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What is this course about?

Computational mathematics with a focus on algebra and
number theory
Practical point of view: toolbox.
If you are more of a theory person: avoid common pitfalls
when doing computations.
If you are more of a computation person: improve and
widen your algorithmic skills.
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Lectures

1 Complexity and arithmetic operations
2 Algebraic number theory
3 Linear algebra and lattices
4 Other algorithmic techniques
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General advice: pseudocode

What is pseudocode?
On paper.
Enough information so that someone who does not know
the algorithm could implement it.
No low-level details (loop indices, temporary variables
etc).
Sentences allowed.
Should be independent of any programming language.

Before implementing an algorithm:
Explain the idea to another person.
Write pseudocode.
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Pseudocode: example

Let M be a square m ×m matrix.
Pseudocode:

G← graph: vertices {1, . . . ,m} and edge (i , j) if Mi,j 6= 0.
find a triangle T in G.
. . .

Not pseudocode:
for i = 1 to m:

for j = 1 to m:
for k = 1 to m:

if M[i , j]! = 0 && M[i , k ]! = 0 && M[j , k ]! = 0:
C := [i , j , k ]

break i
. . .
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General advice: tests

Before, while and after you implement an algorithm, write tests.

Cases that you solved by hand.
Cases that you can compute independently.
Limit cases (some value is 0 or maximal, some set is
empty, etc).
Tests that exercise every part of the code.
Try to produce tests that make your algorithm fail.
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General advice: team up

Team up!
If you have theoretical skills: with someone who can do
computations that you cannot.
If you have computational skills: with someone who cannot
do computations that you can.
You can do both!

Benedict Gross:
”I used to use low level languages like Fortran, Algol, and C.
Now I use high level languages like Buhler, Elkies, and Stein.”
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Pari/GP

Computer algebra software specialised in number theory.
Originally developed by Henri Cohen and his co-workers in
Bordeaux in the 80’s.
Currently maintained by Karim Belabas and Bill Allombert.
Standalone, lightweight, free software.
C librari (Pari) and calculator with a script language (GP).
Easy to use and fast.
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Exercise sessions

Participants:
Group by pairs.
Both should write code, alternatively.
The person who does not write code should prepare tests
on paper.

Exercises:
Basic exercises
Advanced exercises
Exploration
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Plan

Today:
1 Complexity
2 Arithmetic operations
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Complexity
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What is complexity?

The complexity of an algorithm is the asymptotic dependence
of the running time on the input size.

It depends on the algorithm (and not just on the desired output)
but not on the implementation.
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Big O notation

Let f ,g : N→ R>0.

Definition: We write f = O(g) if there exists N,C > 0 such that

f (n) ≤ C · g(n) for all n ≥ N.

Example: 7n +
√

n = O(n).

Definition: We write f = Õ(g) if for every ε > 0 we have

f = O(g1+ε).

Example: n log(n) = Õ(n).
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Size of input

The size of input always means its bit size, that is, the number
of binary symbols necessary to represent it.

Examples:
The size of an integer N ≥ 0 is

dlog(N + 1)/ log(2)e = O(log N)

(number of base 2 digits).
The size of an array is the sum of the sizes of its entries.

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Elementary operations

By default, complexity measures the number of bitwise
operations. However, sometimes we express the complexity in
terms of other elementary operations that should be specified.

Example: number of ring operations (+,−,×) in a ring R. The
bit complexity will then depend on the cost of the individual ring
operations.
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Complexity example

Selection sort:
Input: an array T of length n.
Output: the array T , sorted by increasing entries.

1 for i = 1 to n:
2 j ← position of the minimum entry among T [i], . . . ,T [n].
3 Swap T [i] and T [j].

Complexity: O(n2) elementary operations: O(n2) comparisons
and O(n) swaps.

Note: there are sorting alorithms with complexity O(n log n).
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Other relevant parameters

Sometimes (especially for mathematical algorithms), other
parameters are more relevant than the size of input, and we
express the complexity in terms of them.

Example: in numerical algorithms, the desired precision of the
output is usually a relevant parameter.

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Input representation

Warning: sometimes there are several natural ways to
represent the input, of very different input sizes.

Examples:
Integer: unary vs binary representation.
Finite group: multiplication table vs generators as
permutations.
Polynomial: dense vs sparse representation.
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Practical complexity: classes

Let n denote the size of the input.

Fast: Õ(n) (quasi-linear)
Medium: O(nC) for some C > 1 (polynomial)
Slow: O(2nα

) for some 0 < α < 1 (subexponential)
Very slow: O(2Cn) for some C > 0 (exponential)
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Practical complexity: prediction

We can use complexity to predict the running time of an
implementation.

Measure the running time on small examples.
Replace O(f (n)) by C · f (n) where C matches the
measured running time.
Use C · f (n) to predict running times.

The measured running time should not be too small to get
meaningful predictions.
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Predicting running times: example

Assume we have an algorithm of complexity O(n2) where n is
the input size.

With n = 100, we measure 1s. We estimate C = 10−4.
With n = 200, we predict 4s, but we measure 3s.
We are not in the asymptotic regime yet.
We re-estimate C = 7.5 · 10−5.
With n = 400, we predict 12s. We measure 11.5s. Great!
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Probabilistic algorithms

Some algorithms use a random number generator (RNG): they
are called probabilistic algorithms.

Warnings:
For a fixed input, the running time could depend on the
random values.
Complexity will be expressed ”in expected time” or ”with a
certain probability”.
For some algorithms, there are several valid outputs and
the returned one depends on the random values.

One can usually fix the value of the random seed used by the
RNG to make the results reproducible.
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Theory and practice

Sometimes the algorithms used in practice do not have the best
theoretical complexity:

the hidden constants could be too large for the
asymptotically faster algorithm to be faster in real
instances, or
the algorithm is complicated and is not implemented yet.

In such cases, I will mention the two complexities.
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Memory: space complexity

Another important ressource is memory.

The dependence of the maximum size of the data used by the
algorithm during its execution on the size of the input is the
space complexity.

As before, it can be measured in bits (by default) or in other
”elementary units” to be specified.
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Space complexity: example

Let R be a ring. Define a sequence by u1 = a ∈ R, u2 = b ∈ R,
and for k > 2, uk = u2

k−1 + 5u3
k−2.

Problem: Given (a,b,n), compute un.

Algorithm A:
1 Initialise an array T of length n, with first two entries a,b.
2 Iteratively compute T [i] = ui from the previous values.

Time complexity: O(n). Space complexity: O(n) ring elements.

Algorithm B:
1 Initialise a pair P = (a,b).
2 Iteratively update the pair so that P = (ui−1,ui) at step i .

Time complexity: O(n). Space complexity: O(1) ring elements.
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Arithmetic operations
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Representation of arithmetic objects

Every object is built from arrays of machine integers (usually 64
bits).

Multiprecision (MP) integers: array representing the
coefficients in base B = 264.
Multiprecision floating-point real: a MP
integer 2n−1 ≥ N < 2n (mantissa) and an exponent e
representing N · 2e−n

Polynomials: array of numbers representing the
coefficients.
Vectors: arrays of numbers; matrices: arrays of vectors.
etc.
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Addition

Addition of n-bits numbers, polynomials, matrices: Fast O(n).

Warning: this is not true for Q, as they require multiplications
and GCDs of integers.
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Addition: complexity

Addition of two n-digits integers
∑n−1

i=0 NiBi and
∑n−1

i=0 MiBi .
1 Compute the n + 1 digits of A + B, starting from the least

significant ones.
2 At step i , compute (A + B)i = Ai + Bi + C where C is the

carry from the previous addition.

Each step is O(1) elementary operations, and there are at
most n + 1 steps: total time O(n).
Only need to store C in addition to the output: memory O(1)
excluding the output.
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Multiplication

Integer and polynomial multiplication: Fast Õ(n).
k ×m-matrix - k -vector multiplication (n = k(m + 1)): Fast
O(km) = O(n).
matrix-matrix multiplication: Medium (more details later).
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Integer multiplication: schoolbook

Multiplication of two n-digits integers
∑n−1

i=0 NiBi

and
∑n−1

i=0 MiBi .
1 Initialise all 2n + 1 digits of the product AB to 0.
2 For every pair (i , j): add Ai · Bj to (AB)i+j .
3 Propagate the carry.

We perform O(1) operations for each pair of coefficients:
total O(n2) (Medium).
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Fast multiplication

For simplicity, multiplication of two degree n = 2k

polynomials P,Q ∈ C[X ].

Idea: evaluate both at 2n points, multiply the evaluations, and
interpolate.

Need good evaluation points: 2k -th roots of unity ζ  we will be
able to use a divide-and-conquer method.

Write P(X ) = P0(X 2) + XP1(X 2).
We have P(ζ) = P0(ζ2) + ζP1(ζ2).
P0 and P1 have degree 2k−1 and ζ2 is a 2k−1-th root of
unity.
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Fast multiplication

Fast Fourier transform (FFT): P 7→ all P(ζ).
1 Compute P0 and P1.
2 Recursively compute all P0(ζ ′) and P1(ζ ′).
3 Recover all the P(ζ): each Pi(ζ

′) contributes to the
two P(ζ) such that ζ2 = ζ ′.

The number T (n) = T (2k ) = uk of complex number operations
satisfies

T (n) = 2T (n/2) + O(n), i.e. uk = 2uk−1 + O(2k ).

Solution uk = O(k2k ), i.e. T (n) = O(n log n).
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Fast multiplication

Solution T (n) = O(n log n) for evaluation.

Fourier transform is almost an involution: same time for
interpolation.

But we need to take into account the cost of complex numbers
operations at suitable precision. Alternative, work in a
suitable finite field. End result (Schönage–Strassen ’71):
O(n log n log log n) (Practice).

Harvey–van der Hoeven 2021: O(n log n) (Theory).
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Matrix multiplication: schoolbook

Multiplication of two m ×m matrices A and B (size 2m2).
1 Initialise the coefficients of AB to 0.
2 For every triple (i , j , k): add Ai,kBk ,j to (AB)i,j .

We perform O(1) operations for every triple of coefficients:
total O(m3) = O(n3/2) (Medium).

Currenly unknown how to obtain Õ(n) = Õ(m2) (Fast).
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Faster matrix multiplication

Strassen ’69: formula for the product of two 2× 2 matrices
with 7 multiplications and many additions, valid even for
noncommutative coefficients.

Strassen’s algorithm for m = 2k :
1 Subdivide A and B into m/2×m/2-blocks.
2 Compute the 7 Strassen products recursively.
3 Recover the product AB blockwise.

The number T (m) = T (2k ) = uk of operations satisfies

T (m) = 7T (m/2) + O(m2), i.e. uk = 7uk−1 + O(4k ).

Solution uk = O(7k ).
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Faster matrix multiplication

Strassen (Practice):
Recall m = 2k .
T (m) = 7k = O(mlog 7/ log 2) = O(m2.81...) = O(n1.40...).

Best known (Theory): Õ(m2.37...) = Õ(n1.19...).
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Division

Integer or polynomial division with remainder: Fast Õ(n).
Matrix division: Medium Õ(mω).
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Greatest common divisor

Greatest common divisor of integers or polynomials: Fast Õ(n).

Variant: resultant.
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Resultant

Let R be a ring and P,Q ∈ R[X ]. The resultant
Res(P,Q) = ResX (P,Q) ∈ R satisfies:

Res(P,Q) has a polynomial expression in the coefficients
of P and Q.
If R is a field containing all roots of P, then

Res(P,Q) = cdegQ
∏

P(α)=0

Q(α),

where c is the leading coefficient of P.
Res(P,Q) ∈ R[X ]P + R[X ]Q.
Res(Q,P) = (−1)degP·degQ Res(P,Q).
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Resultant

Resultant computation: Fast Õ(n).

Computations with numbers α represented by P such
that P(α) = 0.
Example: ResX (P(X ),Q(Y − X )) has roots α + β
where P(α) = Q(β) = 0.
Elimination.

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Exponentials

Over C: Fast quasi-linear in size of input and precision.
Over a ring R: (a,N) 7→ aN .
Write N =

∑n
i=0 Ni2i with Ni ∈ {0,1} and use:

aN = (((aNn )2 · aNn−1)2 · · · )2 · aN0 .

Uses O(n) operations in R (Fast).
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Logarithms

Over C: Fast quasi-linear in size of input and precision.
Over a ring R: discrete logarithm problem (a,aN) 7→ N?
Discrete logarithm in an n-bits finite field of size q = pe

(q ≈ 2n): Slow exp(Õ(n1/3)).
But quasi-polynomial (close to Medium) for very small p.
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Factorisation

Problem: write integer or polynomial as product of primes or
irreducibles.

In short:
Integers: Slow (subexponential time).
Polynomials (over R, C and finitely generated fields):
Medium (polynomial time).
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Factorisation of integers

n-bits integer N: recall n = O(log N).

Easy special cases:
Detection of powers: Fast Õ(n).
Detection of primes: Medium Õ(n6).

Hard cases:
Trial division algorithm: Very slow Õ(

√
N) = Õ(2n/2).

Find all b-bits prime factors p | N: Slow exp(Õ(
√

b + log n)).
Completely factor N: Slow exp(Õ(n1/3)).

Open problem: find the largest square factor faster than
complete factorisation?
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Squarefree factorisation of polynomials

Squarefree factorisation: write

P = P1P2
2 . . .P

k
k ,

where P1, . . . ,Pk are squarefree.

Use gcd(P,P ′) = P2P2
3 . . .P

k−1
k : Fast Õ(n) (Yun ’76).
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Factorisation of polynomials over finite fields: distinct
degree factorisation

Let P ∈ Fq[X ] be squarefree.
Write

P = P1P2 . . .Pk ,

where all irreducible factors of Pi have degree i .

X qi − X =
∏
α∈Fqi

(X − α) =⇒
∏

k |i Pk = gcd(X qi − X ,P).

Compute this gcd by first computing (X mod P)qi
: Medium

(polynomial time).
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Factorisation of polynomials over finite fields: equal
degree factorisation

Let P ∈ Fq[X ] be squarefree

P = P1 . . .Pk

with all Pi irreducible of degree d .
Note

R = Fq[X ]/(P) ∼=
k∏

i=1

Fq[X ]/(Pi) ∼= Fk
qd .

If r ∈ R, then r (q
d−1)/2 7→ (±1,±1, . . . ,±1).

Take random r ∈ R and compute gcd(r (q
d−1)/2 − 1,P): Medium

(expected polynomial time probabilistic algorithm).
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Last lecture: complexity

Complexity: running time as a function of size n of input.

Fast: Õ(n) (quasi-linear)
Medium: O(nC) for some C > 1 (polynomial)
Slow: O(2nα

) for some 0 < α < 1 (subexponential)
Very slow: O(2Cn) for some C > 0 (exponential)
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Last lecture: arithmetic operations

Basic operations on integers and polynomials: Fast.
Basic operations on matrices: Medium.
Factorisation of polynomials: Medium.
Factorisation of integers: Slow.
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Plan

Today:
1 Reconstruction
2 Algebraic number theory
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Reconstruction
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What is reconstruction?

Recover an object from specialisations or approximations.

Examples: N ∈ Z
Ñ ∈ R with |N − Ñ| < 1

2 =⇒ N = bÑe.
M = N mod D and |N| < D

2 =⇒ N is the lift of M in (−D
2 ,

D
2 ].

Why?
Control the size of objects during a computation.
Better tools in the specialised or approximate version.
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Example: cyclotomic polynomials

For m ∈ Z≥1

Φm(X ) =
∏
ζ

(X − ζ) ∈ Z[X ]

where ζ ranges over primitive m-th roots of unity.

Use ζ = exp(2πik
m ) ∈ C for k coprime to m.
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Chinese remainder theorem

If N =
∏k

i=1 Ni with Ni pairwise coprime, then

Z/NZ ∼=
k∏

i=1

Z/NiZ

as rings, where x 7→ (x mod N1, . . . , x mod N2).

Inverse map (reconstruction): Fast Õ(log N).

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Interpolation

If x0, . . . , xn ∈ K are pairwise distinct, then

K [X ]≤n ∼= K n,

as K -vector spaces, where P 7→ (P(x0), . . . ,P(xn)).

Inverse map (reconstruction): Fast Õ(n).
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Rational number reconstruction

If x = a/b ∈ Q and |x − x̃ | < 1
|b| , then a/b appears in the

continued fraction expansion of x̃ .

Expansion computation (reconstruction): Fast.
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Rational fraction reconstruction

If F = A/B ∈ K (X ) and F − F̃ = O(X n) with F̃ ∈ K [[X ]] and
deg A + deg B ≤ n, then F can be recovered from Padé
approximants.

Approximant computation (reconstruction): Fast Õ(n).
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Kronecker substitution

If P =
∑

i PiX i ∈ Z[X ] with |Pi | < B
2 , then P can be

recovered from P(B).
If P =

∑
i Pi(X )Y i ∈ R[X ][Y ] with deg Pi < d , then P can

be recovered from P(X d ) ∈ R[X ].

Reconstruction: Fast.
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Algebraic number theory
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Number fields and function fields

Number field F Function field F(C)
Q ⊂ F π : C → P1

ZF O(C \ π−1(∞))
Ideal Divisor

Class group Cl(F ) Jacobian Jac(C)
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Complexity parameters

Most significant parameters:
Degree d = [F : Q].
Discriminant ∆F .

We have d = O(log ∆F ), and this is optimal.
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Main problems

Given a number field F , compute
1 the ring of integers ZF ,
2 the Galois group Gal(F̃/F ) of the Galois closure F̃ of F ,
3 the class group Cl(F ), and
4 the unit group Z×F .
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Algebraic number theory:
Number fields
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Defining polynomial

We can always write

F = Q[X ]/(P) = Q(α)

where P(α) = 0, and P ∈ Z[X ] is monic and irreducible of
degree d = [F : Q].

This is how we will specify a number field.

There always exists a defining polynomial of size O(d log ∆F ).
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Embeddings between number fields

A ring homomorphism between number fields is always an
embedding, and is an isomorphism if and only if they have
the same degree.

The homomorphisms

Q[X ]/(P) = Q(α) −→ K

are exactly given by α 7→ β, where β ∈ K is a root of P.

We are reduced to finding roots of polynomials over number
fields: Medium.
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Extension

Let Q ∈ ZF [Y ] be monic and irreducible.
Let K = F [Y ]/(Q) = F (β) where β is a root of Q.

There exists k ∈ Z such that

K = Q(β + kα).

Defining polynomial for K : ResX (P,Q(Y − kX )) Fast.
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Elements of number fields

We can represent an element of F uniquely by a polynomial
in Q[X ] of degree less than d .

All arithmetic operations reduce to polynomials: Medium.
Division is the worst because of coefficient growth.
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Trace and norm

Let λ = R(α) ∈ F , and let mλ : F → F be defined by x 7→ λx .

Define:
The trace TrF/Q(λ) = Tr(mλ): Fast.
The norm NF/Q(λ) = det(mλ) = ResX (P,R): Fast.
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Algebraic number theory:
Ring of integers
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Orders and discriminants

An order O is a subring of F that is generated over Z by a
basis (wi)i of F .

Example: O = Z[α].

Every order O satisfies O ⊂ ZF : the ring of integers is the
maximal order.

Discriminant: disc(O) = det(Tr(wiwj)) ∈ Z \ {0}.

If O ⊂ O′ then disc(O) = disc(O′)[O′ : O]2.
∆F = discZF .
disc(Z[α]) = Res(P,P ′): Fast.

To compute ZF , start with O = Z[α] and increase it.
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Saturation

Let p be a prime.
The p-saturation of a subgroup H of an abelian group (G,×) is

{g ∈ G | gpk ∈ H for some k ≥ 0}.

This is also the smallest subgroup H ⊂ S ⊂ G such that [G : S]
is not divisible by p.

In additive notation B ⊂ (A,+):

{a ∈ A | pka ∈ B for some k ≥ 0}.

Slow algorithm: for every b ∈ B/pB, test if 1
p b ∈ A? Repeat.
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Ring of integers and factorisation

Start with O = Z[α].

We reduce to two steps:
1 Find the p such that p divides [ZF : O]:

Factor disc(O) Slow.
2 For each p, compute the p-saturation of O in ZF

(a p-maximal order): Medium.

Chistov (’89): problem is equivalent to finding the largest
squarefree factor of a given integer.
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Algorithms computing a p-maximal order

There are two main algorithms to compute a p-maximal order:
”Round 2”: based on linear algebra. Medium (polynomial
time).
”Round 4”: based on polynomial operations. Faster in
practice, not proved to terminate in polynomial time.
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Round 2

Define

Jp(O) = {x ∈ O | x mod p is nilpotent in O/pO}, and

O′ = {y ∈ F | yJp(O) ⊂ Jp(O)}.

Theorem: O′ is an order containing O, and O = O′ if and only
if O is p-maximal.

Let a ∈ A = O/pO, and assume for simplicity that p > d .
Then a is nilpotent if and only if Tr(ax) = 0 for all x ∈ A.
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Algebraic number theory:
Ideals
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Ideals of rings of integers

Fractional ideal: 1
ba with a ⊂ ZF nonzero with b ∈ Z>0.

Every fractional ideal is invertible.
N(a) = |ZF/a| extends multiplicatively.
Unique factorisation into products of prime ideals.
Every prime ideal p appears in the factorisation of a = pZF
where pZ = p ∩ Z.
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Representation of ideals

a ⊂ ZF represented by the matrix of a basis.
a = aZF + bZF where a,b ∈ ZF .
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Factorisation

Problem: Consider a ⊂ ZF , compute its factorisation.

Factoring ideals is at least as hard as factoring integers.
1 Factor N(a): Slow.
2 Given a prime divisor p, find the factorisation of pZF :

Medium.
3 Compute the exponent vp(a) (valuation) of p in a: Medium.
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Decomposition of primes

Let p be a prime number, and write pZF =
∏

pep .

ZF/pZF
∼=
∏

ZF/p
ep .

For simplicity, assume p does not divide disc(Z[α]).
Write P =

∏
i Pi mod p the factorisation of P in Fp[X ].

Z[α]/(p) ∼= Z[X ]/(p,P) ∼= Fp[X ]/(P) ∼=
∏

i

Fp[X ]/(Pi).

We obtain the prime ideals

pi = (p,Pi(α)) with residue field ZF/pi
∼= Fp[X ]/(Pi).
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Valuation

Basic algorithm:
1 Reduce the basis of a modulo p.
2 If a mod p = 0, divide by p and repeat.

Can do better by precomputing z ∈ 1
pZF such that

vp(z) = −1,
vq(z) = 0 for all q 6= p above p.
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Algebraic number theory:
Galois group
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Galois theory

A number field F is Galois if of the following equivalent
properties hold:

F is generated by the set of all roots of a polynomial
in Q[X ];
F contains all roots its defining polynomial P;
|Aut(F )| = d .

In this case, we call Gal(F/Q) = Aut(F ) its Galois group, and
there is a one-to-one, inclusion-reversing correspondence
between subfields of F and subgroups of Gal(F/Q).

In general, F ⊂ F̃ Galois closure (smallest Galois extension
containing F ), generated by the set of all roots α1, . . . , αd of P.
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Frobenius elements

Assume F/Q is Galois, and let p ⊂ ZF be an unramified
(ep = 1) prime ideal.

There exists a Frobenius element Frobp ∈ Gal(F/Q) such that
Frobp(p) = p,
Frobp induces the Frobenius automorphism x 7→ xp on the
residue field of p, and
Frobp has order equal to the degree of the residue field.

The Frobp for p | p are conjugate and we call Frobp this
conjugacy class.

In general, the cycle type of Frobp ∈ Gal(F̃/Q) as a permutation
of the roots of P is the factorisation type of p in F .
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Two problems

We have two different problems:
1 Given F Galois, compute Gal(F/Q).
2 Given F arbitrary, compute Gal(F̃/Q) ⊂ Sd .

[F̃ : Q] can be as large as d !.
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Galois closure

Algorithm:
1 Start with F1 = F .
2 At Step i , factor P over Fi . If there is a nonlinear factor,

let Fi+1 be the corresponding extension, and repeat.

Every step is polynomial time (Medium), but the sizes increase!
The algorithm is polynomial in the size of the output.
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Automorphisms: direct computation

In general, computing the automorphism group amounts to
finding the roots of the defining polynomial P over F .

We reduce to the polynomial factorisation problem: Medium.

This works regardless of F/Q being Galois or not.
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Combinatorial algorithm

Allombert’s algorithm.
Tries to guess a Frobenius element generating a normal
subgroup, compute the corresponding subfield K ,
recursively compute the Galois group of K .
Works for supersolvable Galois groups.
Fast in practice but can be exponential in the worst case
(Very slow).
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Special cases

Other special cases:
Abelian Galois group (Acciaro – Klüners): Medium but
faster.
Nilpotent Galois groups (Allombert, unpublished): Medium
with a similar speedup.
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Subfields

Computation of subfield F H corresponding to a subgroup H:
Generated by the trace TrF/F H (λ) for some λ ∈ F .
Computation by reconstruction.

Complexity: Medium.
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Frobenius elements

Computation of the Frobenius element Frobp:
1 For every σ ∈ Gal(F/Q):
2 Test if σ has the correct order.
3 Test if σ(p) = p.
4 Test if σ(α) = αp mod p.

Complexity: Medium.
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Galois group of the Galois closure

Idea:
1 Update a subgroup G ⊂ Sd such that Gal(F̃/Q) ⊂ G.
2 Start with G = Sd .
3 Repeat:
4 Compute the maximal proper subgroups H ⊂ G.
5 For each H, test if Gal(F̃/Q) ⊂ H.

Step (4) requires nontrivial computational group theory, no
known polynomial time algorithm.
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Resolvents

Assume Gal(F̃/Q) ⊂ G ⊂ Sd .
Let F ∈ Z[X1, . . . ,Xd ] and let H ⊂ G be its stabiliser. Define the
resolvent polynomial

R(F ) =
∏

σ∈G/H

(X − F (ασ(1), . . . , ασ(d))) ∈ Z[X ].

Theorem: Assume R(F ) is squarefree. The resolvent R(F )
has a root in Z if and only if Gal(F̃/Q) is conjugate to a
subgroup of H.

Computation by reconstruction and factorisation. Bottleneck:
find nice F so that R(F ) is not too large.

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Subfields

Resolvents also provide defining polynomials for the subfield
fixed by a subgroup H ⊂ Gal(F̃/Q).
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Frobenius elements

Identifying Frobenius elements (Dokchitser–Dokchitser) by a
variant of the resolvent method.

Let C be a conjugacy class in Gal(F̃/Q) and h(X ) ∈ Z[X ].
Define

ΓC =
∏
σ∈C

(
X −

d∑
i=1

h(αi)ασ(i)

)
∈ Z[X ].

Theorem: there exists h(X ) such that

Frobp ∈ C ⇐⇒ ΓC(TrF/Q(h(α)αp)) = 0 mod p

for almost all p.

Remark: often one can take h(X ) = X 2.
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Subfields without the Galois group

If we only want the subfields of F (van Hoeij – Klueners –
Novocin):

Number of subfields can be superpolynomial.
Notion of generating subfields: all subfields are
intersections of the generating ones.
Uses subfields of the form

{x ∈ F | σ1(x) = σ2(x)},

where σ1, σ2 : F → K .
Get (K , σ1, σ2) from factoring P over F : Medium.
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Algebraic number theory:
Class group and units
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Class group and unit group

A fractional ideal is principal if it is generated by one element.
The class group

Cl(F ) = {fractional ideals}/{principal ideals}.

is a finite abelian group.

The unit group Z×F is a finitely generated abelian group of
rank r1 + r2 − 1, where (r1, r2) is the signature of F .
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Problems

Compute the structure of Cl(F ) and Z×F ;
Compute generators for Cl(F ) and Z×F ;
Given an element of Cl(F ) or Z×F , write it as a product of
the generators;
Given a principal ideal a, compute a generator of a.
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S-units

Let S be a set of prime ideals of F .
The group of S-units is

Z×F ,S = {u ∈ F× | vp(u) = 0 for all p /∈ S}.

It is a finitely generated group of rank r1 + r2 + |S| − 1.
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Reductions to S-unit group

If S generates Cl(F ), then considering

vS : Z×F ,S → ZS,

where vS(u) = (vp(u))p∈S, we have

Cl(F ) = coker vS and Z×F = ker vS.

Moreover, if a factors completely over the primes in S and a is
principal, then every generator of a is an S-unit.
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Roots of unity

The torsion subgroup of Z×F is easier:
ζm ∈ F =⇒ Q(ζm) ⊂ F =⇒ ϕ(m) | d =⇒ finitely many
possible m.
For fixed m, factor the cyclotomic polynomial Φm over F .

Total complexity: Medium.
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The Riemann Hypothesis

The function

ζ(s) =
∏

p

(1− p−s)−1 for <(s) > 1

can be continued to a meromorphic function on C.

Conjecture (Riemann Hypothesis):
All zeroes ρ of ζ satisfy <(ρ) ≤ 1

2 .

The generalisation of this conjecture to other L-functions is
called the Generalised Riemann Hypothesis (GRH).
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Algorithms

Under GRH, all problems: Slow
exp(Õ(d2/3)) + exp(Õ((log ∆F )1/2)).

Unconditionally: Very slow Õ(∆
1/2
F ).

Unconditionally, only Z×F : Very slow Õ(∆
1/4
F ).

In practice, complicated behaviour. Can reach:
d ∼ 100, ∆F ∼ 10200.
But for d = 2, ∆F ∼ 1040.
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Algorithms for special cases

There are special case where we can do better.
Cyclotomic fields and their subfields: partial information
from Iwasawa theory and other special techniques
(Schoof, Fukuda).
Fields with a special Aut(F ): for instance, can
reach d ∼ 1700 and ∆F ∼ 105000

(Bauch–Bernstein–de Valence–Lange–van Vredendaal,
Biasse–Fieker–Hofmann–P.).
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First lecture: complexity

Complexity: running time as a function of size n of input.

Fast: Õ(n) (quasi-linear)
Medium: O(nC) for some C > 1 (polynomial)
Slow: O(2nα

) for some 0 < α < 1 (subexponential)
Very slow: O(2Cn) for some C > 0 (exponential)
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First lecture: arithmetic operations

Basic operations on integers and polynomials: Fast.
Basic operations on matrices: Medium.
Factorisation of polynomials: Medium.
Factorisation of integers: Slow.
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Second lecture: reconstruction

Reconstruction algorithms recover an object from
specialisations or approximations. There are fast algorithms for
reconstruction.

Integers: modular or multimodular, real approximations.
Polynomials: evaluation-interpolation.
Rationals: continued fractions.
Fractions: Padé approximants.
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Second lecture: algebraic number theory

Ring of integers: factorisation of discriminant (Slow), then
Round 2 (Medium).
Ideal factorisation: integer factorisation (Slow), then
prime decomposition and valuations (Medium).
Galois group, two settings: Galois input field (Medium),
or non-Galois input field (no known polynomial-time
algorithm).
Class group and units: Slow under GRH, Very slow
unconditionally.
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Plan

Today:
1 Linear algebra
2 Lattices
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Linear algebra
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Linear algebra problems

Let R be a ring. An R-module is an abelian group with a linear
action of R, i.e. r · (v1 + v2) = r · v1 + r · v2.

Linear algebra problems:
Image, kernel, preimages, determinant of a
matrix M ∈ Mm,n(R).
Sum, intersection, equality of submodules of Rm.

Representation theory problems:
Isomorphism of finitely generated R-modules.
Basis, canonical form, invariants of R-modules.

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Example

Let R = Z[ζp].

Equality of submodules of Rm reduces to equality of
submodules of Zm(p−1).
Isomorphism of R-modules: for a, b ⊂ Z[ζp], we have
a ∼= b as R-modules if and only if ab−1 is principal.

”Representation theory”: R-module = Z-module with action of
the cyclic group Cp + conditions.
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Linear algebra:
Algorithms
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Normal forms of matrices: one-sided

M ∈ Mm,n(R).

N = MU where U ∈ GLn(R).
Basic property: echelon form. In each column, pivot (last
nonzero coefficient), whose row index is strictly increasing.
Over many rings, normal form for submodules of Rm.
Over a field: reduced echelon form, coefficients to the
right of a pivot are 0.
Over a PID: Hermite Normal Form (HNF), coefficients to
the right of a pivot are reduced modulo the pivot.
Over Z/NZ: Howell form:

R = Z/4Z, M =

(
0 3
0 2

)
, N =

(
2 1
0 2

)
.

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Normal forms of matrices: two-sided

M ∈ Mm,n(R).

N = UMV where U ∈ GLm(R), V ∈ GLn(R).
Over a field: diagonal with coefficients 1 (rank) then 0.
Over a PID: Smith Normal Form (SNF) diagonal with each
coefficient dividing the next one (elementary divisors).

Reveals isomorphism class of Rm/MRn.

Example: SNF over Z gives the form Z/d1Z× · · ·×Z/dkZ×Zr .
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Normal forms of matrices: conjugacy

M ∈ Mn(R).

N = U−1MU where U ∈ GLn(R), i.e. UN = MU.
Over algebraically closed fields: Jordan form
(eigenvalues).
Over fields: Frobenius form.
Related to R[X ]-module structure on Rn given
by X · v = Mv (U is an R[X ]-module isomorphism).
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Echelon form algorithm

Let R be a ring that admits extended GCDs: for every a,b ∈ R,
there exists d ∈ R and U ∈ GL2(R) such that(

a b
)

=
(
0 d

)
U.

Algorithm: Input M ∈ Mm,n(R).
1 For each row from the bottom to the top:
2 Use the first nonzero coefficient as pivot.
3 Set to 0 all coefficients to the left of the pivot.
4 Cleanup.

Complexity: O(m2n) (Medium).
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Faster echelon form

Use faster multiplication of matrices to get all linear algebra
operation in time O(nω).
Idea: use block operations.

Simple case: inverse with m = n = 2k blocks of size 2k−1.

M =

(
A B
C D

)
Generically uses 2 inverses and O(1) multiplications.
The number T (n) = T (2k ) = uk of ring operations satisfies

T (n) = 2T (n/2) + O(nω), i.e. uk = 2uk−1 + O(2ωk ).

Solution uk = O(2ωk ), i.e. T (n) = O(nω).
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Complexity depending on the ring

The complexity depends on the ring because of coefficient
growth.

Echelon form over a finite field: Õ(nω log q).
Howell form over Z/NZ: Õ(nω log N).
HNF over Z: Õ(nω+1 log B) if coefficients are bounded
by B.
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Reconstruction to prevent coefficient blowup

In rings where coefficients can blowup, use reconstruction.

Example: determinant over Z.
Compute B such that |det M| ≤ B.
Compute det M mod pi for several pi such that

∏
i pi > 2B.

Reconstruct det M.
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Linear algebra:
Applications
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Techniques to turn a problem into linear algebra

1 Logarithms
2 Newton’s method
3 Index calculus
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Logarithms

Multiplicative problems can be turned into linear ones using
logarithms.

Example: norm equation in number fields. Given a ∈ ZF , solve

NK/F (x) = a with x ∈ ZK .

1 Factor the ideal aZF .
2 Compute corresponding S-units in F and K .
3 Write a ∈ ZF as a product of S-units.
4 Look for x as an S-unit: solve the linear system.
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Example: saturation in number fields

Let p be a prime number and F a number field.

Problem: Given H ⊂ F×, compute the p-saturation of H.

Necessary conditions for h =
∏

i hxi
i to be a p-th power:

all vp(h) = 0 mod p, and
all discrete logarithms of h mod q are = 0 mod p.

Algorithm (Pohst–Zassenhaus):
1 Use a finite number of conditions to form a linear system

mod p satisfied by the xi .
2 Solve the system to identify candidate h.
3 Try to compute a p-th root of h (polynomial factorisation

over F ).
4 If this fails, add more conditions. Repeat.
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Newton or Hensel method

To solve f (X ) = 0 from approximate solution X0, look
for X1 = X0 + E with E small and write

f (X1) = f (X0) + DfX0(E) + O(E2).

Solve DfX0(E) = −f (X0) to get

f (X1) = O(E2).

Example: f (X ) = X−1 − A, DfX (E) = X−1EX−1.

X1 = 2X0 − X0AX0.
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Example: Dunford decomposition

Problem: Write M = D + N with D diagonalisable, N nilpotent
and N,D polynomials in M.

Algorithm:
1 Let P be the characteristic polynomial of M.
2 Let f be the squarefree part of P (we have f (M)n = 0).
3 Do a Newton iteration to solve f (X ) = 0, starting

from X0 = M.
4 The solution is X = D.
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Factor bases and index calculus

Idea:
We want to solve a multiplicative problem.
We choose a factor base B: a set of small primes over
which we will try to factor elements.
We generate small random elements and hope that they
are smooth, i.e. that they factor over the factor base
(relations).
We use linear algebra to solve the initial problem from the
relations.
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Factorisation

Let N be the n-bits integer to factor. We want to find a,b such
that

a2 = b2 mod N

so that (a + b)(a− b) = 0 mod N, and gcd(a + b,N) can be a
nontrivial factor.

Algorithm:
1 Let B = {p | p < y} = {p1, . . . ,pk}.
2 Repeat:
3 Generate a random c ∈ Z/NZ, let c′ = c2 mod N.
4 If c′ is smooth, record relation c2 = px1

1 . . . pxk
k mod N.

5 By computing a kernel mod 2, find a combination of the
relations that is a square, and deduce a and b.

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Factorisation: analysis

Analysis: we are constructing random elements mod N, and
hope that they are y -smooth.

Theorem: Random integers ≤ x are y -smooth with
probability ≈ u−u where u = log x/ log y .

Choose y = exp(n1/2), so that u = O(n1/2).
We find a smooth element after uu = exp(Õ(n1/2)) trials.
The size of linear algebra is O(y) = O(exp(n1/2)).

Total: exp(Õ(n1/2)) (Slow).
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Discrete logarithms

Given g a generator of F×p and h = gN ∈ F×p , we want to find N.

Algorithm:
1 Let B = {p | p < y} = {p1, . . . ,pk}.
2 Repeat:
3 Generate a random z ∈ Z/(p − 1)Z, let r = gz mod p.
4 If r is smooth, record relation gz = px1

1 . . . pxk
k mod p.

5 Invert the system mod p − 1 to deduce the discrete
logarithm of all pi .

6 Draw random z until g−zh mod p is smooth.
7 From h = gzpx1

1 . . . pxk
k , deduce the discrete logarithm of h.
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S-unit group

Problem: find the S-unit group of a number field F .

Algorithm:
1 Choose y such that S = B = {p | N(p) < y} = {p1, . . . , pk}

generates the class group of F .
2 Repeat:
3 Generate a random u ∈ ZF .
4 If the ideal uZF is smooth (u is an S-unit):
5 Record relation: uZF = px1

1 · p
xk
k .

6 Compute Cl(F ) and Z×F as a cokernel and kernel.
Termination criterion: analytic class number formula.
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Another application: guessing relations

Problem: given the first few terms of a sequence (un), guess a
recurrence relation of the form:

P0(n)un + · · ·+ Pk (n)un+k = 0.

Method: Choose d ≥ 0, k ≥ 1. Find a linear combination of

un,nun, . . . ,ndun,un+1,nun+1, . . . ,ndun+1, . . . ,ndun+k

that vanishes for many values of n (more than (k + 1)(d + 1)).

Variant: Guess an algebraic or differential equation for the
generating series

∑
n≥0 unX n. Solve the differential equation

symbolically.
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Lattices
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Lattices

Let V = Rn.
A subgroup L ⊂ V is a lattice if the following equivalent
conditions hold:

L is generated by an R-basis of V ,
L is discrete and V/L is compact.

A morphism between lattices must be linear and preserve the
L2 norm.

Equivalently, we can use Zn equipped with a Euclidean norm.
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Lattice problems

Input: a basis of a lattice L ⊂ V .

Problems:
Shortest vector problem (SVP): Compute a shortest
nonzero vector of L.
Closest vector problem (CVP): Given v ∈ V , compute an
element of L that is closest to v .
Automorphisms: Compute Aut(L).
Isomorphism: Given another lattice L′, test if it is
isomorphic to L.

Variants: γ-approximate versions, Lp norms.
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Lattices:
Algorithms
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Approximation algorithm for SVP: LLL

LLL algorithm (Lenstra–Lenstra–Lovácz):
Solves γ-SVP with γ = Cn.
Polynomial time (Medium).
In practice, C ≈ 1.02.
Gives a short and almost orthogonal basis of L: a reduced
basis.
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Exact algorithms for SVP

Enumeration algorithm (Kannan, Fincke–Pohst):
1 Compute a reduced basis of L.
2 Enumerate a set of linear combinations of the basis

guaranteed to contain a shortest vector.
Complexity: 2O(n log n) (Very very slow). Polynomial space.

Sieve algorithm:
1 Compute a reduced basis of L.
2 Compute many vectors in L.
3 Find differences between pairs of vectors, that give shorter

vectors. Repeat.
Complexity: 2O(n) (Very slow). Exponential space. Also for Lp

norms.

In practice: currently, n up to 180.
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Approximation algorithm for SVP: BKZ

BKZ algorithm:
Parameter: block size 2 ≤ β ≤ n.
Polynomial number of calls to an exact SVP algorithm in
dimension β: complexity 2O(β) · (input size)c .
Solves γ-SVP with γ = Cn/β

In practice: C1/β ≈ 1.01 for β = 30.
Produces a reduced basis.
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CVP algorithms

Babai’s algorithm:
Approximation of CVP depending on basis quality.
Polynomial time (Medium).

Kannan’s embedding:
B basis matrix of L, target vector v . Search short vector in

B′ =

(
B −v
0 α

)
for some parameter α: ‖B′

(x
λ

)
‖2 = ‖Bx − λv‖2 + λ2α2 (we

want λ = 1).

Best known algorithms: 2O(n) (Very slow). Also for Lp norms.
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Automorphism and isomorphism algorithms

Plesken–Souvignier algorithm:
Enumerate possible images of a short basis.
Exploit some group theory.
Many extra tricks to make it faster.
Can add conditions on the isomorphisms (preserving extra
structure).
Complexity 2O(n2 log n) (Very very very slow).

Haviv–Regev algorithm:
Searches for a special vector in the dual lattice.
Complexity 2O(n log n) (Theory, Very very slow)
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Lattices over function fields

V = F(X )n, L ∼= F[X ]n.
size: maximum degree of the coefficients.
Polynomial time algorithm (Medium) for SVP (A. Lenstra).
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Lattices:
Applications
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Identifying a lattice problem

Two main families of applications:
1 Make something smaller under linear transformation

(reduction theory).
2 Linear algebra problem with size constraints.
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Example: short basis of a ring of integers

Let F be a number field with complex embeddings σi : F ↪→ C.
For v ∈ F denote

T2(v) =
∑

i

|σi(v)|2.

Use a reduced basis of ZF with respect to T2.
Reduces the cost of arithmetic operations in ZF .
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Example: Knapsack problem

Knapsack problem: Given x1, . . . , xn ∈ Z and S ∈ Z, find a
subset of {x1, . . . , xn} whose sum is S.

Rewrite as ∑
i

εixi = S with εi ∈ {0,1}.

Lagarias-Odlyzko lattice:
1 0 . . . 0 −x1
0 1 . . . 0 −x2

0 0
. . . 0

...
0 0 . . . 1 −xn
0 0 . . . 0 S


Aurel Page Computational number theory
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Linear relations between real numbers

Problem: Given approximations of α1, . . . , αn ∈ R, find
small a1, . . . ,an ∈ Z such that

a1α1 + · · ·+ anαn ≈ 0.

Example: in a paper, formula

R2L
πΩ
√

D
∈ Q×.

Not verified numerically. Look for linear relation between
log R, log L, log π, log Ω, 1

2 log D, log 2, log 3, and log 5.

R2LD
πΩ

≈ 26

32 · 52 .
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Algebraic relation satisfied by a real number

Special case: Given an approximation of α ∈ C, find
small a0, . . . ,an ∈ Z such that

a0 + a1α + · · ·+ anα
n ≈ 0 i.e. P(α) = 0

with P ∈ Z[X ].

If we can guess that α ∈ F for a specific number field F with
basis w1, . . . ,wn, it is better to look for c0, c1, . . . , cn ∈ Z such
that

c0α ≈ c1w1 + · · ·+ cnwn.
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Small defining polynomial

Let F = Q(α) with defining polynomial P.
Problem: find a small defining polynomial for F .

Algorithm:
1 Compute ZF .
2 Compute a reduced basis of ZF with respect to T2.
3 Find a small element β of ZF such that F = Q(β).
4 Output the minimal polynomial Q of β.
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Reconstruction in number fields

Problem: Given v mod a where v ∈ ZF is sufficiently small,
reconstruct v .

If a = AZF with A ∈ Z, simply reconstruct the coefficients
independently:

v =
∑

i

xiwi

with xi ∈ Z known modA.

In general, solve a CVP: given v ′ ∈ ZF such that v ′ = v mod a,
look for a ∈ a such that v ′ − a is small: then v = v ′ − a.
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Factorisation of polynomials

Problem: Find a nontrivial factor of P ∈ Z[X ].

Algorithm (Lenstra–Lenstra–Lovácz):
Let p be a prime number such that P is squarefree mod p.
Let Q ∈ Fp[X ] be a nontrivial factor of P mod p.
Lift Q to a factor of P mod pk for some large enough k .
There exists a unique factor R ∈ Z[X ] of P such that Q
divides R mod pk .
R is a short vector in the lattice

L = {T ∈ Z[X ]<degP | T mod pk is a multiple of Q}.

By taking k large enough, the LLL approximation of SVP is
sufficient.
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Generators of arithmetic groups

Let F be a number field.
Problem: Compute generators (and other kinds of information)
of the group GLn(ZF ).

Algorithm (Voronoı̈):
1 Use a special kind of lattices called ”perfect”.
2 Repeat until no new lattice is found:
3 For each perfect lattice, compute its ”neighbours”.
4 Test isomorphism with previous perfect lattices.
5 From the geometry of the set of perfect forms (”Voronoı̈

tesselation”), deduce information about GLn(ZF ).
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First lecture: complexity

Complexity: running time as a function of size n of input.

Fast: Õ(n) (quasi-linear)
Medium: O(nC) for some C > 1 (polynomial)
Slow: O(2nα

) for some 0 < α < 1 (subexponential)
Very slow: O(2Cn) for some C > 0 (exponential)
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First lecture: arithmetic operations

Basic operations on integers and polynomials: Fast.
Basic operations on matrices: Medium.
Factorisation of polynomials: Medium.
Factorisation of integers: Slow.
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Second lecture: reconstruction

Reconstruction algorithms recover an object from
specialisations or approximations. There are fast algorithms for
reconstruction.

Integers: modular or multimodular, real approximations.
Polynomials: evaluation-interpolation.
Rationals: continued fractions.
Fractions: Padé approximants.
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Second lecture: algebraic number theory

Ring of integers: factorisation of discriminant (Slow), then
Round 2 (Medium).
Ideal factorisation: integer factorisation (Slow), then
prime decomposition and valuations (Medium).
Galois group, two settings: Galois input field (Medium),
or non-Galois input field (no known polynomial-time
algorithm).
Class group and units: Slow under GRH, Very slow
unconditionally.
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Third lecture: linear algebra

Assume n × n matrix multiplication in time O(nω)

Linear algebra operations: O(nω) ring operations
(Medium).
Over infinite rings, where coefficients can grow: Medium
reconstruction-based algorithms.
Methods to reduce a problem to linear algebra:
logarithms, Newton’s method, index calculus (factor
base).
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Third lecture: lattices

Lattice: L ⊂ V generated by an R-basis.
Lattice problems: SVP, CVP, isomorphism.
Time-approximation trade-off for SVP: approximation
factor Cn/β in time 2O(β) (reduced basis).
Very very slow algorithms for lattice isomorphism.
Identifying a lattice problem: reduce an object under linear
transformations; linear problem with size constraints.
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Plan

Today:
1 General algorithmic techniques
2 L-functions
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General algorithmic
techniques
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Sorting

Sorting an array of n objects: O(n log n) = Õ(n) (Fast).

Applications:
Removing duplicate objects;
Finding collisions.
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Sorting: duplicate objects

Array of n objects.
Using pairwise isomorphism tests: O(n2) (Medium).
If a canonical form (or complete invariants) is available:
O(n) computations of canonical form, then sort in Õ(n)
(Fast).
If no canonical form is available:

Pseudo-canonical form (small number of possible forms for
each object): partially remove duplicates.
Invariants: sort to group objects having the same
invariants Õ(n), then pairwise test O(m2) in group of size m.
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Example: enumeration of number fields

Fix d ≥ 2.
Problem: find all number fields F of degree d with |∆F | ≤ X .

Theorem (Hunter): Every number field F of degree d
with |∆F | ≤ X admits a defining polynomial

∑d
i=0 aiX i

with |ai | ≤ f (i ,X ).

Algorithm:
1 Enumerate all polynomials P satisfying the bounds.
2 Keep only the ones with |∆F | ≤ X .
3 Remove duplicates:

Pseudo-canonical form with reduced defining polynomial.
Invariants: discriminant, signature, decomposition of small
primes.

Total complexity O(X (d+2)/4) (smallest discriminant F known
for d ≤ 9).

Best known counting bound: O(X C·(log d)2
). Conjecture: O(X ).Aurel Page Computational number theory
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Example: Baby-Step-Giant-Step

Problem: discrete logarithm in a cyclic group G: given
generator g and h = gk , find k .

Let N = |G|.
1 Let M = d

√
Ne (note k = a + bM with 0 ≤ a,b < M).

2 Compute {1,g,g2, . . . ,gM−1} (baby steps).
3 Compute {h,hg−M ,hg−2M , . . . ,hg−(M−1)M} (giant steps).
4 Find a collision ga = hg−bM , and deduce h = ga+bM .

Complexity: Õ(M) = Õ(
√

N) (Slow).
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Data structures

A data structure is an object containing n elements, and
supporting certain operations (insertion, deletion, query, etc).

Array: creation with fixed length, modify/read arbitrary
element in time O(1) (Fast).
Chained list: append/read next element in time O(1)
(Fast).
Balanced tree ”set”: insert/find/delete element in
time O(log n) (Fast).
Heap ”priority queue”: insert/delete element in
time O(log n), find maximum in time O(1) (Fast).
Interval tree: insert/delete numbers / count elements in an
interval [a,b] in time O(log n) (Fast).
etc.
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Graphs

A graph is a pair (V ,E) where:
V is a set (vertices), and
E is a subset of V × V (edges connecting pairs of
vertices).
Variants: directed or undirected, multiple edges, etc.
Vertices and edges can have a label or weight.

A morphism of graphs (V ,E)→ (V ′,E ′) is a map of
sets V → V ′ that preserves edges.

A graph encodes information in an abstract and visual way.
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Example: sparse linear algebra

Operations on sparse matrices (i.e. with many zeroes) often
have a nice interpretation in terms of graphs.

Example: large primes in index calculus
Use a larger factor base, but limit number of large primes
to 1 or 2.
One large prime: eliminate by pairs (find collisions).
Two large primes mod 2: find cycles in the graph with
vertices = large primes and edges = relations.
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Example: sparse linear algebra

Sparse matrix M ∈ Mm,n(R): list pairs (i , j) of indices with
nonzero corresponding coefficient Mi,j ∈ R.

Graph version: bipartite graph with left vertices {1, . . . ,n}
(column indices), right vertices {1, . . . ,m} (row indices) and
weighted edge (i , j) if Mi,j 6= 0.

Interpretation of elimination: a set of pivots corresponds to a
matching (set of edges with no common vertex) + condition
(”restricted matching”).

Finding optimal matchings is difficult, but the graph
interpretation leads to good heuristics.
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Example: sparse linear algebra

A complex is a sequence

C0
d0−→ C1

d1−→ C2
d1−→ · · ·

dk−1−→ Ck

of vector spaces (or R-modules) such that di+1di = 0 for all i .
Goal: compute homology groups Hi = ker di+1/ im di .

Example: a single map f : V1 → V2 gives the complex

0 −→ V1
f−→ V2 −→ 0,

whose homology groups are the kernel and cokernel of f .
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Example: sparse linear algebra

Complex:

C0
d0−→ C1

d1−→ C2
d1−→ · · ·

dk−1−→ Ck

such that di+1di = 0 for all i .

Graph interpretation: (k + 1)-partite graph.

Algebraic Morse theory: from a ”zig-zag path” with invertible
weights, compute an equivalent, simplified

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Example: equivalence relations

Goal: encode an equivalence relation on a set of n elements.

Graph interpretation: connected components.
Representative of each equivalence class.
Union: add a relation between two elements: O(α(n))
(Fast),
Find the representative of the class of an
element: O(α(n)) (Fast),

where α(n) is the inverse Ackermann function (extremely slowly
growing).
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Graph isomorphism

Problem: given two graphs G and G′, find an isomorphism
between them.

In practice:
Combinatorics + backtrack + group theory.
Fast on most instances.
Also computes a canonical form.

In theory:
Babai: quasi-polynomial time algorithm (almost Medium).
Mostly group theory.
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Example: lattice isomorphism via graphs

Problem: given two lattices L and L′, find an isomorphism
between them.

Let B such that V = {v ∈ L | ‖v‖ ≤ B} generates L.
Graph with vertex set V .
Edge (v1, v2) with weight 〈v1, v2〉.
Lattice isomorphism reduces to graph isomorphism on
those graphs.
Dutour–Haensch–Voight–van der Woerden: canonical
form for lattices, from graphs.

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Graph spectrum and random walks

Let G be an undirected graph with vertex set {1, . . . ,n}.

The adjacency matrix is M ∈ Mn(R) with Mi,j = 1 if i = j
or (i , j) is an edge, and Mi,j = 0 otherwise.
The (i , j)-th coefficient of Mk count the number of paths of
length k between i and j .
The spectrum of the symmetric matrix M determines how
fast random walks on G become equidistributed.
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Constructions
Conjectures
Algorithms
Applications of GRH

L-functions
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Constructions
Conjectures
Algorithms
Applications of GRH

Example: Dedekind zeta function

Let Γ(s) =
∫∞

0 exp(−t)ts−1dt , ΓR(s) = π−s/2Γ(s/2)
and ΓC(s) = ΓR(s)γR(s + 1).

Let F be a number field. The Dedekind zeta function

ζF (s) =
∏
p

(1− N(p)−s)−1

extends to a meromorphic function such that

Λ(s) = |∆F |s/2ΓR(s)r1ΓC(s)r2ζF (s) satisfies Λ(s) = Λ(1− s).
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Example: Dirichlet L-function

Let χ : (Z/NZ)× → C× be a character.
The Dirichlet L-function

L(χ, s) =
∏
p 6|N

(1− χ(p)p−s)−s

extends to a holomorphic function such that, if χ is primitive
(does not come from a smaller N),

Λ(s) = Ns/2ΓR(s + ε)L(χ, s) satisfies Λ(s) = ±Λ(1− s).

(ε ∈ {0,1}).
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Example: elliptic curve

Let E/Q : Y 2 = X 3 + aX + b be an elliptic curve of conductor N.
The L-function of E

L(E , s) =
∏
p|N

(· · · )
∏
p 6|N

(1− app−s + p1−2s)−1

extends to a holomorphic function such that

Λ(s) = Ns/2ΓC(s)L(E , s) satisfies Λ(s) = ±Λ(2− s).
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Example: Hecke character

Let F be a real quadratic field with narrow class number 1 and
fundamental unit u. The Hecke L-function

L(ψ, s) =
∏
p

(1− exp(
2πi log g

log u
)N(p)−s)−1

where g is a totally positive generator of p, extends to a
holomorphic function such that

Λ(s) = |∆F |s/2ΓR(s +
π

2 log u
)L(ψ, s) satisfies Λ(s) = wΛ(1− s̄).

with |w | = 1.
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General definition

An L-function of degree d and conductor N is a meromorphic
function L(s) on C with finitely many poles defined for <(s)
sufficiently large by an Euler product

L(s) =
∏

p

Fp(p−s)

where Fp is a polynomial of degree ≤ d with Fp(0) = 1, and
exactly d and all roots of modulus 1 for p 6| N, such that

Λ(s) = Ns/2
d∏

i=1

ΓR(s + αi) satisfies Λ(s) = wΛ(1− s̄).

with |w | = 1 (root number).
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Modular and automorphic forms

Other sources of L-functions:
Modular forms: functions on Poincaré ’s upper half-plane
satisfying a functional equation under SL2(Z) and
eigenfunctions of ”Hecke operators”.
More generally, automorphic forms.

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Constructions
Conjectures
Algorithms
Applications of GRH

Curves and varieties

Other sources of L-functions: curves and more generally
varieties X .

Euler product from point counts of X modulo p.
Gamma factors from analytic properties (Hodge theory)
of X over C.
N from the bad reduction of X .
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Galois representations

Other sources of L-functions: Galois representation

ρ : Gal(K/F )→ GLd (E).

Euler product from characteristic polynomial of Frobenius
elements.
Gamma factors from eigenvalues of complex
conjugations.
N from the ramification properties of K/F .
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L-functions:
Conjectures
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Conjectures: GRH

Conjecture: Generalised Riemann Hypothesis (GRH):

L(ρ) = 0 =⇒ <(ρ) ≤ 1
2
.

Known: a very small zero-free region.
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Conjectures: Lindelöf hypothesis

Conjecture: Lindelöf Hypothesis:

L(
1
2

+ it) = O((N(1 + |t |))ε) for all ε > 0.

Known: ε = 1/4, sometimes slightly less (subconvexity).
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Conjectures: special values

Conjecture: special values (BSD, Beilinson, Bloch-Kato, etc):
Order of vanishing and value at certain special points have a
different interpretation.

Example: Birch and Swinnerton–Dyer L(E , s). Order of
vanishing at s = 1 should be the rank of E(Q).

Known: Some special cases. For BSD, rank 0 or 1.
For ζF , analytic class numer formula.
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Conjectures: automorphy

Conjecture: automorphy: all L-functions come from
automorphic forms.

Known: Many special cases, the most famous being opbtained
from Wiles’s method.
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Algorithms

Computation of good Euler factors.
Evaluation.
Computation of bad Euler factors.
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Applications of GRH

Strong prime number theorem:
Generation of class groups
Effective detection of powers.
Effetive Chebotarev theorem.

Fast evaluation at low precision.
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Questions?

Thank you!

Aurel Page Computational number theory



General algorithmic techniques
L-functions

Aurel Page Computational number theory


	General algorithmic techniques
	L-functions
	Constructions
	Conjectures
	Algorithms
	Applications of GRH

	

