Algebraic number theory Solutions to exercise sheet for chapter 4

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk), Aurel Page (a.r.page@warwick.ac.uk)

TAs: Chris Birkbeck (c.d.birkbeck@warwick.ac.uk), George Turcas (g.c.turcas@warwick.ac.uk)

Version: April 2, 2017

Exercise 1 (30 points). Let $K=\mathbb{Q}(\sqrt{-155})$.

1. (3 points) Write down without proof the ring of integers, the discriminant and the signature of K.
The signature of K is $(0,1)$. Since $-155=-5 \cdot 31$ is squarefree and $-155 \equiv$ $1 \bmod 4$, the ring of integers of K is $\mathbb{Z}_{K}=\mathbb{Z}[\omega]$ where $\omega=\frac{1+\sqrt{-155}}{2}$, and disc $K=-155$.
2. (10 points) Describe a set of prime ideals of \mathbb{Z}_{K} whose classes generate the class group of K. For each of these prime ideals, give the residue degree and ramification index.
The Minkowski bound is $M_{K}=\frac{2!\cdot 4}{2^{2} \cdot \pi} \sqrt{155} \approx 7.9<8$, so the class group of K is generated by the classes of the primes of norm less than or equal to 8 . Such ideals must be above $2,3,5$ or 7 .

- Since $-155 \equiv 5 \bmod 8$, the ideal $\mathfrak{p}_{2}=2 \mathbb{Z}_{K}$ is a prime ideal with residue degree 2 and ramification index 1 .
- Since $-155 \equiv 1 \bmod 3$, we have $3 \mathbb{Z}_{K}=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}$ where \mathfrak{p}_{3} and $\mathfrak{p}_{3}^{\prime}$ are prime ideals with residue degree 1 and ramification index 1 .
- Since 5 divides -155 , the prime 5 is ramified in K and we have $5 \mathbb{Z}_{K}=\mathfrak{p}_{5}^{2}$ where \mathfrak{p}_{5} is a prime ideal with residue degree 1 and ramification index 2 .
- We have $-155 \equiv 6 \bmod 7$. The squares modulo 7 are $0,(\pm 1)^{2}=1,(\pm 2)^{2}=$ 4 and $(\pm 3)^{2} \equiv 2 \bmod 7$, so -155 is not a square modulo 7 and $\mathfrak{p}_{7}=7 \mathbb{Z}_{K}$ is a prime ideal with residue degree 2 and ramification index 1 .

To conclude, the class group $\mathrm{Cl}(K)$ is generated by the classes of $\mathfrak{p}_{2}, \mathfrak{p}_{3}, \mathfrak{p}_{3}^{\prime}, \mathfrak{p}_{5}$ and \mathfrak{p}_{7}. (It is already possible to reduce this set of primes, but you will get full marks for this set as well as correctly justified smaller ones.)
3. (8 points) Factor the ideal $\left(\frac{5+\sqrt{-155}}{2}\right)$ into primes.

We first compute the norm of $\alpha=\frac{5+\sqrt{-155}}{2} \in \mathbb{Z}_{K}$. We have $(2 \alpha-5)^{2}+155=0$ which we can rewrite $4 \alpha^{2}-20 \alpha+180=0$ and simply $\alpha^{2}-5 \alpha+45=0$. Since $\alpha \notin \mathbb{Q}$ we obtain the minimal polynomial $X^{2}-5 X+45$ of α which is also its characteristic polynomial and hence $N_{\mathbb{Q}}^{K}(\alpha)=45$ (you can compute the norm with the method of your choice). The integral ideal $\mathfrak{a}=(\alpha)$ therefore has norm $45=3^{2} \cdot 5$. Given the decomposition of 3 and 5 in K, \mathfrak{a} equals \mathfrak{p}_{5} times a product of two prime ideals above 3 . Since $\alpha \notin 3 \mathbb{Z}_{K}=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}$, we have $\mathfrak{a}=\mathfrak{p}_{5} \mathfrak{p}_{3}^{2}$ or $\mathfrak{a}=\mathfrak{p}_{5} \mathfrak{p}_{3}^{\prime 2}$. After possibly swapping \mathfrak{p}_{3} and $\mathfrak{p}_{3}^{\prime}$ we may assume that $\mathfrak{a}=\mathfrak{p}_{5} \mathfrak{p}_{3}^{2}$.
4. (10 points) Prove that $\mathrm{Cl}(K) \cong \mathbb{Z} / 4 \mathbb{Z}$.

The prime ideals $\mathfrak{p}_{2}=2 \mathbb{Z}_{K}$ and $\mathfrak{p}_{7}=7 \mathbb{Z}_{K}$ are principal, so their ideal classes are trivial. Moreover $\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}=3 \mathbb{Z}_{K}$ so $\left[\mathfrak{p}_{3}\right]\left[\mathfrak{p}_{3}^{\prime}\right]=1$ and $\left[\mathfrak{p}_{3}\right]$ is in the subgroup generated by $\left[\mathfrak{p}_{3}^{\prime}\right]$. Since $(\alpha)=\mathfrak{p}_{5} \mathfrak{p}_{3}^{2}$ we have $1=\left[\mathfrak{p}_{5}\right]\left[\mathfrak{p}_{3}\right]^{2}$ and $\left[\mathfrak{p}_{5}\right]=\left[\mathfrak{p}_{3}\right]^{-2}=$ $\left[\mathfrak{p}_{3}^{\prime}\right]^{2}$ is in the subgroup generated by $\left[\mathfrak{p}_{3}^{\prime}\right]$. We have therefore proved that $\mathrm{Cl}(K)$ is generated by $\left[\mathfrak{p}_{3}^{\prime}\right]$, and we must determine its order. We have $\left[\mathfrak{p}_{3}^{\prime}\right]^{4}=\left[\mathfrak{p}_{5}\right]^{2}=$ $\left[\mathfrak{p}_{5}^{2}\right]=\left[5 \mathbb{Z}_{K}\right]=1$, so the order of $\left[\mathfrak{p}_{3}^{\prime}\right]$ divides 4 : it must be 1,2 or 4 .
Let $x+y \omega \in \mathbb{Z}_{K}$ be an element of norm ± 5. Then

$$
N_{\mathbb{Q}}^{K}(x+y \omega)=\left(x+\frac{y}{2}\right)^{2}+\frac{155}{4} y^{2}=5 \text { since it must be positive, }
$$

so $y^{2}=20 / 155<1$, so $y=0$. But $x^{2}=5$ has no solution in \mathbb{Z}, so there is no integral element of norm ± 5 in K. The integral ideal \mathfrak{p}_{5} of norm 5 is therefore not principal, so $\left[\mathfrak{p}_{3}^{\prime}\right]^{2}=\left[\mathfrak{p}_{5}\right] \neq 1$. So the order of $\left[\mathfrak{p}_{3}^{\prime}\right]$ does not divide 4 and must therefore be 4 .
This proves that $\mathrm{Cl}(K)$ is generated by an element of order 4 , i.e. $\mathrm{Cl}(K) \cong \mathbb{Z} / 4 \mathbb{Z}$.
Exercise 2 (35 points). Let $d \neq 0,1$ be a squarefree integer and let $K=\mathbb{Q}(\sqrt{d})$.

1. (15 points) Let $n \in \mathbb{Z}$. Prove that if neither n nor $-n$ are squares modulo d, then no integral ideal in K of norm n is principal.

- If $d \not \equiv 1 \bmod 4:$ we have $\mathbb{Z}_{K}=\mathbb{Z}[\sqrt{d}]$. Let \mathfrak{a} be a principal integral ideal of norm n. Then $\mathfrak{a}=(x+y \sqrt{d})$ with $x, y \in \mathbb{Z}$. We have

$$
N_{\mathbb{Q}}^{K}(x+y \sqrt{d})=x^{2}-d y^{2} .
$$

Let $a \in\{ \pm n\}$ be the norm of $x+y \sqrt{d}$. Reducing modulo d, we get $x^{2} \equiv$ $a \bmod d$, so one of $\pm n$ must be a square modulo d. By contraposition, if neither n not $-n$ are squares modulo d, then no integral ideal in K of norm n is principal.

- If $d \equiv 1 \bmod 4:$ we have $\mathbb{Z}_{K}=\mathbb{Z}[\omega]$ where $\omega=\frac{1+\sqrt{d}}{2}$. Since d is odd, there exists $u \in \mathbb{Z}$ such that $2 u \equiv 1 \bmod d$. Let \mathfrak{a} be a principal integral ideal of norm n. Then $\mathfrak{a}=(x+y \omega)$ with $x, y \in \mathbb{Z}$. We have

$$
N_{\mathbb{Q}}^{K}(x+y \omega)=\left(x+\frac{y}{2}\right)^{2}-\frac{d}{4} y^{2}=x^{2}+x y+\frac{1-d}{4} y^{2}=x^{2}+x y+D y^{2},
$$

where $1-d=4 D$ and $D \in \mathbb{Z}$. Let $a \in\{ \pm n\}$ be the norm of $x+y \omega$. Reducing modulo d, we have $(1-d) u^{2} \equiv 4 D u^{2} \equiv D \bmod d$. We get

$$
(x+u y)^{2} \equiv(x+u y)^{2}-d(u y)^{2} \equiv x^{2}+x y+D y^{2} \equiv a \bmod d,
$$

so one of $\pm n$ must be a square modulo d. By contraposition, if neither n not $-n$ are squares modulo d, then no integral ideal in K of norm n is principal.
2. (3 points) From now on $d=105$. Write down without proof the ring of integers, the discriminant and the signature of K.

The signature of K is $(2,0)$. We have $d=105=3 \cdot 5 \cdot 7$ is squarefree and $d \equiv$ $1 \bmod 4$, so $\mathbb{Z}_{K}=\mathbb{Z}[\omega]$ where $\omega=\frac{1+\sqrt{d}}{2}$, and disc $K=d=105$.
3. (10 points) Find an element of norm -6 and an element of norm -5 in \mathbb{Z}_{K}.

Let $x, y \in \mathbb{Z}$. We have $N_{\mathbb{Q}}^{K}(x+y \sqrt{d})=x^{2}-105 y^{2}$, so $10+\sqrt{d} \in \mathbb{Z}_{K}$ has norm -5 . We have $N_{\mathbb{Q}}^{K}(x+y \omega)=x^{2}+x y-26 y^{2}$, so $4+\omega$ has norm -6 .
4. (7 points) Prove that $\mathrm{Cl}(K) \cong \mathbb{Z} / 2 \mathbb{Z}$.

The Minkowski bound is $M_{K}=\frac{2!}{2^{2}} \sqrt{105} \cong 5.12<6$, so the class group is generated by the classes of primes of norm up to 5 . Such primes must be above 2,3 or 5 .

- We have $105 \equiv 1 \bmod 8$, so $2 \mathbb{Z}_{K}=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}$ where p_{2} and $\mathfrak{p}_{2}^{\prime}$ are prime ideals of norm 2 .
- Since 3 divides 105 , we have $3 \mathbb{Z}_{K}=\mathfrak{p}_{3}^{2}$ where \mathfrak{p}_{3} is a prime ideal of norm 3 .
- Since 5 divides 105 , we have $5 \mathbb{Z}_{K}=\mathfrak{p}_{5}^{2}$ where \mathfrak{p}_{5} is a prime ideal of norm 5 .

The class group $\mathrm{Cl}(K)$ is therefore generated by the classes of $\mathfrak{p}_{2}, \mathfrak{p}_{3}$ and \mathfrak{p}_{5} since $\left[\mathfrak{p}_{2}^{\prime}\right]=\left[\mathfrak{p}_{2}\right]^{-1}$. We also have $\left[\mathfrak{p}_{3}\right]^{2}=1$ and $\left[\mathfrak{p}_{5}\right]^{2}=1$.
Since $(4+\omega)$ is an integral ideal of norm 5 , it must equal \mathfrak{p}_{5}, so $\left[\mathfrak{p}_{5}\right]=1$. Since $\mathfrak{a}=(10+\sqrt{d})$ is an integral ideal of norm 6 , we must have $\mathfrak{a}=\mathfrak{p}_{2} \mathfrak{p}_{3}$ or $\mathfrak{a}=\mathfrak{p}_{2}^{\prime} \mathfrak{p}_{3}$, and after possibly swapping \mathfrak{p}_{2} and $\mathfrak{p}_{2}^{\prime}$ we may assume $\mathfrak{a}=\mathfrak{p}_{2} \mathfrak{p}_{3}$. We get $1=[\mathfrak{a}]=\left[\mathfrak{p}_{2}\right]\left[\mathfrak{p}_{3}\right]$, so that $\left[\mathfrak{p}_{2}\right]=\left[\mathfrak{p}_{3}\right]^{-1}=\left[\mathfrak{p}_{3}\right]$ and $\mathrm{Cl}(K)$ is generated by $\left[\mathfrak{p}_{3}\right]$. Since $\left[\mathfrak{p}_{3}\right]^{2}=1$, this generator has order 1 or 2 .
The squares modulo 5 are $0,(\pm 1)^{2}=1$ and $(\pm 2)^{2}=4$ so neither 3 nor $-3 \equiv$ $2 \bmod 5$ are squares modulo 5 . Since 5 divides d, they are also not squares modulo d. By 1., the ideal \mathfrak{p}_{3} is not principal, so $\left[\mathfrak{p}_{3}\right]$ has order 2 and $\mathrm{Cl}(K) \cong$ $\mathbb{Z} / 2 \mathbb{Z}$.

Exercise 3 (35 points). We consider the equation

$$
\begin{equation*}
y^{2}=x^{3}-6, \quad x, y \in \mathbb{Z} \tag{1}
\end{equation*}
$$

1. (3 points) Write down without proof the ring of integers, signature and discriminant of $K=\mathbb{Q}(\sqrt{-6})$.
The signature of K is $(0,1)$. Since $-6=-2 \cdot 3$ is squarefree and $-6 \equiv 2 \bmod 4$, we have $\mathbb{Z}_{K}=\mathbb{Z}[\sqrt{-6}]$ and disc $K=-24$.
2. (10 points) Determine the class group of K.

The Minkowski bound is $M_{K}=\frac{2!}{2^{2}} \frac{4}{\pi} \sqrt{24} \approx 3.12$, so the class group of K is generated by the classes of prime ideals of norm up to 3 . Such a prime ideal must be above 2 or 3 . Since 2 and 3 both divide -24 we have $2 \mathbb{Z}_{K}=\mathfrak{p}_{2}^{2}$ where \mathfrak{p}_{2} is a prime ideal of norm 2 , and $3 \mathbb{Z}_{K}=\mathfrak{p}_{3}^{2}$ where \mathfrak{p}_{3} is a prime ideal of norm 3 . Moreover, $\sqrt{-6} \in \mathbb{Z}_{K}$ has norm 6 and therefore generates the ideal $\mathfrak{p}_{2} \mathfrak{p}_{3}$, so that $\left[\mathfrak{p}_{2}\right]\left[\mathfrak{p}_{3}\right]=1$: we obtain that $\left[\mathfrak{p}_{3}\right]$ belongs to the subgroup generated by $\left[\mathfrak{p}_{2}\right]$, so that $\mathrm{Cl}(K)$ is generated by $\left[\mathfrak{p}_{2}\right]$. We have $\left[\mathfrak{p}_{2}\right]^{2}=1$ so $\left[\mathfrak{p}_{2}\right]$ has order 1 or 2 . If \mathfrak{p}_{2} is principal, then a generator must be an element of \mathbb{Z}_{K} of norm ± 2. The norm of a generic element $a+b \sqrt{-6}$ of $\mathbb{Z}_{K}(a, b \in \mathbb{Z})$ is $a^{2}+6 b^{2}>0$, so if \mathfrak{p}_{2} is principal then there exists $a, b \in \mathbb{Z}$ such that

$$
a^{2}+6 b^{2}=2 .
$$

But this implies $b^{2} \leq 2 / 6=1 / 3<1$, so $b=0$, and $a^{2}=2$ has no solution in \mathbb{Z}. The ideal \mathfrak{p}_{2} is therefore not principal, its ideal class has order 2 , and $\mathrm{Cl}(K) \cong$ $\mathbb{Z} / 2 \mathbb{Z}$.
3. (10 points) Let $(x, y) \in \mathbb{Z}^{2}$ be a solution of (1). Prove that $(y+\sqrt{-6})$ and ($y-$ $\sqrt{-6}$) are coprime.
Let \mathfrak{p} be a prime ideal dividing both $(y+\sqrt{-6})$ and $(y-\sqrt{-6})$. Then $y+\sqrt{-6} \in \mathfrak{p}$ and $y-\sqrt{-6} \in \mathfrak{p}$, so their difference $2 \sqrt{-6}$ is in \mathfrak{p} and \mathfrak{p} divides $(2 \sqrt{-6})$. Taking norms, we have $N(\mathfrak{p}) \mid 24$ so \mathfrak{p} is a prime ideal above 2 or 3 .

- If \mathfrak{p} is above 2: then $\mathfrak{p}=\mathfrak{p}_{2}=(2, \sqrt{-6})$, and since $\sqrt{-6} \in \mathfrak{p}_{2}$ we get $y=$ $y+\sqrt{-6}-\sqrt{-6} \in \mathfrak{p}_{2}$. Since $y \in \mathbb{Z}$ we get $y \in \mathfrak{p}_{2} \cap \mathbb{Z}=2 \mathbb{Z}$, and using the equation (1) x is also even. We write $y=2 z$ and $x=2 t$ with $t, z \in \mathbb{Z}$. We obtain

$$
4 z^{2}=8 t^{3}-6
$$

Reducing modulo 4 gives $0 \equiv 2 \bmod 4$, which is impossible. So \mathfrak{p}_{2} is not a common divisor of $(y+\sqrt{-6})$ and $(y-\sqrt{-6})$.

- If \mathfrak{p} is above 3: then $2 y=y+\sqrt{-6}+y-\sqrt{-6} \in \mathfrak{p}$, and $2 y \in \mathbb{Z}$, so $2 y \in \mathbb{Z} \cap \mathfrak{p}=3 \mathbb{Z}$. Since 2 is coprime to 3 , this implies that $y \in 3 \mathbb{Z}$. Let $z \in \mathbb{Z}$ be such that $y=3 z$. From (1) and reducing modulo 3 we see that x must be divisible by 3 , and we write $x=3 t$ with $t \in \mathbb{Z}$. The equation (1) becomes

$$
9 z^{2}=27 t^{3}-6 .
$$

Reducing modulo 9 we obtain $0=3 \bmod 9$, which is impossible. So \mathfrak{p} is not a common divisor of $(y+\sqrt{-6})$ and $(y-\sqrt{-6})$.

We have thefore proved that $(y+\sqrt{-6})$ and $(y-\sqrt{-6})$ have no common prime divisor: they are coprime.
4. (4 points) Prove that there exists an ideal \mathfrak{a} such that $(y+\sqrt{-6})=\mathfrak{a}^{3}$.

In the prime factorization of the ideal $\left(x^{3}\right)=(x)^{3}$, all prime ideals appear with exponents that are multiples of 3 . We also have $\left(x^{3}\right)=\left(y^{2}+6\right)=(y+$ $\sqrt{-6})(y-\sqrt{-6})$, and the primes appearing in the factorisations of $(y+\sqrt{-6})$ and $(y-\sqrt{-6})$ are disjoint, so their exponents are also multiples of 3 . This exactly means that $(y+\sqrt{-6})$ is the cube of an ideal: there exists an integral ideal \mathfrak{a} such that $\mathfrak{a}^{3}=(y+\sqrt{-6})$.
5. (3 points) Prove that \mathfrak{a} is principal.

We have $[\mathfrak{a}]^{3}=1$ and the class number of K is 2 , which is coprime to 3 , so $[\mathfrak{a}]=1$ and \mathfrak{a} is principal.
6. (2 points) Using without proof the fact that $\mathbb{Z}_{K}^{\times}=\{ \pm 1\}$, prove that $y+\sqrt{-6}$ is a cube in \mathbb{Z}_{K}.
Let $\alpha \in \mathbb{Z}_{K}$ be such that $\mathfrak{a}=(\alpha)$. Then $(y+\sqrt{-6})=\left(\alpha^{3}\right)$, so there exists $u \in$ \mathbb{Z}_{K}^{\times}such that $y+\sqrt{-6}=u \alpha^{3}$. Since the only units of \mathbb{Z}_{K} are ± 1 and they are cubes, $y+\sqrt{-6}$ is a cube in \mathbb{Z}_{K}.
7. (3 points) Prove that (1) has no solution.

Let $(x, y) \in \mathbb{Z}^{2}$ be a solution. Let $a, b \in \mathbb{Z}$ be such that $y+\sqrt{-6}=(a+b \sqrt{-6})^{3}$. Expanding, we get $y+\sqrt{-6}=a^{3}+3 a^{2} b \sqrt{-6}-18 a b^{2}-6 b^{3} \sqrt{-6}=a\left(a^{2}-18 b^{2}\right)+$ $3 b\left(a^{2}-2 b^{2}\right) \sqrt{-6}$. From the coefficient of $\sqrt{-6}$ we get $3 b\left(a^{2}-2 b^{2}\right)=1$, but 1 is not a multiple of 3 so this is impossible. The equation (1) therefore has no solution.

UNASSESSED QUESTIONS

Exercise 4. Let $K=\mathbb{Q}(\sqrt{-231})$.

1. Write down without proof the ring of integers, the discriminant and the signature of K.

The signature of K is $(0,1)$. Since $-231=-3 \cdot 7 \cdot 11$ is squarefree and $-231 \equiv$ $1 \bmod 4$, we have $\mathbb{Z}_{K}=\mathbb{Z}[\omega]$ with $\omega=\frac{1+\sqrt{-231}}{2}$ and disc $K=-231$.
2. Compute the decompositions of $2,3,5$ and 7 in K.

- Since $-231 \equiv 1 \bmod 8$, we have $2 \mathbb{Z}_{K}=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}$ where \mathfrak{p}_{2} and $\mathfrak{p}_{2}^{\prime}$ are prime ideals of norm 2 .
- Since 3 divides -231 , the prime 3 is ramified in K and $3 \mathbb{Z}_{K}=\mathfrak{p}_{3}^{2}$ where \mathfrak{p}_{3} is a prime ideal of norm 3 .
- We have $-231 \equiv 4 \equiv 2^{2} \bmod 5$, so $5 \mathbb{Z}_{K}=\mathfrak{p}_{5} \mathfrak{p}_{5}^{\prime}$ where \mathfrak{p}_{5} and $\mathfrak{p}_{5}^{\prime}$ are prime ideals of norm 5 .
- Since 7 divides -231 , the prime 7 is ramified in K and $7 \mathbb{Z}_{K}=\mathfrak{p}_{7}^{2}$ where \mathfrak{p}_{7} is a prime ideal of norm 7 .

3. Prove that for every element $z \in \mathbb{Z}_{K}$ such that $\left|N_{\mathbb{Q}}^{K}(z)\right| \leq 57$, we have $z \in \mathbb{Z}$.

Let $z \in \mathbb{Z}_{K}$. We can write $z=x+y \omega$ with $x, y \in \mathbb{Z}$. We have

$$
\left|N_{\mathbb{Q}}^{K}(z)\right|=N_{\mathbb{Q}}^{K}(z)=\left(x+\frac{y}{2}\right)^{2}+\frac{231}{4} y^{2}=x^{2}+x y+58 y^{2} .
$$

If $\left|N_{\mathbb{Q}}^{K}(z)\right| \leq 57$ then $y^{2} \leq \frac{4.57}{231}=\frac{228}{231}<1$, so $y=0$ and $z=x \in \mathbb{Z}$.
4. Let \mathfrak{p}_{2} be a prime of \mathbb{Z}_{K} above 2. Prove that the class of \mathfrak{p}_{2} in $\mathrm{Cl}(K)$ has order 6 . The ideal classes of the two prime ideals above 2 are inverse of each other and hence have the same order. The element $2+\omega \in \mathbb{Z}_{K}$ has norm $64=2^{6}$, and $2+\omega \notin 2 \mathbb{Z}_{K}=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}$, so we have $2+\omega=\mathfrak{p}_{2}^{6}$ or $2+\omega=\mathfrak{p}_{2}^{\prime 6}$. In both cases we get $\left[\mathfrak{p}_{2}\right]^{6}=\left[\mathfrak{p}_{2}^{\prime}\right]^{6}=1$, and the order of $\left[\mathfrak{p}_{2}\right]$ can be $1,2,3$ or 6 .
If the order m of $\left[\mathfrak{p}_{2}\right]$ is not 6 , then \mathfrak{p}_{2}^{m} is principal and has norm $2^{m} \leq 57$, so its generator z must be in \mathbb{Z} by the previous question. The only element $z \in \mathbb{Z}$ such that $N_{\mathbb{Q}}^{K}(z) \in\left\{2,2^{2}, 2^{3}\right\}$ is $z=2$, but the ideal $(2)=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}$ is not equal to any \mathfrak{p}_{2}^{m}. So [$\left.\mathfrak{p}_{2}\right]$ has order 6 .
5. Let \mathfrak{p}_{7} be a prime of \mathbb{Z}_{K} above 7 . Prove that the class of \mathfrak{p}_{7} in $\mathrm{Cl}(K)$ has order 2 .
6. Prove that $\left[\mathfrak{p}_{7}\right]$ does not belong to the subgroup of $\mathrm{Cl}(K)$ generated by $\left[\mathfrak{p}_{2}\right]$. Hint: prove that if it did, then $\mathfrak{p}_{7} \mathfrak{p}_{2}^{3}$ would be principal.
7. Compute the prime factorisations of the ideals $\left(\frac{3+\sqrt{-231}}{2}\right)$ and $\left(\frac{7+\sqrt{-231}}{2}\right)$.
8. Prove that $\mathrm{Cl}(K) \cong \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Exercise 5. Let $d>0$ be a squarefree integer, let $K=\mathbb{Q}(\sqrt{-d})$ and let disc K be the discriminant of K. Let p be a prime that splits in K and let \mathfrak{p} be a prime ideal above p.

1. Prove that for all integers $i \geq 1$ such that $p^{i}<\mid$ disc $K \mid / 4$, the ideal \mathfrak{p}^{i} is not principal. Hint: consider the cases disc $K=-d$ and disc $K=-4 d$ separately.
Let i be as above. Since p is split, $N(\mathfrak{p})=p$, and by uniqueness of factorisation the ideal \mathfrak{p}^{i} is not divisible by (p).

- If disc $K=-4 d$, then $\mathbb{Z}_{K}=\mathbb{Z}[\sqrt{-d}]$. The norm of a generic element $z=$ $x+y \sqrt{-d} \in \mathbb{Z}_{K}$ is

$$
x^{2}+d y^{2} .
$$

If \mathfrak{p}^{i} is principal, let z be a generator. Then the norm of z is p^{i}, giving $x^{2}+$ $d y^{2}=p^{i}$, so $y^{2} \leq p^{i} / d<1$, so $y=0$. But then $z \in \mathbb{Z}$ has norm $z^{2}=p^{i}$, so z is divisible by p. But this is impossible since \mathfrak{p}^{i} is not divisible by (p).

- If disc $K=-d$, then $\mathbb{Z}_{K}=\mathbb{Z}[\alpha]$ with $\alpha=\frac{1+\sqrt{-d}}{2}$. The norm of a generic element $z=x+y \alpha$ is

$$
\left(x+\frac{y}{2}\right)^{2}+d\left(\frac{y}{2}\right)^{2}
$$

If \mathfrak{p}^{i} is principal, let z be a generator. Then the norm of z is p^{i}, so $y^{2} \leq$ $4 p^{i} / d<1$, so $y=0$ and as before z is divisible by p, which is impossible.
2. What does this tell you about the class number of K ?

The number of i as in the previous question is

$$
\left\lfloor\frac{\log (|\operatorname{disc} K| / 4)}{\log p}\right\rfloor
$$

so, accounting for the trivial class, we have

$$
h_{K} \geq 1+\left\lfloor\frac{\log (|\operatorname{disc} K| / 4)}{\log p}\right\rfloor .
$$

3. Using without proof the fact that there exists infinitely many squarefree positive numbers of the form $8 k+7$ for $k \in \mathbb{Z}_{>0}$, prove that for every $X>0$ there exists a number field K such that $h_{K}>X$.
Let d be squarefree of the form $8 k+7$. Then $-d<0$ is squarefree and $-d \equiv$ $1 \bmod 8$. Let $K=\mathbb{Q}(\sqrt{-d})$. Then disc $K=-d$ and 2 is split in K. By the previous part we have $h_{K} \geq 1+\left\lfloor\frac{\log (d / 4)}{\log 2}\right\rfloor$, which tends to ∞ as $d \rightarrow \infty$. Using an infinite sequence of such d we obtain $h_{K} \rightarrow \infty$.
