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Subfields and Abelian overfields

Plan

This tutorial:
» construction of subfields of a number field
» construction of abelian extensions of a number field

These are old functionalities but we made a number of changes
to them.

If you want to record the commands we will type during the
tutorial:

? \1 subsupfields.log
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Subfields

We compute the subfields of a number field with the
function nfsubfields.

poll = y*8 - y"6 + 2xy"2 + 1;
#nfsubfields (poll)
= 6
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This number field has 6 subfields.

#nfsubfields (poll, 4)
=3

?
%

Three of them have degree 4 over Q.
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Subfields and embeddings

For each subfield, the function gives a defining polynomial and
an element of the large field defining the embedding.

? subl = nfsubfields (poll, 4)
$ = [[y* — ... , 2+«y"™7 — ...1, [y*4 - ...,
=2xy™7T 4+ L0011, y4d - ..., —yt2 + 11]

?a = yh2+ty;
? minpoly (Mod(a,subl[1]1[1]))
S = XM + 2xx™3 4+ T6xx"2 + 60xx + 12

We can compute the image of a in the large field with subst.

? minpoly (Mod (subst (a,y,subl[1][2]),p0ll))
S = XM + 2xx™3 + T76xx"2 + 60xx + 12
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Subfields

We can also use an nfinit structure as input.

nfl = nfinit (poll);
#nfsubfields (nfl, 2)
=1
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Algorithms for subfields

Depending on the situation, we use various algorithms to
compute subfields of K = Q[X]/P(X).

1. Galois theory (Allombert);
2. A combinatorial algorithm (Kliners);

3. A factorisation based algorithm (van Hoeij — Kltiners —
Novocin).

1. is always faster when available, 3. is polynomial-time, and 2.
is exponential in the worst case but it is often fast.

In 3., we need the factorisation of P over K.
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Subfields: providing the factorisation

We can provide the factorisation to the function. This forces the
use of Algorithm 3. and saves the recomputation of the
factorisation.

? fal = nffactor(poll, subst(poll,y,x));
? sublb = nfsubfields ([poll, fall,4)

= [[y*4d + ..., -y*5 + ...1, [y*4 + ..., -y"2],
(v + ..., -y*3 + yl]

We can check that we obtained the same subfields
with nfisisom.

? nfisisom(subl[1][1],sublb[1][1])
$ = [-1/2xy"3 = 1/2*xy"2 - 3/2xy - 1/2,
1/2%«y~3 = 1/2%y"2 + 3/2xy - 1/2]
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Subfields: providing the factorisation

There is no canonical ordering for the subfields, so they may
end up being permuted.

? matrix (#subl, #sublb, i, Jj,
nfisisom(subl[i] [1],sublb[j][1]) !=0)

[1 0 0]
[0 0 1]

[0 1 0]
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Maximal subfields

We can restrict to the enumeration of maximal subfields with
the function nfsubfieldsmax.

? {pol2 = x"16 — 4xx"15 + 34%x"14 - 102%«x"13 +
620+xx712 — 1542%x”11 + 7436*xx710 — 14962%x"9 +
67815xx"8 — 111634x»x"7 + 409898%x"6 — 504000%x"5
+ 1459447xx"4 — 1224212xx"3 + 3769899xx"2 —
1828918xx + 6914293};

? sub2 = nfsubfieldsmax (pol2);

? apply(a —> poldegree(al[l]), sub2)

$ = [4, 8, 8, 8]

They do not always have the same degree.
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Maximal subfields: providing the factorisation

This uses a variant of Algorithm 3., and we can also provide the
factorisation.

? fa2 = nffactor(pol2, subst(pol2,x,t));

*%* ilncorrect priority: variable t >= x

Watch out for the priority of variables!

t = varhigher ("t");

fa2 = nffactor (pol2, subst (pol2,x,t));
nfsubfieldsmax ([pol2, fa2]) == sub2

=1
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Descending further
We can then compute subfields of the maximal subfields, etc.

?

{pol3 = y*12 4+ 6xy"10 — 10xy"9 + 36xy"8 — 60xy"7

+ 276+y~6 — T20%y"5 + 1776%y"4 — 2360%y"3 +
2160%y~2 — 1200xy + 400};

o)
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sub3 = nfsubfieldsmax (pol3);
apply(a —> poldegree(all]), sub3)

= [4, 6]
sub3b = nfsubfieldsmax (sub3[1][1])
= [[y*"2 - ...ugly...]

We can simplify the models with polredbest.

-
)
°

polredbest (sub3b[1][1])
=y*2 -y -1
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CM fields

Recall that a number field K is called CM (complex
multiplication) if it is a totally imaginary quadratic extension of a
totally real field.

In this case, it admits an automorphism of order 2 which
induces complex conjugation on every embedding of K into C;
this automorphism is called the CM involution or the complex
conjugation on K.
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Maximal CM subfield

We can also compute the maximal CM subfield (if it exists).

)

nfsubfieldscm(poll)

= [y"2 + 3, 2+%y"6 — 4xy"™4 + 2xy"2 + 3]
sub2b = nfsubfieldscm([pol2,fa2])

= [x™ + ... *xx™2 + ..., ...]

I o°
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The computed model always satisfies that x — —x is the CM
involution.

In polredbest, we can keep track of the change of variable
with an optional flag = 1.

)

polredbest (sub2b[1],1)

= [x" - 2%x"3 - 11*x"2 + 12*«x + 57, ...]
polredbest (substpol (sub2b[1l],x"2,x))

= x""2 -7

D o°
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Abelian extensions of Q
Recall that every Abelian extension of Q is contained in a
cyclotomic field (Kronecker—Weber).

polsubcyclo(n,d) computes every subfield of Q(¢,) of
degree d.

? polsubcyclo(23,11)
$ = x711 + x710 = 10%xx"9 - 9xx"8 + 36*x"7 + 28xx"6
— 56%x"5 — 35%xx™4 + 35%x"3 + 15*xx"2 - 6*xx — 1

galoissubcyclo computes the subfield fixed by a given
subgroup of (Z/nZ)*.

#polsubcyclo (60, 8)

=7

galoissubcyclo (60, -1)

= x"8 — T*x"6 + 14xx"4 — 8xx"2 + 1

o° Vv
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Abelian extensions of Q

We compute the structure and generators of (Z/nZ)*
with znstar.

? G = znstar(7+x13%x19)
% = [1296, [36, 6, 6], [Mod(743, 1729), Mod (248, 17

We can describe the subgroup in terms of those generators.

H = mathnfmodid([1,0;-1,1;0,-1],3);
galoissubcyclo (G, H)

= x*"3 + x"2 - 576*xx — 64
nfdiscfactors (%)

= [2989441, [7, 2; 13, 2; 19, 2]1]

o0 D D
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Abelian extensions of number fields

In general, the Abelian extensions of a number field K are the
subfields of its ray class fields, whose Galois groups are
canonically isomorphic to the ray class groups Clx(m).

(Class field theory)

The special case m = (1) is the Hilbert class field.
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Transcendental methods

In some cases we can use transcendental methods to compute
ray class fields.

Hilbert and ray class fields of quadratic fields:

quadhilbert (-23)

= x"3 - x"2 + 1

quadray (-7, 8)

= x"8 + Mod(-4*y + 4, y"2 — y + 2)*x"7 +

o° v
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Assuming Stark’s conjectures, ray class fields of totally real
fields:

? bnrstark (bnrinit (bnfinit (y"3-y”*2-41xy+104),1))
$ = x"9 +
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Kummer theory method

In all cases we can use Kummer theory. This can be costly
since we need to compute the class group and units of K(¢p) to
compute extensions of degree p of K, and towers of such for
general Abelian extensions.

The function rnfkummer is now obsolete; use the more
general bnrclassfield instead, which we will present now.
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Hilbert class field

)

pold = y"~2-y+1007

= y*"2 -y + 1007

bnf = bnfinit (pol4); bnf.cyc
= [3, 3]

D o°
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The class group is isomorphic to Z/37Z x 7Z/3Z.

? extd4d = bnrclassfield (bnf)
& = [x"3 - 15xx + (=1204xy + 602), x"3 + ...]

By default, the class field is expressed as the compositum of
two degree 3 extensions. We can compute a single defining
polynomial with nfcompositum.

? nfcompositum(bnf,ext4([1],ext4[2],2)
$ = x"9 +
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Hilbert class field

We can directly ask for a single relative defining polynomial with
an optional flag = 1.

? bnrclassfield (bnf,, 1)

g = x99 + 18xx"7 +

We can also ask for a single absolute defining polynomial with
an optional flag = 2.

? bnrclassfield(bnf,,2)
$ = x*18 + 36*xx716 + 4860*x"14 +
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Ray class groups
We compute general ray class groups with bnrinit.
pr = idealprimedec (bnf,13) [1];

bnr = bnrinit (bnf,pr); bnr.cyc
= [18, 3]

[AV ARV}
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This ray class group is isomorphic to Z/18Z x Z/37Z. We can
compute the discriminant of the corresponding extension in
advance with bnrdisc.

? [deg,rl,D] = bnrdisc(bnr);

? deg

%59 = 108

? D

s = 625833566280085268...18199167302475256851237

\(]
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Ray class fields

? ext2 = bnrclassfield (bnr)
g = [x"2 + (y + 34), x*3 + ..., x*9 + ...]

Again, the ray class field is expressed as a compositum of
several extensions.

We can simplify the relative defining polynomials
with rnfpolredbest.

? apply (P —> 1lift (rnfpolredbest (bnf,P)), ext2)
$ = [x"2 + (y + 34), x"3 - 24xx + (2xy - 1),
X"9 - x™8 + (-y — 5)*x"7 + ... 4+ (-262+y + 10515)]
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Ray class fields

Again, we can ask for an absolute defining polynomial.

? ext2b = bnrclassfield (bnr,, 2)
% = x7108 + 24xx7107 + 229xx7106 — 128%x7105 -

We can check that the discriminant is correct with nfdisc.

nfdisc([ext2b,1000]) == D

?
$ =1

Note that this is much more expensive than with bnrdisc, and
we needed to help nfdisc by forcing it to use a lazy
factorisation.
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General class fields

In general we describe the desired Abelian extension as the
subfield of a ray class field fixed by a subgroup of C/x(m).

bnrclassfield (bnr2, H2)
= [x™ + T78xx"2 + (=92xy + 1396)]

? pr2 = idealprimedec (bnf,2) [1];

? bnr2 = bnrinit (bnf, [pr,1;pr2,3]); bnr2.cyc
%$ = [36, 12, 6]

? H2 = [2,1,1;0,2,0;0,0,1]

(2 1 1]

[0 2 0]

[0 0 1]

?
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Shortcut for describing the subgroup
We can use the shortcut bnrclassfield (bnr, n) to denote
the subgroup n - Clx(m).

? ext3 = bnrclassfield(bnr2, 3)
$ = [x"3 — 1b*x + ..., x™3 + ..., x*3 + ...]

This is the maximal elementary Abelian 3-subextension.

? ext3 = bnrclassfield(bnr2, 9)

$ = [x"3 + ..., X3 + ..., x99 + ...]

This is the maximal Abelian subextension with exponent
dividing 9.
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Without the explicit field

Computing a defining polynomial with bnrclassfield can be
time-consuming, so it is better to compute the relevant
information without constructing the field, if possible.

We already saw the use of bnrdisc; we can also compute
splitting information without the explicit field.

? pr313 = idealprimedec (bnf,313) [1];
? bnrisprincipal (bnr2,pr313,0)
% = [0, 0, O]~

The Frobenius at p313 is trivial: this prime splits completely in
the degree 36 - 12 - 6 = 2592 extension (which we did not
compute).
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Modulus with infinite places

If the base field has real places, we can specify the modulus at
infinity by providing a list of 0 or 1 of length the number of real
embeddings.

bnf2 = bnfinit(y"2-217);

bnf2.cyc

= []

bnrinit (bnf2,1) .cyc

= []

bnr3 = bnrinit (bnf2,[1,[1,1]]); bnr3.cyc
= [2]

o0 D )
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The field Q(v/217) has narrow class number 2.
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A narrow Hilbert class field
We check that the class field has the expected properties:

? [deg,rl,D] = bnrdisc (bnr3);

? [deg,rl]

$ = [4, 0]

? D

% = 47089

? bnrclassfield (bnr3)

$ = [x"2 + (-260952xy + 3844063) ]

pol5 = bnrclassfield(bnr3,, 2)
= x"4 + 7688126%x"2 + 1
polsturm(polb)

=0

nfdisc (polb) == D

=1
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Questions ?

Have fun!



