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Black-box definition
K number field of degree n and signature (r1, r2).

The "group of idèles of K " is a topological Abelian group A×
K

with
▶ an embedding K×

v ↪→ A×
K for every completion Kv of K ;

▶ a diagonal embedding K× ↪→ A×
K .

The quotient ("idèle class group")

CK = A×
K /K×

is isomorphic to R × a compact group.

A Hecke character is a continuous morphism

χ : CK → C×.
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Finite level version

The groups CK or Hom(CK ,C×) are too big to handle
algorithmically: cut them into smaller pieces!

Modulus m: pair (mf ,m∞) = (nonzero ideal, subset of the real
embeddings).

We can define certain open subgroups U(m) of A×
K such that

▶ every Hecke character vanishes on some U(m), and
▶ Cm = A×

K /K×U(m) is of an appropriate size: a finite
dimensional manifold.

1 → R× compact torus → Cm → finite group → 1.
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Finite level version

The groups CK or Hom(CK ,C×) are too big to handle
algorithmically: cut them into smaller pieces!

Modulus m: pair (mf ,m∞) = (nonzero ideal, subset of the real
embeddings).

We can define certain open subgroups U(m) of A×
K such that

▶ every Hecke character vanishes on some U(m), and
▶ Cm = A×

K /K×U(m) is of an appropriate size: a finite
dimensional manifold.

1 →
[
(R>0)

r1 × (C×)r2
]
/
[
Z×

K ∩ U(m)
]
→ Cm → Clm(K ) → 1.
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Finite level version

For Hecke characters, this means:

Hom(CF ,C×) =
⋃
m

Hom(Cm,C×),

and for every m,

Hom(Cm,C×) ∼= finite × Zn−1 × C.

Finite order characters of Cm are exactly characters of Clm(K ).
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Initialisation

We initialise Hom(Cm,C×) with gcharinit:

? bnf = bnfinit(polcyclo(5),1);
? gc = gcharinit(bnf,5);
? gc.cyc
% = [5, 0, 0, 0, 0.E-57]

Hom(Cm,C×) ∼= Z/5Z× Z3 × C
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Conductor

The conductor of a Hecke character is the smallest m such that
χ ∈ Hom(Cm,C×).

We represent a character χ by its column vector of coordinates
corresponding to gc.cyc.

? chi = [0,0,0,5,0.1*I]~;
? gcharconductor(gc,chi)
% = [[5,4,1,4;0,1,0,0;0,0,1,0;0,0,0,1], []]
? gcharconductor(gc,4*chi)
% = [1,[]]

χ has conductor p5 and χ4 has trivial conductor.
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Evaluation

Let p be a prime of K and πp a uniformiser of Kp. Using the
map K×

p → A×
K , we can evaluate χ on K×

p . Define

χ(p) = χ(πp).

This is well-defined up to χ(Z×
p ), which is a finite group. If p

does not divide the conductor of χ, it is well defined.

We evaluate Hecke characters with gchareval:

? pr11 = idealprimedec(bnf,11)[1];
? gchareval(gc,chi,pr11)
% = 0.8531383657 - 0.52168470249*I
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Local characters: archimedean places

Let v be a place of K . We can restrict χ to K×
v .

Characters of R× are of the form

x 7→ sign(x)k |x |iφ

with k ∈ Z/2Z and φ ∈ C.

Characters of C× are of the form

z 7→
(

z
|z|

)k

|z|2iφ

with k ∈ Z and φ ∈ C.
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Local characters: archimedean places

We obtain the local characters with gcharlocal.

Archimedean places are represented by a number between 1
and r1 + r2.

? gcharlocal(gc,chi,1)
% = [5, -0.7160628256]
? gcharlocal(gc,chi,2)
% = [0, 0.9160628256]
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Local characters: nonarchimedean places

Let p be a prime of K .
A character on K×

p is completely determined by
▶ its restriction to the finite group Z×

p /(Z×
p ∩ U(m)), and

▶ its value exp(2πiθ) on πp.



Hecke Grossencharacters

Local characters: nonarchimedean places

We specify a nonarchimedean place by a prime ideal.

? pr5 = idealprimedec(bnf,5)[1];
? loc = gcharlocal(gc,chi,pr5,&bid)
% = [15, 0, 0, -0.15061499993]
? bid.cyc
% = [20, 5, 5]
? charorder(bid,loc[1..-2])
% = 4

We have Z×
p /(Z×

p ∩ U(m)) ∼= Z/20Z× (Z/5Z)2, and χ|Z×
p

has
order 4. So χ(p) is well-defined up to multiplication by a 4-th
root of unity.



Hecke Grossencharacters

L-function

Let χ be a Hecke character of conductor m. Define

L(χ, s) =
∏
p∤m

(1 − χ(p)N(p)−s)−1.

This defines an L-function:
▶ it extends to a meromorphic function on C;
▶ it satisfies a functional equation, with gamma factors given

by the (kv , φv ) at archimedean places, and of
conductor |∆K |N(m).
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L-function

We can use the lfun functionalities for L-functions of Hecke
characters (currently: no imaginary component in χ).

? L = lfuncreate([gc,chi[1..-2]]);
? lfunparams(L)[1] \\conductor
% = 625
? lfunparams(L)[3]*1.
% = [5/2 - 0.8160628256*I, 0.8160628256*I,

7/2 - 0.8160628256*I, 1 + 0.8160628256*I]
? lfuncheckfeq(L)
% = -132
? lfun(L,1)
% = 1.0185518145 + 0.1382746268*I
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Algebraic characters

A Hecke character is called algebraic if for every complex
embedding σ, there exists pσ,qσ such that for all z ∈ (K×

σ )◦,

χ(z) = z−pσ(z̄)−qσ .

We then say that χ is of type ((pσ,qσ))σ.

Equivalently, there exists a number field E such that for all p,

χ(p) ∈ E×.
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Algebraic characters
We can test the algebraicity of a character and compute its type
with gcharisalgebraic:

? gcharisalgebraic(gc,chi)
% = 0
? chi2 = [0,1,0,0,0]~
? gcharisalgebraic(gc,chi2,&typ)
% = 1
? typ
% = [[-1, 1], [0, 0]]
? gcharlocal(gc,chi2,1)
% = [2, 0]
? gcharlocal(gc,chi2,2)
% = [0, 0]

χ is not algebraic, but χ2 is algebraic of type ((−1,1), (0,0)).



Hecke Grossencharacters

Algebraic characters

The set of algebraic characters of modulus m is a finitely
generated group.
We can compute a basis of this group with gcharalgebraic:

? gcharalgebraic(gc)
% = [1 0 0 0]

[0 1 0 0]
[0 0 1 0]
[0 0 0 0]
[0 0 -1/2 -1]
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Algebraic characters

Every finite order Hecke character is algebraic, and the type of
an algebraic character determines it up to multiplication by a
finite order character.
We can search for an algebraic character of a given type with
gcharalgebraic(gc,type):

? gcharalgebraic(gc,[[1,2],[3,4]])
% = []
? gcharalgebraic(gc,[[2,-2],[-1,1]])
% = [[0, -1, 2, 0, 0]~]

There is no character of type ((1,2), (3,4)), but we found a
character of type ((2,−2), (−1,1)).
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Identification

We can look for a character given some information about its
values or its local characters with gcharidentify.

? pr31 = idealprimedec(bnf,31)[1];
? gcharidentify(gc,[pr11,pr31],[0.261946,-0.497068])
% = [3, -77916, 53772, 206992]~

This is probably meaningless because the number of digits of
the output is of the same order as the precision we had on the
values.
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Identification

We need to reduce the working precision:

? localprec(6); chi3=gcharidentify(gc,[pr11,pr31],
[0.261946,-0.497068])

% = [0, -3, 2, 8]~
? gchareval(gc,chi3,pr11,0)
% = 0.26194591587002798940182987097135921818
? gchareval(gc,chi3,pr31,0)
% = -0.49706763230668562700776309783089085752
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Identification

To ensure reliable identification, even with low precision, you
need to provide all archimedean places and the values at a set
of primes that generates the ray class group Clm(K ).

? chi4 = gcharidentify(gc,[1,2,pr11],[[-26,-0.1],
[13,0.1],0.])

% = [1, -7, 13, 1]~
? gcharlocal(gc,chi4,1)
% = [-26, -0.1632125651]
? gcharlocal(gc,chi4,2)
% = [13, 0.1632125651]
? gchareval(gc,chi4,pr11)
% = 0.9007070934 - 0.4344269003*I
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Example: CM abelian surface
By CM theory, the L-function of every CM abelian varietie is a
product of L-functions of algebraic Hecke characters.
Let’s compute an example: consider the genus 2 curve

C : y2 + x3y = −2x4 − 2x3 + 2x2 + 3x − 2

and let A be its Jacobian.

? C = [-2*x^4 - 2*x^3 + 2*x^2 + 3*x - 2, x^3];
? L = lfungenus2(C);
? lfunparams(L)
% = [28561, 2, [0, 0, 1, 1]]
? factor(lfunparams(L)[1])
% = [13 4]

A has good reduction outside 13.
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Example: CM abelian surface

E = bnfinit(y^4 - y^3 + 2*y^2 + 4*y + 3, 1);
poldegree(nfsubfieldscm(E)[1])
% = 4

The maximal CM subfield of E has degree 4, i.e. E is a CM
field. It is known that A has CM by E .
We would like an associated Hecke character.

? pr13 = idealprimedec(E,13)[1];
? gc2 = gcharinit(E,pr13);
? gc2.cyc
% = [3, 0, 0, 0, 0.E-57]
? chiC = [1, -1, -1, 0, -1/2]~
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Example: CM abelian surface

? gcharisalgebraic(gc2,chiC,&typ)
? typ
% = [[1, 0], [1, 0]]

This is the type we expect for an algebraic Hecke character
corresponding to an abelian variety.

? L2 = lfuncreate([gc2,chiC]);
? lfunparams(L2)
% = [28561, 2, [0, 0, 1, 1]]
? exponent(lfunan(L,1000)-lfunan(L2,1000))
% = -120

The L-functions match!
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Example: density

For varying conductor, the possible parameters at infinity of
Hecke characters are dense.

? gc3 = gcharinit(x^3-3*x+1,2^20);
? chiapprox = gcharidentify(gc3,[1,2,3],[[0,Pi],
[0,exp(1)],[0,-Pi-exp(1)]])

% = [0, 1338253, 2033118]~
? gcharlocal(gc3,chiapprox,1)
% = [0, 3.141592238]
? gcharlocal(gc3,chiapprox,2)
% = [0, 2.718283147]

For this χ, we have φ1 ≈ π and φ2 ≈ e!
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Example: partially algebraic characters
The algebraicity of a Hecke character is almost equivalent to
the vanishing of all φσ parameters.
There also exists character for which a subset of the φσ vanish.

? gc4 = gcharinit(x^4-5,1);
? gc4.cyc
% = [0, 0, 0, 0.E-57]
? chipart = [1,0,0,0]~;
? gcharlocal(gc4,chipart,1)
% = [0, 0.7290851962]
? gcharlocal(gc4,chipart,2)
% = [0, -0.7290851962]
? gcharlocal(gc4,chipart,3)
% = [-2, 0.E-95]

For this χ, we have φ1, φ2 ̸= 0 but φ3 = 0!
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Questions ?

Have fun with GP !

Implementation based on
https://inria.hal.science/hal-03795267.

https://inria.hal.science/hal-03795267

