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Documentation

I refcard-nf.pdf: list of functions with a short description.
I users.pdf Section 3.13: introduction and detailed

descriptions of the functions.
I in gp, ?10: list of functions.
I in gp, ?functionname: short description of the function.
I in gp, ??functionname: long description of the function.

To record the commands we will type during the tutorial:

? \l TAN.log
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Irreducibility

In GP, we describe a number field K as

K = Q[x ]/f (x)

where f ∈ Z[x ] is a monic irreducible polynomial.

? f = x^4 - 2*x^3 + x^2 - 5;
? polisirreducible(f)
%2 = 1

GP knows cyclotomic polynomials:

? g = polcyclo(30)
%3 = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
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Algebraic numbers

To perform simple operations in K = Q[x ]/f (x) = Q(α) where
f (α) = 0, we can use Mod:

? Mod(x,f)^5
%4 = Mod(3*x^3-2*x^2+5*x+10, x^4-2*x^3+x^2-5)

Interpretation: α5 = 3α3 − 2α2 + 5α+ 10.

We check that the roots of g are 30th roots of unity:

? lift(Mod(x,g)^15)
%5 = -1

We used lift to make the output more readable.
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polredbest

Sometimes we can find a simpler defining polynomial for the
same number field by using polredbest:

? {h = x^5 + 7*x^4 + 22550*x^3 - 281686*x^2
- 85911*x + 3821551};

? polredbest(h)
%7 = x^5 - x^3 - 2*x^2 + 1

Interpretation: Q[x ]/h(x) ∼= Q[x ]/(x5 − x3 − 2x2 + 1).
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nfinit

Most operations on number fields use a structure, which is
computed by the initialisation function nfinit.

? K = nfinit(f);

K contains the structure for the number field K = Q[x ]/f (x).

? K.pol
%9 = x^4 - 2*x^3 + x^2 - 5
? K.sign
%10 = [2, 1]

K has signature (2,1): it has two real embeddings and one pair
of conjugate complex embeddings.
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Computed information

? K.disc
%11 = -1975
? K.zk
%12 = [1,1/2*x^2-1/2*x-1/2,x,1/2*x^3-1/2*x^2-1/2*x]
? w = K.zk[2];

K has discriminant −1975, and its ring of integers is

ZK = Z+Z
α2 − α− 1

2
+Zα+Z

α3 − α2 − α
2

= Z+Zw+Zα+Zwα.
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Elements of a number field

We saw that we could represent elements of a number field as
polynomials in α. We can also use linear combinations of the
integral basis. We can switch between the two representations
with nfalgtobasis and nfbasistoalg.

? nfalgtobasis(K,x^2)
%14 = [1, 2, 1, 0]~

Interpretation: α2 = 1 · 1 + 2 · w + 1 · α+ 0 · wα = 1 + 2w + α.

? nfbasistoalg(K,[1,1,1,1]~)
%15 = Mod(1/2*x^3 + 1/2, x^4 - 2*x^3 + x^2 - 5)

Interpretation: 1 + w + α+ wα = α3+1
2 .
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Elements of a number field: operations

We perform operations on elements with the functions
nfeltxxxx, which accept both representations as input.

? nfeltmul(K,[1,-1,0,0]~,x^2)
%16 = [-1, 3, 1, -1]~

Interpretation: (1− w) · α2 = −1 + 3w + α− wα.

? nfeltnorm(K,x-2)
%17 = -1
? nfelttrace(K,[0,1,2,0]~)
%18 = 2

Interpretation: NK/Q(α− 2) = −1, TrK/Q(w + 2α) = 2.
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Decomposition of primes
We can decompose primes with idealprimedec:

? dec = idealprimedec(K,5);
? #dec
%20 = 2
? [pr1,pr2] = dec;

Interpretation: ZK has two prime ideals above 5, which we
call p1 and p2.

? pr1.f
%22 = 1
? pr1.e
%23 = 2

p1 has residue degree 1 and ramification index 2.
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Decomposition of primes

? pr1.gen
%24 = [5, [-1, 0, 1, 0]~]

p1 is generated by 5 and −1 + 0 · w + α+ 0 · wα, i.e. we
have p1 = 5ZK + (α− 1)ZK .

? pr2.f
%25 = 1
? pr2.e
%26 = 2

p2 also has residue degree 1 and ramification index 2.
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Ideals
An arbitrary ideal is represented by its Hermite normal form
(HNF) with respect to the integral basis. We can obtain this
form with idealhnf.

? idealhnf(K,pr1)
%27 =
[5 3 4 3]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

Interpretation: p1 can be described as

p1 = Z · 5 + Z · (w + 3) + Z · (α+ 4) + Z · (wα+ 3).
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Ideals

? a = idealhnf(K,[23, 10, -5, 1]~)
%28 =
[260 0 228 123]
[ 0 260 123 105]
[ 0 0 1 0]
[ 0 0 0 1]

We obtain the HNF of the ideal a = (23 + 10w − 5α+ wα).

? idealnorm(K,a)
%29 = 67600

We have N(a) = 67600.
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Ideals: operations
We perform operations on ideals with the functions
idealxxxx, which accept HNF forms, prime ideal structures
(output of idealprimedec), and elements (interpreted as
principal ideals).

? idealpow(K,pr2,3)
%30 =
[25 15 21 7]
[ 0 5 2 4]
[ 0 0 1 0]
[ 0 0 0 1]
? idealnorm(K,idealadd(K,a,pr2))
%31 = 1

We have a+ p2 = ZK : the ideals a and p2 are coprime.
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Ideals: factorisation
We factor an ideal into a product of prime ideals
with idealfactor. The result is a two-column matrix: the first
column contains the prime ideals, and the second one contains
the exponents.

? fa = idealfactor(K,a);
? matsize(fa)
%33 = [3,2]

The ideal a is divisible by three prime ideals.

? [fa[1,1].p, fa[1,1].f, fa[1,1].e, fa[1,2]]
%34 = [2, 2, 1, 2]

The first one is a prime ideal above 2, is unramified with
residue degree 2, and appears with exponent 2.
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Ideals: factorisation

? [fa[2,1].p, fa[2,1].f, fa[2,1].e, fa[2,2]]
%35 = [5, 1, 2, 2]
? fa[2,1]==pr1
%36 = 1

The second one is p1, and it appears with exponent 2.

? [fa[3,1].p, fa[3,1].f, fa[3,1].e, fa[3,2]]
%37 = [13, 2, 1, 1]

The third one is a prime ideal above 13, is unramified with
residue degree 2, and appears with exponent 2.
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Chinese remainders
We can use the Chinese remainder theorem with
idealchinese:

? b = idealchinese(K,[pr1,2;pr2,1],[1,-1]);

We are looking for an element b ∈ ZK such that b = 1 mod p2
1

and b = −1 mod p2.

? nfeltval(K,b-1,pr1)
%39 = 2
? nfeltval(K,b+1,pr2)
%40 = 1

We check the output by computing valuations: vp1(b − 1) = 2
and vp2(b + 1) = 1.
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Chinese remainders with signs
We can compute the sign of real embeddings of b:

? nfeltsign(K,b)
%41 = [-1, 1]

We have σ1(b) < 0 and σ2(b) > 0, where σ1, σ2 are the two real
embeddings of K .
We can ask idealchinese to compute an element that, in
addition to the congruences, is totally positive:

? c = idealchinese(K,[[pr1,2;pr2,1],[1,1]],[1,-1]);
? nfeltsign(K,c)
%43 = [1, 1]

Indeed we have σ1(c) > 0 and σ2(c) > 0.
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Dedekind zeta function
We can evaluate the Dedekind zeta function with lfun.

? L = nfinit(x^3-3*x-1);
? L.sign
%45 = [3, 0]

L is totally real.

? lfun(L,2)
%46 = 1.1722471496117109428809260096356285918
? q = bestappr(lfun(L,2)/Pi^6)
%47 = 8/6561
? lfun(L,2)/(Pi^6*q)
%48 = 1.0000000000000000000000000000000000000

ζL(2) is a rational multiple of π6 (Siegel’s theorem).
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bnfinit
To obtain the class group and unit group of a number field, we
need a more expensive computation than nfinit. The
relevant information is contained in the structure computed
with bnfinit (b = Buchmann).

? K2 = bnfinit(K);
? K2.nf == K
%50 = 1
? K2.no
%51 = 1

K has a trivial class group (no = class number).

? K2.reg
%52 = 1.7763300299706546701307646106399605586

We obtain an approximation of the regulator of K .
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bnfcertify

The output of bnfisprincipal is a priori only correct under
GRH (Generalised Riemann Hypothesis). We can
unconditionally certify it with bnfcertify.

? bnfcertify(K2)
%52 = 1

The computation is now certified! If bnfcertify outputs 0, it
means we have found a counter-example to GRH (or more
likely a bug in PARI/GP)!
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bnfinit: units

? lift(K2.tu)
%54 = [2, -1]
? K2.tu[1]==nfrootsof1(K)[1]
%55 = 1

K has two roots of unity (tu = torsion units), ±1. We can also
compute them with nfrootsof1.

? lift(K2.fu)
%56 = [1/2*x^2-1/2*x-1/2, 1/2*x^3-3/2*x^2+3/2*x-1]

The free part of Z×
K is generated by α2−α−1

2 and α3−3α2+3α−2
2 (fu

= fundamental units).
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bnfinit: analytic class number formula

? lfun(K,1+x+O(x^2))
%57 = 0.502284726052801113866176365679645651*x^-1

+ O(x^0)
? res = polcoeff(lfun(K,1+x+O(x^2)),-1)
%58 = 0.50228472605280111386617636567964565169

We compute an approximation of the residue of ζK (s) at s = 1.

? {2^K2.r1*(2*Pi)^K2.r2*K2.no*K2.reg/
(K2.tu[1]*sqrt(abs(K2.disc))*res)}

%59 = 0.99999999999999999999999999999999999999

We numerically check the analytic class number formula.
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Class group

? L = bnfinit(x^3 - x^2 - 54*x + 169);
? L.cyc
%61 = [2, 2]

C`(L) ∼= Z/2Z× Z/2Z.

? L.gen
%62 = [[5,3,2;0,1,0;0,0,1], [5,4,3;0,1,0;0,0,1]]

Generators of the class group, given as ideals in HNF form.
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Testing whether an ideal is principal

We test whether an ideal is principal with bnfisprincipal:

? pr = idealprimedec(L,13)[1]
? [dl,g] = bnfisprincipal(L,pr);
? dl
%65 = [1, 0]~

bnfisprincipal expresses the class of the ideal in terms of
the generators of the class group (discrete logarithm). Here,
the ideal pr is in the same class as the first generator. In
particular, the ideal is not principal, but its square is.
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Testing whether an ideal is principal

? g
%66 = [0, 1/5, 2/5]~
? {idealhnf(L,pr) == idealmul(L,g,

idealfactorback(L,L.gen,dl))}
%67 = 1

The second component of the output of bnfisprincipal is
an element g ∈ L that generates the remaining principal ideal.
(idealfactorback = inverse of idealfactor =

∏
i L.gen[i]

dl[i])
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Computing a generator of principal ideal

We know that pr is a 2-torsion element; let’s compute a
generator of its square:

? [dl2,g2] = bnfisprincipal(L,idealpow(L,pr,2));
? dl2
%69 = [0, 0]~

The ideal is indeed principal (trivial in the class group).

? g2
%70 = [1, -1, -1]~
? idealhnf(L,g2) == idealpow(L,pr,2)
%71 = 1

g2 is a generator of pr2.
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Application: bnfisintnorm

We can use these functionalities to find solutions in ZK of norm
equations with bnfisintnorm:

? bnfisintnorm(L,5)
%72 = []

There is no element of norm 5 in ZL.

? bnfisintnorm(L,65)
%73 = [x^2 + 4*x - 36, -x^2 - 3*x + 39, -x + 2]

There are three elements of ZL of norm 65, up to multiplication
by elements of Z×

L with positive norm.
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Expressing a unit in terms of the generators

? u = [0,2,1]~;
? nfeltnorm(L,u)
%75 = 1

We have found a unit u ∈ Z×
L .

? bnfisunit(L,u)
%76 = [1, 2, Mod(0, 2)]~
? lift(L.fu)
%77 = [x^2 + 4*x - 34, x - 4]
? lift(L.tu)
%78 = [2, -1]

We express it in terms of the generators with bnfisunit:
u = (α2 + 4α− 34) · (α− 4)2 · (−1)0.
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Large fundamental units
By default, bnfinit only computes fundamental units if they
are not too large.

? M = bnfinit(x^2-3019);
? M.fu
%80 = 0

We can force the computation of fundamental units with
bnfinit(,1).

? M = bnfinit(x^2-3019,1);
? lift(M.fu)
%81 = [213895188053752098546071055592725565706690
871236169789*x - 117525625416599410184425264152
37539460392094825860314330]
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Questions ?

Have fun with GP!


