Galois theory

Aurel Page

09/02/2022

Inria Bordeaux Sud-Ouest CHARM Bootcamp

Aurel Page Galois theory

ヘロト 人間 とくほとくほとう

What is Galois theory about?

Original goal: characterise the solvability of equations by radicals.

Let $f \in \mathbb{Z}[X]$ be irreducible of degree *n* and $\alpha_1, \ldots, \alpha_n$ its roots. Is there an expression for the α_i as iterated *k*-th roots?

Modern view: Can we construct a tower of fields

$$\mathbb{Q} \subset \mathbb{Q}(\boldsymbol{a}_1^{1/k_1}) \subset \cdots \subset \mathbb{Q}(\boldsymbol{a}_1^{1/k_1}, \dots, \boldsymbol{a}_m^{1/k_m}) = \mathbb{Q}(\alpha_1, \dots, \alpha_m)$$

with $a_{i+1} \in \mathbb{Q}(a_1^{1/k_1}, \dots, a_i^{1/k_i})$? More generally, understand subfields and their inclusions.

Galois's solution: in terms of the symmetries of $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$.

More generally: study arithmetic properties of number fields in terms of their symmetries.

Fields

- Galois theory
- Properties of Galois extensions
- Occlotomic fields
- Class field theory

ヘロト 人間 とくほとくほとう

Fields

Aurel Page Galois theory

For simplicity, all the fields in this talk will have characteristic 0. I will only present Galois theory of finite extensions.

イロト イポト イヨト イヨト

Extensions and subfields

When we have an inclusion $F \subset K$ of fields, we say that

- *K* is an **extension** of *F*, or *K*/*F* is an extension (focus: *F* fixed and we think of *K* as varying over possible extensions).
- *F* is a **subfield** of *K* (focus: *K* fixed and we think of *F* as varying over possible subfields).

• K/F is finite if dim_F $K < \infty$, of degree $[K : F] = \dim_F K$. Examples:

- $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is a finite extension.
- $\mathbb{Q}(\pi)/\mathbb{Q}$ is an infinite extension (π is transcendental).
- $\mathbb{Q}(\pi^2)$ is a subfield of $\mathbb{Q}(\pi)$.

イロン 不得 とくほ とくほ とうほ

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Finite extensions

Let K/F be a finite extension, and let $a \in K$. Let $m_a : x \mapsto ax \in End_F(K)$. Define

- the **trace** of a: $\operatorname{Tr}_{K/F}(a) = \operatorname{Tr}(m_a)$;
- the **norm** of a: $N_{K/F}(a) = \det(m_a)$;

• the characteristic polynomial of a: det $(X \operatorname{Id}_K - m_a)$. We have:

- $\operatorname{Tr}_{K/F}: K \to F$ is *F*-linear;
- $N_{K/F}: K \to F$ is multiplicative.

If L/K/F are successive extensions, we have transitivity:

•
$$\operatorname{Tr}_{L/F} = \operatorname{Tr}_{K/F} \circ \operatorname{Tr}_{L/K};$$

•
$$N_{L/F} = N_{K/F} \circ N_{L/K};$$

•
$$[L:F] = [K:F][L:K].$$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Extensions of number fields: discriminants

Recall that a **number field** is a finite extension of \mathbb{Q} .

Let K/F be an extension of number fields, of discriminants Δ_F and Δ_K .

There is a notion of **relative discriminant** $\delta_{K/F}$, which is an ideal in \mathbb{Z}_F , such that

$$|\Delta_{\mathcal{K}}| = |\Delta_{\mathcal{F}}|^{[\mathcal{K}:\mathcal{F}]} \mathcal{N}(\delta_{\mathcal{K}/\mathcal{F}}).$$

In particular we have $|\Delta_{\mathcal{K}}| \ge |\Delta_{\mathcal{F}}|^{[\mathcal{K}:\mathcal{F}]}$. Define the **root discriminant** of \mathcal{K} to be $\mathrm{rd}_{\mathcal{K}} = |\Delta_{\mathcal{K}}|^{1/[\mathcal{K}:\mathbb{Q}]}$. We have

$$\mathsf{rd}_F \leq \mathsf{rd}_K$$
.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Extensions of number fields: ideals

Let K/F be an extension of number fields.

- If a is a fractional ideal of *F*, its **extension** is aℤ_K. Induces an injective morphism Ideals_F → Ideals_K.
- If 𝔅 is a fractional ideal of K, its norm is the ideal N_{K/F}(𝔅) generated by the N_{K/F}(𝔅) for a ∈ 𝔅. Induces a morphism Ideals_K → Ideals_F.
- We have $N_{K/F}(\mathfrak{aZ}_K) = \mathfrak{a}^{[K:F]}$.
- On class groups, these induce an extension map Cl_F → Cl_K and a norm map N_{K/F}: Cl_K → Cl_F.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Extension of number fields: prime ideals

Let K/F be an extension of number fields, and let \mathfrak{p} be a prime ideal of F.

- We have $\mathfrak{p}\mathbb{Z}_{\mathcal{K}} = \prod_{i} \mathfrak{P}_{i}^{e_{i}}$ for some prime ideals \mathfrak{P}_{i} of $Z_{\mathcal{K}}$. The integer e_{i} is the **ramification index** of \mathfrak{P}_{i} over F.
- We have $\mathfrak{P}_i \cap F = \mathfrak{p}$.
- We have N_{K/F}(𝔅_i) = 𝔅^{f_i}. The integer f_i is the inertia degree of 𝔅_i over F.
- We have $\sum_i e_i f_i = [K : F]$.
- We say \mathfrak{p} is **unramified** in *K* if all $e_i = 1$. Equivalently, \mathfrak{p} does not divide $\delta_{K/F}$.

ヘロト 人間 とくほとく ほとう

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

How do you construct extensions? I

Adjoining one element:

- By picking an element from a bigger field Ω: K = F(α) for some α ∈ Ω.
 Ex: from Q ⊂ C, construct Q(√2), Q(π), ...
- Algebraically, by adjoining the root of a polynomial: *f* ∈ *F*[X] being irreducible, *K* = *F*[X]/(*f*(X)) = *F*(α) where α = X̄ is an abstract root of *f*. Such an extension has degree deg *f*. Ex: ℚ[X]/(X² - 2) = ℚ(√2).

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Primitive element theorem

Theorem

Let K/F be a finite extension. Then there exists $\alpha \in K$ such that $K = F(\alpha)$.

Such an α is called a primitive element of K/F.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

How do you construct extensions? II

Adjoining several elements:

- Pick several elements from Ω: K = F(α₁,..., α_m) for some α_i ∈ Ω.
 Ex: Q(√2, π).
- Algebraically, by specifying all relations: $K = F[X_1, ..., X_m]/(\text{relations}) = F(\alpha_1, ..., \alpha_m).$ Ex: $\mathbb{Q}[X_1, X_2]/(X_1^2 - 2, X_2^2 - 3) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$
- Algebrically, by adjoining all roots of an irreducible *f* ∈ *F*[X]: *K* = *F*(α₁,...,α_n) where *n* = deg *f*. This is called the splitting field of *f*.

イロト イポト イヨト イヨト 三日

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Splitting field examples

Let
$$f = x^4 - x^3 + 2x - 1$$
.
Let $K = \mathbb{Q}[X]/(f) = \mathbb{Q}(\alpha_1)$ of degree 4.
Over K, f factors as

$$f(X) = (X - \alpha_1) \cdot (X - \alpha_2) \cdot g(X)$$

where $\alpha_2 = -\alpha_1^3 - 1$ and $g = X^2 - (\alpha_1^3 - \alpha_1 + 2)X + \alpha_1^3 - \alpha_1 + 2$.

We can construct $\widetilde{K} = K[Y]/(g) = K(\alpha_3)$, and this field also contains the last root $\alpha_4 = 2 - 2\alpha_1 + \alpha_1^3 - \alpha_3$.

So $\widetilde{K} = K(\alpha_1)(\alpha_3) = K(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ is the splitting field of *f*. It has degree $4 \cdot 2 = 8$ over \mathbb{Q} .

イロト イポト イヨト イヨト 三日

Fields Galois theory Properties of Galois extensions Cyclotomic fields Class field theory Splitting field examples

What is the "worst case" of this construction?

From $f \in F[X]$ of degree *n*, we construct

- $K_1 = F(\alpha_1)$, and over K_1 we have $f = (X \alpha_1)f_1(X)$ where f_1 is irreducible of degree n - 1,
- $K_2 = K_1(\alpha_2)$, and $f = (X \alpha_1)(X \alpha_2)f_2(X)$ where $f_2 \in K_2[X]$ is irreducible of degree n - 2,
- ...
- $\widetilde{K} = K_n$ is the splitting field of *f*.

The degree of \widetilde{K}/F is $n \cdot (n-1) \cdot (n-2) \cdots 1 = n!$.

イロン 不得 とくほ とくほ とうほ

Fields Galois theory Properties of Galois extensions Cyclotomic fields Class field theory Morphisms of fields

Let K, L be rings. A **morphism** is a map $\sigma \colon K \to L$ such that

σ(1) = 1;

• σ is a morphism of additive groups;

•
$$\sigma(ab) = \sigma(a)\sigma(b)$$
 for all $a, b \in K$.

Fact: if *K*, *L* are fields, then σ is **injective**. Proof: If $a \in \ker \sigma$ is such that $a \neq 0$, then $1 = \sigma(1) = \sigma(a \cdot 1/a) = \sigma(a) \cdot \sigma(1/a) = 0$.

If in addition K/F and L/F are finite extensions and σ is *F*-linear, then σ is an **isomorphism** if and only if [K : F] = [L : F].

イロト イポト イヨト イヨト 一臣

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

How do you construct morphisms of fields?

Assume $K = F[X]/(f) = F(\alpha)$, and L/F is another extension, and we want to construct an *F*-linear morphism $\sigma : K \to L$.

- σ is completely determined by $\sigma(\alpha)$.
- We must have $f(\sigma(\alpha)) = \sigma(f(\alpha)) = 0$.
- Let β ∈ L be such that f(β) = 0. Then there exists a unique σ: K → L such that σ(α) = β.

Proof: this is the only "field relation" satisfied by α . Formally, define $\sigma \colon F[X] \to L$ by $\sigma(X) = \beta$. Since for all $g \in F[X]$ we have $\sigma(fg) = f(\beta)g(\beta) = 0$, the map σ is trivial on the ideal (*f*) and therefore passes to the quotient.

イロト イポト イヨト イヨト 三日

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

How do you construct morphisms of fields?

Assume $K = F[X_1, ..., X_m]/(\text{relations}) = F(\alpha_1, ..., \alpha_m)$, and L/F is another extension, and we want to construct an *F*-linear morphism $\sigma : K \to L$.

- σ is completely determined by $\sigma(\alpha_1), \ldots, \sigma(\alpha_m)$.
- We get a morphism iff the chosen images σ(α₁),..., σ(α_m) satisfy all relations between the α_i.

イロト イポト イヨト イヨト 一臣

When K/F is a finite extension, a special role will be played by the group $\operatorname{Aut}_F(K)$ of **automorphisms** $K \to K$ that are *F*-linear.

If $K = F[X]/(f) = F(\alpha)$, these correspond exactly to roots of *f* over *K*. We don't have to check injectivity or surjectivity!

If $\widetilde{K} = F(\alpha_1, \ldots, \alpha_n)$ is the **splitting field** of *f*, then an automorphism σ must send each α_i to some α_j , and the images must all be distinct.

 $\rightsquigarrow \sigma$ defines a **permutation** of $\alpha_1, \ldots, \alpha_n$. Aut_{*F*}(*K*) is the set of permutations of the roots of *f* that preserves all relations between them.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Examples of automorphism groups

Let
$$K = \mathbb{Q}(\sqrt{2}) = \mathbb{Q}[X]/(X^2 - 2).$$

Then $X^2 - 2 = (X - \sqrt{2})(X + \sqrt{2})$, so there is exactly one nontrivial automorphism $\sigma : \sqrt{2} \mapsto -\sqrt{2}$.

We have $\operatorname{Aut}_{\mathbb{Q}}(K) \cong C_2$.

イロト イポト イヨト イヨト 一臣

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Examples of automorphism groups

Let
$$K = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}[X, Y]/(X^2 - 2, Y^2 - 3).$$

There are four pairs of elements of K satisfying all the relations: $(\sqrt{2}, \sqrt{3}), (-\sqrt{2}, \sqrt{3}), (\sqrt{2}, -\sqrt{3})$ and $(-\sqrt{2}, -\sqrt{3})$, giving four automorphisms.

We have $\operatorname{Aut}_{\mathbb{Q}}(K) \cong C_2 \times C_2$.

イロト イポト イヨト イヨト

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Examples of automorphism groups

Let
$$f = x^4 - x^3 + 2x - 1$$
 and $K = \mathbb{Q}[X]/(f) = \mathbb{Q}(\alpha_1)$ as before.

As we saw, *f* had two roots α_1 and α_2 in *K*, giving two automorphisms: the identity, and one that swaps α_1 and α_2 .

We have $\operatorname{Aut}_{\mathbb{Q}}(K) \cong C_2$.

イロト イポト イヨト イヨト

Let K/F be an extension and $H \subset Aut_F(K)$ a subgroup. Define the **fixed field** of *H* to be

$$K^{H} = \{x \in K \mid \sigma(x) = x \text{ for all } \sigma \in H\}.$$

- By the morphism property, K^H is a subfield of K.
- By *F*-linearity, K^H contains *F*.

We now have a way of constructing subfields !

イロト イポト イヨト イヨト

Galois theory

Aurel Page Galois theory

ヘロト 人間 とくほとくほとう

Galois extensions

Let K/F be a finite extension. We say that K/F is **Galois** (or **normal**) if the following equivalent properties hold:

- $F = K^{\operatorname{Aut}_F(K)}$ (we always have \subset);
- 2 $|\operatorname{Aut}_F(K)| = [K : F]$ (we always have \leq);
- every irreducible $g \in F[X]$ that has one root in K has all its roots in K;
- *K* is the splitting field of some irreducible $f \in F[X]$.
- *K* is the splitting field of some $f \in F[X]$.

When K/F is Galois, we define its **Galois group** to be

$$\operatorname{Gal}(K/F) = \operatorname{Aut}_F(K).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The "Galois group" of an irreducible polynomial $f \in F[X]$ is $Gal(\widetilde{K}/F)$ where \widetilde{K} is the splitting field of f. It is usually seen as a permutation group acting on the roots of f.

イロト イポト イヨト イヨト

ъ

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Example: multiquadratic fields

Let $K = \mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_m})$ where $a_1, \dots, a_m \in \mathbb{Q}$ are multiplicatively independent up to squares.

Generalising what we saw earlier, $\operatorname{Aut}_{\mathbb{Q}}(K) \cong C_2^m$ is generated by the $\sigma_i : \sqrt{a_i} \mapsto -\sqrt{a_i}$ and leaving invariant the $\sqrt{a_j}$ for $j \neq i$.

We have $[K : \mathbb{Q}] = 2^m = |\operatorname{Aut}_{\mathbb{Q}}(K)|$ and K/\mathbb{Q} is therefore a Galois extension!

イロン 不得 とくほ とくほ とうほ

Example: cyclotomic fields

Let $K = \mathbb{Q}(\zeta_m) = \mathbb{Q}[X]/(\Phi_m)$ be the *m*-th cyclotomic field, of degree $\phi(m)$.

The roots of Φ_m are exactly the primitive *m*-th roots of unity. The $\zeta_m^a \in K$ for $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ are $\phi(m)$ distinct such roots of unity, so *K* is the splitting field of Φ_m , so K/\mathbb{Q} is Galois.

For $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$, let σ_a be the automorphism of K that sends ζ_m to ζ_m^a . The map $a \mapsto \sigma_a$ defines an isomorphism

$$(\mathbb{Z}/m\mathbb{Z})^{\times} \cong \operatorname{Gal}(K/\mathbb{Q}).$$

・ロン・(理)・ ・ ヨン・

Fact: if K/F is a finite extension, then there exists a smallest \widetilde{K}/K such that \widetilde{K}/F is Galois.

Proof: write K = F[X]/(f) for some irreducible *f*, and let \widetilde{K} be the splitting field of *f*.

 \widetilde{K}/F is called the **Galois closure** (or **normal closure**) of K/F.

イロト 不得 とくほ とくほとう

Example of Galois closure

Let $f = x^4 - x^3 + 2x - 1$ and $K = \mathbb{Q}[X]/(f) = \mathbb{Q}(\alpha_1)$ as before.

Recall $\alpha_2 \in K$ and $\widetilde{K} = K(\alpha_3)$ is the splitting field of K, so \widetilde{K}/\mathbb{Q} is the Galois closure of K/\mathbb{Q} .

We know that $|\operatorname{Gal}(\widetilde{K}/\mathbb{Q})| = [\widetilde{K} : \mathbb{Q}] = 8$, so let's determine it.

Let $\sigma \in \text{Gal}(\widetilde{K}/\mathbb{Q})$. Since $\widetilde{K} = \mathbb{Q}(\alpha_1, \alpha_3)$, σ is completely determined by its value on α_1 and α_3 . At most 4 possible images for α_1 . Choosing $\sigma(\alpha_1)$ forces $\sigma(\alpha_2) \rightarrow$ at most 2 possible images for α_3 . Total $4 \cdot 2 = 8$ possible pairs of images, but must have 8 automorphisms, so each possibility is an actual automorphism!

We have $Gal(\widetilde{K}/\mathbb{Q}) \cong D_4$.

イロト イポト イヨト イヨト 三日

Example : a Kummer field

Let *p* be a prime and $a \in \mathbb{Q}^{\times}$ that is not a *p*-th power, and let $K = \mathbb{Q}(a^{1/p}) = \mathbb{Q}[X]/(X^p - a)$ of degree *p*.

Let \widetilde{K}/\mathbb{Q} be the Galois closure of K/\mathbb{Q} . Then \widetilde{K} contains two distinct *p*-th roots of *a*, so it contains a primitive *p*-th root of unity ζ_p . The elements $a^{1/p}, a^{1/p}\zeta_p, \ldots, a^{1/p}\zeta_p^{p-1}$ are *p* distinct roots of $X^p - a$, so $\widetilde{K} = \mathbb{Q}(a^{1/p}, \zeta_p)$.

Let's determine $Gal(\widetilde{K}/\mathbb{Q})$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Example : a Kummer field

Since \widetilde{K} contains K and $\mathbb{Q}(\zeta_p)$, we have $[\widetilde{K} : \mathbb{Q}] \ge p(p-1)$.

Let
$$\sigma \in \text{Gal}(\widetilde{K}/\mathbb{Q})$$
. We have $\sigma(\zeta_p) = \zeta_p^u$ for some $u \in \mathbb{F}_p^{\times}$
and $\sigma(a^{1/p}) = a^{1/p}\zeta_p^t$ for some $t \in \mathbb{F}_p$,

so $|\operatorname{Gal}(K/\mathbb{Q})| \le p(p-1)$. So there must be equality, and all these possibilities define an automorphism $\sigma_{u,t}!$

We compute

•
$$\sigma_{v,s}\sigma_{u,t}(\zeta_p) = \sigma_{v,s}(\zeta_p^u) = \zeta_p^{vu}$$
, and
• $\sigma_{v,s}\sigma_{u,t}(a^{1/p}) = \sigma_{v,s}(a^{1/p}\zeta_p^t) = a^{1/p}\zeta_p^{vt+s}$.
So $\sigma_{v,s}\sigma_{u,t} = \sigma_{vu,vt+s}$, and $\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$ is isomorphic to the group
of matrices $\begin{pmatrix} u & t \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p)$.

Fields Galois theory Properties of Galois extensions Cyclotomic fields Class field theory Example : S_n

Consider our "worst case" example *f* with $K_1 = F(\alpha_1)$ of degree *n* and $\widetilde{K} = F(\alpha_1, \ldots, \alpha_n)$ of degree *n*!. The splitting field \widetilde{K} is the Galois closure of K_1 over *F*.

Every automorphism of \widetilde{K}/F defines a permutation of the *n* roots, giving an injection $\operatorname{Gal}(\widetilde{K}/F) \hookrightarrow S_n$. So we have $|\operatorname{Gal}(\widetilde{K}/F)| \leq n!$, and there must be equality! We get $\operatorname{Gal}(\widetilde{K}/F) \cong S_n$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Galois theory Properties of Galois extensions Cyclotomic fields

Class field theory

Fundamental theorem of Galois theory

Theorem

Let K/F be a Galois extension of Galois group G = Gal(K/F). There is an inclusion-reversing bijection between

- intermediate fields $F \subset L \subset K$, and
- subgroups H of G,

given by

- $L \mapsto \operatorname{Aut}_L(K)$, and
- $H \mapsto K^H$.

Note: for every intermediate field $F \subset L \subset K$, the extension K/L is Galois, we have $Gal(K/K^H) = H$ and $[K^H : F] = [G : H]$.

Galois theory

Properties of Galois extensions

Class field theory

Fundamental theorem of Galois theory

 $G = \operatorname{Gal}(K/F).$

イロト イポト イヨト イヨト

ъ

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Examples: Galois correspondence

Let
$$K = \mathbb{Q}(\zeta_9)$$
, Galois over \mathbb{Q} with $Gal(K/\mathbb{Q}) \cong (\mathbb{Z}/9\mathbb{Z})^{\times}$.

The group $(\mathbb{Z}/9\mathbb{Z})^{\times} \cong C_6$ has two proper subgroups: $\langle -1 \rangle$ of order 2 and $\langle 4 \rangle$ of order 3.

The fixed field $K^{\langle -1 \rangle}$ is $\mathbb{Q}(\zeta_9 + \zeta_9^{-1})$, and the fixed field $K^{\langle 4 \rangle}$ is $\mathbb{Q}(\zeta_9^3) = \mathbb{Q}(\zeta_3)$.

イロト イポト イヨト イヨト 一臣
Galois theory

Properties of Galois extensions

Cyclotomic fields

Class field theory

Examples: Galois correspondence

イロト イポト イヨト イヨト

ъ

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Examples: Galois correspondence

Let
$$\mathcal{K} = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
 with $\operatorname{Gal}(\widetilde{\mathcal{K}}/\mathbb{Q}) = \langle \sigma_1, \sigma_2 \rangle \cong C_2 \times C_2$.

The group $C_2 \times C_2$ has exactly three proper subgroups, all of order 2: $\langle \sigma_1 \rangle$, $\langle \sigma_2 \rangle$ and $\langle \sigma_1 \sigma_2 \rangle$.

The corresponding subfields are $\mathcal{K}^{\langle \sigma_1 \rangle} = \mathbb{Q}(\sqrt{3})$, $\mathcal{K}^{\langle \sigma_2 \rangle} = \mathbb{Q}(\sqrt{2})$ and $\mathcal{K}^{\langle \sigma_1 \sigma_2 \rangle} = \mathbb{Q}(\sqrt{6})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Galois theory

Properties of Galois extensions

Class field theory

Examples: Galois correspondence

イロト イポト イヨト イヨト

э

Galois theory Properties of Galois extensions Cyclotomic fields

Class field theory

Examples: Galois correspondence

Let $K = \mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_m})$ as before, with $Gal(K/\mathbb{Q}) \cong C_2^m \cong \mathbb{F}_2^m$.

The subgroups of \mathbb{F}_2^m of index 2^k are exactly the \mathbb{F}_2 -subspaces of dimension m - k and there are approximately $2^{\binom{m}{k}}$ such subspaces. They correspond to subfields of K of degree 2^k , which are also multiquadratic.

ヘロト ヘアト ヘビト ヘビト

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Examples: Galois correspondence

Let
$$K = \mathbb{Q}(a^{1/p}) = \mathbb{Q}[X]/(X^p - a)$$
 and $\widetilde{K} = \mathbb{Q}(a^{1/p}, \zeta_p)$ as before, with $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong \begin{pmatrix} \mathbb{F}_p^{\times} & \mathbb{F}_p \\ 0 & 1 \end{pmatrix}$.

Let $H \subset Gal(\widetilde{K}/\mathbb{Q})$ be a nontrivial subgroup.

• If *H* does not contain $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, then $H = \langle \begin{pmatrix} u & t \\ 0 & 1 \end{pmatrix} \rangle$ for some $u \in \mathbb{F}_p^{\times}$ and some $t \in \mathbb{F}_p$ with $u \neq 1$;

• otherwise
$$H = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \rangle$$
 for some $u \in \mathbb{F}_{p}^{\times}$.

イロト イポト イヨト イヨト 一日

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Examples: Galois correspondence

Recall
$$\begin{pmatrix} u & t \\ 0 & 1 \end{pmatrix}$$
 acts by $\zeta_p \mapsto \zeta_p^u$ and $a^{1/p} \mapsto a^{1/p} \zeta_p^t$.
Let $u \in \mathbb{F}_p^{\times}$ have order d .
• The fixed field of $\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$ is $\mathbb{Q}(\zeta_p)$.
• The fixed field of $\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \rangle$ is the subfield $L \subset \mathbb{Q}(\zeta_p)$ with $[\mathbb{Q}(\zeta_p) : L] = d$.
• If $d \neq 1$, the fixed field of $\langle \begin{pmatrix} u & t \\ 0 & 1 \end{pmatrix} \rangle$ is $L(a^{1/p}\zeta_p^{t/(1-u)})$.

ヘロト 人間 とくほとくほとう

æ

Galois theory

Properties of Galois extensions

Cyclotomic fields

Class field theory

Examples: Galois correspondence

d =order of u in \mathbb{F}_p^{\times} .

Ñ $\begin{array}{c} \left| \begin{array}{c} d \\ L(a^{1/p}\zeta_p^{t/(1-u)}) \\ \right|_p \end{array} \right)$ $\langle \sigma_{u,t} \rangle$ $\langle \sigma_{1,1}, \sigma_{u,0} \rangle$ $\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$ $\frac{p-1}{d}$

ヘロン 人間 とくほど くほとう

3

Examples: subgroup corresponding to a non-Galois field

Let $f = x^4 - x^3 + 2x - 1$ and $K = \mathbb{Q}[X]/(f) = \mathbb{Q}(\alpha_1)$ as before, with Galois closure $\widetilde{K} = K(\alpha_1, \alpha_3)$ and $Gal(\widetilde{K}/\mathbb{Q}) \cong D_4$.

Let's determine the subgroup $H = \text{Gal}(\widetilde{K}/K)$ corresponding to K. It is the subgroup of automorphisms $\sigma \in \text{Gal}(\widetilde{K}/\mathbb{Q})$ fixing α_1 . Such an automorphism must also fix α_2 , so there are only two possiblities: the identity and one automorphism that swaps $\alpha_3 \leftrightarrow \alpha_4$.

Geometrically, if we see D_4 as the symmetry group of the square, *H* is the group generated by one reflection: the one fixing the two vertices corresponding to α_1 and α_2 .

Examples: subgroup corresponding to a non-Galois field

Let f, K/\mathbb{Q} of degree n and \widetilde{K}/\mathbb{Q} of degree n!and $Gal(\widetilde{K}/\mathbb{Q}) \cong S_n$ be our "worst case" example.

Let's determine the subgroup $H = \text{Gal}(\widetilde{K}/K)$ corresponding to K. It is the subgroup of automorphisms fixing α_1 . This corresponds to the stabiliser of 1 in S_n , which is isomorphic to S_{n-1} .

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Galois theory II

Aurel Page

02/03/2022

Inria Bordeaux Sud-Ouest CHARM Bootcamp

Aurel Page Galois theory II

イロト 不得 とくほ とくほとう

2

Goal of Galois theory: study arithmetic properties of number fields (in particular subfields) in terms of their symmetries.

イロン イボン イヨン イヨン

ъ

Galois theory Properties of Galois extensions

Cyclotomic fields Class field theory

Reminder : morphisms of fields

- A field extension K/F can be represented K = F(α) = F[X]/(f(X)) where f ∈ F[X] is irreducible.
- A morphism of fields is always injective.
 If dimensions match it is always an isomorphism.
- (*F*-linear morphism $K \to L$) \longleftrightarrow (root $\beta \in L$ of *f*).

・ロン・(理)・ ・ ヨン・

1

Reminder : Galois extensions

Let K/F be a finite extension. We say that K/F is **Galois** (or **normal**) if the following equivalent properties hold:

- $F = K^{\operatorname{Aut}_F(K)}$ (we always have \subset);
- 2 $|\operatorname{Aut}_F(K)| = [K : F]$ (we always have \leq);
- every irreducible $g \in F[X]$ that has one root in K has all its roots in K;
- *K* is the splitting field of some irreducible $f \in F[X]$.
- *K* is the splitting field of some $f \in F[X]$.

When K/F is Galois, we define its **Galois group** to be

$$\operatorname{Gal}(K/F) = \operatorname{Aut}_F(K).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let $K = \mathbb{Q}(\zeta_m) = \mathbb{Q}[X]/(\Phi_m)$ be the *m*-th **cyclotomic field**, of degree $\phi(m)$.

K is the splitting field of Φ_m , so K/\mathbb{Q} is Galois.

For $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$, let σ_a be the automorphism of K that sends ζ_m to ζ_m^a . The map $a \mapsto \sigma_a$ defines an isomorphism

 $(\mathbb{Z}/m\mathbb{Z})^{\times} \cong \operatorname{Gal}(K/\mathbb{Q}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Reminder : Galois closure

The **Galois closure** of K/F is the smallest \widetilde{K}/K such that \widetilde{K}/F is Galois.

If K = F[X]/(f(X)) then the Galois closure \widetilde{K} is the splitting field of *f*.

イロン イボン イヨン イヨン

1

Consider our "worst case" example *f* with $K_1 = F(\alpha_1)$ of degree *n* and $\widetilde{K} = F(\alpha_1, \dots, \alpha_n)$ of degree *n*!. The splitting field \widetilde{K} is the Galois closure of K_1 over *F*.

Every automorphism of \widetilde{K}/F defines a permutation of the *n* roots, inducing an isomorphism

$$\operatorname{Gal}(\widetilde{K}/F)\cong S_n.$$

ヘロト ヘアト ヘビト ヘビト

Galois theory
Properties of Galois extensions
Cyclotomic fields
Class field theory

Reminder : fundamental theorem of Galois theory

Theorem

Let K/F be a Galois extension of Galois group G = Gal(K/F). There is an inclusion-reversing bijection between

- intermediate fields $F \subset L \subset K$, and
- subgroups H of G,

given by

- $L \mapsto \operatorname{Aut}_L(K)$, and
- $H \mapsto K^H$.

Note: for every intermediate field $F \subset L \subset K$, the extension K/L is Galois, we have $Gal(K/K^H) = H$ and $[K^H : F] = [G : H]$.

Galois theory

Properties of Galois extensions

Class field theory

Reminder: fundamental theorem of Galois theory

 $G = \operatorname{Gal}(K/F).$

ヘロト ヘアト ヘビト ヘビト

ъ

Let
$$K = \mathbb{Q}(2^{1/3}) = \mathbb{Q}[X]/(X^3 - 2)$$
 and $\widetilde{K} = \mathbb{Q}(2^{1/3}, \zeta_3)$, with
 $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong \begin{pmatrix} \mathbb{F}_3^{\times} & \mathbb{F}_3 \\ 0 & 1 \end{pmatrix} \cong S_3,$
where $\sigma_{u,t} = \begin{pmatrix} u & t \\ 0 & 1 \end{pmatrix}$ acts by $\zeta_3 \mapsto \zeta_3^u$ and $2^{1/3} \mapsto 2^{1/3}\zeta_3^t$.

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

Reminder: example

$$\sigma_{u,t}\colon \zeta_3\mapsto \zeta_3^u,\ \mathbf{2}^{1/3}\mapsto \mathbf{2}^{1/3}\zeta_3^t.$$

イロン イロン イヨン イヨン

æ

Fields

- 2 Galois theory
- Properties of Galois extensions
- Occlotomic fields
- Class field theory

ヘロト 人間 とくほとくほとう

2

Subfields of a non-Galois extension

Galois theory also determines the intermediate fields of a non-Galois extension.

Let K/F be a finite extension and \widetilde{K}/F be its Galois closure with $G = \text{Gal}(\widetilde{K}/F)$. Let $H_0 = \text{Gal}(\widetilde{K}/K)$ be the subgroup corresponding to K.

By the inclusion-reversing property, the intermediate fields $F \subset L \subset K$ correspond to subgroups *H* of *G* that contain H_0 .

ヘロン 人間 とくほど くほとう

Galois theory

Properties of Galois extensions

Cyclotomic fields

Class field theory

Subfields of a non-Galois extension

 $G = \operatorname{Gal}(\widetilde{K}/F).$ Ñ H_0 $H_0 = \operatorname{Gal}(\widetilde{K}/K)$ Н $H={\rm Gal}(\widetilde{K}/L)$ $L = \widetilde{K}^{H}$ [G:H] G

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Galois theory
Properties of Galois extensions
Cyclotomic fields
Class field theory

Example: subfields of a non-Galois extension

Let f, K/\mathbb{Q} of degree n and \widetilde{K}/\mathbb{Q} of degree n!and $Gal(\widetilde{K}/\mathbb{Q}) \cong S_n$ be our "worst case" example.

We can check that there are no subgroups $H \subset S_n$ strictly between $H_0 = S_{n-1}$ and S_n . Therefore, there are no proper intermediate fields $F \subset L \subset K$.

イロト イヨト イヨト イ

When is an intermediate field Galois?

Let K/F be a Galois extension with Galois group G = Gal(K/F), and let $L = K^H$ correspond to a subgroup H = Gal(K/L). When is L/F Galois?

Write $L = F[X]/(f) = F(\alpha)$. Let $\sigma \in G$. Then $\sigma(L) = F(\sigma(\alpha))$ is another sufield of K, corresponding to the subgroup $\sigma H \sigma^{-1}$.

- If $\sigma(L) \neq L$ then $\sigma(\alpha) \notin L$: L/F is not Galois.
- If σ(L) = L for all σ ∈ G, then all roots of f are in L so L/F is Galois.

Therefore, L/F is Galois iff $\sigma H \sigma^{-1} = H$ for all $\sigma \in G$, iff H is a **normal subgroup** of G. In this case, we have Gal(L/F) = G/H.

► < E > E

< < >> < </p>

Galois theory Properties of Galois extensions

Class field theory

When is an intermediate field Galois?

G = Gal(K/F) and H a subgroup of G.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Galois theory Properties of Galois extensions

Class field theory

When is an intermediate field Galois?

G = Gal(K/F) and H a **normal** subgroup of G.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Galois theory

Properties of Galois extensions

Cyclotomic fields

Class field theory

When is an intermediate field Galois?

As a special case, if Gal(K/F) is an abelian group, then all the intermediate extensions L/F are Galois !

・ロン・西方・ ・ ヨン・ ヨン・

ъ

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Example of non-Galois intermediate fields

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Automorphisms of a subfield

Let K/F be an extension with Galois closure \widetilde{K} , and $G = \text{Gal}(\widetilde{K}/K)$, and let $H = \text{Gal}(\widetilde{K}/K)$ be the corresponding subgroup of G. **Question**: determine $\text{Aut}_F(K)$.

Let $\sigma \in \operatorname{Aut}_F(K)$. Then σ extends to an element $\sigma \in G$. Since $\sigma(K) = K$ we have $\sigma H \sigma^{-1} = H$, i.e. $\sigma \in \mathcal{N}_G(H)$.

Elements of $\mathcal{N}_G(H)$ induce the same automorphism iff they differ by an element of *H*:

$$\operatorname{Aut}_{F}(K) \cong \mathcal{N}_{G}(H)/H.$$

ヘロト 人間 とくほとくほとう

Galois theory Properties of Galois extensions Cyclotomic fields Class field theory

Automorphisms of a subfield : example

Let
$$K = \mathbb{Q}(2^{1/4}) \subset \widetilde{K} = \mathbb{Q}(2^{1/4}, \zeta_4)$$
, with

$$G = \operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong egin{pmatrix} (\mathbb{Z}/4\mathbb{Z})^{ imes} & \mathbb{Z}/4\mathbb{Z} \ 0 & 1 \end{pmatrix}$$

where

$$\begin{pmatrix} u & t \\ 0 & 1 \end{pmatrix} : \zeta_4 \mapsto \zeta_4^u, \ 2^{1/4} \mapsto 2^{1/4} \zeta_4^t.$$

We have

$$H = egin{pmatrix} (\mathbb{Z}/4\mathbb{Z})^{ imes} & 0 \ 0 & 1 \end{pmatrix} ext{ and } \mathcal{N}_G(H) = egin{pmatrix} (\mathbb{Z}/4\mathbb{Z})^{ imes} & 2(\mathbb{Z}/4\mathbb{Z}) \ 0 & 1 \end{pmatrix},$$

so $\operatorname{Aut}_{\mathbb{Q}}(K) \cong C_2$ is generated by $2^{1/4} \mapsto 2^{1/4} \zeta_4^2 = -2^{1/4}$.

Properties of Galois extensions

Aurel Page Galois theory II

イロト イポト イヨト イヨト

3

Normal basis theorem

Theorem

Let K/F be a Galois extension. Then there exists $\lambda \in K$ such that the elements $\sigma(\lambda)$ for $\sigma \in Gal(K/F)$ form an *F*-basis of *K*.

Example: $K = \mathbb{Q}(\sqrt{2})$.

- $\lambda = \sqrt{2}$ does not work: $\{\sqrt{2}, -\sqrt{2}\}$ is not a basis of *K*.
- $\lambda = 1 + \sqrt{2}$ works: $\{1 + \sqrt{2}, 1 \sqrt{2}\}$ is a basis of *K*.

イロト イポト イヨト イヨト 一日

Let *G* be a finite group. The **group ring** $\mathbb{Z}[G]$ of *G* is the set of formal linear combinations

$$\mathbf{x} = \sum_{\sigma \in \mathbf{G}} \mathbf{x}_{\sigma} \sigma, \ \mathbf{x}_{\sigma} \in \mathbb{Z}$$

with coefficientwise addition and multiplication given by the group law of *G*.

Construct the **group algebra** $\mathbb{Q}[G]$ with \mathbb{Z} replaced by \mathbb{Q} .

ヘロン 人間 とくほ とくほ とう

3

Let $G = \langle \sigma \rangle$ with σ of order 3.

Let $x = 1 + \sigma \in \mathbb{Z}[G]$.

We have $x^3 = (1 + \sigma)^3 = 1 + 3\sigma + 3\sigma^2 + \sigma^3 = 2 + 3\sigma + 3\sigma^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

Action of the group ring

Let *K* be a field and $G \subset Aut(K)$ be a finite subgroup of automorphisms.

Let $x = \sum_{\sigma \in G} x_{\sigma} \sigma \in \mathbb{Q}[G]$ and $\lambda \in K$. We define the **additive** action of $\mathbb{Q}[G]$ on K by

$$\mathbf{X} \cdot \mathbf{\lambda} = \sum_{\sigma \in \mathbf{G}} \mathbf{X}_{\sigma} \sigma(\mathbf{\lambda}).$$

Assume $x \in \mathbb{Z}[G]$ and $\lambda \in K^{\times}$. We define the **multiplicative** action of $\mathbb{Z}[G]$ on K^{\times} by

$$\lambda^{\mathbf{X}} = \prod_{\sigma \in \mathbf{G}} \sigma(\lambda)^{\mathbf{X}_{\sigma}}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ
Example: actions of the group ring

Let
$$K = \mathbb{Q}(\sqrt{2})$$
 and $G = \langle \sigma \rangle$ with $\sigma(\sqrt{2}) = -\sqrt{2}$.

Let
$$x = 1 - 2\sigma \in \mathbb{Z}[G]$$
 and $\lambda = 1 + \sqrt{2} \in K^{\times}$.

We have

$$x \cdot \lambda = (1 - 2\sigma) \cdot (1 + \sqrt{2}) = (1 + \sqrt{2}) - 2(1 - \sqrt{2}) = -1 + 3\sqrt{2},$$

and

$$\lambda^x = (1+\sqrt{2})^{1-2\sigma} = rac{1+\sqrt{2}}{(1-\sqrt{2})^2} = (1+\sqrt{2})^3 = 7+5\sqrt{2}.$$

ヘロト 人間 とくほとくほとう

æ

Number field case: actions on ideals

Let *K* be a number field and $G \subset Aut(K)$ be a finite subgroup of automorphisms.

Let \mathfrak{a} be an ideal of K and $\sigma \in G$. Then $\mathfrak{a}^{\sigma} = \sigma(\mathfrak{a})$ is an ideal of K.

We extend this action multiplicatively to an action of $\mathbb{Z}[G]$ on the set of fractional ideals.

On principal ideals, this action is compatible with the multiplicative action on elements, so this induces an action of $\mathbb{Z}[G]$ on $Cl_{\mathcal{K}}$.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Norm and trace in the Galois setting

Let K/F be a Galois extension with Galois group G. Let $L = K^H$ correspond to a subgroup $H \subset G$.

We define the **norm element** $N_H \in \mathbb{Z}[G]$ to be

$$N_H = \sum_{\sigma \in H} \sigma.$$

For all $\lambda \in K$ and fractional ideals \mathfrak{a} we have

•
$$\operatorname{Tr}_{K/L}(\lambda) = N_H \cdot \lambda$$
,

•
$$N_{K/L}(\lambda) = \lambda^{N_H}$$
, and

•
$$N_{K/L}(\mathfrak{a}) = \mathfrak{a}^{N_H} \cap L.$$

ヘロト 人間 ト ヘヨト ヘヨト

Cutting things using the group ring action

Let *M* be something on which $\mathbb{Q}[G]$ acts (a " $\mathbb{Q}[G]$ -module"). Let $e \in \mathbb{Q}[G]$.

Then the image $e \cdot M = \{e \cdot m : m \in M\}$ and the kernel $\{m \in M \mid e \cdot m = 0\}$ are subgroups of *M*, possibly proper.

We cannot get anything nontrivial this way by only using the action of group elements, since they all act invertibly!

The best situation is when *e* is an **idempotent**, i.e. $e^2 = e$. Then we have

•
$$\boldsymbol{e} \cdot \boldsymbol{M} = \ker(1 - \boldsymbol{e});$$

•
$$(1 - e) \cdot M = \ker(e);$$

•
$$M = e \cdot M \oplus (1 - e) \cdot M$$
.

ヘロト 人間 とくほとく ほとう

Cutting things: example

Let K/F be a Galois extension with Galois group *G*. Let $\sigma \in G$ be an element of order 2 and $L = K^{\langle \sigma \rangle}$. Let $e = \frac{1}{2}N_{\langle \sigma \rangle}$. We have

$$e^{2} = \frac{1}{2^{2}}(1+\sigma)^{2} = \frac{1}{4}(1+2\sigma+\sigma^{2}) = \frac{1}{4}(2+2\sigma) = e,$$

so e is an idempotent.

Considering $\mathbb{Q}[G]$ acting on *K*, we have

•
$$\boldsymbol{e} \cdot \boldsymbol{K} = \frac{1}{2} \operatorname{Tr}_{\boldsymbol{K}/\boldsymbol{L}}(\boldsymbol{K}) = \boldsymbol{L} = \{\lambda \in \boldsymbol{K} \mid \sigma(\lambda) = \lambda\}, \text{ and }$$

•
$$\operatorname{ker}(\boldsymbol{e}) = \{\lambda \in K \mid \operatorname{Tr}_{K/L}(\lambda) = \mathbf{0}\} = \{\lambda \in K \mid \sigma(\lambda) = -\lambda\},\$$

and K is the direct sum of these two subspaces.

ヘロト 人間 ト ヘヨト ヘヨト

What about the group ring action on $M = K^{\times}$?

The element *e* does not act because of the denominator, so we will instead use the action of $2e = 1 + \sigma$ and $2(1 - e) = 1 - \sigma$.

We have

•
$$(1 + \sigma)M = N_{K/L}(K^{\times}) \subset L^{\times} = \ker(1 - \sigma),$$

•
$$(1 - \sigma)M = \{\lambda/\sigma(\lambda) \colon \lambda \in K\},\$$

• ker
$$(1 + \sigma) = \{\lambda \in K^{\times} \mid N_{K/L}(\lambda) = 1\},\$$

• $(1 - \sigma)M \subset \ker(1 + \sigma)$, but in fact they are equal!

For every $\lambda \in K$ we have $\lambda^2 = \lambda/\sigma(\lambda) \cdot N_{K/L}(\lambda)$.

・ロト ・ 理 ト ・ ヨ ト ・

Number field case: real and complex embeddings

Let K/F be a Galois extension of number fields with Galois group G.

Let $\tau: F \hookrightarrow \mathbb{C}$ be a complex embedding of F, and $\mathcal{T}: K \hookrightarrow \mathbb{C}$ a complex embedding of K that extends τ . Then all other \mathcal{T}' extending τ are of the form $\mathcal{T}' = \mathcal{T} \circ \sigma$ for some $\sigma \in G$. In particular, they are all real or all complex.

In addition, if τ is real, there exists a **complex** conjugation $c_{\mathcal{T}} \in G$ such that for all $\lambda \in K$ we have

$$\overline{\mathcal{T}(\lambda)} = \mathcal{T}(c_{\mathcal{T}}(\lambda)),$$

and $c_{\mathcal{T}}$ has order 2 if τ is real and \mathcal{T} complex, and $c_{\mathcal{T}} = 1$ otherwise. As \mathcal{T}' varies, the $c_{\mathcal{T}'}$ form a conjugacy class c_{τ} .

Example: cyclotomic fields

Let $K = \mathbb{Q}(\zeta_m)$, Galois over \mathbb{Q} with group $G \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.

Let $\tau : \mathbb{Q} \hookrightarrow \mathbb{C}$ be the inclusion, and let $\mathcal{T}(\zeta_m) = \exp(2i\pi/m)$.

Since *G* is abelian, c_{τ} is a well-defined element of *G*.

We have

$$\overline{\mathcal{T}(\zeta_m)} = \exp(-2i\pi/m) = \mathcal{T}(\zeta_m^{-1}).$$

Therefore $c_{\tau} = -1$ as an element of $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Number field case: prime ideals

Let K/F be a Galois extension of number fields with Galois group G.

Let \mathfrak{p} be a prime ideal of F and \mathfrak{P} a prime ideal of Kdividing $\mathfrak{p}\mathbb{Z}_K$. Then all other such \mathfrak{P}' are of the form $\mathfrak{P}' = \mathfrak{P}^{\sigma}$ for some $\sigma \in G$. In particular, they all have the same residue degree $f_{\mathfrak{p}}$ and inertia index $e_{\mathfrak{p}}$, and the number of such prime ideals is a divisor $g_{\mathfrak{p}}$ of |G|, such that

$$[K:F]=e_{\mathfrak{p}}f_{\mathfrak{p}}g_{\mathfrak{p}}.$$

In addition, if \mathfrak{p} is unramified ($e_{\mathfrak{p}} = 1$), there exist a **Frobenius** element $\operatorname{Frob}_{\mathfrak{P}} \in G$ of order $f_{\mathfrak{p}}$ such that for all $\lambda \in \mathbb{Z}_{K}$ we have

$$\operatorname{Frob}_{\mathfrak{P}}(\lambda) = \lambda^{N(\mathfrak{p})} \mod \mathfrak{P}.$$

As \mathfrak{P}' varies, the Frob $_{\mathfrak{P}'}$ form a conjugacy class $Frob_{\mathfrak{P}}$, \mathfrak{P} ,

Let $K = \mathbb{Q}(\zeta_m)$, Galois over \mathbb{Q} with group $G \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.

Let *p* be a prime number not dividing *m*, so that *p* is unramified in *K*, and let \mathfrak{P} be a prime dividing $p\mathbb{Z}_{K}$.

Since G is abelian, $Frob_p$ is a well-defined element of G.

We have (tautologically!)

 $\zeta_m^p = \zeta_m^p \bmod \mathfrak{P}.$

Therefore $\operatorname{Frob}_{p} = p$ as an element of $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Chebotarev's theorem

Theorem

Let K/F be a Galois extension of number fields of Galois group G. For every $\sigma \in G$, there exists infinitely many prime \mathfrak{P} such that

$$\operatorname{Frob}_{\mathfrak{P}} = \sigma.$$

Because of the cyclotomic example, this implies Dirichlet's theorem that for $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ there are infinitely many primes *p* such that $p = a \mod m!$

ヘロト ヘアト ヘビト ヘビト

Cyclotomic fields

Aurel Page Galois theory II

ヘロト 人間 とくほとくほとう

₹ 990

Let $K = \mathbb{Q}(\zeta_m)$ (for this whole section). We have

•
$$\mathbb{Z}_{K} = \mathbb{Z}[\zeta_{m}];$$

• $\Delta_{K} = (-1)^{\phi(m)/2} \frac{m^{\phi(m)}}{\prod_{\rho \mid m} p^{\phi(m)/(\rho-1)}},$ and in particular
• $\log |\Delta_{K}| \sim \phi(m) \log m;$

• $G = \text{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$ and we write $\sigma_a \colon \zeta_m \mapsto \zeta_m^a$;

• the complex conjugation $c \in G$ is σ_{-1} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let *p* be a prime and $m = p^k m'$ with *m'* not divisible by *m*. Let *f* be the order of *p* in $(\mathbb{Z}/m'\mathbb{Z})^{\times}$. Then *p* decomposes in *K* as follows:

$$p\mathbb{Z}_K = (\mathfrak{p}_1 \dots \mathfrak{p}_g)^e$$

where $g = \phi(m')/f$, the ramification index is $e = \phi(p^k)$, and the inertia degree of all \mathfrak{p}_i is *f*.

If *p* does not divide *m*, then $Frob_p = \sigma_p$.

ヘロト 人間 とくほとくほとう

Let $K^+ = K^{\langle c \rangle}$ be the maximal real subfield of K. We have

- $\mathcal{K}^+ = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$ and $\mathbb{Z}_{\mathcal{K}^+} = \mathbb{Z}[\zeta_m + \zeta_m^{-1}]$.
- The index Q = [Z[×]_K : ⟨-1, ζ_m⟩Z[×]_{K+}] is finite, and in fact Q = 1 if m is a prime power and Q = 2 otherwise.
- The map $CI_{K^+} \rightarrow CI_K$ is injective.
- We write $h_m = |CI_K|$, $h_m^+ = |CI_{K^+}|$ and $h_m^- = h_m/h_m^+$.
- There is an explicit formula for h_m^- .
- $\log h_m^- \sim \frac{1}{4}\phi(m) \log m$.
- h_m^+ should be much smaller but is hard to control.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Cyclotomic units

Let

$$V_m = \langle -1, \zeta_m, 1 - \zeta_m^a \text{ for } 1 < a \leq m - 1 \rangle.$$

Define the group of **cyclotomic units** to be $C_m = V_m \cap \mathbb{Z}_K^{\times}$, and $C_m^+ = C_m \cap K^+$.

If *m* is not a prime power then 1 − ζ^a_m ∈ Z[×]_K whenever (*a*, *m*) = 1.

• If
$$m = p^k$$
 then $C_m = \langle -1, \zeta_m, \frac{1-\zeta_m^2}{1-\zeta_m}$ for $(a, p) = 1 \rangle$.

Let ω be the number of distinct prime factors of *m*. We have

$$[\mathbb{Z}_{K^+}^{\times}: C_m^+] = 2^b h_m^+$$
, where $b = \lfloor 2^{\omega-2} + 1 - \omega \rfloor$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Fields Galois theory Properties of Galois extensions Cyclotomic fields Class field theory Stickleberger's theorem

Let the Stickleberger element be

$$\theta = \sum_{\mathbf{a} \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \left(\frac{\mathbf{a}}{m} - \left\lfloor \frac{\mathbf{a}}{m} \right\rfloor\right) \sigma_{\mathbf{a}} \in \mathbb{Q}[G].$$

Theorem

Let $x \in \mathbb{Z}[G]$ be such that $y = \theta x \in \mathbb{Z}[G]$. For every fractional ideal \mathfrak{a} of K, \mathfrak{a}^{y} is principal.

イロト イポト イヨト イヨト

Fields Galois theory Properties of Galois extensions

Cyclotomic fields

Class field theory

Stickleberger's theorem

Theorem

Let $x \in \mathbb{Z}[G]$ be such that $y = \theta x \in \mathbb{Z}[G]$. For every fractional ideal \mathfrak{a} of K, \mathfrak{a}^{y} is principal.

- Says nothing about CI_{K^+} .
- "Optimised" version of the fact that a^{h_m} is always principal, or even a<sup>(1-c)h_m⁻.
 </sup>
- The corresponding relations in the class group are explicit.

イロト イポト イヨト イヨト 一臣

Class field theory

Aurel Page Galois theory II

<ロト <回 > < 注 > < 注 > 、

Let *F* be a number field.

Ultimate goal: classify all Galois extensions K/F and their Galois group.

Reasonable goal (class field theory): classify all Galois extensions K/F with **abelian** Galois group.

・ロン・(理)・ ・ ヨン・

Kronecker–Weber theorem

Case $F = \mathbb{Q}$.

Theorem

Let K/\mathbb{Q} be a Galois extension with abelian Galois group. Then there exists m such that

$$K \subset \mathbb{Q}(\zeta_m).$$

By Galois theory, there exists a subgroup $H \subset (\mathbb{Z}/m\mathbb{Z})^{\times}$ such that

$$K = \mathbb{Q}(\zeta_m)^H$$
 and $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}/H$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Ray class groups

We need a generalisation of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ to other number fields *F*. Let \mathfrak{m} be an ideal of \mathbb{Z}_F . Let $\alpha \in F^{\times}$. We say that

 $\alpha =^* \mathbf{1} \bmod \mathfrak{m}$

if $\sigma(\alpha) > 0$ for every $\sigma \colon F \to \mathbb{R}$ and $v_{\mathfrak{p}}(\alpha - 1) \ge v_{\mathfrak{p}}(\mathfrak{m})$ for all \mathfrak{p} dividing \mathfrak{m} .

The ray class group of modulus m is

 $\mathsf{Cl}_{\mathcal{F}}(\mathfrak{m}) = \frac{(\text{fractional ideals coprime to }\mathfrak{m})}{(\text{ideals } \alpha \mathbb{Z}_{\mathcal{F}} \text{ with } \alpha =^* 1 \text{ mod } \mathfrak{m})}.$

This is a finite group.

Example: $Cl_{\mathbb{Q}}(m) = (\mathbb{Z}/m\mathbb{Z})^{\times}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ray class fields

Theorem

Let F be a number field and \mathfrak{m} an ideal. There exists a Galois extension $F(\mathfrak{m})$ of F, called the **ray class field** of modulus \mathfrak{m} such that the extension $F(\mathfrak{m})/F$ is ramified exactly at the primes dividing \mathfrak{m} , and such that the map

 $\mathsf{Cl}_F(\mathfrak{m})\to\mathsf{Gal}(F(\mathfrak{m})/F)$

defined by $\mathfrak{p} \mapsto \mathsf{Frob}_{\mathfrak{p}}$ is well-defined and is an isomorphism.

Example: $\mathbb{Q}(m) = \mathbb{Q}(\zeta_m)$.

ヘロン 人間 とくほ とくほ とう

Hilbert class field

Theorem

Let F be a number field. There exists a Galois extension Hilb(F) of F, called the **Hilbert class field** of F such that the extension Hilb(F)/F is unramified everywhere, and such that the map

 $\mathsf{Cl}_F \to \mathsf{Gal}(\mathsf{Hilb}(F)/F)$

defined by $\mathfrak{p} \mapsto \mathsf{Frob}_{\mathfrak{p}}$ is well-defined and is an isomorphism.

Example: $Hilb(\mathbb{Q}) = \mathbb{Q}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Exhaustivity

Theorem

Let K/F be a Galois extension with abelian Galois group. Then there exists \mathfrak{m} such that

$$K \subset F(\mathfrak{m}).$$

By Galois theory, there exists a subgroup $H \subset Cl_F(\mathfrak{m})$ such that

$$K = F(\mathfrak{m})^H$$
 and $Gal(K/F) \cong Cl_F(\mathfrak{m})/H$.

イロト イポト イヨト イヨト

Hilbert towers

Theorem

There exists a number field F such that the tower

$$F = F_0 \subset F_1 = Hilb(F) \subset F_2 = Hilb(Hilb(F)) \subset \dots$$

never stabilises. The extensions F_i/F are all unramified, and

$$|\Delta_{F_i}|=2^{O([F_i:\mathbb{Q}])}.$$

イロト イポト イヨト イヨト

= 990

Thank you!

Questions ?

Aurel Page Galois theory II