′

)
= TrK/Q(β) = TrK/Q(β).

The result follows by Lemma 5.11.

Rational reconstruction. Now we present the rational reconstruction algo-
rithm, and compute the power series precision that is precisely needed.

Lemma 5.16. Let s : C → P1 be a morphism of degree d.

1. If s is invariant under the hyperelliptic involution i, then we can write
s(u, v) = X(u) where the degree of X is bounded by d/2.

2. In general, let X, Y be the rational fractions such that

s(u, v) = X(u) + v Y (u).

Then the degrees of X and Y are bounded by d and d+ 3 respectively.

Proof. For item 1, use the fact that the function u itself has degree 2. For
item 2, write

s(u, v) + s(u,−v) = 2X(u),
s(u, v)− s(u,−v)

v
= 2Y (u).

The degrees of these morphisms are bounded by 2d and 2d+6 respectively.

Proposition 5.17. Let ϕ̃P and ϕ̃i(P ) be local lifts of ϕP at P and i(P ) in the
uniformizers z and i(z). Let ν = 8ℓ+7 in the Siegel case, and ν = 4TrK/Q(β)+
7 in the Hilbert case. Then, given ϕ̃P and ϕ̃i(P ) at precision O(zν), we can
compute the rational representation of ϕ at P within Õ(ν) operations in k′.

Proof. It is enough to recover the rational fractions s and p; afterwards, q and r
can be deduced from the equation of C′.

First, assume that P is a Weierstrass point of C. Then s, p are invariant under
the hyperelliptic involution. Therefore we have to recover univariate rational
fractions in u of degree d ≤ 2ℓ (resp. d ≤ Tr(β)). This can be done in quasi-linear
time from their power series expansion up to precisionO(u2d+1) [BCG+17, §7.1].
Since u has valuation 2 in z, we need to compute ϕ̃P at precision O(z4d+1).

Second, assume that P is not a Weierstrass point of C. Then the series
defining s(u,−v) and p(u,−v) are given by ϕ̃i(P ). We now have to compute
rational fractions of degree d ≤ 4ℓ+ 3 (resp. d ≤ 2Tr(β) + 3) in u. Since u has
valuation 1 in z, this can be done in quasi-linear time if ϕ̃P and ϕ̃i(P ) are known
up to precision O(z2d+1).
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6 Summary of the algorithm

In this final section, we summarize the isogeny algorithm and prove Theorem 1.1.
We also state the analogous result in the case of β-isogenies (Theorem 6.3).

Algorithm 6.1. Let j, j′ the Igusa invariants of principally polarized abelian
varieties A,A′ over k. Assume that A,A′ are ℓ-isogenous (the Siegel case), or
that A,A′ have real multiplication by ZK and are β-isogenous (the Hilbert case).

1. Use Mestre’s algorithm [Mes91] to construct curve equations C, C′ whose
Jacobians are isomorphic to A,A′. In the Hilbert case, use Algorithm 3.25
to ensure that C, C′ are potentially Hilbert-normalized.

2. Compute at most 4 candidates for the tangent matrix of the isogeny ϕ
using Proposition 4.26 in the Siegel case, or Proposition 4.27 in the Hilbert
case. Run the rest of the algorithm for all the candidates; in general, only
one will produce meaningful results.

3. Choose a base point P on C such that ϕP is of generic type, and com-
pute the power series ϕ̃P and ϕ̃i(P ) up to precision O

(
z8ℓ+7

)
, respec-

tively O
(
z4Tr(β)+7

)
using Proposition 5.9.

4. Recover the rational representation of ϕ at P using Proposition 5.17.

We recall the statement of Theorem 1.1 from the introduction.

Theorem 6.2. Let ℓ be a prime, and let k be a field such that char k = 0 or
chark > 8ℓ+7. Let U ⊂ A2(k) be the open set consisting of abelian surfaces A
such that Aut(A) ≃ {±1} and j3(A) 6= 0. Assume that there is an algorithm to
evaluate derivatives of modular equations of level ℓ at a given point of U × U
over k using Ceval(ℓ) operations in k.

Let A,A′ ∈ U , and let j(A), j(A′) be their Igusa invariants. Assume that A
and A′ are ℓ-isogenous over k, and that the subvariety of A3 × A3 cut out by
the modular equations Ψℓ,i for 1 ≤ i ≤ 3 is normal at (j(A), j(A′)). Then,
given j(A) and j(A′), Algorithm 6.1 succeeds and returns

1. a field extension k′/k of degree dividing 8,

2. hyperelliptic curve equations C, C′ over k′ whose Jacobians are isomorphic
to A,A′ respectively,

3. a point P ∈ C(k′),

4. the rational representation (s, p, q, r) ∈ k′(u, v)4 of an ℓ-isogeny ϕ : Jac(C) →
Jac(C′) at P .

The cost of Algorithm 6.1 in the Siegel case is O
(
Ceval(ℓ)

)
+ Õ(ℓ) elementary

operations and O(1) square roots in k′.
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Proof. Mestre’s algorithm returns curve equations C, C′ defined over extensions
of k of degree at most 2, and costs O(1) operations in k and O(1) square
roots. Under our hypotheses, Proposition 4.26 applies and allows us to recover
Sym2(dϕ) using O(Ceval(ℓ)) + O(1) operations in k. We recover dϕ up to sign
using O(1) square roots and elementary operations; since ϕ is defined over k,
extending the base field is not necessary. We choose the base point P on C
such that ϕP is of generic type using Proposition 5.4, perhaps taking another
extension of degree 2. By Proposition 5.9, we can compute the local lifts ϕ̃P

and ϕ̃i(P ) up to precision 8ℓ+7 within Õ(ℓ) field operations; this is where we use
the hypothesis on chark. Finally, we recover the rational representation at P
using a further Õ(ℓ) field operations by Proposition 5.17. The result is defined
over an extension of k of degree dividing 8.

We conclude with the analogue of Theorem 6.2 in the Hilbert case.

Theorem 6.3. Let K be a real quadratic field, and let β ∈ ZK be a totally
positive prime. Let k be a field such that chark = 0 or char k > 4TrK/Q(β)+ 7.
Assume that there is an algorithm to evaluate derivatives of modular equations
of level β at a given point (j, j′) over k using Ceval(β) operations in k.

Let A,A′ be principally polarized abelian surfaces over k with real multipli-
cation by ZK whose Igusa invariants j(A), j(A′) are well defined, and assume
that there exists a β-isogeny ϕ : A → A′ defined over k which is generic in the
sense of Definition 3.18. Then, given j(A) and j(A′), Algorithm 6.1 succeeds
and returns

1. a field extension k′/k of degree dividing 8,

2. hyperelliptic curve equations C, C′ over k′ whose Jacobians are isomorphic
to A,A′ respectively,

3. a point P ∈ C(k′),

4. at most 4 possible values for the rational representation (s, p, q, r) ∈ k′(u, v)4

of a β- or β-isogeny ϕ : Jac(C) → Jac(C′) at P .

The cost of Algorithm 6.1 in the Hilbert case is O
(
Ceval(β)

)
+ Õ

(
TrK/Q(β)

)
+

OK(1) elementary operations and O(1) square roots in k′; the implied constants,
OK(1) excepted, are independent of K.

Note that Ceval(β) also depends on K. We expect that the algorithm returns
only one answer for the rational representation of ϕ at P ; if the algorithm
outputs several answers, we could implements tests for correctness, but they
might be more expensive than the isogeny algorithm itself.

Proof. We use Algorithm 3.25 to construct the curve equations C, C′. By Re-
mark 4.24, we obtain potentially Hilbert-normalized curves, and each of them
is defined over an extension of k of degree at most 4. This requires OK(1) ele-
mentary operations and O(1) square roots in k. We may assume that C, C′ are

56



Hilbert-normalized for some choice of real multiplication embeddings that are
compatible via ϕ, which becomes either a β- or a β-isogeny.

Under our hypotheses, Proposition 4.27 applies, so we recover two possible
values for (dϕ)2 within O(Ceval(β))+O(1) operations in k, and hence 4 possible
values for dϕ, using O(1) square roots. We can now make a change of variables
to the (not necessarily Hilbert-normalized) curves output by Mestre’s algorithm,
so that each curve is defined over an extension of k of degree 2. The end of the
algorithm is similar to the Siegel case: we take an extension of degree 2 to find
the base point, then try to compute the rational representation for each value
of dϕ using Õ(TrK/Q(β)) operations in k. For the correct value of dϕ, rational
reconstruction will succeed and output fractions of the correct degrees.
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A The case K = Q(
√
5)

We present a variant of our algorithm in the case of principally polarized abelian
varieties with real multiplication by ZK where K = Q(

√
5). In this case, the

structure of the ring of Hilbert modular form is well known, and the Humbert
surface is rational: its function field can be generated by only two elements
called Gundlach invariants. Having only two coordinates reduces the size of
modular equations.

We work over C, but the methods of §4 show that the computations are
valid in general. We illustrate our algorithm with an example of cyclic isogeny
of degree 11 over a finite field.

A.1 Hilbert modular forms for K = Q(
√
5)

We keep the notation used to describe the Hilbert embedding (§2.4). Hilbert
modular forms have Fourier expansions in terms of

w1 = exp
(
2πi(e1t1 + e1t2)

)
and w2 = exp

(
2πi(e2t1 + e2t2)

)
.

We use this notation and the term w-expansions to avoid confusion with expan-
sions of Siegel modular forms. Apart from the constant term, a term in wa

1w
b
2

can only appear when ae1+be2 is a totally positive element of ZK . Since e1 = 1
and e2 has negative norm, for a given a, only finitely many b’s appear. Therefore
we can consider truncations of w-expansions as elements of C(w2)[[w1]] modulo
an ideal of the form (wν

1 ).

Theorem A.1 ([Nag83]). The graded C-algebra of symmetric Hilbert modular
forms of even parallel weight for K = Q(

√
5) is generated by three elements G2,

F6, F10 of respective weights 2, 6 and 10, with w-expansions

G2(t) = 1 + (120w2 + 120)w1

+
(
120w3

2 + 600w2
2 + 720w2 + 600 + 120w−1

2

)
w2

1 +O(w3
1),

F6(t) = (w2 + 1)w1 +
(
w3

2 + 20w2
2 − 90w2 + 20 + w−1

2

)
w2

1 +O(w3
1),

F10(t) = (w2
2 − 2w2 + 1)w2

1 +O(w3
1).

The Gundlach invariants for K = Q(
√
5) are

g1 =
G5

2

F10
and g2 =

G2
2F6

F10
.

Recall that we denote by σ the involution (t1, t2) 7→ (t2, t1) of H2(C)

Proposition A.2. The Gundlach invariants define a birational map

H2(C)/σ → C2.

Proof. This is a consequence of the theorem of Baily and Borel [BB66, Thm. 10.11]
and Theorem A.1.
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By Proposition 2.14, the pullbacks of the Siegel modular forms ψ4, ψ6, χ10

and χ12 via the Hilbert embedding H are symmetric Hilbert modular forms of
even weight, so they have expressions in terms of G2, F6, F10. These expressions
can be computed using linear algebra on Fourier expansions [MR17, Prop. 2.12]:
in our case, the Hilbert embedding is defined by e1 = 1, e2 = (1−

√
5)/2, so

q1 = w1, q2 = w2, q3 = w1w2.

As a corollary, we obtain the expression for the pullback of Igusa invariants.

Proposition A.3 ([MR17, Cor. 2.14]). In the case K = Q(
√
5), we have

H∗j1 = 8g1

(
3
g22
g1

− 2

)5

,

H∗j2 =
1

2
g1

(
3
g22
g1

− 2

)3

,

H∗j3 =
1

8
g1

(
3
g22
g1

− 2

)2(
4
g22
g1

+ 2532
g2
g1

− 3

)
.

Let β ∈ ZK be a totally positive prime. We call the Hilbert modular equations
of level β in Gundlach invariants the data of the two polynomials Ψβ,1,Ψβ,2 ∈
C(G1, G2)[G

′
1] defined as follows:

• Ψβ,1 is the univariate minimal polynomial of the function g1(t/β) over the
field C

(
g1(t), g2(t)

)
.

• We have the following equality of meromorphic functions on H2(C):

g2(t/β) = Ψβ,2

(
g1(t), g2(t), g1(t/β)

)
.

Modular equations using Gundlach invariants for K = Q(
√
5) also have denom-

inators. They have been computed up to NK/Q(β) = 41 [Mil].

A.2 Variants in the isogeny algorithm

Constructing potentially Hilbert-normalized curves. We give another
method to reconstruct such curves using the pullback of the modular form f8,6
from Example 2.8 as a Hilbert modular form. Let H : H2

1 → H2 be the Hilbert
embedding from §2.4.

Proposition A.4. Define the functions bi(t) for 0 ≤ i ≤ 6 on H2
1 by

∀t ∈ H2
1, det8 Sym6(R)f8,6

(
H(t)

)
=

6∑

i=0

bi(t)x
i.
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Then b2 and b4 are identically zero, and

b23 = 4F10F
2
6 ,

b1b5 =
36

25
F10F

2
6 − 4

5
F 2
10G2,

b0b6 =
−4

25
F10F

2
6 +

1

5
F 2
10G2,

b3
(
b20b

3
5 + b31b

2
6

)
= 123F 3

10F6 −
32

25
F 2
10F

2
6G

2
2 +

288

125
F10F

4
6G2 −

3456

3125
F 6
6 .

Proof. By Proposition 2.14, each coefficient bi is a Hilbert modular form of
weight (8 + i, 14− i). We can check using the action of Mσ that σ exchanges bi
and b6−i. From the Siegel q-expansion for f8,6, we can compute the w-expansions
of the bi’s; then, we use linear algebra to identify symmetric combinations of
the bi’s of parallel even weight in terms of the generators G2, F6, F10.

By Propositions 3.6 and 3.12, the standard curve CK(t) attached to t ∈
H2

1 is proportional to the curve y2 =
∑
bi(t)x

i. The algorithm to compute a
potentially Hilbert-normalized curve C from its Igusa invariants (j1, j2, j3) runs
as follows.

Algorithm A.5. 1. Compute Gundlach invariants (g1, g2) mapping to the
Igusa invariants (j1, j2, j3) via H using Proposition A.3, and compute
values for the generators G2, F6, F10 giving these invariants.

2. Compute b23, b1b5, etc. using Proposition A.4.

3. Recover values for the coefficients: choose any square root for b3; choose
any value for b1, which gives b5; finally, solve a quadratic equation to
find b0 and b6.

We can always choose values G2, F6, F10 such that b23 is a square in k;
then, the output is defined over a quadratic extension of k. Even if arbitrary
choices are made during Algorithm A.5, the output will be potentially Hilbert-
normalized.

Computing the tangent matrix. Consider Ψβ,1 and Ψβ,2 as elements of
the ring Q(G1, G2)[G

′
1, G

′
2]. Define the 2× 2 matrices

DΨβ,L =

(
∂Ψn

∂Gk

)

1≤n,k≤2

and DΨβ,R =

(
∂Ψn

∂G′
k

)

1≤n,k≤2

.

Then we have an analogue of Proposition 4.27, where we replace derivatives of
Igusa invariants in Proposition 3.19 by derivatives of Gundlach invariants. The
relation between these derivatives is given by Proposition A.3. This time, using
the formalism of §4, we can prove that all 2 × 2 matrices will be invertible if
the abelian varieties A,A′ have only Z×

K as automorphisms, have g1 6= 0, and
if the modular equations in Gundlach invariants cut out a normal subvariety
of A2 × A2 at (g(A), g(A′)).
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A.3 An example of cyclic isogeny

We illustrate our algorithm in the Hilbert case with K = Q(
√
5) by computing

a β-isogeny between Jacobians with real multiplication by ZK , where

β = 3 +
1 +

√
5

2
∈ ZK , NK/Q(β) = 11, TrK/Q(β) = 7.

We work over the prime finite field k = F56311, whose characteristic is large
enough for our purposes. We choose a trivialization of ZK ⊗ k, in other words
a square root of 5 in k, so that β = 26213.

Consider the Gundlach invariants

(g1, g2) =
(
23, 56260

)
, (g′1, g

′
2) =

(
8, 36073

)
.

In order to reconstruct a Hilbert-normalized curve, we apply Algorithm A.5.
We obtain the curve equations

C : v2 = 13425u6 + 34724u5 + 102u3 + 54150u+ 11111

C′ : y2 = 47601x6 + 35850x5 + 40476x3 + 24699x+ 40502.

The derivatives of Gundlach invariants are given by

DtG(C) =
(
43658 17394
16028 26656

)
, DtG(C′) =

(
15131 739
50692 49952

)
.

Computing derivatives of the modular equations as in Proposition 3.19, we find
that the isogeny is compatible with the real multiplication embeddings for which
C, C′ are Hilbert-normalized. We do not known whether ϕ is a β- or a β-isogeny,
so we have four candidates for the tangent matrix up to sign:

dϕβ,± =

(
38932α+ 19466 0

0 ±(53318α+ 26659)

)
,

dϕβ,± =

(
50651α+ 53481 0

0 ±(11076α+ 5538)

)

where α2 + α+ 2 = 0. We see that the isogeny is only defined over a quadratic
extension of k.

The curve C has a rational Weierstrass point
(
36392, 0

)
. We can bring it to

(0, 0), so that C is of the standard form

C : v2 = 33461u6 + 7399u5 + 16387u4 + 34825u3 + 14713u2 + u.

This multiplies the tangent matrix on the right by
(
44206 18649
0 7615

)
.

Choose P = (0, 0) as a base point on C, and z =
√
u as a uniformizer; it

is a Weierstrass point, and we check that ϕP is of generic type. We solve the
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differential system up to precision O(z35), or any higher precision. It turns out
that the correct tangent matrix is dϕβ,+ as the other series do not come from
rational fractions of the prescribed degree. We obtain

s(u) =
50255u6 + 40618u5 + 17196u4 + 9527u3 + 22804u2 + 49419u+ 11726

u6 + 40883u5 + 22913u4 + 41828u3 + 18069u2 + 14612u+ 7238
,

p(u) =
35444u6 + 9569u5 + 52568u4 + 3347u3 + 9325u2 + 32206u+ 7231

u6 + 40883u5 + 22913u4 + 41828u3 + 18069u2 + 14612u+ 7238
.

The degrees agree with Proposition 5.15. The isogeny is k-rational at the level
of Kummer surfaces, but not on the Jacobians themselves: α appears on the
numerator of r(u, v).
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