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polgalois

We can compute the Galois group of the Galois closure of a
number field, as a transitive permutation group. Restricted to
degree ≤ 7, or degree ≤ 11 with the galdata optional
package.

P1 = x^4-5;
polgalois(P1)
%2 = [8, -1, 1, "D(4)"]

Interpretation: the Galois group has order 8, is not contained in
the alternating group ("signature −1"), and is isomorphic to D4.
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polgalois

P2 = x^4-x^3-7*x^2+2*x+9;
polgalois(P2)
%4 = [12, 1, 1, "A4"]

The Galois group has order 12 and signature 1, and is
isomorphic to A4.

P3 = x^4-x^3-3*x^2+x-1;
polgalois(P3)
%6 = [24, -1, 1, "S4"]

The Galois group has order 24 and signature −1, and is
isomorphic to S4.
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nfsplitting

We can compute a polynomial defining the splitting field of the
input polynomial, that is, the smallest field over which the input
polynomial is a product of linear factors.

Q1 = nfsplitting(P1)
%7 = x^8 + 70*x^4 + 15625
Q2 = nfsplitting(P2)
%8 = x^12 - 59*x^10 + 1269*x^8 - 12231*x^6
+ 51997*x^4 - 79707*x^2 + 26569

This is the same as a defining polynomial for the Galois closure
of the number field generated by one root of the input
polynomial.



Advanced algebraic number theory

nfsplitting

The polynomial output by nfsplitting can be large.

Q3 = nfsplitting(P3)
%9 = x^24+12*x^23-66*x^22-1232*x^21+735*x^20
+54012*x^19+51764*x^18-1348092*x^17-2201841*x^16
+21708244*x^15+41344014*x^14-241723272*x^13
-454688929*x^12+1972336584*x^11+3130578366*x^10
-12348327032*x^9-13356023346*x^8+59757161004*x^7
+32173517686*x^6-204540935496*x^5-11176476888*x^4
+433089193668*x^3-155456858376*x^2-422808875280*x
+320938557273
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polredbest

We can use polredbest to compute a simpler polynomial
defining the same number field.

Q3 = polredbest(Q3)
%10 = x^24-6*x^23+18*x^22-38*x^21+60*x^20-54*x^19
-13*x^18+126*x^17-228*x^16+220*x^15+24*x^14
-396*x^13+521*x^12-216*x^11-48*x^10-32*x^9-66*x^8
+666*x^7-1013*x^6+348*x^5+510*x^4-654*x^3+234*x^2
+36*x+9
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galoisinit
We can use galoisinit to compute the automorphism group
of a number field that is Galois over Q, under certain condition
on the group (“weakly super-solvable”).

gal = galoisinit(Q3);

The gen component is a list of generators of the automorphism
group, expressed as permutations of the roots.

gal.gen
%12 = [Vecsmall([19,11,17,14,13,12,10,9,8,7,2,6,5,
4,23,22,3,21,1,24,18,16,15,20]),Vecsmall([14,10,5,
19,3,24,11,16,22,2,7,20,17,1,21,8,13,23,4,12,15,9,
18,6]),Vecsmall([5,15,6,13,20,19,23,7,11,18,21,4,
12,17,16,2,24,22,3,1,9,10,8,14]),Vecsmall([2,1,9,
10,16,21,14,17,3,4,19,18,22,7,20,5,8,12,11,15,6,
13,24,23])]
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galoisinit

The orders components contains orders of composition
factors of the group, and their product is the order of the group.

ord = gal.orders
%13 = Vecsmall([2, 2, 3, 2])
prod(i=1,#ord,ord[i])
%14 = 24

With the function galoisidentify, we can obtain the GAP4
index of the group.

galoisidentify(gal)
%15 = [24, 12]
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Effective Galois theory
galoissubgroups computes the list of all subgroups of a
group.

L = galoissubgroups(gal);
#L
%17 = 30

Then we can compute fixed fields of various subgroups of the
Galois group with galoisfixedfield.

R1 = galoisfixedfield(gal,L[25])[1];
polgalois(R1)
%19 = [24, 1, 1, "S_4(6d) = [2^2]S(3)"]
R2 = galoisfixedfield(gal,L[28])[1];
polgalois(R2)
%21 = [24, -1, 1, "S_4(6c) = 1/2[2^3]S(3)"]
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Ramification groups
We can compute ramification groups. Let’s first find the ramified
primes.

nf = nfinit(Q3);
factor(nf.disc)
%23 =
[ 3 28]
[11 16]

The ramified primes are 3 and 11.

dec3 = idealprimedec(nf,3);
pr3 = dec3[1];
[#dec3, pr3.f, pr3.e]
%26 = [4, 1, 6]

There are 4 prime ideals above 3. They have residue degree 1
and ramification index 6.
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Ramification groups

We compute the sequence of ramification groups
with idealramgroups.

ram3 = idealramgroups(nf,gal,pr3);
#ram3
%28 = 3

There are three nontrivial ramification groups to consider.

galoisidentify(ram3[1])
%29 = [6, 1]
galoisisabelian(ram3[1])
%30 = 0

The decomposition group has order 6, and is isomorphic to S3.
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Ramification groups

galoisidentify(ram3[2])
%31 = [6, 1]

The inertia group equals the decomposition group (we already
knew that since the residue degree is 1).

galoisidentify(ram3[3])
%32 = [3, 1]

The wild inertia group is the cyclic group C3, and all the higher
ramification groups are trivial.
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Ramification groups

dec11 = idealprimedec(nf,11);
pr11 = dec11[1];
[#dec11, pr11.f, pr11.e]
%35 = [4, 2, 3]

There are 4 prime ideals above 11. They have residue
degree 2 and ramification index 3.

ram11 = idealramgroups(nf,gal,pr11);
#ram11
%37 = 2

The wild ramification group is trivial (which we knew since 11 is
coprime to the group order).
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Ramification groups

galoisidentify(ram11[1])
%38 = [6, 1]
galoisidentify(ram11[2])
%39 = [3, 1]

The decomposition group is isomorphic to S3 (we already knew
it had index 4 in the Galois group), and the inertia group is C3
(we already knew it had index 2 in the decomposition group).
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Frobenius elements

At an unramified prime, we can compute the Frobenius element
with idealfrobenius.

dec2 = idealprimedec(nf,2);
pr2 = dec2[1];
[#dec2, pr2.f, pr2.e]
%42 = [6, 4, 1]
frob2 = idealfrobenius(nf,gal,pr2);
permorder(frob2)
%44 = 4

We check that the Frobenius element has order equal to the
residue degree.
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Explicit Kronecker–Weber theorem

We can construct abelian extensions of Q with polsubcyclo.

N = 7*13*19;
L1 = polsubcyclo(N,3);

We now have the list of degree 3 subfields of Q(ζN),
where N = 7 · 13 · 19.

L2 = [P | P <- L1, #factor(nfinit(P).disc)[,1]==3]
%47 = [x^3+x^2-576*x+5123, x^3+x^2-576*x-64,
x^3+x^2-576*x-5251, x^3+x^2-576*x+1665]

We select the ones that are ramified at the three primes 7, 13
and 19.
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Explicit Kronecker–Weber theorem

We compute the structure and generators of (Z/NZ)×
with znstar.

G = znstar(N)
%48 = [1296, [36, 6, 6], [Mod(743, 1729),
Mod(248, 1729), Mod(407, 1729)]]

We construct the matrix of a specific subgroup of index 3:

H = mathnfmodid([1,0;-1,1;0,-1],3);
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Explicit Kronecker–Weber theorem

We construct the corresponding abelian field.

pol = galoissubcyclo(G,H)
%50 = x^3 + x^2 - 576*x - 64
factor(nfinit(pol).disc)
%51 =
[ 7 2]
[13 2]
[19 2]

We check the ramification of the corresponding number field.
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Hilbert class field
To compute a Hilbert class field, we first need to compute the
class group.

bnf = bnfinit(a^2-a+50);
bnf.cyc
%53 = [9]

The class group is isomorphic to Z/3Z. We compute a relative
defining polynomial for the Hilbert class field with the
function bnrclassfield.

R = bnrclassfield(bnf)[1]
%54 = x^9 - 24*x^7 + (2*a - 1)*x^6 + 495*x^5
+ (-12*a + 6)*x^4 - 30*x^3 + (18*a - 9)*x^2
+ 18*x + (-2*a + 1)
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Hilbert class field

Conversely, from an abelian extension, we can recover its
corresponding class group rnfconductor.

[cond,bnr,subg] = rnfconductor(bnf,R);
cond
%56 = [[1, 0; 0, 1], []]
subg
%57 = [9]

Here the conductor is trivial, and its norm group is trivial in the
class group.
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Hilbert class field

We can also ask for an absolute defining polynomial for the
Hilbert class field with the optional flag=2.

R2 = bnrclassfield(bnf,,2)
%58 = x^18 - 48*x^16 + 1566*x^14 - 23621*x^12

+ 244113*x^10 - 19818*x^8 - 3170*x^6
+ 17427*x^4 - 3258*x^2 + 199
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Ray class fields
We can also consider class fields with nontrivial conductor.

bnr = bnrinit(bnf,12);
bnr.cyc
%60 = [72,2]

We can compute in advance the absolute degree, signature
and discriminant of the corresponding class field with bnrdisc.

[deg,r1,D] = bnrdisc(bnr);
[deg,r1]
%62 = [288,0]
D
%63 = 92477896[...538 digits...]84942237696

This field is huge!
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Ray class fields
For efficiency, we compute the class field as a compositum of
several smaller fields.

bnrclassfield(bnr)
%64 = [x^2 - 3, x^8 + (-27*a+24)*x^6
+ (-294*a-3273)*x^4 + (-3*a-3852)*x^2 - 3,
x^9 - 24*x^7 + (2*a-1)*x^6 + 495*x^5
+ (-12*a+6)*x^4 - 30*x^3 + (18*a-9)*x^2
+ 18*x + (-2*a+1)]

We can force the computation of a single polynomial
with flag=1.

bnrclassfield(bnr,,1)
%65 = [... huge polynomial ...]
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Ray class fields

We can also compute a subfield of the ray class field by
specifying a subgroup.

bnr = bnrinit(bnf,7)
bnr.cyc
%67 = [54,3]
bnrclassfield(bnr,3) \\elementary 3-subextension
%68 = [x^3 + 3*x + (14*a - 7),
x^3 + (-1008*a - 651)*x + (-1103067*a - 8072813)]
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Without the explicit field

Computing a defining polynomial with bnrclassfield can be
time-consuming, so it is better to compute the relevant
information without constructing the field, if possible.
We already saw the use of bnrdisc; we can also compute
splitting information without the explicit field.

pr41 = idealprimedec(bnf,41)[1];
bnrisprincipal(bnr,pr41,0)
%70 = [0,0]~

The Frobenius at p41 is trivial: this prime splits completely in the
degree 162 extension (which we did not compute).
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Ray class fields

Let’s do a full example with an HNF ideal and a subgroup given
by a matrix.

bnr = bnrinit(bnf,[102709,43512;0,1]);
bnr.cyc
%72 = [17010, 27]
bnrclassfield(bnr,[9,3;0,1]) \\subgroup of index 9
%73 = [x^9 + (-297*a - 4470)*x^7 + ... ]
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Modulus with infinite places

If the base field has real places, we can specify the modulus at
infinity by providing a list of 0 or 1 of length the number of real
embeddings.

bnf=bnfinit(a^2-217);
bnf.cyc
%75 = []
bnrinit(bnf,1).cyc
%76 = []
bnrinit(bnf,[1,[1,1]]).cyc
%77 = [2]

The field Q(
√

217) has narrow class number 2.
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Transcendental methods

For quadratic fields, ray class groups can be computed using
transcendental methods with quadhilbert and quadray.

quadhilbert(-31)
%78 = x^3 + x^2 + 1
lift(quadray(13,7))
%79 = x^3 + (-7*y - 11)*x^2 + (56*y + 73)*x

+ (-91*y - 118)

With bnrclassfield, the cost of the computation mostly
depends on the degree of the extension but not much on the
conductor; with transcendental methods, the cost mostly
depends on the conductor.
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Galois action on the class group
We can compute the Galois action on ray class groups
with bnrgaloismatrix, i.e. the Galois action on the relative
Galois group, without the explicit abelian extension.

bnf = bnfinit(x^2+2*3*5*7*11);
bnf.cyc
%81 = [4, 2, 2, 2]
bnr = bnrinit(bnf,1,1);
gal = galoisinit(bnf);
m = bnrgaloismatrix(bnr,gal)[1]
%84 =
[3 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
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Questions ?

Have fun with GP !


