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What is Galois theory about?

Original goal: characterise the solvability of equations by
radicals.
Let f ∈ Z[X ] be irreducible of degree n and α1, . . . , αn its roots.
Is there an expression for the αi as iterated k -th roots?

Modern view: Can we construct a tower of fields

Q ⊂ Q(a1/k1
1 ) ⊂ · · · ⊂ Q(a1/k1

1 , . . . ,a1/km
m ) = Q(α1, . . . , αm)

with ai+1 ∈ Q(a1/k1
1 , . . . ,a1/ki

i )?
More generally, understand subfields and their inclusions.

Galois’s solution: in terms of the symmetries of Q(α1, . . . , αn).

More generally: study arithmetic properties of number fields in
terms of their symmetries.
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Setup

For simplicity, all the fields in this talk will have characteristic 0.
I will only present Galois theory of finite extensions.
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Extensions and subfields

When we have an inclusion F ⊂ K of fields, we say that
K is an extension of F , or K/F is an extension (focus: F
fixed and we think of K as varying over possible
extensions).
F is a subfield of K (focus: K fixed and we think of F as
varying over possible subfields).
K/F is finite if dimF K <∞, of degree [K : F ] = dimF K .

Examples:
Q(
√

2)/Q is a finite extension.
Q(π)/Q is an infinite extension (π is transcendental).
Q(π2) is a subfield of Q(π).
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Finite extensions

Let K/F be a finite extension, and let a ∈ K .
Let ma : x 7→ ax ∈ EndF (K ).
Define

the trace of a: TrK/F (a) = Tr(ma);
the norm of a: NK/F (a) = det(ma);
the characteristic polynomial of a: det(X IdK −ma).

We have:
TrK/F : K → F is F -linear;
NK/F : K → F is multiplicative.

If L/K/F are successive extensions, we have transitivity:
TrL/F = TrK/F ◦TrL/K ;
NL/F = NK/F ◦ NL/K ;
[L : F ] = [K : F ][L : K ].
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Extensions of number fields: discriminants

Recall that a number field is a finite extension of Q.
Let K/F be an extension of number fields, of discriminants ∆F
and ∆K .
There is a notion of relative discriminant δK/F , which is an
ideal in ZF , such that

|∆K | = |∆F |[K :F ]N(δK/F ).

In particular we have |∆K | ≥ |∆F |[K :F ].
Define the root discriminant of K to be rdK = |∆K |1/[K :Q].
We have

rdF ≤ rdK .
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Extensions of number fields: ideals

Let K/F be an extension of number fields.
If a is a fractional ideal of F , its extension is aZK . Induces
an injective morphism IdealsF → IdealsK .
If A is a fractional ideal of K , its norm is the ideal NK/F (A)
generated by the NK/F (a) for a ∈ A. Induces a
morphism IdealsK → IdealsF .
We have NK/F (aZK ) = a[K :F ].
On class groups, these induce an extension
map ClF → ClK and a norm map NK/F : ClK → ClF .
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Extension of number fields: prime ideals

Let K/F be an extension of number fields, and let p be a prime
ideal of F .

We have pZK =
∏

i P
ei
i for some prime ideals Pi of ZK .

The integer ei is the ramification index of Pi over F .
We have Pi ∩ F = p.
We have NK/F (Pi) = pfi . The integer fi is the inertia
degree of Pi over F .
We have

∑
i ei fi = [K : F ].

We say p is unramified in K if all ei = 1.
Equivalently, p does not divide δK/F .
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How do you construct extensions? I

Adjoining one element:
By picking an element from a bigger field Ω: K = F (α) for
some α ∈ Ω.
Ex: from Q ⊂ C, construct Q(

√
2), Q(π), . . .

Algebraically, by adjoining the root of a polynomial:
f ∈ F [X ] being irreducible, K = F [X ]/(f (X )) = F (α)
where α = X is an abstract root of f .
Such an extension has degree deg f .
Ex: Q[X ]/(X 2 − 2) = Q(

√
2).
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Primitive element theorem

Theorem
Let K/F be a finite extension. Then there exists α ∈ K such
that K = F (α).

Such an α is called a primitive element of K/F .
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How do you construct extensions? II

Adjoining several elements:
Pick several elements from Ω: K = F (α1, . . . , αm) for
some αi ∈ Ω.
Ex: Q(

√
2, π).

Algebraically, by specifying all relations:
K = F [X1, . . . ,Xm]/(relations) = F (α1, . . . , αm).
Ex: Q[X1,X2]/(X 2

1 − 2,X 2
2 − 3) = Q(

√
2,
√

3).
Algebrically, by adjoining all roots of an
irreducible f ∈ F [X ]: K̃ = F (α1, . . . , αn) where n = deg f .
This is called the splitting field of f .

Aurel Page Galois theory
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Splitting field examples

Let f = x4 − x3 + 2x − 1.
Let K = Q[X ]/(f ) = Q(α1) of degree 4.
Over K , f factors as

f (X ) = (X − α1) · (X − α2) · g(X )

where α2 = −α3
1−1 and g = X 2− (α3

1−α1 + 2)X +α3
1−α1 + 2.

We can construct K̃ = K [Y ]/(g) = K (α3), and this field also
contains the last root α4 = 2− 2α1 + α3

1 − α3.

So K̃ = K (α1)(α3) = K (α1, α2, α3, α4) is the splitting field of f .
It has degree 4 · 2 = 8 over Q.

Aurel Page Galois theory
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Splitting field examples

What is the ”worst case” of this construction?

From f ∈ F [X ] of degree n, we construct
K1 = F (α1), and over K1 we have f = (X − α1)f1(X )
where f1 is irreducible of degree n − 1,
K2 = K1(α2), and f = (X − α1)(X − α2)f2(X )
where f2 ∈ K2[X ] is irreducible of degree n − 2,
. . .
K̃ = Kn is the splitting field of f .

The degree of K̃/F is n · (n − 1) · (n − 2) · · · 1 = n!.

Aurel Page Galois theory
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Morphisms of fields

Let K ,L be rings. A morphism is a map σ : K → L such that
σ(1) = 1;
σ is a morphism of additive groups;
σ(ab) = σ(a)σ(b) for all a,b ∈ K .

Fact: if K ,L are fields, then σ is injective.
Proof: If a ∈ ker σ is such that a 6= 0,
then 1 = σ(1) = σ(a · 1/a) = σ(a) · σ(1/a) = 0.

If in addition K/F and L/F are finite extensions and σ
is F -linear, then σ is an isomorphism if and only
if [K : F ] = [L : F ].

Aurel Page Galois theory
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How do you construct morphisms of fields?

Assume K = F [X ]/(f ) = F (α), and L/F is another extension,
and we want to construct an F -linear morphism σ : K → L.

σ is completely determined by σ(α).
We must have f (σ(α)) = σ(f (α)) = 0.
Let β ∈ L be such that f (β) = 0. Then there exists a
unique σ : K → L such that σ(α) = β.

Proof: this is the only ”field relation” satisfied by α.
Formally, define σ : F [X ]→ L by σ(X ) = β. Since for
all g ∈ F [X ] we have σ(fg) = f (β)g(β) = 0, the map σ is trivial
on the ideal (f ) and therefore passes to the quotient.

Aurel Page Galois theory
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How do you construct morphisms of fields?

Assume K = F [X1, . . . ,Xm]/(relations) = F (α1, . . . , αm),
and L/F is another extension, and we want to construct
an F -linear morphism σ : K → L.

σ is completely determined by σ(α1), . . . , σ(αm).
We get a morphism iff the chosen images σ(α1), . . . , σ(αm)
satisfy all relations between the αi .

Aurel Page Galois theory
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Automorphisms

When K/F is a finite extension, a special role will be played by
the group AutF (K ) of automorphisms K → K that are F -linear.

If K = F [X ]/(f ) = F (α), these correspond exactly to roots of f
over K . We don’t have to check injectivity or surjectivity!

If K̃ = F (α1, . . . , αn) is the splitting field of f , then an
automorphism σ must send each αi to some αj , and the images
must all be distinct.
 σ defines a permutation of α1, . . . , αn.
AutF (K ) is the set of permutations of the roots of f that
preserves all relations between them.

Aurel Page Galois theory
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Examples of automorphism groups

Let K = Q(
√

2) = Q[X ]/(X 2 − 2).

Then X 2 − 2 = (X −
√

2)(X +
√

2), so there is exactly one
nontrivial automorphism σ :

√
2 7→ −

√
2.

We have AutQ(K ) ∼= C2.

Aurel Page Galois theory
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Examples of automorphism groups

Let K = Q(
√

2,
√

3) = Q[X ,Y ]/(X 2 − 2,Y 2 − 3).

There are four pairs of elements of K satisfying all the relations:
(
√

2,
√

3), (−
√

2,
√

3), (
√

2,−
√

3) and (−
√

2,−
√

3), giving four
automorphisms.

We have AutQ(K ) ∼= C2 × C2.

Aurel Page Galois theory
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Examples of automorphism groups

Let f = x4 − x3 + 2x − 1 and K = Q[X ]/(f ) = Q(α1) as before.

As we saw, f had two roots α1 and α2 in K , giving two
automorphisms: the identity, and one that swaps α1 and α2.

We have AutQ(K ) ∼= C2.
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Fixed fields

Let K/F be an extension and H ⊂ AutF (K ) a subgroup.
Define the fixed field of H to be

K H = {x ∈ K | σ(x) = x for all σ ∈ H}.

By the morphism property, K H is a subfield of K .
By F -linearity, K H contains F .

We now have a way of constructing subfields !

Aurel Page Galois theory



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Galois theory

Aurel Page Galois theory



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Galois extensions

Let K/F be a finite extension. We say that K/F is Galois (or
normal) if the following equivalent properties hold:

1 F = KAutF (K ) (we always have ⊂);
2 |AutF (K )| = [K : F ] (we always have ≤);
3 every irreducible g ∈ F [X ] that has one root in K has all its

roots in K ;
4 K is the splitting field of some irreducible f ∈ F [X ].
5 K is the splitting field of some f ∈ F [X ].

When K/F is Galois, we define its Galois group to be

Gal(K/F ) = AutF (K ).

Aurel Page Galois theory
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Warning

The ”Galois group” of an irreducible polynomial f ∈ F [X ]

is Gal(K̃/F ) where K̃ is the splitting field of f . It is usually seen
as a permutation group acting on the roots of f .

Aurel Page Galois theory
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Example: multiquadratic fields

Let K = Q(
√

a1, . . . ,
√

am) where a1, . . . ,am ∈ Q are
multiplicatively independent up to squares.

Generalising what we saw earlier, AutQ(K ) ∼= Cm
2 is generated

by the σi :
√

ai 7→ −
√

ai and leaving invariant the √aj for j 6= i .

We have [K : Q] = 2m = |AutQ(K )| and K/Q is therefore a
Galois extension!

Aurel Page Galois theory
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Example: cyclotomic fields

Let K = Q(ζm) = Q[X ]/(Φm) be the m-th cyclotomic field, of
degree φ(m).

The roots of Φm are exactly the primitive m-th roots of unity.
The ζa

m ∈ K for a ∈ (Z/mZ)× are φ(m) distinct such roots of
unity, so K is the splitting field of Φm, so K/Q is Galois.

For a ∈ (Z/mZ)×, let σa be the automorphism of K that
sends ζm to ζa

m.
The map a 7→ σa defines an isomorphism

(Z/mZ)× ∼= Gal(K/Q).

Aurel Page Galois theory
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Galois closure

Fact: if K/F is a finite extension, then there exists a
smallest K̃/K such that K̃/F is Galois.

Proof: write K = F [X ]/(f ) for some irreducible f , and let K̃ be
the splitting field of f .

K̃/F is called the Galois closure (or normal closure) of K/F .

Aurel Page Galois theory
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Example of Galois closure

Let f = x4 − x3 + 2x − 1 and K = Q[X ]/(f ) = Q(α1) as before.

Recall α2 ∈ K and K̃ = K (α3) is the splitting field of K , so K̃/Q
is the Galois closure of K/Q.

We know that |Gal(K̃/Q)| = [K̃ : Q] = 8, so let’s determine it.

Let σ ∈ Gal(K̃/Q). Since K̃ = Q(α1, α3), σ is completely
determined by its value on α1 and α3. At most 4 possible
images for α1. Choosing σ(α1) forces σ(α2) at most 2
possible images for α3. Total 4 · 2 = 8 possible pairs of images,
but must have 8 automorphisms, so each possibility is an actual
automorphism!

We have Gal(K̃/Q) ∼= D4.

Aurel Page Galois theory



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Example : a Kummer field

Let p be a prime and a ∈ Q× that is not a p-th power, and
let K = Q(a1/p) = Q[X ]/(X p − a) of degree p.

Let K̃/Q be the Galois closure of K/Q. Then K̃ contains two
distinct p-th roots of a, so it contains a primitive p-th root of
unity ζp. The elements a1/p,a1/pζp, . . . ,a1/pζp−1

p are p distinct
roots of X p − a, so K̃ = Q(a1/p, ζp).

Let’s determine Gal(K̃/Q).
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Example : a Kummer field

Since K̃ contains K and Q(ζp), we have [K̃ : Q] ≥ p(p − 1).

Let σ ∈ Gal(K̃/Q). We have σ(ζp) = ζu
p for some u ∈ F×p

and σ(a1/p) = a1/pζ t
p for some t ∈ Fp,

so |Gal(K̃/Q)| ≤ p(p − 1). So there must be equality, and all
these possibilities define an automorphism σu,t !

We compute
σv ,sσu,t (ζp) = σv ,s(ζu

p ) = ζvu
p , and

σv ,sσu,t (a1/p) = σv ,s(a1/pζ t
p) = a1/pζvt+s

p .

So σv ,sσu,t = σvu,vt+s, and Gal(K̃/Q) is isomorphic to the group

of matrices
(

u t
0 1

)
∈ GL2(Fp).

Aurel Page Galois theory
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Example : Sn

Consider our ”worst case” example f with K1 = F (α1) of
degree n and K̃ = F (α1, . . . , αn) of degree n!.
The splitting field K̃ is the Galois closure of K1 over F .

Every automorphism of K̃/F defines a permutation of the n
roots, giving an injection Gal(K̃/F ) ↪→ Sn. So we
have |Gal(K̃/F )| ≤ n!, and there must be equality!

We get Gal(K̃/F ) ∼= Sn.

Aurel Page Galois theory
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Fundamental theorem of Galois theory

Theorem
Let K/F be a Galois extension of Galois group G = Gal(K/F ).
There is an inclusion-reversing bijection between

intermediate fields F ⊂ L ⊂ K , and
subgroups H of G,

given by
L 7→ AutL(K ), and
H 7→ K H .

Note: for every intermediate field F ⊂ L ⊂ K , the extension K/L
is Galois, we have Gal(K/K H) = H and [K H : F ] = [G : H].

Aurel Page Galois theory
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Fundamental theorem of Galois theory

G = Gal(K/F ).

1 K

H

H = Gal(K/L) oo // L = K H

[G:H]

G F

Aurel Page Galois theory
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Examples: Galois correspondence

Let K = Q(ζ9), Galois over Q with Gal(K/Q) ∼= (Z/9Z)×.

The group (Z/9Z)× ∼= C6 has two proper subgroups: 〈−1〉 of
order 2 and 〈4〉 of order 3.

The fixed field K 〈−1〉 is Q(ζ9 + ζ−1
9 ), and the fixed field K 〈4〉

is Q(ζ3
9 ) = Q(ζ3).
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Examples: Galois correspondence

1 Q(ζ9)

〈−1〉 〈4〉 Q(ζ9 + ζ−1
9 ) Q(ζ3)

(Z/9Z)× Q
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Examples: Galois correspondence

Let K = Q(
√

2,
√

3) with Gal(K̃/Q) = 〈σ1, σ2〉 ∼= C2 × C2.

The group C2 × C2 has exactly three proper subgroups, all of
order 2: 〈σ1〉, 〈σ2〉 and 〈σ1σ2〉.

The corresponding subfields are K 〈σ1〉 = Q(
√

3),
K 〈σ2〉 = Q(

√
2) and K 〈σ1σ2〉 = Q(

√
6).
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Examples: Galois correspondence

1 Q(
√

2,
√

3)

〈σ1〉 〈σ1σ2〉 〈σ2〉 Q(
√

3) Q(
√

6) Q(
√

2)

〈σ1, σ2〉 Q
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Examples: Galois correspondence

Let K = Q(
√

a1, . . . ,
√

am) as before,
with Gal(K/Q) ∼= Cm

2
∼= Fm

2 .

The subgroups of Fm
2 of index 2k are exactly the F2-subspaces

of dimension m − k and there are approximately 2(m
k ) such

subspaces. They correspond to subfields of K of degree 2k ,
which are also multiquadratic.
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Examples: Galois correspondence

Let K = Q(a1/p) = Q[X ]/(X p − a) and K̃ = Q(a1/p, ζp) as

before, with Gal(K̃/Q) ∼=
(
F×p Fp
0 1

)
.

Let H ⊂ Gal(K̃/Q) be a nontrivial subgroup.

If H does not contain
(

1 1
0 1

)
, then H = 〈

(
u t
0 1

)
〉 for

some u ∈ F×p and some t ∈ Fp with u 6= 1;

otherwise H = 〈
(

1 1
0 1

)
,

(
u 0
0 1

)
〉 for some u ∈ F×p .

Aurel Page Galois theory
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Examples: Galois correspondence

Recall
(

u t
0 1

)
acts by ζp 7→ ζu

p and a1/p 7→ a1/pζ t
p.

Let u ∈ F×p have order d .

The fixed field of 〈
(

1 1
0 1

)
〉 is Q(ζp).

The fixed field of 〈
(

1 1
0 1

)
,

(
u 0
0 1

)
〉 is the

subfield L ⊂ Q(ζp) with [Q(ζp) : L] = d .

If d 6= 1, the fixed field of 〈
(

u t
0 1

)
〉 is L(a1/pζ

t/(1−u)
p ).

Aurel Page Galois theory
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Examples: Galois correspondence

d = order of u in F×p .

1 K̃

d

〈σu,t〉 L(a1/pζ
t/(1−u)
p )

p

〈σ1,1, σu,0〉 L

p−1
d

Gal(K̃/Q) Q
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Examples: subgroup corresponding to a non-Galois
field

Let f = x4 − x3 + 2x − 1 and K = Q[X ]/(f ) = Q(α1) as before,
with Galois closure K̃ = K (α1, α3) and Gal(K̃/Q) ∼= D4.

Let’s determine the subgroup H = Gal(K̃/K ) corresponding
to K . It is the subgroup of automorphisms σ ∈ Gal(K̃/Q)
fixing α1. Such an automorphism must also fix α2, so there are
only two possiblities: the identity and one automorphism that
swaps α3 ↔ α4.

Geometrically, if we see D4 as the symmetry group of the
square, H is the group generated by one reflection: the one
fixing the two vertices corresponding to α1 and α2.
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Examples: subgroup corresponding to a non-Galois
field

Let f , K/Q of degree n and K̃/Q of degree n!

and Gal(K̃/Q) ∼= Sn be our ”worst case” example.

Let’s determine the subgroup H = Gal(K̃/K ) corresponding
to K . It is the subgroup of automorphisms fixing α1. This
corresponds to the stabiliser of 1 in Sn, which is isomorphic
to Sn−1.

Aurel Page Galois theory



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Galois theory II

Aurel Page

02/03/2022

Inria Bordeaux Sud-Ouest
CHARM Bootcamp

Aurel Page Galois theory II



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Reminder : goal

Goal of Galois theory: study arithmetic properties of number
fields (in particular subfields) in terms of their symmetries.
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Reminder : morphisms of fields

A field extension K/F can be
represented K = F (α) = F [X ]/(f (X )) where f ∈ F [X ] is
irreducible.
A morphism of fields is always injective.
If dimensions match it is always an isomorphism.
(F -linear morphism K → L)←→ (root β ∈ L of f ).
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Reminder : Galois extensions

Let K/F be a finite extension. We say that K/F is Galois (or
normal) if the following equivalent properties hold:

1 F = KAutF (K ) (we always have ⊂);
2 |AutF (K )| = [K : F ] (we always have ≤);
3 every irreducible g ∈ F [X ] that has one root in K has all its

roots in K ;
4 K is the splitting field of some irreducible f ∈ F [X ].
5 K is the splitting field of some f ∈ F [X ].

When K/F is Galois, we define its Galois group to be

Gal(K/F ) = AutF (K ).
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Reminder : example

Let K = Q(ζm) = Q[X ]/(Φm) be the m-th cyclotomic field, of
degree φ(m).

K is the splitting field of Φm, so K/Q is Galois.

For a ∈ (Z/mZ)×, let σa be the automorphism of K that
sends ζm to ζa

m.
The map a 7→ σa defines an isomorphism

(Z/mZ)× ∼= Gal(K/Q).
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Reminder : Galois closure

The Galois closure of K/F is the smallest K̃/K such that K̃/F
is Galois.

If K = F [X ]/(f (X )) then the Galois closure K̃ is the splitting
field of f .
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Reminder : example

Consider our ”worst case” example f with K1 = F (α1) of
degree n and K̃ = F (α1, . . . , αn) of degree n!.
The splitting field K̃ is the Galois closure of K1 over F .

Every automorphism of K̃/F defines a permutation of the n
roots, inducing an isomorphism

Gal(K̃/F ) ∼= Sn.
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Reminder : fundamental theorem of Galois theory

Theorem
Let K/F be a Galois extension of Galois group G = Gal(K/F ).
There is an inclusion-reversing bijection between

intermediate fields F ⊂ L ⊂ K , and
subgroups H of G,

given by
L 7→ AutL(K ), and
H 7→ K H .

Note: for every intermediate field F ⊂ L ⊂ K , the extension K/L
is Galois, we have Gal(K/K H) = H and [K H : F ] = [G : H].
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Reminder: fundamental theorem of Galois theory

G = Gal(K/F ).

1 K

H

H = Gal(K/L) oo // L = K H

[G:H]

G F
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Reminder: example

Let K = Q(21/3) = Q[X ]/(X 3 − 2) and K̃ = Q(21/3, ζ3), with

Gal(K̃/Q) ∼=
(
F×3 F3
0 1

)
∼= S3,

where σu,t =

(
u t
0 1

)
acts by ζ3 7→ ζu

3 and 21/3 7→ 21/3ζ t
3.

Aurel Page Galois theory II



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Reminder: example

σu,t : ζ3 7→ ζu
3 , 21/3 7→ 21/3ζ t

3.

1 Q(21/3, ζ3)

3 2

〈σ1,1〉 〈σ−1,−t〉 Q(ζ3)

2

Q(21/3ζ t
3)

3

Gal(K̃/Q) Q
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Subfields of a non-Galois extension

Galois theory also determines the intermediate fields of a
non-Galois extension.

Let K/F be a finite extension and K̃/F be its Galois closure
with G = Gal(K̃/F ). Let H0 = Gal(K̃/K ) be the subgroup
corresponding to K .

By the inclusion-reversing property, the intermediate
fields F ⊂ L ⊂ K correspond to subgroups H of G that
contain H0.
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Subfields of a non-Galois extension

G = Gal(K̃/F ).

1 K̃

H0

HH0 = Gal(K̃/K ) K

H = Gal(K̃/L) oo // L = K̃ H

[G:H]

G F
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Example: subfields of a non-Galois extension

Let f , K/Q of degree n and K̃/Q of degree n!

and Gal(K̃/Q) ∼= Sn be our ”worst case” example.

We can check that there are no subgroups H ⊂ Sn strictly
between H0 = Sn−1 and Sn. Therefore, there are no proper
intermediate fields F ⊂ L ⊂ K .
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When is an intermediate field Galois?

Let K/F be a Galois extension with Galois
group G = Gal(K/F ), and let L = K H correspond to a
subgroup H = Gal(K/L). When is L/F Galois?

Write L = F [X ]/(f ) = F (α).
Let σ ∈ G. Then σ(L) = F (σ(α)) is another sufield of K ,
corresponding to the subgroup σHσ−1.

If σ(L) 6= L then σ(α) /∈ L: L/F is not Galois.
If σ(L) = L for all σ ∈ G, then all roots of f are in L so L/F
is Galois.

Therefore, L/F is Galois iff σHσ−1 = H for all σ ∈ G, iff H is a
normal subgroup of G. In this case, we have Gal(L/F ) = G/H.
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When is an intermediate field Galois?

G = Gal(K/F ) and H a subgroup of G.

1 K

H=Gal(K/L)

H oo // L = K H

[G:H]

G F
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When is an intermediate field Galois?

G = Gal(K/F ) and H a normal subgroup of G.

1 K

H=Gal(K/L)

H oo // L = K H

G/H=Gal(L/F )

G F
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When is an intermediate field Galois?

As a special case, if Gal(K/F ) is an abelian group, then all the
intermediate extensions L/F are Galois !
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Example of non-Galois intermediate fields

K = Q(21/3) = F [X ]/(X 3 − 2) and K̃ = Q(21/3, ζ3).

1 K̃

F×3

〈σ−1,−t〉

not normal

Q(21/3ζ t
3)

3 not Galois

Gal(K̃/Q) Q
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Automorphisms of a subfield

Let K/F be an extension with Galois closure K̃ ,
and G = Gal(K̃/K ), and let H = Gal(K̃/K ) be the
corresponding subgroup of G.
Question: determine AutF (K ).

Let σ ∈ AutF (K ). Then σ extends to an element σ ∈ G.
Since σ(K ) = K we have σHσ−1 = H, i.e. σ ∈ NG(H).

Elements of NG(H) induce the same automorphism iff they
differ by an element of H:

AutF (K ) ∼= NG(H)/H.
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Automorphisms of a subfield : example

Let K = Q(21/4) ⊂ K̃ = Q(21/4, ζ4), with

G = Gal(K̃/Q) ∼=
(

(Z/4Z)× Z/4Z
0 1

)
where (

u t
0 1

)
: ζ4 7→ ζu

4 , 21/4 7→ 21/4ζ t
4.

We have

H =

(
(Z/4Z)× 0

0 1

)
and NG(H) =

(
(Z/4Z)× 2(Z/4Z)

0 1

)
,

so AutQ(K ) ∼= C2 is generated by 21/4 7→ 21/4ζ2
4 = −21/4.
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Properties of Galois
extensions
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Normal basis theorem

Theorem
Let K/F be a Galois extension. Then there exists λ ∈ K such
that the elements σ(λ) for σ ∈ Gal(K/F ) form an F-basis of K .

Example: K = Q(
√

2).

λ =
√

2 does not work: {
√

2,−
√

2} is not a basis of K .
λ = 1 +

√
2 works: {1 +

√
2,1−

√
2} is a basis of K .
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The group ring

Let G be a finite group. The group ring Z[G] of G is the set of
formal linear combinations

x =
∑
σ∈G

xσσ, xσ ∈ Z

with coefficientwise addition and multiplication given by the
group law of G.

Construct the group algebra Q[G] with Z replaced by Q.
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Group ring example

Let G = 〈σ〉 with σ of order 3.

Let x = 1 + σ ∈ Z[G].

We have x3 = (1 + σ)3 = 1 + 3σ + 3σ2 + σ3 = 2 + 3σ + 3σ2.
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Action of the group ring

Let K be a field and G ⊂ Aut(K ) be a finite subgroup of
automorphisms.

Let x =
∑

σ∈G xσσ ∈ Q[G] and λ ∈ K . We define the additive
action of Q[G] on K by

x · λ =
∑
σ∈G

xσσ(λ).

Assume x ∈ Z[G] and λ ∈ K×. We define the multiplicative
action of Z[G] on K× by

λx =
∏
σ∈G

σ(λ)xσ .
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Example: actions of the group ring

Let K = Q(
√

2) and G = 〈σ〉 with σ(
√

2) = −
√

2.

Let x = 1− 2σ ∈ Z[G] and λ = 1 +
√

2 ∈ K×.

We have

x · λ = (1− 2σ) · (1 +
√

2) = (1 +
√

2)− 2(1−
√

2) = −1 + 3
√

2,

and

λx = (1 +
√

2)1−2σ =
1 +
√

2
(1−

√
2)2

= (1 +
√

2)3 = 7 + 5
√

2.
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Number field case: actions on ideals

Let K be a number field and G ⊂ Aut(K ) be a finite subgroup of
automorphisms.

Let a be an ideal of K and σ ∈ G. Then aσ = σ(a) is an ideal
of K .

We extend this action multiplicatively to an action of Z[G] on the
set of fractional ideals.

On principal ideals, this action is compatible with the
multiplicative action on elements, so this induces an action
of Z[G] on ClK .
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Norm and trace in the Galois setting

Let K/F be a Galois extension with Galois group G.
Let L = K H correspond to a subgroup H ⊂ G.

We define the norm element NH ∈ Z[G] to be

NH =
∑
σ∈H

σ.

For all λ ∈ K and fractional ideals a we have
TrK/L(λ) = NH · λ,

NK/L(λ) = λNH , and

NK/L(a) = aNH ∩ L.
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Cutting things using the group ring action

Let M be something on which Q[G] acts (a ”Q[G]-module”).
Let e ∈ Q[G].

Then the image e ·M = {e ·m : m ∈ M} and the
kernel {m ∈ M | e ·m = 0} are subgroups of M, possibly proper.

We cannot get anything nontrivial this way by only using the
action of group elements, since they all act invertibly!

The best situation is when e is an idempotent, i.e. e2 = e.
Then we have

e ·M = ker(1− e);
(1− e) ·M = ker(e);
M = e ·M ⊕ (1− e) ·M.
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Cutting things: example

Let K/F be a Galois extension with Galois group G.
Let σ ∈ G be an element of order 2 and L = K 〈σ〉.
Let e = 1

2N〈σ〉. We have

e2 =
1
22 (1 + σ)2 =

1
4

(1 + 2σ + σ2) =
1
4

(2 + 2σ) = e,

so e is an idempotent.
Considering Q[G] acting on K , we have

e · K = 1
2 TrK/L(K ) = L = {λ ∈ K | σ(λ) = λ}, and

ker(e) = {λ ∈ K | TrK/L(λ) = 0} = {λ ∈ K | σ(λ) = −λ},
and K is the direct sum of these two subspaces.
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Cutting things: example

What about the group ring action on M = K×?

The element e does not act because of the denominator, so we
will instead use the action of 2e = 1 + σ and 2(1− e) = 1− σ.

We have
(1 + σ)M = NK/L(K×) ⊂ L× = ker(1− σ),
(1− σ)M = {λ/σ(λ) : λ ∈ K},
ker(1 + σ) = {λ ∈ K× | NK/L(λ) = 1},
(1− σ)M ⊂ ker(1 + σ), but in fact they are equal!

For every λ ∈ K we have λ2 = λ/σ(λ) · NK/L(λ).

Aurel Page Galois theory II



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Number field case: real and complex embeddings

Let K/F be a Galois extension of number fields with Galois
group G.

Let τ : F ↪→ C be a complex embedding of F , and T : K ↪→ C a
complex embedding of K that extends τ . Then all other T ′
extending τ are of the form T ′ = T ◦ σ for some σ ∈ G. In
particular, they are all real or all complex.

In addition, if τ is real, there exists a complex
conjugation cT ∈ G such that for all λ ∈ K we have

T (λ) = T (cT (λ)),

and cT has order 2 if τ is real and T complex, and cT = 1
otherwise. As T ′ varies, the cT ′ form a conjugacy class cτ .

Aurel Page Galois theory II



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Example: cyclotomic fields

Let K = Q(ζm), Galois over Q with group G ∼= (Z/mZ)×.

Let τ : Q ↪→ C be the inclusion, and let T (ζm) = exp(2iπ/m).

Since G is abelian, cτ is a well-defined element of G.

We have
T (ζm) = exp(−2iπ/m) = T (ζ−1

m ).

Therefore cτ = −1 as an element of (Z/mZ)×.
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Number field case: prime ideals

Let K/F be a Galois extension of number fields with Galois
group G.

Let p be a prime ideal of F and P a prime ideal of K
dividing pZK . Then all other such P′ are of the form P′ = Pσ for
some σ ∈ G. In particular, they all have the same residue
degree fp and inertia index ep, and the number of such prime
ideals is a divisor gp of |G|, such that

[K : F ] = epfpgp.

In addition, if p is unramified (ep = 1), there exist a Frobenius
element FrobP ∈ G of order fp such that for all λ ∈ ZK we have

FrobP(λ) = λN(p) mod P.

As P′ varies, the FrobP′ form a conjugacy class Frobp.
Aurel Page Galois theory II



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Example: cyclotomic fields

Let K = Q(ζm), Galois over Q with group G ∼= (Z/mZ)×.

Let p be a prime number not dividing m, so that p is unramified
in K , and let P be a prime dividing pZK .

Since G is abelian, Frobp is a well-defined element of G.

We have (tautologically!)

ζp
m = ζp

m mod P.

Therefore Frobp = p as an element of (Z/mZ)×.
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Chebotarev’s theorem

Theorem
Let K/F be a Galois extension of number fields of Galois
group G. For every σ ∈ G, there exists infinitely many prime P
such that

FrobP = σ.

Because of the cyclotomic example, this implies Dirichlet’s
theorem that for a ∈ (Z/mZ)× there are infinitely many
primes p such that p = a mod m!
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Cyclotomic fields
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Basic properties

Let K = Q(ζm) (for this whole section).
We have

ZK = Z[ζm];

∆K = (−1)φ(m)/2 mφ(m)∏
p|m pφ(m)/(p−1) , and in particular

log |∆K | ∼ φ(m) log m;
G = Gal(K/Q) ∼= (Z/mZ)× and we write σa : ζm 7→ ζa

m;
the complex conjugation c ∈ G is σ−1.
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Decomposition of primes

Let p be a prime and m = pkm′ with m′ not divisible by m.
Let f be the order of p in (Z/m′Z)×.
Then p decomposes in K as follows:

pZK = (p1 . . . pg)e

where g = φ(m′)/f , the ramification index is e = φ(pk ), and the
inertia degree of all pi is f .

If p does not divide m, then Frobp = σp.
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Real subfield

Let K+ = K 〈c〉 be the maximal real subfield of K .
We have

K+ = Q(ζm + ζ−1
m ) and ZK+ = Z[ζm + ζ−1

m ].
The index Q = [Z×K : 〈−1, ζm〉Z×K+ ] is finite, and in
fact Q = 1 if m is a prime power and Q = 2 otherwise.
The map ClK+ → ClK is injective.
We write hm = |ClK |, h+

m = |ClK+ | and h−m = hm/h+
m.

There is an explicit formula for h−m.
log h−m ∼ 1

4φ(m) log m.
h+

m should be much smaller but is hard to control.
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Cyclotomic units

Let
Vm = 〈−1, ζm,1− ζa

m for 1 < a ≤ m − 1〉.

Define the group of cyclotomic units to be Cm = Vm ∩ Z×K ,
and C+

m = Cm ∩ K+.
If m is not a prime power then 1− ζa

m ∈ Z×K
whenever (a,m) = 1.

If m = pk then Cm = 〈−1, ζm,
1−ζa

m
1−ζm

for (a,p) = 1〉.

Let ω be the number of distinct prime factors of m. We have

[Z×K+ : C+
m ] = 2bh+

m, where b = b2ω−2 + 1− ωc.
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Stickleberger’s theorem

Let the Stickleberger element be

θ =
∑

a∈(Z/mZ)×

( a
m
−
⌊ a

m

⌋)
σa ∈ Q[G].

Theorem
Let x ∈ Z[G] be such that y = θx ∈ Z[G]. For every fractional
ideal a of K , ay is principal.
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Stickleberger’s theorem

Theorem
Let x ∈ Z[G] be such that y = θx ∈ Z[G]. For every fractional
ideal a of K , ay is principal.

Says nothing about ClK+ .
”Optimised” version of the fact that ahm is always principal,
or even a(1−c)h−m .
The corresponding relations in the class group are explicit.
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Class field theory
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Goal

Let F be a number field.

Ultimate goal: classify all Galois extensions K/F and their
Galois group.

Reasonable goal (class field theory): classify all Galois
extensions K/F with abelian Galois group.
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Kronecker–Weber theorem

Case F = Q.

Theorem
Let K/Q be a Galois extension with abelian Galois group. Then
there exists m such that

K ⊂ Q(ζm).

By Galois theory, there exists a subgroup H ⊂ (Z/mZ)× such
that

K = Q(ζm)H and Gal(K/Q) ∼= (Z/mZ)×/H.
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Ray class groups

We need a generalisation of (Z/mZ)× to other number fields F .

Let m be an ideal of ZF . Let α ∈ F×. We say that

α =∗ 1 mod m

if σ(α) > 0 for every σ : F → R and vp(α− 1) ≥ vp(m) for all p
dividing m.

The ray class group of modulus m is

ClF (m) =
(fractional ideals coprime to m)

(ideals αZF with α =∗ 1 mod m)
.

This is a finite group.
Example: ClQ(m) = (Z/mZ)×.
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Ray class fields

Theorem
Let F be a number field and m an ideal. There exists a Galois
extension F (m) of F , called the ray class field of modulus m
such that the extension F (m)/F is ramified exactly at the
primes dividing m, and such that the map

ClF (m)→ Gal(F (m)/F )

defined by p 7→ Frobp is well-defined and is an isomorphism.

Example: Q(m) = Q(ζm).
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Hilbert class field

Theorem
Let F be a number field. There exists a Galois
extension Hilb(F ) of F , called the Hilbert class field of F such
that the extension Hilb(F )/F is unramified everywhere, and
such that the map

ClF → Gal(Hilb(F )/F )

defined by p 7→ Frobp is well-defined and is an isomorphism.

Example: Hilb(Q) = Q.

Aurel Page Galois theory II



Fields
Galois theory

Properties of Galois extensions
Cyclotomic fields
Class field theory

Exhaustivity

Theorem
Let K/F be a Galois extension with abelian Galois group. Then
there exists m such that

K ⊂ F (m).

By Galois theory, there exists a subgroup H ⊂ ClF (m) such that

K = F (m)H and Gal(K/F ) ∼= ClF (m)/H.
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Hilbert towers

Theorem
There exists a number field F such that the tower

F = F0 ⊂ F1 = Hilb(F ) ⊂ F2 = Hilb(Hilb(F )) ⊂ . . .

never stabilises. The extensions Fi/F are all unramified, and

|∆Fi | = 2O([Fi :Q]).
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Thank you!

Questions ?
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