Subfields and Abelian overfields

Subfields and Abelian overfields

A. Page
INRIA/Université de Bordeaux

21/01/2020
Institut Fourier

p/\RIG |

=




Subfields and Abelian overfields

Plan

This tutorial:
» construction of subfields of a number field
» construction of abelian extensions of a number field

These are old functionalities but we made a number of changes
to them.

If you want to record the commands we will type during the
tutorial:

? \1 subsupfields.log



Subfields and Abelian overfields

Subfields

We compute the subfields of a number field with the
function nfsubfields.

poll = y*8 - y"6 + 2xy"2 + 1;
#nfsubfields (poll)
= 6

o0 D e

This number field has 6 subfields.

#nfsubfields (poll, 4)
=3

?
%

Three of them have degree 4 over Q.



Subfields and Abelian overfields

Subfields and embeddings

For each subfield, the function gives a defining polynomial and
an element of the large field defining the embedding.

? subl = nfsubfields (poll, 4)
$ = [[y* — ... , 2+«y"™7 — ...1, [y*4 - ...,
=2xy™7T 4+ L0011, y4d - ..., —yt2 + 11]

?a = yh2+ty;
? minpoly (Mod(a,subl[1]1[1]))
S = XM + 2xx™3 4+ T6xx"2 + 60xx + 12

We can compute the image of a in the large field with subst.

? minpoly (Mod (subst (a,y,subl[1][2]),p0ll))
S = XM + 2xx™3 + T76xx"2 + 60xx + 12



Subfields and Abelian overfields

Subfields

We can also use an nfinit structure as input.

nfl = nfinit (poll);
#nfsubfields (nfl, 2)
=1

D)

o°



Subfields and Abelian overfields

Algorithms for subfields

Depending on the situation, we use various algorithms to
compute subfields of K = Q[X]/P(X).

1. Galois theory (Allombert);
2. A combinatorial algorithm (Kliners);

3. A factorisation based algorithm (van Hoeij — Kltiners —
Novocin).

1. is always faster when available, 3. is polynomial-time, and 2.
is exponential in the worst case but it is often fast.

In 3., we need the factorisation of P over K.



Subfields and Abelian overfields

Subfields: providing the factorisation

We can provide the factorisation to the function. This forces the
use of Algorithm 3. and saves the recomputation of the
factorisation.

? fal = nffactor(poll, subst(poll,y,x));
? sublb = nfsubfields ([poll, fall,4)

= [[y*4d + ..., -y*5 + ...1, [y*4 + ..., -y"2],
(v + ..., -y*3 + yl]

We can check that we obtained the same subfields
with nfisisom.

? nfisisom(subl[1][1],sublb[1][1])
$ = [-1/2xy"3 = 1/2*xy"2 - 3/2xy - 1/2,
1/2%«y~3 = 1/2%y"2 + 3/2xy - 1/2]



Subfields and Abelian overfields

Subfields: providing the factorisation

There is no canonical ordering for the subfields, so they may
end up being permuted.

? matrix (#subl, #sublb, i, Jj,
nfisisom(subl[i] [1],sublb[j][1]) !=0)

[1 0 0]
[0 0 1]

[0 1 0]



Subfields and Abelian overfields

Maximal subfields

We can restrict to the enumeration of maximal subfields with
the function nfsubfieldsmax.

? {pol2 = x"16 — 4xx"15 + 34%x"14 - 102%«x"13 +
620+xx712 — 1542%x”11 + 7436*xx710 — 14962%x"9 +
67815xx"8 — 111634x»x"7 + 409898%x"6 — 504000%x"5
+ 1459447xx"4 — 1224212xx"3 + 3769899xx"2 —
1828918xx + 6914293};

? sub2 = nfsubfieldsmax (pol2);

? apply(a —> poldegree(al[l]), sub2)

$ = [4, 8, 8, 8]

They do not always have the same degree.



Subfields and Abelian overfields

Maximal subfields: providing the factorisation

This uses a variant of Algorithm 3., and we can also provide the
factorisation.

? fa2 = nffactor(pol2, subst(pol2,x,t));

*%* ilncorrect priority: variable t >= x

Watch out for the priority of variables!

t = varhigher ("t");

fa2 = nffactor (pol2, subst (pol2,x,t));
nfsubfieldsmax ([pol2, fa2]) == sub2

=1

o0 D D )



Subfields and Abelian overfields

Descending further
We can then compute subfields of the maximal subfields, etc.

?

{pol3 = y*12 4+ 6xy"10 — 10xy"9 + 36xy"8 — 60xy"7

+ 276+y~6 — T20%y"5 + 1776%y"4 — 2360%y"3 +
2160%y~2 — 1200xy + 400};

o)

o0 ¢ ¢

o° 0

sub3 = nfsubfieldsmax (pol3);
apply(a —> poldegree(all]), sub3)

= [4, 6]
sub3b = nfsubfieldsmax (sub3[1][1])
= [[y*"2 - ...ugly...]

We can simplify the models with polredbest.

-
)
°

polredbest (sub3b[1][1])
=y*2 -y -1



Subfields and Abelian overfields

CM fields

Recall that a number field K is called CM (complex
multiplication) if it is a totally imaginary quadratic extension of a
totally real field.

In this case, it admits an automorphism of order 2 which
induces complex conjugation on every embedding of K into C;
this automorphism is called the CM involution or the complex
conjugation on K.



Subfields and Abelian overfields

Maximal CM subfield

We can also compute the maximal CM subfield (if it exists).

)

nfsubfieldscm(poll)

= [y"2 + 3, 2+%y"6 — 4xy"™4 + 2xy"2 + 3]
sub2b = nfsubfieldscm([pol2,fa2])

= [x™ + ... *xx™2 + ..., ...]

I o°

o\

The computed model always satisfies that x — —x is the CM
involution.

In polredbest, we can keep track of the change of variable
with an optional flag = 1.

)

polredbest (sub2b[1],1)

= [x" - 2%x"3 - 11*x"2 + 12*«x + 57, ...]
polredbest (substpol (sub2b[1l],x"2,x))

= x""2 -7

D o°

o\



Subfields and Abelian overfields

Abelian extensions of Q
Recall that every Abelian extension of Q is contained in a
cyclotomic field (Kronecker—Weber).

polsubcyclo(n,d) computes every subfield of Q(¢,) of
degree d.

? polsubcyclo(23,11)
$ = x711 + x710 = 10%xx"9 - 9xx"8 + 36*x"7 + 28xx"6
— 56%x"5 — 35%xx™4 + 35%x"3 + 15*xx"2 - 6*xx — 1

galoissubcyclo computes the subfield fixed by a given
subgroup of (Z/nZ)*.

#polsubcyclo (60, 8)

=7

galoissubcyclo (60, -1)

= x"8 — T*x"6 + 14xx"4 — 8xx"2 + 1

o° Vv

o° v



Subfields and Abelian overfields

Abelian extensions of Q

We compute the structure and generators of (Z/nZ)*
with znstar.

? G = znstar(7+x13%x19)
% = [1296, [36, 6, 6], [Mod(743, 1729), Mod (248, 17

We can describe the subgroup in terms of those generators.

H = mathnfmodid([1,0;-1,1;0,-1],3);
galoissubcyclo (G, H)

= x*"3 + x"2 - 576*xx — 64
nfdiscfactors (%)

= [2989441, [7, 2; 13, 2; 19, 2]1]

o0 D D

o° 0



Subfields and Abelian overfields

Abelian extensions of number fields

In general, the Abelian extensions of a number field K are the
subfields of its ray class fields, whose Galois groups are
canonically isomorphic to the ray class groups Clx(m).

(Class field theory)

The special case m = (1) is the Hilbert class field.



Subfields and Abelian overfields

Transcendental methods

In some cases we can use transcendental methods to compute
ray class fields.

Hilbert and ray class fields of quadratic fields:

quadhilbert (-23)

= x"3 - x"2 + 1

quadray (-7, 8)

= x"8 + Mod(-4*y + 4, y"2 — y + 2)*x"7 +

o° v

o° v

Assuming Stark’s conjectures, ray class fields of totally real
fields:

? bnrstark (bnrinit (bnfinit (y"3-y”*2-41xy+104),1))
$ = x"9 +



Subfields and Abelian overfields

Kummer theory method

In all cases we can use Kummer theory. This can be costly
since we need to compute the class group and units of K(¢p) to
compute extensions of degree p of K, and towers of such for
general Abelian extensions.

The function rnfkummer is now obsolete; use the more
general bnrclassfield instead, which we will present now.



Subfields and Abelian overfields

Hilbert class field

)

pold = y"~2-y+1007

= y*"2 -y + 1007

bnf = bnfinit (pol4); bnf.cyc
= [3, 3]

D o°

o\

The class group is isomorphic to Z/37Z x 7Z/3Z.

? extd4d = bnrclassfield (bnf)
& = [x"3 - 15xx + (=1204xy + 602), x"3 + ...]

By default, the class field is expressed as the compositum of
two degree 3 extensions. We can compute a single defining
polynomial with nfcompositum.

? nfcompositum(bnf,ext4([1],ext4[2],2)
$ = x"9 +



Subfields and Abelian overfields

Hilbert class field

We can directly ask for a single relative defining polynomial with
an optional flag = 1.

? bnrclassfield (bnf,, 1)

g = x99 + 18xx"7 +

We can also ask for a single absolute defining polynomial with
an optional flag = 2.

? bnrclassfield(bnf,,2)
$ = x*18 + 36*xx716 + 4860*x"14 +



Subfields and Abelian overfields

Ray class groups
We compute general ray class groups with bnrinit.
pr = idealprimedec (bnf,13) [1];

bnr = bnrinit (bnf,pr); bnr.cyc
= [18, 3]

[AV ARV}

o\

This ray class group is isomorphic to Z/18Z x Z/37Z. We can
compute the discriminant of the corresponding extension in
advance with bnrdisc.

? [deg,rl,D] = bnrdisc(bnr);

? deg

%59 = 108

? D

s = 625833566280085268...18199167302475256851237

\(]



Subfields and Abelian overfields

Ray class fields

? ext2 = bnrclassfield (bnr)
g = [x"2 + (y + 34), x*3 + ..., x*9 + ...]

Again, the ray class field is expressed as a compositum of
several extensions.

We can simplify the relative defining polynomials
with rnfpolredbest.

? apply (P —> 1lift (rnfpolredbest (bnf,P)), ext2)
$ = [x"2 + (y + 34), x"3 - 24xx + (2xy - 1),
X"9 - x™8 + (-y — 5)*x"7 + ... 4+ (-262+y + 10515)]



Subfields and Abelian overfields

Ray class fields

Again, we can ask for an absolute defining polynomial.

? ext2b = bnrclassfield (bnr,, 2)
% = x7108 + 24xx7107 + 229xx7106 — 128%x7105 -

We can check that the discriminant is correct with nfdisc.

nfdisc([ext2b,1000]) == D

?
$ =1

Note that this is much more expensive than with bnrdisc, and
we needed to help nfdisc by forcing it to use a lazy
factorisation.



Subfields and Abelian overfields

General class fields

In general we describe the desired Abelian extension as the
subfield of a ray class field fixed by a subgroup of C/x(m).

bnrclassfield (bnr2, H2)
= [x™ + T78xx"2 + (=92xy + 1396)]

? pr2 = idealprimedec (bnf,2) [1];

? bnr2 = bnrinit (bnf, [pr,1;pr2,3]); bnr2.cyc
%$ = [36, 12, 6]

? H2 = [2,1,1;0,2,0;0,0,1]

(2 1 1]

[0 2 0]

[0 0 1]

?



Subfields and Abelian overfields

Shortcut for describing the subgroup
We can use the shortcut bnrclassfield (bnr, n) to denote
the subgroup n - Clx(m).

? ext3 = bnrclassfield(bnr2, 3)
$ = [x"3 — 1b*x + ..., x™3 + ..., x*3 + ...]

This is the maximal elementary Abelian 3-subextension.

? ext3 = bnrclassfield(bnr2, 9)

$ = [x"3 + ..., X3 + ..., x99 + ...]

This is the maximal Abelian subextension with exponent
dividing 9.



Subfields and Abelian overfields

Without the explicit field

Computing a defining polynomial with bnrclassfield can be
time-consuming, so it is better to compute the relevant
information without constructing the field, if possible.

We already saw the use of bnrdisc; we can also compute
splitting information without the explicit field.

? pr313 = idealprimedec (bnf,313) [1];
? bnrisprincipal (bnr2,pr313,0)
% = [0, 0, O]~

The Frobenius at p313 is trivial: this prime splits completely in
the degree 36 - 12 - 6 = 2592 extension (which we did not
compute).



Subfields and Abelian overfields

Modulus with infinite places

If the base field has real places, we can specify the modulus at
infinity by providing a list of 0 or 1 of length the number of real
embeddings.

bnf2 = bnfinit(y"2-217);

bnf2.cyc

= []

bnrinit (bnf2,1) .cyc

= []

bnr3 = bnrinit (bnf2,[1,[1,1]]); bnr3.cyc
= [2]

o0 D )

o° Vv

o° v

The field Q(v/217) has narrow class number 2.



Subfields and Abelian overfields

A narrow Hilbert class field
We check that the class field has the expected properties:

? [deg,rl,D] = bnrdisc (bnr3);

? [deg,rl]

$ = [4, 0]

? D

% = 47089

? bnrclassfield (bnr3)

$ = [x"2 + (-260952xy + 3844063) ]

pol5 = bnrclassfield(bnr3,, 2)
= x"4 + 7688126%x"2 + 1
polsturm(polb)

=0

nfdisc (polb) == D

=1

o° D dO D

o° v



Subfields and Abelian overfields

Questions ?

Have fun!



