Algebraic number theory Solutions to exercise sheet for chapter 4

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk), Aurel Page (a.r.page@warwick.ac.uk)

TAs: Chris Birkbeck (c.d.birkbeck@warwick.ac.uk), George Turcas (g.c.turcas@warwick.ac.uk)

Version: April 2, 2017

Exercise 1 (30 points). Let $K = \mathbb{Q}(\sqrt{-155})$.

1. (3 points) Write down without proof the ring of integers, the discriminant and the signature of K.

The signature of K is (0, 1). Since $-155 = -5 \cdot 31$ is squarefree and $-155 \equiv 1 \mod 4$, the ring of integers of K is $\mathbb{Z}_K = \mathbb{Z}[\omega]$ where $\omega = \frac{1+\sqrt{-155}}{2}$, and disc K = -155.

2. (10 points) Describe a set of prime ideals of \mathbb{Z}_K whose classes generate the class group of K. For each of these prime ideals, give the residue degree and ramification index.

The Minkowski bound is $M_K = \frac{2! \cdot 4}{2^2 \cdot \pi} \sqrt{155} \approx 7.9 < 8$, so the class group of K is generated by the classes of the primes of norm less than or equal to 8. Such ideals must be above 2, 3, 5 or 7.

- Since $-155 \equiv 5 \mod 8$, the ideal $\mathfrak{p}_2 = 2\mathbb{Z}_K$ is a prime ideal with residue degree 2 and ramification index 1.
- Since $-155 \equiv 1 \mod 3$, we have $3\mathbb{Z}_K = \mathfrak{p}_3\mathfrak{p}'_3$ where \mathfrak{p}_3 and \mathfrak{p}'_3 are prime ideals with residue degree 1 and ramification index 1.
- Since 5 divides -155, the prime 5 is ramified in K and we have $5\mathbb{Z}_K = \mathfrak{p}_5^2$ where \mathfrak{p}_5 is a prime ideal with residue degree 1 and ramification index 2.
- We have $-155 \equiv 6 \mod 7$. The squares modulo 7 are 0, $(\pm 1)^2 = 1$, $(\pm 2)^2 = 4$ and $(\pm 3)^2 \equiv 2 \mod 7$, so -155 is not a square modulo 7 and $\mathfrak{p}_7 = 7\mathbb{Z}_K$ is a prime ideal with residue degree 2 and ramification index 1.

To conclude, the class group Cl(K) is generated by the classes of \mathfrak{p}_2 , \mathfrak{p}_3 , \mathfrak{p}'_3 , \mathfrak{p}_5 and \mathfrak{p}_7 . (It is already possible to reduce this set of primes, but you will get full marks for this set as well as correctly justified smaller ones.)

3. (8 points) Factor the ideal $\left(\frac{5+\sqrt{-155}}{2}\right)$ into primes.

We first compute the norm of $\alpha = \frac{5+\sqrt{-155}}{2} \in \mathbb{Z}_K$. We have $(2\alpha - 5)^2 + 155 = 0$ which we can rewrite $4\alpha^2 - 20\alpha + 180 = 0$ and simply $\alpha^2 - 5\alpha + 45 = 0$. Since $\alpha \notin \mathbb{Q}$ we obtain the minimal polynomial $X^2 - 5X + 45$ of α which is also its characteristic polynomial and hence $N_{\mathbb{Q}}^K(\alpha) = 45$ (you can compute the norm with the method of your choice). The integral ideal $\mathfrak{a} = (\alpha)$ therefore has norm $45 = 3^2 \cdot 5$. Given the decomposition of 3 and 5 in K, \mathfrak{a} equals \mathfrak{p}_5 times a product of two prime ideals above 3. Since $\alpha \notin 3\mathbb{Z}_K = \mathfrak{p}_3\mathfrak{p}'_3$, we have $\mathfrak{a} = \mathfrak{p}_5\mathfrak{p}_3^2$ or $\mathfrak{a} = \mathfrak{p}_5\mathfrak{p}'_3^2$. After possibly swapping \mathfrak{p}_3 and \mathfrak{p}'_3 we may assume that $\mathfrak{a} = \mathfrak{p}_5\mathfrak{p}_3^2$.

4. (10 points) Prove that $\operatorname{Cl}(K) \cong \mathbb{Z}/4\mathbb{Z}$.

The prime ideals $\mathbf{p}_2 = 2\mathbb{Z}_K$ and $\mathbf{p}_7 = 7\mathbb{Z}_K$ are principal, so their ideal classes are trivial. Moreover $\mathbf{p}_3\mathbf{p}'_3 = 3\mathbb{Z}_K$ so $[\mathbf{p}_3][\mathbf{p}'_3] = 1$ and $[\mathbf{p}_3]$ is in the subgroup generated by $[\mathbf{p}'_3]$. Since $(\alpha) = \mathbf{p}_5\mathbf{p}_3^2$ we have $1 = [\mathbf{p}_5][\mathbf{p}_3]^2$ and $[\mathbf{p}_5] = [\mathbf{p}_3]^{-2} = [\mathbf{p}'_3]^2$ is in the subgroup generated by $[\mathbf{p}'_3]$. We have therefore proved that $\operatorname{Cl}(K)$ is generated by $[\mathbf{p}'_3]$, and we must determine its order. We have $[\mathbf{p}'_3]^4 = [\mathbf{p}_5]^2 = [\mathbf{p}_5^2] = [5\mathbb{Z}_K] = 1$, so the order of $[\mathbf{p}'_3]$ divides 4: it must be 1, 2 or 4.

Let $x + y\omega \in \mathbb{Z}_K$ be an element of norm ± 5 . Then

$$N_{\mathbb{Q}}^{K}(x+y\omega) = \left(x+\frac{y}{2}\right)^{2} + \frac{155}{4}y^{2} = 5 \text{ since it must be positive,}$$

so $y^2 = 20/155 < 1$, so y = 0. But $x^2 = 5$ has no solution in \mathbb{Z} , so there is no integral element of norm ± 5 in K. The integral ideal \mathfrak{p}_5 of norm 5 is therefore not principal, so $[\mathfrak{p}'_3]^2 = [\mathfrak{p}_5] \neq 1$. So the order of $[\mathfrak{p}'_3]$ does not divide 4 and must therefore be 4.

This proves that $\operatorname{Cl}(K)$ is generated by an element of order 4, i.e. $\operatorname{Cl}(K) \cong \mathbb{Z}/4\mathbb{Z}$.

Exercise 2 (35 points). Let $d \neq 0, 1$ be a squarefree integer and let $K = \mathbb{Q}(\sqrt{d})$.

- 1. (15 points) Let $n \in \mathbb{Z}$. Prove that if neither n nor -n are squares modulo d, then no integral ideal in K of norm n is principal.
 - If $d \not\equiv 1 \mod 4$: we have $\mathbb{Z}_K = \mathbb{Z}[\sqrt{d}]$. Let \mathfrak{a} be a principal integral ideal of norm n. Then $\mathfrak{a} = (x + y\sqrt{d})$ with $x, y \in \mathbb{Z}$. We have

$$N_{\mathbb{O}}^{K}(x+y\sqrt{d}) = x^{2} - dy^{2}.$$

Let $a \in \{\pm n\}$ be the norm of $x + y\sqrt{d}$. Reducing modulo d, we get $x^2 \equiv a \mod d$, so one of $\pm n$ must be a square modulo d. By contraposition, if neither n not -n are squares modulo d, then no integral ideal in K of norm n is principal.

• If $d \equiv 1 \mod 4$: we have $\mathbb{Z}_K = \mathbb{Z}[\omega]$ where $\omega = \frac{1+\sqrt{d}}{2}$. Since d is odd, there exists $u \in \mathbb{Z}$ such that $2u \equiv 1 \mod d$. Let \mathfrak{a} be a principal integral ideal of norm n. Then $\mathfrak{a} = (x + y\omega)$ with $x, y \in \mathbb{Z}$. We have

$$N_{\mathbb{Q}}^{K}(x+y\omega) = \left(x+\frac{y}{2}\right)^{2} - \frac{d}{4}y^{2} = x^{2} + xy + \frac{1-d}{4}y^{2} = x^{2} + xy + Dy^{2},$$

where 1 - d = 4D and $D \in \mathbb{Z}$. Let $a \in \{\pm n\}$ be the norm of $x + y\omega$. Reducing modulo d, we have $(1 - d)u^2 \equiv 4Du^2 \equiv D \mod d$. We get

$$(x+uy)^2 \equiv (x+uy)^2 - d(uy)^2 \equiv x^2 + xy + Dy^2 \equiv a \mod d,$$

so one of $\pm n$ must be a square modulo d. By contraposition, if neither n not -n are squares modulo d, then no integral ideal in K of norm n is principal.

2. (3 points) From now on d = 105. Write down without proof the ring of integers, the discriminant and the signature of K.

The signature of K is (2,0). We have $d = 105 = 3 \cdot 5 \cdot 7$ is squarefree and $d \equiv 1 \mod 4$, so $\mathbb{Z}_K = \mathbb{Z}[\omega]$ where $\omega = \frac{1+\sqrt{d}}{2}$, and disc K = d = 105.

- 3. (10 points) Find an element of norm -6 and an element of norm -5 in \mathbb{Z}_K . Let $x, y \in \mathbb{Z}$. We have $N_{\mathbb{Q}}^K(x + y\sqrt{d}) = x^2 - 105y^2$, so $10 + \sqrt{d} \in \mathbb{Z}_K$ has norm -5. We have $N_{\mathbb{Q}}^K(x + y\omega) = x^2 + xy - 26y^2$, so $4 + \omega$ has norm -6.
- 4. (7 points) Prove that $\operatorname{Cl}(K) \cong \mathbb{Z}/2\mathbb{Z}$.

The Minkowski bound is $M_K = \frac{2!}{2^2}\sqrt{105} \approx 5.12 < 6$, so the class group is generated by the classes of primes of norm up to 5. Such primes must be above 2, 3 or 5.

- We have $105 \equiv 1 \mod 8$, so $2\mathbb{Z}_K = \mathfrak{p}_2 \mathfrak{p}'_2$ where p_2 and \mathfrak{p}'_2 are prime ideals of norm 2.
- Since 3 divides 105, we have $3\mathbb{Z}_K = \mathfrak{p}_3^2$ where \mathfrak{p}_3 is a prime ideal of norm 3.
- Since 5 divides 105, we have $5\mathbb{Z}_K = \mathfrak{p}_5^2$ where \mathfrak{p}_5 is a prime ideal of norm 5.

The class group $\operatorname{Cl}(K)$ is therefore generated by the classes of \mathfrak{p}_2 , \mathfrak{p}_3 and \mathfrak{p}_5 since $[\mathfrak{p}'_2] = [\mathfrak{p}_2]^{-1}$. We also have $[\mathfrak{p}_3]^2 = 1$ and $[\mathfrak{p}_5]^2 = 1$.

Since $(4 + \omega)$ is an integral ideal of norm 5, it must equal \mathfrak{p}_5 , so $[\mathfrak{p}_5] = 1$. Since $\mathfrak{a} = (10 + \sqrt{d})$ is an integral ideal of norm 6, we must have $\mathfrak{a} = \mathfrak{p}_2\mathfrak{p}_3$ or $\mathfrak{a} = \mathfrak{p}'_2\mathfrak{p}_3$, and after possibly swapping \mathfrak{p}_2 and \mathfrak{p}'_2 we may assume $\mathfrak{a} = \mathfrak{p}_2\mathfrak{p}_3$. We get $1 = [\mathfrak{a}] = [\mathfrak{p}_2][\mathfrak{p}_3]$, so that $[\mathfrak{p}_2] = [\mathfrak{p}_3]^{-1} = [\mathfrak{p}_3]$ and $\mathrm{Cl}(K)$ is generated by $[\mathfrak{p}_3]$. Since $[\mathfrak{p}_3]^2 = 1$, this generator has order 1 or 2.

The squares modulo 5 are 0, $(\pm 1)^2 = 1$ and $(\pm 2)^2 = 4$ so neither 3 nor $-3 \equiv 2 \mod 5$ are squares modulo 5. Since 5 divides d, they are also not squares modulo d. By 1., the ideal \mathfrak{p}_3 is not principal, so $[\mathfrak{p}_3]$ has order 2 and $\operatorname{Cl}(K) \cong \mathbb{Z}/2\mathbb{Z}$.

Exercise 3 (35 points). We consider the equation

$$y^2 = x^3 - 6, \quad x, y \in \mathbb{Z}.$$
 (1)

1. (3 points) Write down without proof the ring of integers, signature and discriminant of $K = \mathbb{Q}(\sqrt{-6})$.

The signature of K is (0, 1). Since $-6 = -2 \cdot 3$ is squarefree and $-6 \equiv 2 \mod 4$, we have $\mathbb{Z}_K = \mathbb{Z}[\sqrt{-6}]$ and disc K = -24.

2. (10 points) Determine the class group of K.

The Minkowski bound is $M_K = \frac{2!}{2^2} \frac{4}{\pi} \sqrt{24} \approx 3.12$, so the class group of K is generated by the classes of prime ideals of norm up to 3. Such a prime ideal must be above 2 or 3. Since 2 and 3 both divide -24 we have $2\mathbb{Z}_K = \mathfrak{p}_2^2$ where \mathfrak{p}_2 is a prime ideal of norm 2, and $3\mathbb{Z}_K = \mathfrak{p}_3^2$ where \mathfrak{p}_3 is a prime ideal of norm 3. Moreover, $\sqrt{-6} \in \mathbb{Z}_K$ has norm 6 and therefore generates the ideal $\mathfrak{p}_2\mathfrak{p}_3$, so that $[\mathfrak{p}_2][\mathfrak{p}_3] = 1$: we obtain that $[\mathfrak{p}_3]$ belongs to the subgroup generated by $[\mathfrak{p}_2]$, so that $\operatorname{Cl}(K)$ is generated by $[\mathfrak{p}_2]$. We have $[\mathfrak{p}_2]^2 = 1$ so $[\mathfrak{p}_2]$ has order 1 or 2. If \mathfrak{p}_2 is principal, then a generator must be an element of \mathbb{Z}_K of norm ± 2 . The norm of a generic element $a + b\sqrt{-6}$ of \mathbb{Z}_K $(a, b \in \mathbb{Z})$ is $a^2 + 6b^2 > 0$, so if \mathfrak{p}_2 is principal then there exists $a, b \in \mathbb{Z}$ such that

$$a^2 + 6b^2 = 2.$$

But this implies $b^2 \leq 2/6 = 1/3 < 1$, so b = 0, and $a^2 = 2$ has no solution in \mathbb{Z} . The ideal \mathfrak{p}_2 is therefore not principal, its ideal class has order 2, and $\operatorname{Cl}(K) \cong \mathbb{Z}/2\mathbb{Z}$.

3. (10 points) Let $(x, y) \in \mathbb{Z}^2$ be a solution of (1). Prove that $(y + \sqrt{-6})$ and $(y - \sqrt{-6})$ are coprime.

Let \mathfrak{p} be a prime ideal dividing both $(y+\sqrt{-6})$ and $(y-\sqrt{-6})$. Then $y+\sqrt{-6} \in \mathfrak{p}$ and $y-\sqrt{-6} \in \mathfrak{p}$, so their difference $2\sqrt{-6}$ is in \mathfrak{p} and \mathfrak{p} divides $(2\sqrt{-6})$. Taking norms, we have $N(\mathfrak{p}) \mid 24$ so \mathfrak{p} is a prime ideal above 2 or 3.

• If \mathfrak{p} is above 2: then $\mathfrak{p} = \mathfrak{p}_2 = (2, \sqrt{-6})$, and since $\sqrt{-6} \in \mathfrak{p}_2$ we get $y = y + \sqrt{-6} - \sqrt{-6} \in \mathfrak{p}_2$. Since $y \in \mathbb{Z}$ we get $y \in \mathfrak{p}_2 \cap \mathbb{Z} = 2\mathbb{Z}$, and using the equation (1) x is also even. We write y = 2z and x = 2t with $t, z \in \mathbb{Z}$. We obtain

$$4z^2 = 8t^3 - 6.$$

Reducing modulo 4 gives $0 \equiv 2 \mod 4$, which is impossible. So \mathfrak{p}_2 is not a common divisor of $(y + \sqrt{-6})$ and $(y - \sqrt{-6})$.

• If \mathfrak{p} is above 3: then $2y = y + \sqrt{-6} + y - \sqrt{-6} \in \mathfrak{p}$, and $2y \in \mathbb{Z}$, so $2y \in \mathbb{Z} \cap \mathfrak{p} = 3\mathbb{Z}$. Since 2 is coprime to 3, this implies that $y \in 3\mathbb{Z}$. Let $z \in \mathbb{Z}$ be such that y = 3z. From (1) and reducing modulo 3 we see that x must be divisible by 3, and we write x = 3t with $t \in \mathbb{Z}$. The equation (1) becomes

$$9z^2 = 27t^3 - 6.$$

Reducing modulo 9 we obtain $0 = 3 \mod 9$, which is impossible. So \mathfrak{p} is not a common divisor of $(y + \sqrt{-6})$ and $(y - \sqrt{-6})$.

We have thefore proved that $(y + \sqrt{-6})$ and $(y - \sqrt{-6})$ have no common prime divisor: they are coprime.

4. (4 points) Prove that there exists an ideal \mathfrak{a} such that $(y + \sqrt{-6}) = \mathfrak{a}^3$.

In the prime factorization of the ideal $(x^3) = (x)^3$, all prime ideals appear with exponents that are multiples of 3. We also have $(x^3) = (y^2 + 6) = (y + \sqrt{-6})(y - \sqrt{-6})$, and the primes appearing in the factorisations of $(y + \sqrt{-6})$ and $(y - \sqrt{-6})$ are disjoint, so their exponents are also multiples of 3. This exactly means that $(y + \sqrt{-6})$ is the cube of an ideal: there exists an integral ideal \mathfrak{a} such that $\mathfrak{a}^3 = (y + \sqrt{-6})$.

5. (3 points) Prove that \mathfrak{a} is principal.

We have $[\mathfrak{a}]^3 = 1$ and the class number of K is 2, which is coprime to 3, so $[\mathfrak{a}] = 1$ and \mathfrak{a} is principal.

6. (2 points) Using without proof the fact that $\mathbb{Z}_{K}^{\times} = \{\pm 1\}$, prove that $y + \sqrt{-6}$ is a cube in \mathbb{Z}_{K} .

Let $\alpha \in \mathbb{Z}_K$ be such that $\mathfrak{a} = (\alpha)$. Then $(y + \sqrt{-6}) = (\alpha^3)$, so there exists $u \in \mathbb{Z}_K^{\times}$ such that $y + \sqrt{-6} = u\alpha^3$. Since the only units of \mathbb{Z}_K are ± 1 and they are cubes, $y + \sqrt{-6}$ is a cube in \mathbb{Z}_K .

7. (3 points) Prove that (1) has no solution.

Let $(x, y) \in \mathbb{Z}^2$ be a solution. Let $a, b \in \mathbb{Z}$ be such that $y + \sqrt{-6} = (a + b\sqrt{-6})^3$. Expanding, we get $y + \sqrt{-6} = a^3 + 3a^2b\sqrt{-6} - 18ab^2 - 6b^3\sqrt{-6} = a(a^2 - 18b^2) + 3b(a^2 - 2b^2)\sqrt{-6}$. From the coefficient of $\sqrt{-6}$ we get $3b(a^2 - 2b^2) = 1$, but 1 is not a multiple of 3 so this is impossible. The equation (1) therefore has no solution.

UNASSESSED QUESTIONS

Exercise 4. Let $K = \mathbb{Q}(\sqrt{-231})$.

1. Write down without proof the ring of integers, the discriminant and the signature of K.

The signature of K is (0, 1). Since $-231 = -3 \cdot 7 \cdot 11$ is squarefree and $-231 \equiv 1 \mod 4$, we have $\mathbb{Z}_K = \mathbb{Z}[\omega]$ with $\omega = \frac{1+\sqrt{-231}}{2}$ and disc K = -231.

- 2. Compute the decompositions of 2, 3, 5 and 7 in K.
 - Since $-231 \equiv 1 \mod 8$, we have $2\mathbb{Z}_K = \mathfrak{p}_2 \mathfrak{p}'_2$ where \mathfrak{p}_2 and \mathfrak{p}'_2 are prime ideals of norm 2.
 - Since 3 divides -231, the prime 3 is ramified in K and $3\mathbb{Z}_K = \mathfrak{p}_3^2$ where \mathfrak{p}_3 is a prime ideal of norm 3.

- We have $-231 \equiv 4 \equiv 2^2 \mod 5$, so $5\mathbb{Z}_K = \mathfrak{p}_5 \mathfrak{p}'_5$ where \mathfrak{p}_5 and \mathfrak{p}'_5 are prime ideals of norm 5.
- Since 7 divides -231, the prime 7 is ramified in K and $7\mathbb{Z}_K = \mathfrak{p}_7^2$ where \mathfrak{p}_7 is a prime ideal of norm 7.
- 3. Prove that for every element $z \in \mathbb{Z}_K$ such that $|N_{\mathbb{Q}}^K(z)| \leq 57$, we have $z \in \mathbb{Z}$. Let $z \in \mathbb{Z}_K$. We can write $z = x + y\omega$ with $x, y \in \mathbb{Z}$. We have

$$|N_{\mathbb{Q}}^{K}(z)| = N_{\mathbb{Q}}^{K}(z) = \left(x + \frac{y}{2}\right)^{2} + \frac{231}{4}y^{2} = x^{2} + xy + 58y^{2}$$

If $|N_{\mathbb{Q}}^{K}(z)| \leq 57$ then $y^{2} \leq \frac{4 \cdot 57}{231} = \frac{228}{231} < 1$, so y = 0 and $z = x \in \mathbb{Z}$.

4. Let \mathfrak{p}_2 be a prime of \mathbb{Z}_K above 2. Prove that the class of \mathfrak{p}_2 in $\mathrm{Cl}(K)$ has order 6.

The ideal classes of the two prime ideals above 2 are inverse of each other and hence have the same order. The element $2 + \omega \in \mathbb{Z}_K$ has norm $64 = 2^6$, and $2 + \omega \notin 2\mathbb{Z}_K = \mathfrak{p}_2\mathfrak{p}'_2$, so we have $2 + \omega = \mathfrak{p}_2^6$ or $2 + \omega = \mathfrak{p}'_2^6$. In both cases we get $[\mathfrak{p}_2]^6 = [\mathfrak{p}'_2]^6 = 1$, and the order of $[\mathfrak{p}_2]$ can be 1, 2, 3 or 6.

If the order m of $[\mathfrak{p}_2]$ is not 6, then \mathfrak{p}_2^m is principal and has norm $2^m \leq 57$, so its generator z must be in \mathbb{Z} by the previous question. The only element $z \in \mathbb{Z}$ such that $N_{\mathbb{Q}}^K(z) \in \{2, 2^2, 2^3\}$ is z = 2, but the ideal $(2) = \mathfrak{p}_2 \mathfrak{p}_2'$ is not equal to any \mathfrak{p}_2^m . So $[\mathfrak{p}_2]$ has order 6.

- 5. Let \mathfrak{p}_7 be a prime of \mathbb{Z}_K above 7. Prove that the class of \mathfrak{p}_7 in $\mathrm{Cl}(K)$ has order 2.
- 6. Prove that $[\mathfrak{p}_7]$ does not belong to the subgroup of $\operatorname{Cl}(K)$ generated by $[\mathfrak{p}_2]$. Hint: prove that if it did, then $\mathfrak{p}_7\mathfrak{p}_2^3$ would be principal.
- 7. Compute the prime factorisations of the ideals $\left(\frac{3+\sqrt{-231}}{2}\right)$ and $\left(\frac{7+\sqrt{-231}}{2}\right)$.
- 8. Prove that $\operatorname{Cl}(K) \cong \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Exercise 5. Let d > 0 be a squarefree integer, let $K = \mathbb{Q}(\sqrt{-d})$ and let disc K be the discriminant of K. Let p be a prime that splits in K and let \mathfrak{p} be a prime ideal above p.

1. Prove that for all integers $i \ge 1$ such that $p^i < |\operatorname{disc} K|/4$, the ideal \mathfrak{p}^i is not principal. Hint: consider the cases $\operatorname{disc} K = -d$ and $\operatorname{disc} K = -4d$ separately.

Let *i* be as above. Since *p* is split, $N(\mathfrak{p}) = p$, and by uniqueness of factorisation the ideal \mathfrak{p}^i is not divisible by (p).

• If disc K = -4d, then $\mathbb{Z}_K = \mathbb{Z}[\sqrt{-d}]$. The norm of a generic element $z = x + y\sqrt{-d} \in \mathbb{Z}_K$ is $x^2 + dy^2$.

If \mathfrak{p}^i is principal, let z be a generator. Then the norm of z is p^i , giving $x^2 + dy^2 = p^i$, so $y^2 \leq p^i/d < 1$, so y = 0. But then $z \in \mathbb{Z}$ has norm $z^2 = p^i$, so z is divisible by p. But this is impossible since \mathfrak{p}^i is not divisible by (p).

• If disc K = -d, then $\mathbb{Z}_K = \mathbb{Z}[\alpha]$ with $\alpha = \frac{1+\sqrt{-d}}{2}$. The norm of a generic element $z = x + y\alpha$ is

$$\left(x+\frac{y}{2}\right)^2 + d\left(\frac{y}{2}\right)^2.$$

If \mathfrak{p}^i is principal, let z be a generator. Then the norm of z is p^i , so $y^2 \leq 4p^i/d < 1$, so y = 0 and as before z is divisible by p, which is impossible.

2. What does this tell you about the class number of K?

The number of i as in the previous question is

$$\left\lfloor \frac{\log(|\operatorname{disc} K|/4)}{\log p} \right\rfloor$$

so, accounting for the trivial class, we have

$$h_K \ge 1 + \left\lfloor \frac{\log(|\operatorname{disc} K|/4)}{\log p} \right\rfloor.$$

3. Using without proof the fact that there exists infinitely many squarefree positive numbers of the form 8k + 7 for $k \in \mathbb{Z}_{>0}$, prove that for every X > 0 there exists a number field K such that $h_K > X$.

Let d be squarefree of the form 8k + 7. Then -d < 0 is squarefree and $-d \equiv 1 \mod 8$. Let $K = \mathbb{Q}(\sqrt{-d})$. Then disc K = -d and 2 is split in K. By the previous part we have $h_K \ge 1 + \left\lfloor \frac{\log(d/4)}{\log 2} \right\rfloor$, which tends to ∞ as $d \to \infty$. Using an infinite sequence of such d we obtain $h_K \to \infty$.