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Abstract. If M is a manifold with an action of a group G, then the ho-
mology group H1(M,Q) is naturally a Q[G]-module, where Q[G] denotes
the rational group ring. We prove that for every finite group G, and for
every Q[G]-module W , there exists a closed hyperbolic 3-manifold M
with a free G-action such that the Q[G]-module H1(M,Q) is isomorphic
to W . We give an application to spectral geometry: for every finite
set P of prime numbers, there exist hyperbolic 3-manifolds N and N ′

that are strongly isospectral such that for all p ∈ P, the p-power torsion
subgroups of H1(N,Z) and of H1(N ′,Z) have different orders. The main
geometric techniques are Dehn surgery and, for the spectral application,
the Cheeger-Müller formula, but we also make use of tools from different
branches of algebra, most notably of regulator constants, a representa-
tion theoretic tool that was originally developed in the context of elliptic
curves.

1. Introduction

1.1. Group actions on rational homology of 3-manifolds. If M is a
manifold with an action by a group G, then the homology of M carries a
natural G-action. The G-module structure of integral and rational homology
can often be used to deduce information about the manifold, see e.g. [10, 23].

In this paper, we investigate the G-module structure of the rational ho-
mology of 3-manifolds. In [7] Cooper and Long prove that for every finite
group G, there exists a hyperbolic rational homology 3-sphere with a free
G-action. In fact, their method proves a stronger statement. Let Q[G] de-
note the group algebra of G over the field Q of rational numbers. Cooper
and Long define the notion of a canonical Q[G]-module, and prove that ev-
ery direct sum of canonical Q[G]-modules can be realised as H1(M,Q) for a
closed 3-manifold M with a free G-action.

In the present paper, we generalise the theorem of Cooper and Long to
arbitrary Q[G]-modules. Our main result is the following.

Theorem 1.1. Let G be a finite group, and let W be a finitely generated
Q[G]-module. Then there exists a closed connected orientable 3-manifold
M with a free orientation preserving G-action, such that the Q[G]-module
H1(M,Q) is isomorphic to W .

Like Cooper and Long, we can also strengthen Theorem 1.1 by ensuring
that M is hyperbolic – see Theorem 3.8.

Remark 1.2. The referees inform us that there is a way of proving Theo-
rem 1.1 by using higher dimensional surgery. The proof we will present here
will only use surgery in dimension 3.
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1.2. Application to isospectral manifolds. As an application of Theo-
rem 1.1 we prove a result on torsion homology of isospectral manifolds. This
relies on our previous work [2] on the interplay between Sunada’s construc-
tion of isospectral manifolds [24] and the Cheeger–Müller theorem.

Recall that two Riemannian manifolds M and M ′ are said to be strongly
isospectral if the spectra of every natural (see [20, Section II, paragraph
before Examples 3] for a precise definition) self-adjoint elliptic differential
operator on M and M ′ agree. There is a large body of literature devoted
to investigating which topological or geometric invariants of manifolds are
strongly isospectral invariants, see [22, 12, 11] for surveys. Strongly isospec-
tral Riemannian manifolds necessarily have the same dimension, the same
volume, and the same Betti numbers, but for example they may have non-
isomorphic real cohomology rings, see [17]. Ikeda has shown that (strongly)
isospectral closed 3-manifolds with constant positive curvature are necessar-
ily isometric [13]. In contrast, we show in the present paper that strongly
isospectral hyperbolic 3-manifolds can have very different integral homology
groups. If p is a prime number, and A is an Abelian group, let A[p∞] denote
the subgroup of A of elements of p-power order.

Theorem 1.3. Let P be a finite set of prime numbers. Then there exist
closed connected orientable 3-manifolds M and M ′ that are strongly isospec-
tral with respect to hyperbolic metrics and such that

(1) for all p ∈ P we have

#H1(M,Z)[p∞] 6= #H1(M ′,Z)[p∞];

(2) for all prime numbers q 6∈ P we have an isomorphism of Abelian groups

H1(M,Z)[q∞] ∼= H1(M ′,Z)[q∞].

Remarks.

(1) We will obtain the manifolds M and M ′ in Theorem 1.3 using a con-
struction of Sunada [24], who was guided by a well-known analogy be-
tween spectral zeta functions of manifolds and Dedekind zeta functions
of number fields.

(2) A weak form of the number theoretic analogue of Theorem 1.3 is an old
open problem [8, 4]: do there exist, for every prime number p, number
fields with the same Dedekind zeta function but with different p-class
numbers?

(3) Theorem 1.3 certainly does not hold for 2-manifolds, since they have
torsion-free homology, while for 4- and higher-dimensional manifolds,
Theorem 1.3 has already been known since the work of Sunada. The
3-dimensional case has been the only open one.

Let p be an odd prime number. Let us briefly explain how to deduce
Theorem 1.3 in the special case P = {p} from Theorem 1.1. Consider
the following two subgroups of the group G = GL2(Fp) of invertible 2 × 2
matrices over the finite field with p elements:

B =

(
F×p Fp
0 F×p

)
, H =

(
(F×p )2 Fp

0 F×p

)
.
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We can form the permutation modules Q[G/H] and Q[G/B], which are
spanned over Q by the cosets of the respective subgroup, and where G
acts by permuting the respective basis. The module Q[G/H] decomposes
as a direct sum Q[G/H] ∼= Q[G/B] ⊕ I, where I is a simple Q[G]-module
of dimension (p + 1) over Q. The first part of Theorem 1.3 for P = {p}
immediately follows from Theorem 1.1 and the following result.

Lemma 1.4 ([2], Corollary 4.4). Let p be an odd prime number, let G =
GL2(Fp), and let I be as above. Suppose that there exists a closed 3-manifold
X with a free G-action, such that the multiplicity of I in the Q[G]-module
H1(X,Q) is odd. Then there exist closed connected orientable Riemannian
3-manifolds M and M ′ that are strongly isospectral and such that

#H1(M,Z)[p∞] 6= #H1(M ′,Z)[p∞].

If, in addition, X is hyperbolic, then M and M ′ can be chosen to be hyper-
bolic.

By inspecting the construction in Lemma 1.4 a bit more closely, one can
also deduce the second part of Theorem 1.3 from [2, Theorem 3.5].

For concrete groups G and Q[G]-modules W , one can sometimes try to
reach the conclusion of Theorem 1.1 by a brute force search. In [2, Propo-
sition 1.5], we were able to prove Theorem 1.3(1) in this way when P = {p}
for all p ≤ 71.

Remark. The canonicity condition on W in the construction of Cooper
and Long can be formulated as follows. Let Q[G]Q[G] denote the left regular
Q[G]-module. Recall that every Q[G]-module can be uniquely written as a
direct sum of simple modules. The condition on W for the method of [7] to
apply is that for every simple Q[G]-module Vi, the multiplicity of Vi in W be
divisible by the multiplicity of Vi in the regular module Q[G]Q[G]. Note that
the multiplicity of I in the regular module of GL2(Fp) is p + 1, so if W is
a canonical Q[GL2(Fp)]-module, then the multiplicity of I in W is even. In
particular, the result of Cooper–Long is not sufficient to apply Lemma 1.4.

The proof of the general case of Theorem 1.3 will involve the same ideas
as that of the special case sketched above, but will require more algebraic
preparation, and will occupy Section 5.

1.3. Ingredients of the proof. The proof of the main theorem will be
given in Section 3. We will show how, given a 3-manifold M with a free G-
action, and a finitely generated Q[G]-module V , one may perform a sequence
of G-equivariant Dehn surgeries to produce a 3-manifold M ′ with a free G-
action such that there is an isomorphism of Q[G]-modules H1(M ′,Q) ∼=
H1(M,Q) ⊕ V – see Corollary 3.7; and also how, given a 3-manifold M
with a free G-action such that H1(M,Q) has a Q[G]-submodule isomorphic
to Q[G]Q[G], one can “kill” that submodule – see Proposition 3.5. Starting
from a 3-manifold with a free G-action and arbitrary homology, one can
then iterate the above two steps to realise any given Q[G]-module – see
Theorem 3.8.

One of these surgeries is prescribed by the coefficients of an idempotent
e ∈ Q[G] such that Q[G]e ∼= V , and for this step to yield the desired result,
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we need e to satisfy a technical algebraic condition. The following result,
which we will prove in Section 2 as Corollary 2.10, says that all idempotents
in Q[G] indeed do possess the required property.

Proposition 1.5. Let G be a finite group. Given an element x =
∑

g∈G agg

of Q[G], where ag ∈ Q, define x∗ =
∑

g∈G agg
−1 ∈ Q[G]. Then for every

idempotent e ∈ Q[G], we have Q[G]Q[G] = Q[G]e+ Q[G](1− e∗).

Note that if the star is dropped, then the conclusion immediately follows
from the definition of an idempotent. On the other hand, since e is not
assumed to be central, one does not, in general, have e = e∗. Moreover, if
the operator x 7→ x∗ is replaced by a different involution (see Section 2.1)
on Q[G], then there may not exist an idempotent with the required proper-
ties at all. It is important to note that Proposition 1.5 does not follow from
the well-known fact that Q[G]e∗ is abstractly isomorphic to Q[G]e; see in
particular Example 2.8.

1.4. Generalisations. The main geometric step, in which we add a given
Q[G]-module to the homology of a given 3-manifold with a free G-action
actually works in greater generality. For example, instead of a free G-action
we may allow an orientation preserving action by isometries with no element
acting trivially, which implies that the fixed point set under every g ∈ G is at
most 1-dimensional. For the precise statements, see Theorems 4.1 and 4.2.

This has the somewhat surprising consequence that given a closed con-
nected orientable Riemannian 3-manifold M with an orientation preserving
effective G-action, one can infer no information about the fixed points from
the structure of H1(M,Q): if a certain configuration of fixed point spaces
can be realised at all, then it can be realised with H1(M,Q) being iso-
morphic to any given Q[G]-module. This stands in stark contrast to the
situation in dimension 2, as we point out in Section 4. See in particular
Corollary 4.6, which, vaguely speaking, says that for closed connected ori-
entable surfaces M with a G-action, H1(M,Q) “knows” everything about
the fixed point structure.

In this paper, when we say “manifold”, we will always mean a closed
connected oriented smooth manifold, all automorphisms will be orientation
preserving, and all maps between manifolds will be smooth.
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2. Algebras with an involution

In this section, we will prove Proposition 1.5.

2.1. Semisimple algebras. The main reference for this subsection is [16].
All our rings are associative, and have a unit element, denoted by 1. All our
modules are left modules, and are assumed to be finitely generated. If R is
a ring, then Z(R) denotes the centre of R; the regular module RR is defined
as having the same underlying additive group as R, and the R-action being
given by left multiplication.

Let K be a field. A K-algebra is a ring A that is equipped with a ring ho-
momorphism K → Z(A). All our K-algebras are finite-dimensional over K.
If A is a K-algebra, then the trace TrA/K(a) of an element a ∈ A is de-
fined to be the trace of the endomorphism of the K-vector space A given by
multiplication by a on the left.

Example 2.1. Let A = Q[G] be the group algebra of G over Q, and let
a =

∑
g∈G agg be an arbitrary element of A. Then TrA/Q a = (dimQA)·a1 =

#G · a1.

If A is a K-algebra, then an A-module V is called simple if it has exactly
two submodules, 0 and V ; a simple submodule of AA is the same thing as
a minimal left ideal of A. The Jacobson radical of a K-algebra A is the set
of elements a ∈ A that annihilate every simple A-module; it is a two-sided
ideal of A. A K-algebra A is called semisimple if its Jacobson radical is 0.
For every integer n > 1, let Mn(K) be the K-algebra of n × n matrices
over K. We will use the following basic result.

Lemma 2.2. Let K be a field and let A be a semisimple K-algebra. Then
there exists a finite field extension L/K such that L⊗K A is isomorphic to
a product of algebras of the form Mn(L) for integers n > 1.

An idempotent in an algebra A is an element e ∈ A such that e2 = e. If e ∈
A is an idempotent, then so is 1−e, and in this case one has a decomposition
into left ideals A = Ae⊕A(1− e). If an algebra A is semisimple, then every
simple A-module is isomorphic to some minimal left ideal of A, every A-
module is a direct sum of simple submodules, and for every left ideal I in A,
there exists an idempotent e in A such that I = Ae.

An anti-automorphism of an algebraA is aK-linear automorphism α : A→
A such that α(1) = 1 and α(xy) = α(y)α(x) for all x, y ∈ A. An involution
on A is an anti-automorphism ι such that ι ◦ ι = id.

Let V be a finite-dimensional vector space over K, equipped with a sym-
metric bilinear form φ : V × V → K. If X ⊂ V is a subset, then its
orthogonal complement is defined to be

X⊥ = {v ∈ V | φ(v, x) = 0 for all x ∈ X}.

The bilinear form φ is called non-degenerate if V ⊥ = 0, and it is called
anisotropic if for every nonzero v ∈ V we have φ(v, v) 6= 0. Note that φ
is non-degenerate if and only if the induced map V → Hom(V,K) given
by v 7→ (w 7→ φ(v, w)) is an isomorphism. It follows that if φ is non-
degenerate, then for every subspace W ⊂ V , we have, by the rank-nullity
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formula, dimV = dimW + dimW⊥. If φ is anisotropic, then it is non-
degenerate, and for every subspace W ⊂ V we have V = W +W⊥.

Lemma 2.3. Let A be a semisimple K-algebra, and let ι be an involution
on A. Then for all x ∈ A we have TrA/K(x) = TrA/K(ι(x)). In particular,
the K-bilinear form (x, y) 7→ TrA/K(xι(y)) on A is symmetric.

Proof. See [21, 13.1 (iv)]. �

Remark 2.4. In Lemma 2.3 the semisimplicity assumption is necessary:
let A be the K-algebra of upper-triangular 2 × 2 matrices with coefficients
in K, equipped with the involution

ι :

(
a b
0 d

)
7→
(
d −b
0 a

)
.

Then TrA/K

(
a b
0 d

)
= 2a+ d, which is not preserved by ι.

Let A be a semisimple K-algebra and ι be an involution on A. The
associated symmetric bilinear form on A is

φι : (x, y) 7→ TrA/K(xι(y)).

We say that ι is non-degenerate (resp. anisotropic) if φι is non-degenerate
(resp. anisotropic).

2.2. Idempotents and anisotropic involutions. In this subsection we
prove the main algebraic result, Proposition 2.7. The proof we give here
was communicated to us by Hendrik Lenstra, and is much simpler than the
proof we gave in an earlier draft of the paper.

Lemma 2.5. Let A be a semisimple K-algebra. Then for all x ∈ A we have
dimK Ax = dimK xA.

Proof. The result is true if A is a product of matrix algebras over K. Let A
be an arbitrary semisimple K-algebra. If L/K is a finite field extension, then
we have dimL(L⊗KA)x = dimK Ax, and similarly for xA. The general case
of the lemma therefore follows from the special case and Lemma 2.2. �

Note that if A is a K-algebra with an involution ι, and e ∈ A is an
idempotent, then ι(e) is also an idempotent.

Lemma 2.6. Let A be a semisimple K-algebra with a non-degenerate in-
volution ι. Then for every idempotent e ∈ A we have (Ae)⊥ = A(1− ι(e)),
where the orthogonal complement is taken with respect to φι.

Proof. Since e is idempotent, we have A(1 − ι(e)) ⊂ (Ae)⊥. On the other
hand we have

dim(Ae)⊥ = dimA− dimAe

= dimA(1− e)
= dim(1− e)A
= dimA(1− ι(e)),

where the four equalities follow, respectively, from the assumption that
ι is non-degenerate, from the assumption that e is an idempotent, from
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Lemma 2.5, and from the assumption that ι is an anti-automorphism. The
claimed equality follows. �

We now prove the main result of the section.

Proposition 2.7. Let A be a semisimple Q-algebra with an anisotropic
involution ι. Then for every idempotent e ∈ A, we have AA = Ae + A(1 −
ι(e)).

Proof. By Lemma 2.6 we have (Ae)⊥ = A(1 − ι(e)). Since ι is anisotropic,
we have A = Ae+ (Ae)⊥, giving the result. �

Example 2.8. Proposition 2.7 is false without the anisotropy assumption,
even if the algebra is simple. For instance, the split quaternion algebra
A = M2(Q), the involution(

a b
c d

)
7→
(
d −b
−c a

)
,

and the idempotent e = ( 1 0
0 0 ) provide a counter-example. This example

shows, in particular, that Proposition 2.7 is not a formal consequence of the
fact that Ae is isomorphic to Aι(e) as A-modules.

Definition 2.9. Let G be a finite group. Recall that the group algebra Q[G]
is a semisimple Q-algebra. Define an involution x 7→ x∗ on Q[G] by setting
g∗ = g−1 for all g ∈ G, and extending Q-linearly.

Corollary 2.10. Let G be a finite group. Then for every idempotent e ∈
Q[G], we have Q[G]Q[G] = Q[G]e+ Q[G](1− e∗).

Proof. If a =
∑

g∈G agg is an arbitrary element of Q[G], then the coefficient

of the identity 1 ∈ G in aa∗ is
∑

g∈G a
2
g. It therefore follows from Exam-

ple 2.1 that the involution x 7→ x∗ is anisotropic. The result follows from
Proposition 2.7, applied to A = Q[G] and ι = (x 7→ x∗). �

3. Proof of the main theorem

In this section, we prove Theorem 3.8, which is a strengthening of The-
orem 1.1 from the introduction. Let G be a finite group. Our proof will
proceed by a sequence of Dehn surgeries on a 3-manifold with a G-action.

Definitions 3.1. (1) Let M be a manifold with an action of G. We say that
a subset C ⊆ M is G-disjoint if for every g ∈ Gr {1}, the intersection
C ∩ gC is empty, equivalently if the restriction to C of the covering
map M →M/G is injective.

(2) Below, the manifolds S1 and ∂D2 are understood to be oriented. If M
is a 3-manifold with a G-action, and ϕ : S1 ×D2 →M is an embedding
with a G-disjoint image, let M(ϕ) = M r G · ϕ(interior of S1 × D2).
Let γ, γ′ be simple closed curves on ϕ(S1 × ∂D2) whose classes in the
fundamental group π1(ϕ(S1×∂D2)) together generate that fundamental
group. Then the result of G-equivariant surgery on M along ϕ, γ is
the manifold M(ϕ, γ) defined as M(ϕ) t

⊔
g∈G g(S1 ×D2), where each

g(S1×D2) is a copy of S1×D2, with the obvious G-action on the disjoint
union, modulo the equivalence relation that identifies the boundary of
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M(ϕ) with that of
⊔
g∈G g(S1 × D2) by identifying, for all g ∈ G, the

curve gγ with the simple closed curve g({1} × ∂D2) ⊂ g(S1 × ∂D2),
and gγ′ with the simple closed curve g(S1 × {1}) ⊂ g(S1 × ∂D2). The
diffeomorphism class of M(ϕ, γ) does not depend on the choice of γ′.

If M is a 3-manifold, then we denote the intersection pairing H2(M,Z)×
H1(M,Z) → Z by (x, y) 7→ x · y, and we use the same notation for Q-
coefficients in place of Z.

We will make repeated use of the following variant of [15, Lemma 5.6].

Lemma 3.2. Let M be a 3-manifold, let ϕ : S1×D2 →M be an embedding
with a G-disjoint image, and let γ be a simple closed curve on ϕ(S1×∂D2).
Then the row and the column in the diagram

H2(M(ϕ, γ),Z)

fµ
��

Z[G]Z[G]

ε

��

H2(M,Z)
fλ // Z[G]Z[G]

δ // H1(M(ϕ),Z)
i∗ //

j∗
��

H1(M,Z) // 0

H1(M(ϕ, γ),Z)

��

0

of Z[G]-modules are exact, where the maps are defined as follows:

• i∗ and j∗ are induced by the canonical injections of M(ϕ) into M , respec-
tively M(ϕ, γ);
• δ sends 1 to the class of ϕ({1} × ∂D2), and ε sends 1 to the class of γ;
• fλ = (x 7→

∑
g∈G(x · gλ)g), where λ is the curve ϕ(S1 × {0}) ⊂ M , and

fµ = (x 7→
∑

g∈G(x · gµ)g), where µ is the curve S1 × {0} ⊂ S1 ×D2 ⊂
M(ϕ, γ).

Proof. The proof is identical to that of [15, Lemma 5.6]. �

Below we will also use the notation of Lemma 3.2 for homology with Q-
coefficients. The two basic Dehn surgeries that we will use in the proof of
Theorem 3.8 are described in Lemma 3.3 and Proposition 3.5.

Lemma 3.3. Let M be a 3-manifold with a free G-action. Then there exists
a 3-manifold M ′ with a free G-action such that we have an isomorphism
H1(M ′,Q) ∼= H1(M,Q)⊕ Q[G]Q[G] of Q[G]-modules.

Proof. Let ϕ : S1×D2 →M be a G-disjoint embedding that sends S1×{1}
to a null-homotopic simple closed curve γ in M rG ·ϕ(interior of S1×D2),
and let M ′ = M(ϕ, γ). Then, λ is also null-homotopic in M , so the map fλ
of Lemma 3.2 is the zero map, so that the map δ of the lemma is injective;
and also, since γ is null-homotopic, the map ε of Lemma 3.2 is the zero
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map, so that the map j∗ of the lemma is injective. By Lemma 3.2, the
manifold M ′ has the required property. �

Recall from Definition 2.9 the involution on Q[G] given by g 7→ g∗ = g−1

for all g ∈ G.

Lemma 3.4. Let G be a finite group, let e ∈ Q[G] be an idempotent, and
let y ∈ Q[G] be arbitrary. Let A = Q[G]e, and for s ∈ Q let B(s) = {b ∈
Q[G] : b(1 + sy) ∈ Q[G](1− e∗)}. Then for all but finitely many s ∈ Q, we
have A ∩B(s) = {0}.

Proof. For all but finitely many s ∈ Q, the element 1+sy is invertible, since
the multiplication-by-y map on Q[G] has only finitely many eigenvalues.
This implies that for all but finitely many s ∈ Q, the Q-vector subspace B(s)
of Q[G] has dimension dimQ[G](1 − e∗) = dimQ[G](1 − e) = dimQ[G] −
dimA. We deduce that for all but finitely many s ∈ Q, the condition A ∩
B(s) = {0} is equivalent to dim(A+B(s)) = dimQ[G], which is equivalent
to the non-vanishing of a determinant that is a polynomial in s. Since
B(0) = Q[G](1 − e∗), Corollary 2.10 implies that A + B(0) = Q[G], so the
above determinant is not identically 0, so has only finitely many roots, as
claimed. �

Proposition 3.5. Let P be a submodule of Q[G]Q[G], let U be a Q[G]-
module, and let M be a 3-manifold with a free G-action such that there is an
isomorphism H1(M,Q) ∼= Q[G]Q[G]⊕U of Q[G]-modules. Then there exists
a 3-manifold M ′ with a free G-action such that there is an isomorphism
H1(M ′,Q) ∼= P ⊕ U of Q[G]-modules.

Proof. Let l ∈ H1(M,Z) be such that Q[G]l is the direct summand Q[G]l ∼=
Q[G]Q[G] of H1(M,Q), let e ∈ Q[G] be an idempotent such that we have
an isomorphism Q[G]e ∼= P of Q[G]-modules, let d ∈ Z>0 be such that
de ∈ Z[G], let λ be a simple closed curve in M representing the class [λ] =
d(1− e)l ∈ H1(M,Z), and let ϕ : S1 ×D2 →M be a G-disjoint embedding
such that ϕ(S1 × {0}) = λ.

First, we claim that, with the above choices, the kernel of the map δ of
Lemma 3.2 is Q[G](1 − e∗), so that H1(M(ϕ),Q) ∼= H1(M,Q) ⊕ Q[G]e∗ ∼=
H1(M,Q)⊕P , with the summand P being generated by the class of ϕ({1}×
∂D2). To prove the claim, let x ∈ H2(M,Q) have intersection number 1
with l, and intersection number 0 with gl for all g ∈ G r {1} and with
all classes in U . Such an element exists by Poincaré duality. Then it is
clear that the image of fλ is generated, as a Q[G]-module, by fλ(x). Write
d(1 − e) =

∑
h∈G ahh, where ah ∈ Z for all h ∈ G. For every g ∈ G, the

intersection number x ·gλ is the coefficient in gd(1−e) of the identity, which
is ag−1 , so that fλ(x) =

∑
g∈G(x·gλ)g =

∑
g∈G ag−1g = d(1−e∗), as claimed.

Let M be the class in H1(M(ϕ),Q) of the simple closed curve ϕ({1} ×
∂D2) ⊂ ϕ(S1 × ∂D2), and let L be the class of a simple closed curve on
ϕ(S1 × ∂D2) such that i∗(L) = [λ].

Our second claim is that for all but finitely many values of q/p, where p
and q are coprime integers, if γ is a simple closed curve on ϕ(S1 × ∂D2)
whose class [γ] in H1(M(ϕ),Q) is pM+qL, then the map ε of Lemma 3.2 is
injective. Indeed, let p and q be coprime integers, let γ be as just described,
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and suppose that a ∈ Q[G]Q[G] is such that ε(a) = a[γ] = 0. Let C be a Q[G]-
submodule of H1(M(ϕ),Q) such that there is a direct sum decomposition
of Q[G]-modules

H1(M(ϕ),Q) = δ(Q[G]Q[G])⊕ C = Q[G]M⊕ C.(3.6)

Then we may write L = yM + c, where y ∈ Q[G] and c ∈ C, so that
a[γ] = (ap + aqy)M + aqc. By the direct sum decomposition (3.6), the
assumption that a[γ] = 0 is equivalent to

(i) (ap+ aqy)M = 0 and
(ii) aqc = 0.

Since Q[G]M is precisely the kernel of i∗, condition (ii) is equivalent to
0 = i∗(aqc) = i∗(aqL) = aq[λ] = aqd(1 − e)l ∈ H1(M,Q), which, for q 6= 0,
is equivalent to a being contained in the left annihilator A of 1 − e. That
annihilator is equal to Q[G]e. Condition (i), on the other hand, is equivalent
to 0 = (ap + aqy)M = δ(ap + aqy), in other words to a being contained
in B( qp) = {b ∈ Q[G] : b(1 + q

py) ∈ ker δ}. Since ker δ = Q[G](1 − e∗),

Lemma 3.4 implies that for all but finitely many values of q/p, we have
A ∩B( qp) = {0}, which proves the second claim.

It immediately follows from the two claims and Lemma 3.2 that for all
but finitely many values of q/p, we have

H1(M(ϕ, γ),Q)⊕ Q[G]Q[G] ∼= H1(M(ϕ),Q) ∼= H1(M,Q)⊕ P,

so that M ′ = M(ϕ, γ) satisfies the conclusion of the proposition. �

Corollary 3.7. Let M0 be a 3-manifold with a free G-action, and let V be
a Q[G]-module. Then there exists a 3-manifold M with a free G-action such
that H1(M,Q) ∼= H1(M0,Q)⊕ V .

Proof. Let V ∼=
⊕r

i=1 Pi, where each Pi is a submodule of Q[G]Q[G]. De-
fine the 3-manifolds Mi and M ′i inductively as follows: supposing that Mi−1

has been defined, by Lemma 3.3 there exists a 3-manifold M ′i with a free
G-action such that H1(M ′i ,Q) ∼= H1(Mi−1,Q) ⊕ Q[G]Q[G], and by Proposi-
tion 3.5 applied to the manifold M ′i and the Q[G]-module Pi, there exists a
3-manifold Mi with a free G-action such that H1(Mi,Q) ∼= H1(Mi−1,Q)⊕Pi.
The manifold M = Mr then satisfies the conclusions of the corollary. �

By a hyperbolic manifold we mean a connected oriented smooth manifold
whose interior is equipped with a Riemannian metric with constant curva-
ture −1. We can now deduce the main theorem, which is stronger than
Theorem 1.1 and which reads as follows.

Theorem 3.8. Let G be a finite group, and let W be a finitely generated
Q[G]-module. Then there exists a closed hyperbolic 3-manifold M ′ with a
free G-action such that the Q[G]-module H1(M ′,Q) is isomorphic to W .

Proof. Let M0 be a 3-manifold with a free G-action. There are many con-
structions of such manifolds, see e.g. [7, §1]. We can apply Corollary 3.7
to obtain a 3-manifold M1 with a free G-action such that for some inte-
ger n ≥ 1, there exists an isomorphism H1(M1,Q) ∼= Q[G]Q[G]⊕n ⊕W of
Q[G]-modules. By repeated application of Proposition 3.5 with P = {0},
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we may obtain a 3-manifold M2 with a free G-action such that there is an
isomorphism of Q[G]-modules H1(M2,Q) ∼= W .

We now follow the argument of [7, Theorem 2.6] to obtain a hyperbolic
such manifold. Let p : M2 → M2/G be the covering map. By [3, Proposi-
tion 4.2], the manifoldM2/G contains a null-homotopic simple closed curve k
such that (M2/G) r k is a complete hyperbolic manifold with a single cusp
and such that p−1(k) is a union of #G simple closed curves that bound
disjoint discs in M2 (see also the first paragraph of [3, Proof of Lemma 4.3]).
Let ϕ : S1 ×D2 → M2 be an embedding with a G-disjoint image such that
ϕ(S1 × {0}) is one of these simple closed curves. By [3, Lemma 4.3], for
all but one slope γ on ϕ(S1 × ∂D2), the G-equivariant surgery along ϕ, γ
on M2 yields a closed manifold M2(ϕ, γ) with a free G-action, satisfying
H1(M2(ϕ, γ),Q) ∼= W . By Thurston’s hyperbolic Dehn surgery theorem
[25, Theorem 5.8.2], equivariant surgery for all but finitely many of these
slopes results in a hyperbolic manifold M ′. �

Remark 3.9. The last paragraph of the above proof can be replaced by an
appeal to Theorem A in the very recent preprint [1].

4. Homology and the structure of fixed point sets

In this section, we first briefly discuss the analogues of the results in
Section 3 for G-actions that are not necessarily free. We will omit most
details, since the proofs are essentially identical to those of Section 3. We
then compare these results to the very different situation of group actions
on 2-dimensional manifolds.

The proof of Lemma 3.3 goes through in the following greater generality:
we may allow M to have a G-stable “bad region” Mbad ⊆M that is allowed
to be an orbifold, and in which non-trivial elements of G are allowed to have
fixed points. This set will then be avoided during the sequence of surgeries.
Moreover, the proof of Proposition 3.5 also goes through in that generality,
as long as the summand Q[G]Q[G] of H1(M,Q) is contained in the image of

the natural map H1(MrMbad,Q)→ H1(M,Q). One therefore deduces the
following generalisations of Corollary 3.7 and of Theorem 3.8. In the next
two results, let C be the category of connected topological 3-dimensional
orbifolds, possibly with boundary, and let C′ be the full subcategory of C
whose objects are oriented manifolds without boundary. All group actions
will be assumed to be by homeomorphisms.

Theorem 4.1. Let M0 ∈ C, with an action of a finite group G, and let V be
a finitely generated Q[G]-module. Let Mbad

0 ⊆ M0 be a subset that satisfies
the following conditions:

(a) Mbad
0 is G-stable;

(b) the complement M0 rMbad
0 is in C′;

(c) the group G acts freely on M0 rMbad
0 by orientation preserving auto-

morphisms.

Then there exists M ∈ C with a G-action, and a G-stable subset Mbad ⊆M
such that

(1) the complement M r Mbad is in C′, and G acts freely by orientation
preserving automorphisms on it,
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(2) there is a G-equivariant homeomorphism from Mbad
0 to Mbad,

(3) there is an isomorphism of Q[G]-modules H1(M,Q) ∼= H1(M0,Q)⊕ V .

Theorem 4.2. Let M0 ∈ C be such that H1(M0,Q) is finite dimensional
over Q, with an action of a finite group G, and let W be a finitely gener-
ated Q[G]-module. Let Mbad

0 ⊆ M0 be a subset that satisfies the following
conditions:

(a) Mbad
0 is G-stable;

(b) the complement M0 rMbad
0 is in C′;

(c) the group G acts on M0 rMbad
0 freely by orientation preserving auto-

morphisms;
(d) the canonical map H1(M0 rMbad

0 ,Q)→ H1(M0,Q) is surjective.

Then there exists M ∈ C with a G-action, and a subset Mbad ⊆M such that

(1) the complement M r Mbad is in C′, and G acts freely by orientation
preserving automorphisms on it,

(2) there is a G-equivariant homeomorphism from Mbad
0 to Mbad,

(3) there is an isomorphism of Q[G]-modules H1(M,Q) ∼= W .

Remark 4.3. Condition (d) is automatically satisfied if Mbad
0 is a finite

union of at most 1-dimensional submanifolds, possibly with boundary. In
particular, such an Mbad

0 ⊂ M0 exists if M0 is an oriented Riemannian
orbifold, and G acts effectively by orientation preserving isometries.

Theorem 4.2 essentially says that one cannot read off the geometry of
the fixed point set in an orientation preserving G-action on a 3-manifold M
from the Q[G]-module structure of H1(M,Q). We now briefly contrast this
with the situation in dimension 2. We do not claim any originality in what
follows, but we have not been able to find Corollary 4.6, in particular, stated
in the literature.

The discussion will be most conveniently formulated in terms of charac-
ters, for which a general reference is [14]. If G is a finite group, and U is a
subgroup, we will denote by π(U) the permutation character corresponding
to the G-set G/U .

Theorem 4.4 (Artin’s Induction Theorem). Let G be a finite group. The
Q-vector space generated by the Q-valued characters of G is freely spanned
by the permutation characters π(C), as C runs over G-conjugacy class rep-
resentatives of cyclic subgroups of G.

Proof. See [14, Theorem 5.21], �

The following result can be deduced from the Riemann-Hurwitz formula,
and either the Lefschetz trace formula or Artin’s Induction Theorem.

Proposition 4.5. Let M be a closed connected orientable surface, let G be
a group of orientation preserving automorphisms of M , and let τ denote
the genus of M/G. Let S be a full set of G-orbit representatives of the
ramification points of the covering M → M/G, and for each P ∈ S, let
SP be the stabiliser of P in G. Let χ be the character corresponding to the
G-module H1(M,Q). Then we have

χ = 2π(G) + (2τ − 2 + #S)π({1})−
∑
P∈S

π(SP ).
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Proof. See [5, Proposition 2]. �

It follows that, in the situation of Proposition 4.5, the structure of the
ramification set of the covering M → M/G can be read off from the Q[G]-
module structure of H1(M,Q) in the following precise sense.

Corollary 4.6. Let M and M ′ be closed connected orientable surfaces with
an action of a finite group G by orientation preserving automorphisms. If P
is a point on M or M ′, let SP be its stabiliser in G. Suppose that the
Q[G]-modules H1(M,Q) and H1(M ′,Q) are isomorphic. Then there exists
a bijection β between the ramification points of the cover M → M/G, and
those of the cover M ′ →M ′/G such that for all ramification points P ∈M ,
we have SP = Sβ(P ) ≤ G, so that, in particular, β preserves ramification
indices.

Proof. Let S and S ′ be full sets of G-orbit representatives of the ramification
points of M → M/G, respectively of M ′ → M ′/G, and let τ and τ ′ be
the genera of M/G, respectively of M ′/G. By Proposition 4.5, there is an
equality of characters

(2τ − 2 + #S)π({1})−
∑
P∈S

π(SP ) = (2τ ′ − 2 + #S ′)π({1})−
∑
P ′∈S′

π(SP ′).

Since none of the stabilisers SP and SP ′ are trivial, and since they are all
cyclic, it follows from Artin’s Induction Theorem that there exists a bijec-
tion α from S to S ′ such that for all P ∈ S, we have π(SP ) = π(Sα(P )). This
condition on the permutation characters is equivalent to SP being conjugate
to Sα(P ) in G. Since for every P ∈ S, the set of stabilisers of the points in the
G-orbit of P is a single conjugacy class of subgroups, the result follows. �

5. Application to isospectral manifolds

In this section we deduce Theorem 1.3 from Theorem 1.1. Our proof
relies on Sunada’s group theoretic construction of isospectral manifolds [24],
and on the formalism of regulator constants, as introduced by Dokchitser–
Dokchitser, see e.g. [9].

5.1. Sunada’s construction and the Cheeger–Müller theorem. If p
is a prime number, we will write Z(p) for the localisation of Z at p, i.e. the
subring {ab : p - b} of Q. In this subsection, R will be either Q or Z(p),
where p is a prime number.

Definition 5.1. Let G be a finite group. An R[G]-relation is a formal linear
combination

∑
i Ui −

∑
j U
′
j of subgroups of G with the property that there

is an isomorphism of R[G]-modules⊕
i

R[G/Ui] ∼=
⊕
j

R[G/U ′j ].

The following lemmas are routine, and we leave the proofs to the reader.

Lemma 5.2. If G is a finite group, N is a normal subgroup, and Θ =∑
i Ui−

∑
j U
′
j is an R[G]-relation, then DefG/N Θ =

∑
iNUi/N−

∑
j NU

′
j/N

is an R[G/N ]-relation.
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Lemma 5.3. Let G and G̃ be finite groups, let U −U ′ be an R[G]-relation,

and let Ũ − Ũ ′ be an R[G̃]-relation. Then U × Ũ − U ′ × Ũ ′ is a R[G× G̃]-
relation.

In [24] Sunada shows that Q[G]-relations give rise to strongly isospectral
manifolds, as follows.

Theorem 5.4 (Sunada, [24]). Let G be a finite group, let X → Y be a G-
covering of Riemannian manifolds, and let U −U ′ be a Q[G]-relation. Then
the intermediate coverings X/U and X/U ′ are strongly isospectral.

It follows from the Cheeger–Müller Theorem [6, 18, 19] that if M and M ′

are strongly isospectral Riemannian 3-manifolds, then

#H1(M,Z)tors

#H1(M ′,Z)tors
=

Reg1(M)2

Reg1(M ′)2
,(5.5)

where Reg1(M) is the covolume of the lattice H1(M,Z)/H1(M,Z)tors in the
vector space H1(M,R) with respect to a certain canonical inner product,
and similarly for M ′ – see [2] for details.

5.2. Regulator constants. When M and M ′ arise from a G-covering X →
Y via Sunada’s construction, we relate in [2] the regulator quotient of equa-
tion (5.5) to a certain representation theoretic invariant of H1(X,Q), called
a regulator constant. We briefly recall the definition and some of the prop-
erties of this invariant. On the first reading, the definition may be skipped,
since only the properties that we list below will be needed for the rest of the
section.

Definition 5.6. Let G be a finite group, let Θ =
∑

i Ui−
∑

j U
′
j be a Q[G]-

relation, and let W be a finitely generated Q[G]-module. Let 〈 , 〉 be a
non-degenerate G-invariant Q-bilinear pairing on W with values in Q. The
regulator constant of W with respect to Θ is defined as

CΘ(W ) =

∏
i det

(
1

#Ui
〈 , 〉|WUi

)
∏
j det

(
1

#U ′j
〈 , 〉|WU ′j

) ∈ Q×/(Q×)2.

Here, each determinant is evaluated with respect to an arbitrary basis of the
respective fixed space, and is therefore only well-defined modulo (Q×)2.

Remark 5.7. Let G be a finite group, and let W be a finitely generated
Q[G]-module. Choosing a pairing as in Definition 5.6 is equivalent to choos-
ing an isomorphism of Q[G]-modules between W and its Q-linear dual. Since
finitely generated Q[G]-modules are self-dual, such a pairing always exists.

Theorem 5.8. The value of CΘ(W ) is independent of the pairing 〈 , 〉.

Proof. See [9, Theorem 2.17]. �

Theorem 5.8 justifies the notation CΘ(W ), which makes no reference to
the pairing.
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Example 5.9. Let p be an odd prime number, and let Gp = GL2(Fp) be
the group of invertible 2 × 2 matrices over the finite field with p elements.
Consider the following subgroups of Gp:

Bp =

(
F×p Fp
0 F×p

)
, Up =

(
(F×p )2 Fp

0 F×p

)
, U ′p =

(
F×p Fp
0 (F×p )2

)
.

The permutation module Q[Gp/Up] decomposes as a direct sum Q[Gp/Up] ∼=
Q[Gp/Bp] ⊕ Ip, where Ip is a simple Q[Gp]-module of dimension (p + 1)
over Q. Moreover, the formal linear combination Θ = Up − U ′p is a Q[Gp]-
relation, and for every prime number q 6= p, it is a Z(q)[Gp]-relation. In [2,

Proposition 4.2] we showed that CΘ(Ip) ≡ p (mod (Q×)2).

Example 5.10. Let G2 be the affine linear group over Z/8Z, i.e. the group
of linear transformations Ta,b : x 7→ ax + b of Z/8Z, where a ∈ (Z/8Z)×

and b ∈ Z/8Z. Consider the following subgroups of G2:

U2 = 〈Ta,0 : a ∈ (Z/8Z)×〉,
U ′2 = 〈T3,4, T−1,0〉,
B2 = 〈T3,4, Ta,0 : a ∈ (Z/8Z)×〉.

The group G2 is isomorphic to the semidirect product Z/8Zo (Z/8Z)×; the
subgroups U2 and U ′2 are both isomorphic to C2 × C2; Θ = U2 − U ′2 is a
Q[G2]-relation, and for every odd prime number q, it is a Z(q)[G2]-relation.
Moreover, Q[G2/U2] decomposes as a direct sum Q[G2/U2] ∼= Q[G2/B2]⊕I2,
where I2 is a simple Q[G2]-module of dimension 4 over Q, and one can show
by a direct computation that CΘ(I2) ≡ 2 (mod (Q×)2).

Regulator constants satisfy the following properties:

(Reg 1) if G is a finite group, N is a normal subgroup, Θ is a Q[G]-relation,
W is a Q[G/N ]-module, and InfG/N W is the lift of W to a Q[G]-
module, then CΘ(InfG/N W ) = CDefG/N Θ(W );

(Reg 2) if G is a finite group, Θ is a Q[G]-relation, and W1, W2 are Q[G]-
modules, then CΘ(W1 ⊕W2) = CΘ(W1) · CΘ(W2).

Lemma 5.11. Let P be a finite set of prime numbers. Then there exist a
finite group G, a Q[G]-relation Θ = U − U ′, and a Q[G]-module W , such
that

(1) we have

CΘ(W ) ≡
∏
p∈P

p (mod (Q×)2);

(2) for all prime numbers q 6∈ P, the relation Θ is a Z(q)[G]-relation.

Proof. Let G =
∏
p∈P Gp, where Gp is as in Example 5.9 when p is odd, and

as in Example 5.10 when p = 2. For each p ∈ P, let Np denote the kernel of
the projection map G→ Gp, so that the quotient G/Np is isomorphic to Gp.

We may lift the module Ip of Example 5.9, respectively 5.10 from G/Np

to a Q[G]-module InfG/Np Ip. Let W be the direct sum of Q[G]-modules
W =

⊕
p∈P InfG/Np Ip. Let U =

∏
p∈P Up ≤ G, where the subgroups Up ≤

Gp are as in Example 5.9, respectively 5.10, and define U ′ analogously. So
for every p ∈ P, the image of U under the quotient map G → G/Np is Up,
and the image of U ′ is U ′p.
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By Lemma 5.3, the formal linear combination Θ = U − U ′ is a Q[G]-
relation, and for every prime number q 6∈ P, it is also a Z(q)[G]-relation.
This proves the second part of the lemma.

By property (Reg 2), property (Reg 1), and Examples 5.9 and 5.10, in
that order, we have

CΘ(W ) ≡
∏
p∈P
CΘ(InfG/Np Ip) ≡

∏
p∈P
CDefG/Np Θ(Ip)

≡
∏
p∈P

p (mod (Q×)2),

which proves the first part of the lemma. �

5.3. Isospectral manifolds. The following two results are the crucial in-
gredients that will allow us to deduce Theorem 1.3 from Theorem 1.1.

Proposition 5.12. Let G be a finite group, let X → Y be a G-covering
of Riemannian manifolds, and let Θ = U − U ′ be a Q[G]-relation. Then
Reg1(X/U)2

Reg1(X/U ′)2 ∈ Q×, and we have

Reg1(X/U)2

Reg1(X/U ′)2
≡ CΘ(H1(X,Q)) (mod (Q×)2).

Proof. This is a special case of [2, Corollary 3.12]. �

Proposition 5.13. Let G be a finite group, let X → Y be a G-covering of
Riemannian manifolds, let q be a prime number, and let Θ = U − U ′ be a
Z(q)[G]-relation. Then we have

H1(X/U,Z)[q∞] ∼= H1(X/U ′,Z)[q∞].

Proof. This is a special case of [2, Theorem 3.5]. �

We can now prove Theorem 1.3. We recall the statement.

Theorem 5.14. Let P be a finite set of prime numbers. Then there exist
closed connected orientable 3-manifolds M and M ′ that are strongly isospec-
tral with respect to hyperbolic metrics and such that

(1) for all p ∈ P we have

#H1(M,Z)[p∞] 6= #H1(M ′,Z)[p∞];

(2) for all prime numbers q 6∈ P we have an isomorphism of Abelian groups

H1(M,Z)[q∞] ∼= H1(M ′,Z)[q∞].

Proof. Let G, U , U ′, Θ, and W be as in Lemma 5.11 applied to the set P.
By Theorem 1.1, there exists a closed hyperbolic 3-manifold X with a free
G-action such that there is an isomorphism of Q[G]-modules H1(X,Q) ∼=
W . Let M = X/U and M ′ = X/U ′. The second part of the theorem
immediately follows from Lemma 5.11 (2) and Proposition 5.13.
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To prove the first part, we invoke equation (5.5), Proposition 5.12, and
Lemma 5.11 (1), in that order, to conclude that

#H1(M,Z)tors

#H1(M ′,Z)tors
=

Reg1(M)2

Reg1(M ′)2

≡ CΘ(H1(X,Q)) = CΘ(W )

≡
∏
i

pi (mod (Q×)2),

which completes the proof. �
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